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Abstract As planets form and grow within gaseous protoplanetary disks, the mutual gravita-
tional interaction between the disk and planet leads to the exchange of angular momentum, and
migration of the planet. We review current understanding of disk-planet interactions, focussing
in particular on physical processes that determine the speed and direction of migration. We
describe the evolution of low mass planets embedded in protoplanetary disks, and examine the
influence of Lindblad and corotation torques as a function of the disk properties. The role of
the disk in causing the evolution of eccentricities and inclinations is also discussed. We describe
the rapid migration of intermediate mass planets that may occur as a runaway process, and
examine the transition to gap formation and slower migration driven by the viscous evolution of
the disk for massive planets. The roles and influence of disk self-gravity and magnetohydrody-
namic turbulence are discussed in detail, as a function of the planet mass, as is the evolution of
multiple planet systems. Finally, we address the question of how well global models of planetary
formation that include migration are able to match observations of extrasolar planets.
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1 Introduction

The discovery of numerous extrasolar planets with diverse orbital configurations
has motivated a dramatic increase in research aimed at understanding their for-
mation and evolution. Short-period giant planets (‘hot Jupiters’) such as 51 Peg
b, the first to be discovered around a Sun-like star (Mayor & Queloz, 1995),
are difficult to explain by in situ formation models, and suggest that large-scale
migration has taken place. Additional evidence for migration is provided by
observations of giant planets in mean motion resonance, such as the two giant
planets orbiting the M-type star GJ 876 (Marcy et al., 2001), or the two Saturn-
mass planets in the Kepler-9 system (Holman et al., 2010). Recent discoveries
of resonant or near-resonant multiple systems of transiting planets by the Ke-
pler mission, such as the Kepler-11 system (Lissauer et al., 2011), point to an
origin in a highly flattened and dissipative environment – namely a protostel-
lar/protoplanetary disk. This review examines our current understanding of how
planets interact gravitationally with the disks within which they form.
The ‘nebula hypothesis’ developed in the 18th century by Kant and Laplace,

which suggests that our Solar System planets formed within a flattened and
rotating disk of gas and dust (the ‘solar nebula’), still forms the conceptual basis
of modern theories of planet formation, and receives continuing support from
observations of disks around young stars. The structure and dynamics of these
disks are clearly relevant for understanding planet formation, and we refer the
interested reader to three recent reviews that discuss the theory and observations
of protoplanetary disks (Dullemond & Monnier, 2010; Armitage, 2011; Williams
& Cieza, 2011).
There are two basic pictures of how planets form in a disk. In a simplified ver-

sion of the core accretion model, growth proceeds through a multi-stage process
that begins with the collisional growth of submicron-sized dust grains, proceeds
through the formation of kilometre-sized planetesimals, and leads eventually to
the growth of terrestrial planets in the inner regions of the disk. In the outer
regions, where volatiles condense into ices, larger protoplanetary cores form that
may accrete massive gaseous envelopes to become gas giant planets. Observations
suggest disk lifetimes are typically a few Myr, so this process must be largely com-
pleted on this timescale. The alternative gravitational instability model of planet
formation envisages fragmentation of a protoplanetary disk into gaseous clumps
with planetary masses during the earliest stages of disk formation and evolution,
when the disk mass is comparable to that of the central star. Fragmentation is
likely to occur at large distances in the disk (> 50 AU), where the cooling time is
short. In either of the above scenarios, forming planets must inevitably undergo
gravitational interactions with their nascent disks, leading to angular momentum
and energy exchange and orbital evolution.
Extrasolar planets may provide motivation for current research into disk-planet

interactions, but the theoretical groundwork was laid long before the discovery
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of 51 Peg b (Goldreich & Tremaine, 1979, 1980; Lin & Papaloizou, 1979). It was
apparent from these early studies that low-mass planets embedded in gaseous
disks would undergo rapid inward migration (type I migration), with Earth-mass
protoplanets reaching the central star within ∼ 105 yr. Understanding how this
rapid inward migration, and the associated loss of protoplanets into the star, can
be prevented remains an area of active research. It has also been long recognised
that giant planets will form gaps in their disks, and migrate inward on their
viscous evolution times (typically 105 yr) (Lin & Papaloizou, 1986a). Planetary
migration is now usually divided into three categories: type I - migration of low-
mass embedded planets; type II - migration and gap formation by massive planets;
type III - rapid migration of intermediate (Saturn) mass planets in relatively
massive disks. We review each of these migration modes, and discuss recent
improvements in our understanding of the influence of disk processes such as
turbulence, self-gravity and thermodynamic evolution. We also discuss briefly
the evolution of orbital eccentricity and inclination driven by interaction with
the disk.
Although disk-planet interactions certainly play a role in driving the orbital

evolution of forming planets, there are other mechanisms for inducing orbital
changes. Planet-planet gravitational scattering is probably the best contender for
explaining the large eccentricities of extrasolar planets (Terquem & Papaloizou,
2002; Jurić & Tremaine, 2008; Chatterjee et al., 2008), and the Kozai mecha-
nism drives high eccentricities through secular interaction with a highly inclined
companion (Wu & Murray, 2003). Combined with tidal interaction with the
central star, these processes can generate short-period planets on circular orbits
(Fabrycky & Tremaine, 2007), and observations suggest that these processes con-
tribute significantly to the dynamical evolution of planets. Interaction with a
remnant planetesimal disk, such as the Kuiper belt in our Solar System, has also
been shown to drive migration (Hahn & Malhotra, 1999; Tsiganis et al., 2005).
In this review, however, we focus on the role of the gaseous disk in driving orbital
evolution, with an emphasis on the basic physical mechanisms, recent theoretical
and computational developments, and applications to theories of planet forma-
tion.
The important topic of planet-disk interaction has been reviewed previously

by a number of researchers. Informative reviews that have appeared during the
past few years include Papaloizou et al. (2007), Masset (2008), Chambers (2009),
Lubow & Ida (2010) and Baruteau & Masset (2012). In light of these existing
reviews we shall focus here on the more recent developments and give guidance
to future issues.

2 Planets in viscous laminar disks

It is widely believed that accretion in protoplanetary disks is driven by magneto-
hydrodynamical (MHD) turbulence. However, due to the numerical complexity
of solving the full time-dependent MHD equations, the standard means of sim-
ulating evolutionary processes in the disk is still through a simplified approach.
Here, the turbulence is modeled by assuming that its effects can be described
by using the standard Navier-Stokes equations with a Reynolds-ansatz for the
viscous stress tensor. The viscosity parameter, often parameterized by the di-
mensionless number α (Shakura & Sunyaev, 1973), is then chosen to obtain a
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good match with the observationally determined evolution time or mass accre-
tion rate of the disk. In this section we deal with the dynamics of embedded
planets in such viscously evolving disks. Below, in Sect. 3, we focus on planets
embedded in magnetised, turbulent disks.

Figure 1: Disk surface density and flow structure for a planet with mass ratio
q = 9 · 10−5 (30 M⊕ for a solar-mass star) embedded in a constant surface
density disk (normalised to unity). Left: The density structure 5 orbits after
the planet’s insertion into the disk. Clearly visible are the spiral arms launched
by the planet, the inner leading and the outer trailing. Right: Topology of
the flow field, where the streamlines refer to the corotating frame. The disk is
split into an inner disk with circulating streamlines (moving counterclockwise),
a horseshoe-shaped corotation region (within the thick lines), and an outer disk
of circulating material (moving clockwise). Courtesy P. Armitage.

A young planet embedded in a disk disturbs the disk dynamically in two ways
as shown in Fig. 1: First it divides it into an inner and outer disk separated by
a coorbital region (right panel). Second, the radially propagating density waves
generated by the planet are sheared out by the Keplerian differential rotation,
creating spiral waves (left panel). The density structure induced by the planet
depends (at least for locally isothermal disks where the temperature scales in-
versely with radius) only on the mass ratio q = mp/M∗, where mp denotes the
planet mass and M∗ the stellar mass. Hence, plots like those shown in Fig. 1 are
often scale free and spatial units are not stated. The perturbed density structures
in the coorbital region and the spiral arms are not symmetric with respect to the
line connecting the star and the planet and gravitational torques are exerted on
the planet, causing a change in its orbital elements.
Let us briefly consider the effect of the spiral arms that generate the so-called

Lindblad torques (left panel in Fig. 1). The inner (leading) spiral pulls the planet
forward, i.e. generates a positive torque, which leads to a gain in angular mo-
mentum of the planet and outward migration. Conversely the outer spiral pulls
the planet back and drives inward migration. Hence, the effects of the inner and
outer disk tend to partially cancel out, and the net effect is the residual between
the two sides. Because the effects of outer and inner disk are comparable in mag-
nitude the speed and direction of migration can depend delicately on the physical
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details of the disk. The torque on the planet can be calculated approximately
by looking at the angular momentum exchange of individual particles passing
by the planet: This is the so-called impulse approximation [for details see Lin
& Papaloizou (1979) and Lubow & Ida (2010)]. However, a full fluid dynamical
approach leads to deeper insight and to more reliable results. We follow this
latter approach and present an outline of how the torques are evaluated below.

2.1 Low-mass planets in isothermal disks

For low-mass embedded planets that induce only small perturbations in the disk,
the angular momentum exchange between disk and planet can be determined
from a linear analysis of the perturbed flow. The unperturbed disk is assumed
to be axisymmetric, and in a state of Keplerian rotation with angular velocity
Ω(r) =

√

GM∗/r3 around the star, and with vanishing radial velocity. For now,
we consider a planet on a circular orbit. Its gravitational potential, ψp, is periodic
in azimuth and can be expanded in a Fourier series:

ψp(r, ϕ, t) ≡ − Gmp

|~rp(t)− ~r| =
∞
∑

m=0

ψm(r) cos{m[ϕ− ϕp(t)]}, (1)

where ϕp = Ωpt is the azimuth angle of the planet, moving with angular velocity
Ωp. ψm(r) denotes the potential coefficient for each azimuthal mode number m.
Each potential component rotates with pattern-speed Ωp. An explicit expression
for ψm(r) is given, for example, by Meyer-Vernet & Sicardy (1987). The above
decomposition applies to a flat two-dimensional disk and can be generalized for
a planet on an eccentric orbit (see Sect. 2.5 below). The total torque exerted by
the disk on the planet can be calculated according to

Γtot = −
∫

disk
Σ(~r × ~F ) df =

∫

disk
Σ(~r ×∇ψp) df =

∫

disk
Σ
∂ψp

∂ϕ
df , (2)

where Σ denotes the surface density of the disk, ~F is the specific force (accel-
eration) acting on a disk element, and df is a surface element. Whenever the
frequency of an individual potential component as seen by a fluid particle in the
disk, ω = m(Ω(r)−Ωp), matches a natural oscillation frequency, we have a reso-
nant condition inducing a strong disk response. Torques are therefore calculated
at these resonant locations.
Neglecting pressure and self-gravity, resonances occur for m(Ω(r) − Ωp) = 0

or ±κ(r), where κ(r) is the epicyclic frequency in the disk, i.e. the oscillation
frequency for a particle in the disk subject to a small radial displacement. The
first case refers to the corotation resonance where the local disk and planet orbital
speeds are equal, Ω(r) = Ωp. The corotation region is indicated in the right panel
of Fig. 1 within the thick line. The second resonance condition applies to Lindblad
resonances where the plus sign, i.e. Ω(r) = Ωp+κ(r)/m, refers to inner Lindblad
resonances (interior to rp), where the disk rotates faster than the planet. The
minus sign refers to the outer Lindblad resonances, i.e. Ω(r) = Ωp − κ(r)/m
(exterior to rp and the corotation region in Fig. 1). The radial locations of the
Lindblad resonances, rL, are obtained by noting that for Keplerian disks, κ = Ω,
which leads to

rL =

(

m

m± 1

)2/3

rp. (3)
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Under conditions where pressure in a disk can not be neglected, the Lindblad
resonance condition is modified to become

m(Ω(r)− Ωp) =
√

κ2(r)(1 + ξ2). (4)

Here, ξ ≡ mcs/(Ωr) where cs is the isothermal sound speed in the disk. For
m→ ∞, and denoting cs = HΩ where H is the local disk scale height (see eq. 10
below), the Lindblad resonance positions are shifted away from those given by
eq. (3) to become

rL = rp +
2H

3
, (5)

showing that the Lindblad resonances for m ≫ 1 pile-up at a distance equal to
2H/3 from the planet. This prevents divergence of the torque experienced by the
planet from the disk, giving rise to the phenomenon known as the torque cut-off
(Goldreich & Tremaine, 1980; Artymowicz, 1993b).

2.1.1 Lindblad torques Spiral density waves are excited by the planet
at Lindblad resonances, and carry an angular momentum flux as they propagate
away from the resonance into the disk. The combined effect of both spirals
determines the sign and magnitude of the total torque. For circular orbits the
total torque exerted on the planet is a direct measure of the speed and direction
of migration, with positive torques driving outward migration and negative ones
driving migration inward.
The Lindblad torque acting on the planet due to the disk response to the mth

component of the planet potential is

ΓL
m = sign(Ω− Ωp)

π2Σ

3ΩΩp

(

r
dψm

dr
+

2m2(Ω− Ωp)

Ω
ψm

)2

, (6)

which has to be evaluated at the resonance location r = rL. Details of the deriva-
tion of this, or equivalent expressions, can be found for example in Goldreich &
Tremaine (1979) Ward (1986) and Meyer-Vernet & Sicardy (1987). In principle a

correction factor of
[

√

1 + ξ2(1 + 4ξ2)
]−1

should be applied to eq. (6) to account

for the shift in resonances described by eq. (4) (Artymowicz, 1993b; Ward, 1997).
Equation (6) is for a single Fourier component of ψp acting at an inner or outer
Lindblad resonance. The total torque acting on the planet, usually referred to as
the differential Lindblad torque, is then a sum over contributions for 1 ≤ m ≤ ∞
at the inner and outer Lindblad resonances. For most disk models the differen-
tial Lindblad torque is negative, driving inward migration of the planet because
the outer Lindblad resonances lie closer to the planet than the inner resonances.
In particular, gas pressure in the disk causes the angular velocity to be slightly
sub-Keplerian, shifting the locations of both inner and outer Lindblad resonances
inward (Ward, 1997; Papaloizou et al., 2007).
We comment briefly that the influence of disk self–gravity on type I migration

of low-mass embedded planets has been considered by Pierens & Huré (2005)
and Baruteau & Masset (2008b). Their studies indicate that a modest shift of
Lindblad resonance locations arises when both the disk and planet orbit self-
consistently in the gravitational field of the star and disk, leading to a slowing
of type I migration by a factor of ∼ 2 in a disk with mass equal to 3 times the
minimum mass solar nebula model (MMSN) (Hayashi, 1981).
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2.1.2 Corotation torques Material within the horseshoe region (inside
the thick line in Fig.1) has (on average) the same speed as the planet and is
corotating with it. In the limit of small planet masses (a few M⊕ at 5 AU) one
can apply linear theory and calculate the corresponding corotation torque. This
was first estimated in the context of planet-satellite interaction by Goldreich &
Tremaine (1979) with the result that

ΓC
m =

mπ2

2

ψm

rdΩ/dr

d

dr

(

Σ

B

)

, (7)

which has to be evaluated at the corotation radius, r = rC. Here, B = κ2/(4Ω)
denotes the second Oort constant. Physically, B is half the z-component of the
flow vorticity, (∇× ~v)|z (i.e. 2B/Σ is the specific vorticity, sometimes called the
vortensity).

2.1.3 Type I migration in isothermal disks Low-mass planets do not
alter the global disk structure significantly, and in particular they do not open
gaps. Hence, the combined effect of Lindblad and corotation torques can be cal-
culated for small planetary masses using the above linear analysis (we discuss
the validity of this approach below). The outcome of such linear studies has
been termed type I migration. Due to the complexity of considering heat gen-
eration and transport in disks these linear studies have relied nearly exclusively
on simplified, isothermal disk models, where the disk has a fixed radial temper-
ature structure, T (r). If dT/dr 6= 0, then the models have been termed locally
isothermal, where the temperature varies radially but is constant in the vertical
direction if one considers the three-dimensional (3D) structure. Vertical hydro-
static equilibrium leads to a Gaussian density stratification. Linear calculations
have been performed for both 2D (flat disks using rϕ-coordinates) and full 3D
configurations, but in 2D one must account for the vertical distribution of disk
matter by using an effective smoothing of the gravitational potential near the
planet (aside from the necessity when simulating disk-planet interaction).
Comprehensive 3D linear calculations have been presented by Tanaka, Takeuchi

& Ward (2002), and for strictly isothermal disks with T = constant, they yield the
following expressions for the differential Lindblad and corotation torques acting
on the planet:

ΓL
lin = −(2.34− 0.1βΣ) Γ0 and ΓC

lin = 0.64

(

3

2
− βΣ

)

Γ0. (8)

Here, the surface density varies with radius as Σ(r) ∝ r−βΣ , and the torque
normalization is given by

Γ0 =

(

mp

M∗

)2 (

H

rp

)−2

Σp r
4
pΩ

2
p, (9)

which must be evaluated at the planet location, as indicated by the index p. The
total torque, Γtot

lin , is given as the sum of the differential Lindblad and corotation
torques, Γtot

lin = ΓL
lin+ΓC

lin (Ward, 1986). The magnitude of the type I torque scales
as the inverse square of the disk aspect ratio (or inversely with the temperature,
see eq. 10), quadratically with the planet mass, and linearly with the disk mass.
The quadratic mp dependence arises because density perturbations scale with mp

and another factor of mp comes in to play when evaluating the force or torque
on the planet.
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We define the effective disk thickness, H, in this review as

H(r) = csΩ
−1, (10)

where c2s = P/Σ is the local isothermal sound speed, and P is the vertically
integrated pressure for 2D disk models. For adiabatic disks the sound speed is
given by

√
γ cs with adiabatic exponent γ. An interesting feature of the corotation

torque is that it vanishes for the popular MMSN protoplanetary disk model. The
surface density in the MMSN scales as Σ ∝ r−3/2 giving ΓC = 0, such that only
the differential Lindblad torque remains.

2.1.4 Numerical simulations of type I migration The linear studies
have been supplemented in recent years by many numerical studies in two and
three dimensions. Here, the disk is modeled as a viscous gas and the full non-
linear Navier-Stokes equations are solved, typically (but not exclusively) using
grid-based hydrodynamic codes. Because there are a number of codes on the
market, a detailed code comparison project was conducted a few years ago to
verify the convergence of the results (de Val-Borro et al., 2006). Because the
physical size of an embedded planet can be much smaller than the achievable grid
resolution, it is typically treated as a point mass. In this case, the gravitational
potential has to be smoothed (over a couple of grid-cells) to avoid singularities.
Mostly, the following form is used:

ψp = − GM∗mp

(s2 + ǫ2)1/2
, (11)

where s is the distance from the planet, and ǫ the smoothing length. As mentioned
above, in 2D the neglect of the vertical dimension requires a larger value of
ǫ ≈ H/2.
Numerical improvements have led to increased computational efficiency and

accuracy that allow longer and higher resolution simulations to be performed.
Worthy of mention are the FARGO method (Masset, 2000), which overcomes re-
strictions on the time-step due to the differentially rotating disk, and a conser-
vative treatment of the Coriolis force (Kley, 1998). To increase spatial resolution
around the planet, nested-grid structures have been employed successfully in 2D
and 3D (D’Angelo, Henning & Kley, 2002; D’Angelo, Kley & Henning, 2003).
The most recent 3D nested-grid hydrodynamic simulations of planet-disk inter-
action have been presented by D’Angelo & Lubow (2010) for locally isothermal
disks. Their simulations give very good agreement with the 3D linear results,
and the range of applicability of eq. (8) is extended by considering the influence
of radial temperature gradients in the disk, such that T (r) = T0 r

−βT . Their cal-
culations yield the following form for the total (Lindblad and corotation) torque
acting on planets with masses below about 10 M⊕:

Γtot = −(1.36 + 0.62βΣ + 0.43βT )Γ0. (12)

The torques acting on the planet change its angular momentum Jp according
to

dJp
dt

= Γtot. (13)

For circular orbits, Jp depends only on the planet’s distance ap (semi-major axis)
from the star through Jp = mp

√

GM∗ap. Equation (13) can then be solved for
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the rate of change in the semi-major axis, and one obtains the migration rate ȧp
of the planet. The migration timescale, τmig, is then

τmig =
ap
ȧp

=
1

2

Jp
Γtot

. (14)

In early studies (Goldreich & Tremaine, 1980) realised that the migration
timescale can be very short. For an Earth-mass planet around a solar-mass
star at 1 AU, we find for the MMSN (Σ = 1700 g cm−3, H/r = 0.05) τmig ≈ 105

yr. For planetary cores of a few Earth-masses initially located at 5 AU, the mi-
gration timescale is shorter than the gas accretion time onto the core, which is
typically a few Myr (Pollack et al., 1996). This realisation has posed a serious
challenge for the theory of planet formation over recent decades, as we discuss
in more detail in Sect. 6. Possible remedies that have been suggested for the
problem of excessively rapid type I migration include: strong corotation torques
operating in regions where there are steep positive surface density gradients (so-
called ‘planet traps’) (Masset et al., 2006); reductions in the differential Lindblad
torque in regions of sharp opacity transition (Menou & Goodman, 2004); mag-
netic resonances in disks with strong toroidal magnetic fields (Terquem, 2003);
torque reversals for planets on eccentric orbits (Papaloizou & Larwood, 2000;
Cresswell & Nelson, 2006); torque reductions from disk shadowing and illumi-
nation variations in the presence of a planet (Jang-Condell & Sasselov, 2005);
stochastic migration induced by disk turbulence (Nelson & Papaloizou, 2004;
Laughlin, Steinacker & Adams, 2004); and corotation torques in radiative disks
(Paardekooper & Mellema, 2006b). We discuss some of these ideas in greater
detail in the following sections.

2.1.5 The horseshoe drag In the discussion of the corotation torque
above, it was assumed that it can be estimated by linear analysis. This approach
has been questioned recently by Paardekooper & Papaloizou (2008), who point
out that the corotation torque is non-linear for all planet masses. The argument
is based on an analysis of the so-called horseshoe drag (Ward, 1991), which is
a description of the corotation torque based on horseshoe orbits (that do not
exist in a linear theory). The right panel of Fig. 1 shows the motion of the
gas in the frame corotating with the planet. Here, fluid elements approach the
planet at the two ends of the horseshoe orbit and perform U-turns. They are
periodically shifted from an orbit with a semi-major axis slightly larger than the
planet’s to an orbit that is slightly smaller, and vice versa. Hence, at each U-turn
there is an exchange of angular momentum between coorbital disk material and
the planet. The total corotation torque is obtained by adding the contributions
from each of the horseshoe U-turns. In the case of pressureless particles that do
not interact, there is no net torque exerted on the planet because the particles
follow the trajectories of the restricted three-body problem. To obtain a non-
zero net torque, a persistent asymmetry between the two U-turns must exist.
The strength of the asymmetry in the horseshoe region depends on the radial
gradients of specific vortensity and entropy across it (Ward, 1991; Baruteau &
Masset, 2008a; Paardekooper & Papaloizou, 2008).
The expression for the horseshoe drag obtained by Ward (1991) is

ΓHS =
3

4

(

3

2
− βΣ

)

x4s ΣpΩ
2
p. (15)
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Figure 2: Torque saturation: Left: Time evolution of the total torque acting
on a low mass planet in a disk that has a constant surface density and very low
viscosity. Shown are results for an adiabatic and a locally isothermal disk. At the
start of the simulations, when the gas performs its first U-turn near the planet,
the torques reach a maximum (fully unsaturated values). Then they drop to
reach the final saturated values through a series of oscillations. The horizontal
lines refer to the isothermal and adiabatic Lindblad torques (Paardekooper et al.,
2010). Right: Final equilibrium torque acting on a 20 M⊕ planet embedded in a
viscous disk for 2D radiative simulations. The viscosity is given by ν = αcsH with
α = 4 · 10−3. For small viscosity the torque is fully saturated and given by the
Lindblad torque. Increasing the viscosity desaturates the corotation torque such
that the total torque increases, whereas at very large α the viscosity perturbs the
horseshoe region and the torque declines again.

The sensitivity to the geometry of the corotation region is indicated by the scaling
of ΓHS with the 4th power of the radial half-width of the horeshoe region, xs
(Fig. 1 right panel). Comparing this to the expression for ΓC

lin in eq. (8), we
can see immediately that the two expressions are not identical. The horseshoe
half-width, xs, is normally determined through an analysis of fluid streamlines in
numerical simulations (Masset, 2002). A number of numerical studies (Masset,
D’Angelo & Kley, 2006; Baruteau & Masset, 2008a; Paardekooper & Papaloizou,
2008) indicate that an appropriate form for xs (for 2D disks) is given by

xs = C(ǫ) ap

√

q

h
, (16)

where C(ǫ) is a factor of order unity and ǫ is the smoothing length given in
eq. (11). We note that the relative scale height h = H/r depends on the sound
speed cs (see eq. 10), and hence the value of xs in adiabatic disks is smaller than
in isothermal disks by a factor of γ1/4. Using eq. (16) in eq. (8) and comparing
with eq. (15) shows that ΓC

lin and ΓHS scale identically with physical parameters,
and differ only by a constant factor. In general, the horseshoe drag is larger than
the linear corotation torque, and therefore tends to be more effective in slowing
down, or even reversing the inward migration of low mass planets.

2.1.6 Corotation torque saturation As mentioned above, the corota-
tion torque depends on radial gradients of specific vorticity and entropy across
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the corotation region. If viscosity or thermal diffusion are too small, the cor-
responding contributions to the corotation torque will saturate (Ward, 1992),
which means that the torque strength can be greatly reduced or even vanish
completely. Fluid elements at different radii within the corotating region have
different horseshoe libration periods, and this leads to phase mixing and flat-
tening of the original specific vorticity or entropy gradients. Viscosity acts to
re-establish the specific vorticity gradient, so an appropriate level of viscosity
acts to desaturate the vorticity-related corotation torque. Heat diffusion acts to
re-establish the entropy gradient, so an appropriate level desaturates the entropy-
related corotation torque. The horseshoe region contains only a finite amount of
angular momentum that can be exchanged with the planet in the absence of vis-
cosity (Balmforth & Korycansky, 2001). Therefore viscosity is always required
to desaturate the corotation torque even if the vorticity-related torque is inactive
(as it would be in a disk where Σ = Σ0r

−3/2, for example). In this case the role
of viscosity is to exchange angular momentum between the horseshoe region and
the rest of the disk.
The saturation process is shown in Fig. 2 (left panel) where the torque evolution

for a 4.2-M⊕ planet embedded in a constant surface density disk with very low
disk viscosity (here ν = 10−8a2pΩp) is shown for an isothermal and adiabatic

simulation. Such a disk has a specific vorticity profile that scales as r−3/2, so
we expect a strong vorticity-related torque. Indeed, shortly after the start of
the simulations, the gas close to the planet begins to follow horseshoe orbits and
generates a strong positive horseshoe drag as described above. This is because
the initial gradient in specific vorticity generates large asymmetries in the torques
exerted at the two horseshoe U-turns, which are fully established after about 10-
20 orbits. Later, after the material has completed approximately half a horseshoe
libration, phase mixing begins to set in and the torque drops strongly. After a
few oscillations the torque approaches a stationary state. The oscillations are due
to the consecutive mixing of the coorbital material within the horseshoe region,
and their period is roughly equal to the libration time of the material near the
outer edges of the horseshoe region, which can be estimated by

τlib =
8π ap
3Ωpxs

. (17)

In our case (with parameters h = 0.05, q = 1.26×10−5, and C = 1 in eq. 16), one
finds an oscillation timescale of ∼ 85 orbits for the isothermal and ∼ 100 orbits
for the adiabatic case, in good agreement with the simulations. In the final state,
the corotation torque/horseshoe drag are fully saturated and only the differential
Lindblad torque remains. As indicated by the torque expressions given above
in eqs. (8) and (9), the isothermal Lindblad torque is a factor γ stronger than
the adiabatic one. The physical reason lies in the larger adiabatic sound speed
(i.e. larger H), which causes wider spiral arms that are launched further from
the planet and, hence, weaken the torques.
Desaturation of the corotation torque requires the action of viscosity, and the

optimal level of desaturation occurs when the viscous diffusion time scale across
the horseshoe region, τν . τlib (Masset, 2001, 2002), where τν = x2s/ν, and ν
is the kinematic viscosity. Similar arguments apply to the desaturation of the
entropy-related corotation torque, but the controlling parameter in that case is
the thermal diffusion coefficient. The dependence of desaturation on the viscosity
is shown in Fig. 2 (right panel), where it can be seen that the torque decreases (i.e.
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saturates) as the viscosity gets smaller. In very viscous disks, when the viscous
diffusion time becomes short and comparable to the time for the gas to undergo a
horseshoe U-turn, the non-linear corotation torque starts to weaken (Fig. 2) as the
viscosity effectively disrupts the horseshoe streamlines. Increasing the viscosity
further causes the vorticity-related corotation torque to approach the smaller
value expected from linear theory (Masset, 2002). A similar argument applies to
the saturation of the entropy-related corotation torque when thermal diffusion
becomes increasingly efficient (Paardekooper & Papaloizou, 2008; Paardekooper,
Baruteau & Kley, 2011).

2.2 Migration in adiabatic and radiative disks

As mentioned above, most previous studies of disk-planet interaction have been
performed in the context of (locally) isothermal disks. However, as shown in
Fig. 2, a process that prevents corotation torque saturation in an adiabatic disk
could change migration significantly, possibly even reversing it. Indeed, in a
seminal study, Paardekooper & Mellema (2006b) have demonstrated exactly this
possibility when considering planets embedded in 3D disks including radiation
transport. Inspired by this work, a number of studies on planet-disk interaction
have been devoted to examining migration in more realistic, non-isothermal disks.
Through a linear analysis and accompanying 2D simulations, Baruteau & Masset
(2008a) have shown that in adiabatic disks the (unsaturated) corotation torque
scales with the radial gradient of the entropy. This comes about because in adia-
batic flows the entropy, S = P/Σγ , is conserved along streamlines. Hence, upon
executing horseshoe U-turns, an underlying entropy gradient results in a density
disturbance because the disk tries to maintain local pressure equilibrium. As den-
sity varies inversely with entropy, the torque is proportional to the negative radial
gradient of the entropy. This effect can lead to positive unsaturated torques, as
shown by the early torque evolution in Fig. 2 (green curve in left panel). However,
due to phase mixing in the horseshoe region the torque saturates because of the
vanishing entropy gradient across it. Thermal diffusion is required to maintain
the entropy gradient (Baruteau & Masset, 2008a; Paardekooper & Papaloizou,
2008), as described above.
To demonstrate the effect for more realistic 2D flat disks, we show results for

a planet-disk simulation where we include viscous heating, and local radiative
cooling as well as grey diffusive radiative transport in the disk midplane (we refer
to models that include radiative cooling and/or radiation transport as radiative
disks). The energy equation reads

∂ΣcvT

∂t
+∇ · (ΣcvTu) = −P∇ · u +D −Q − 2H∇ · ~F (18)

where T is the midplane temperature, D the viscous dissipation, Q the radiative
cooling, and ~F the radiative flux in the midplane. Models where the various
contributions on the right hand side of eq. (18) were selectively switched off and
on, have been presented in Kley & Crida (2008). The effect of this procedure on
the resulting torque is shown in Fig. 3 (left panel). The basis for the four runs is
the same equilibrium disk model constructed using all terms on the right hand side
of eq. (18) and no planet. Embedding a planet of 20 M⊕ yields positive torques
only for radiative disks in the long run, where the maximum effect is given when
only viscous heating and local radiative cooling are considered. Obviously, the
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Figure 3: Torque acting on a a 20 M⊕ planet at 5.2AU in a disk with 0.01 solar
masses within 2.08 and 13 AU. Left: Time evolution of the specific torque (per
planet mass) for 2D simulations. Shown are 4 cases with a different treatment
of the gas thermodynamics, see eq. (18): i) no energy equation (isothermal), ii)
with only the first term on the rhs. of eq. (18) (adiabatic), iii) with all terms on
the rhs. (fully radiative), and iv) with all but the last term on the rhs. (local
cooling/heating), (after Kley & Crida, 2008). Right: Radial torque density
dΓ(r)/dm for full 3D simulations, scaled in units of (dΓ/dm)0 (eq. 20). Shown
are the final equilibrium results for different thermodynamics treatments of the
disk. The isothermal and adiabatic model have H/r = 0.037 in accordance with
the radiative model (after Kley, Bitsch & Klahr, 2009).

ability of the disk to exchange energy with its external environment can maintain
an entropy gradient. The strength of this positive corotation effect also scales
with the square of the planet mass up to about 20 – 25 M⊕, i.e. with the same
scaling as Γ0. Beyond a mass of mp ≈ 30 M⊕ gap opening begins, so that only
Lindblad torques remain, and the planets begin to slow their outward migration
and eventually migrate inward. In full 3D radiative simulations the results are
qualitatively the same (Kley, Bitsch & Klahr, 2009), but interestingly they show
an even stronger effect. Note that the full 3D models take into account all terms
in eq. (18) as the radiative diffusion acts along all spatial directions.
To analyse the spatial origin of the torques, it is useful to plot the radial torque

dΓ(r)/dm, which we define here (following D’Angelo & Lubow, 2010), such that
the total torque Γtot is given as

Γtot = 2π

∫

dΓ

dm
(r) Σ(r) rdr . (19)

In other words, dΓ(r) is the torque exerted by a disk annulus of width dr located
at the radius r and having the mass dm. As dΓ(r)/dm scales with the mass ratio
squared and as (H/r)−4, we rescale our results in units of

(

dΓ

dm

)

0

= Ω2
p(ap)a

2
pq

2

(

H

ap

)−4

, (20)

where quantities with index p are evaluated at the planet’s position. In Fig. 3
(right panel) we show dΓ(r)/dm for various disk models all having H/r = 0.037,
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as this is the value obtained from the radiative model. The Lindblad contribution
for the adiabatic and radiative simulations are nearly identical as to be expected
for optically thick disks. The ‘spike’ at about r ≈ 0.99 for the radiative model
shows the positive contribution due to the unsaturated corotation torque.
To capture the effect of the entropy-related horseshoe drag, approximate torque

formulae have been developed for adiabatic disks (Masset & Casoli, 2009; Paardekooper
et al., 2010). However, these apply only for the initial unsaturated torque, and
care has to be taken when they are used in population synthesis models. Similar
to the vortensity-related torque, where viscosity prevents saturation, the entropy-
related torque will only be sustained in the presence of thermal diffusion. Optimal
desaturation occurs when τdiff . τlib, where the diffusion time across the horse-
shoe region is τdiff = x2s/κT and κT denotes the thermal diffusivity. The effects
of viscous and thermal diffusion have been considered simultaneously and re-
fined expressions for the torque have been constructed (Masset & Casoli, 2010;
Paardekooper, Baruteau & Kley, 2011). A direct comparison of these torque
formulae with full 3D radiative simulations shows clear discrepancies (Bitsch &
Kley, 2011b). This may be related to a physical difference between the full 3D
simulations and the 2D results on which the formulae are based. The inclusion
of thermal diffusion in a 2D disk operates only within the midplane, whereas
for a real disk the cooling occurs along the vertical direction and is balanced by
internal dissipation or stellar heating. Indeed, Fig. 3 shows that torque reversal
is strongest if only local cooling and no diffusion in the midplane is considered.
The radial range over which the total torque remains positive has been stud-
ied, and Bitsch & Kley (2011b) find that corotation and Lindblad torques cancel
each other at zero-torque radii, which lie between 16 and 30 AU for planets with
masses 20 − 30 M⊕. Such locations can act as convergence points for growing
planetary cores of similar mass.

2.3 Massive planets: gap formation and type II migration

The analysis presented in the previous section refers to the situation of embedded
low-mass planets that do not change the disk’s original structure significantly.
However, for larger planet masses the interaction becomes increasingly non-linear
and the density profile in the disk will be modified. In the following we describe
the consequences of this process in more detail.

2.3.1 Gap formation Upon increasing the planet mass, the strength of
the gravitational interaction and the corresponding angular momentum transfer
to the disk become stronger. If the angular momentum can be deposited locally
in the disk and is not carried away by the spiral waves, which may occur through
viscous dissipation or shock waves, the material inside (outside) the planet loses
(gains) angular momentum and recedes from the planet. Consequently, the mate-
rial appears to be ‘pushed’ away from the location of the planet and a gap begins
to open in the disk. The depth and width of the gap that the growing planet
carves out will depend on the disk physics (viscosity and pressure), and on the
mass of the planet. The planet’s transfer of angular momentum to the disk can
be obtained by summing over the Lindblad resonances (Goldreich & Tremaine,
1980) or by using the impulse approximation, where one considers the momen-
tum change between a planet and individual disk particles shearing past (Lin &
Papaloizou, 1979). Both approaches yield similar results and Lin & Papaloizou
(1986b) give the following expression for the rate of angular momentum transfer
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from the planet to the disk

J̇tid = ftid q
2Σpa

2
pΩ

2
p

(ap
∆

)3
, (21)

with ftid = 0.23, and where ∆ = |ap − r| denotes the impact parameter between
the fluid particle’s unperturbed trajectory and the planet. Viscosity opposes this
and tries to close the gap; the corresponding viscous torque is (Lynden-Bell &
Pringle, 1974)

J̇visc = 3πΣpνa
2
pΩp, (22)

where ν is the vertically integrated kinematic viscosity. Gap formation implies
that the effect of gravity (the tidal torque) overwhelms that of viscosity, i.e.
J̇tid & J̇visc. The gap should have a minimum width at least equal to the size of
the planet’s Hill sphere (i.e. ∆ ≈ RH), this being RH = (q/3)(1/3)ap. The viscous
criterion for gap formation is then given by (Lin & Papaloizou, 1993)

q &
40ν

a2pΩp
. (23)

Additionally, pressure effects in the disk tend to oppose gravitational influence
of the planet. For the disk response to be non-linear near the planet, so that
the spiral waves form shocks and deposit their angular momentum flux locally in
the disk, we require that the planet’s Hill sphere size exceeds the disk thickness,
leading to the thermal gap opening criterion, RH & H (Ward, 1997).
The combined action of viscosity and pressure have been analyzed in detail by

Crida, Morbidelli & Masset (2006) and they quote the following criterion for the
formation of a gap

3

4

H

RH
+

50ν

q a2pΩp
. 1, (24)

which gives good agreement with full numerical simulations. The form and depth
of the gap for different planet masses and viscosities is given, for example, in
D’Angelo, Henning & Kley (2002) and Crida, Morbidelli & Masset (2006). For
solar nebula-type conditions, a Saturn mass planet begins to open visible gaps
in the disk, but it should be kept in mind that gap formation is a continuous
process.
An interesting side aspect is the analysis of nearly inviscid disks for which gap

formation begins already for small planetary masses. Under this circumstance
the opening criterion depends of the disk mass as well (Rafikov, 2002), which
has been confirmed by numerical simulations (Li et al., 2009). Additionally, the
process of gap formation has been analyzed analytically and numerically by a
number of researchers (Artymowicz & Lubow, 1994; Takeuchi, Miyama & Lin,
1996; Bryden et al., 1999; Kley, 1999).

2.3.2 Type II migration Because the density in the coorbital region is
reduced, corotation torques are no longer of any importance for larger planet
masses. For very large masses when the planet has opened a gap Lindblad torques
are also reduced, resulting in a slowing down of the planet migration. In this
case, the planet is coupled to the viscous evolution of the disk (Lin & Papaloizou,
1986b). The migration timescale is given by the viscous diffusion time of the
disk, τvisc ∝ r2p/ν. This non-linear regime of disk-planet interaction in which gap-
opening planets are locked to the viscous evolution is known as type II migration
(see also Ward, 1997).
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Using the above descriptions for the tidal and viscous torque (see eqs. 21 and
22) Lin & Papaloizou (1986b) modeled the migration of a gap-opening mas-
sive planet simultaneously with the viscous disk evolution utilizing the time-
dependent diffusion equation for the disk surface density, Σ(r, t), (Pringle, 1981).
Later, fully 2D hydrodynamical simulations of moving and accreting planets were
performed by Nelson et al. (2000), who showed that a Jupiter-mass planet start-
ing from ∼ 5 AU migrates on a timescale of about 105 yrs all the way to the
star. If accretion can occur onto the planet, then its mass can grow up to 4-5
MJup during the migration. Once the planet mass increases and the disk mass
declines, i.e. when πr2pΣp . mp, the inertia of the planet begins to be important
and ‘resists’ the viscous driving, leading to a further reduction in the speed of
migration below the viscous diffusion (Syer & Clarke, 1995; Ivanov, Papaloizou
& Polnarev, 1999), in agreement with the numerical simulations (Nelson et al.,
2000). The migration and accretion history for a range of planet masses has been
analyzed by D’Angelo & Lubow (2008).
These results on migration have indicated a possible scenario to produce the

observed population of hot Jupiters (Lin, Bodenheimer & Richardson, 1996; Ar-
mitage et al., 2002). However, one has to keep in mind that the presence of
additional massive planets in the system can lead to quite different behaviour
with gravitational interaction and scattering processes between the planets (see
Sect. 5). The presence of planets in disks opens up direct observational con-
sequences. A gap could be detected directly by ALMA (Wolf & D’Angelo,
2005), and possibly the accretion luminosity of the growing planet (Klahr & Kley,
2006). Lower mass planets create a gap in the dust distribution (Paardekooper
& Mellema, 2006a) or can cast shadows in the disk (Jang-Condell, 2009), both
with observable consequences.

2.4 Type III (or runaway) migration

Discussion so far has focused on the torque experienced by a non migrating planet
orbiting in a gaseous disk. A mode of migration known as type III or runaway
migration, however, depends on the radial migration of the planet and can gen-
erate periods of very rapid migration under appropriate conditions (Masset &
Papaloizou, 2003; Artymowicz, 2004). In principle, type III migration can be ei-
ther inward or outward, although the presence of Lindblad torques driving planets
inward tends to bias type III migration to be inward in the absence of special
conditions such as very steep positive surface density gradients in the disk.

2.4.1 Basic theory To simplify the discussion, we assume for the time be-
ing that the previously discussed vorticity- and entropy-related corotation torques
are inactive. The Lindblad torque, ΓL, is assumed to operate normally. Consider
a planet undergoing inward radial migration on a circular orbit. Material located
in the vicinity of the separatrix between inner disk material that is on circulat-
ing streamlines, and material on librating horseshoe orbits, will undergo a single
U-turn encounter with the planet as it crosses the entire horseshoe region and
moves from the inner to the outer disk (see Fig.4, where the right panel shows
streamlines connecting the inner and outer disk for a rapidly migrating planet).
As a result of this U-turn encounter, there is a change in the specific angular
momentum of the disk material equal to δj = Ωpa

2
pxs. This is just the change in

specific angular momentum resulting from a fluid element moving from an orbit
located at radial distance ap−xs to one located at ap+xs. The flux of mass pass-
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Figure 4: Streamlines for a q = 6 · 10−5 (10 M⊕) planet embedded in a disk
with H/r = 0.05 that illustrate how radial migration affects the flow topology
(as viewed in the planet reference frame). The left panel corresponds to a non
migrating planet (compare to right panel of Fig. 1). The right panel shows a
planet that is migrating inward on a timescale of 300 orbits. A dramatic change in
streamline topology is apparent due to the rapid migration, as are the streamlines
that connect directly between the inner and outer disk. Shaded regions indicate
librating material that moves with the planet.

ing through the inner separatrix and encountering the planet is Ṁ = 2πapȧpΣs,
where ȧp is the migration rate of the planet and Σs is the surface density at the
inner separatrix. The total corotation torque exerted by the material flowing
past the planet is therefore

ΓFlow = 2πΣsȧpΩpa
3
pxs. (25)

We refer to this as the ‘flow-through’ corotation torque, and note that it depends
on the migration rate of the planet, such that there is a positive feedback be-
tween the migration rate and the torque. In principle, this can lead to runaway
migration (Masset & Papaloizou, 2003).
As the planet migrates inward, it carries with it material that is trapped in

horseshoe orbits and bound to the planet within its Hill sphere. The planet must
therefore exert a negative torque on this material (in which case the material
exerts a positive torque on the planet, acting as a drag by slowing its inward
migration). Denoting the mass trapped in the horseshoe region as mHS and the
mass in the Hill sphere as mHill, the drift rate of the planet plus trapped-fluid
system, migrating because of the flow-through and Lindblad torques, is given by

(mp +mHill +mHS)Ωpȧpap = (4πa2pxsΣs)ȧpΩpap + 2ΓL. (26)

The quantity (4πa2pxsΣs) on the right-hand side of eq. (26) is the mass that would
be contained in the horseshoe region if the surface density there was equal to Σs,
the surface density at the inner separatrix. The quantity δm = 4πa2pxsΣs −mHS

is therefore the approximate difference between the mass that would be contained
in the horseshoe region if the disk was unperturbed by the planet and the mass
that is actually contained in this region. δm is often referred to as the coorbital
mass deficit (Masset & Papaloizou, 2003). If the planet begins to form a gap in
the disk, then δm increases.
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If we now treat the planet mass as being the sum of the actual planet mass
and the mass bound in the Hill sphere (m′

p = mp +mHill), then eq. (26) can be
written as

ȧpΩpap(m
′

p − δm) = 2ΓL , (27)

from which the drift rate is

ȧp =
2ΓL

Ωpap(m′
p − δm)

. (28)

This equation demonstrates two important points. The first is that for a planet
that does not form a gap (δm = 0), the migration rate is equal to that due
to Lindblad torques only. For an inwardly migrating planet, the negative flow-
through corotation torque is, therefore, balanced by the positive drag provided
by the trapped horseshoe material. The second point is that very rapid migration
rates are clearly possible when δm ≃ m′

p, such that the coorbital mass deficit is
similar to the mass of the planet.
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Figure 5: The left panel shows planet mass versus the disk mass, and delimits the
various types of migration behaviour in a disk with H/r = 0.04 and dimensionless
kinematic viscosity ν = 10−5. Runaway or type III migration can occur for
parameters shown in the shaded region. The right panel illustrates the bifurcation
behaviour predicted by eq. (29) whenM∆ > 1, leading to rapid inward or outward
type III migration.

According to eq. (28), the conditions required for rapid migration are: (i) a
partial gap must form at the planet location to generate a coorbital mass deficit;
(ii) the coorbital mass deficit δm ≃ m′

p. The mass of the planet expected to
satisfy these conditions clearly depends on the disk model, but for typical pa-
rameters rapid migration may occur for Saturn-mass planets embedded in disks
that are a few times more massive than the MMSN model. Figure 5 (left panel,
adapted from Masset & Papaloizou (2003)) demonstrates the region of parame-
ter space for which type III migration occurs for a disk with H/R = 0.04 and
dimensionless kinematic viscosity ν = 10−5.
The above analysis is valid for migration rates that cause the planet to migrate

over a distance less than the horseshoe width, apxs, in one horseshoe libration
time. We denote this migration rate as ȧp,f . When this condition is violated
then eq. (27) should be modified (Papaloizou et al., 2007). When the Lindblad
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torque is small, solutions for steady inward or outward fast migration rates can
be obtained. Setting ΓL = 0, and denoting Z = ȧp/ȧp,f and M∆ = δm/m′

p, one
obtains

Z − 2

3
M∆ sign(Z)

[

1− (1− |Z|<1)
3/2

]

= 0, (29)

where |Z|<1 = MIN(|Z|, 1). For M∆ < 1, the only solution is Z = 0. For
M∆ > 1, the solutions bifurcate into rapid inward or outward migration as shown
in the right panel of Fig. 5. An unstable solution corresponding to no migration
(Z = 0) also exists. The fast migration solution, corresponding to migration rate
ȧp,f , arises when M∆ = 3/2.

2.4.2 Simulation results A large suite of simulations examining the con-
ditions for runaway migration were presented by Masset & Papaloizou (2003).
These simulations produced steady inward migration when δm < m′

p in disks

with smooth surface density profiles Σ(r) = Σ0r
−3/2. For models where δm > m′

p,
however, accelerating or runaway migration was observed; and in extreme cases,
rapid migration caused the planet’s semimajor axis to halve in less than 50 orbits.
In all cases examined, the runaway phase of migration eventually stalled. Two
factors prevent sustained runaway migration over long times. The first is that the
horseshoe region no longer forms a closed system during rapid migration, so the
coorbital mass deficit can be lost. The second is that the factor a2pΣs that enters
the expression for the coorbital mass deficit is generally a decreasing function
of semimajor axis, such that δm decreases as the planet moves inward, eventu-
ally reaching a location where runaway migration can no longer occur because
δm < m′

p. Allowing accretion onto the planet as it migrates therefore causes
runaway migration to stall earlier.
Numerical simulations presented by Pepliński, Artymowicz & Mellema (2008a)

display rapid type III migration for Jovian mass planets, and in basic agreement
with Masset & Papaloizou (2003), migration that approximately halves the initial
semimajor axis in 50 orbits was obtained, followed by stalling of the rapid migra-
tion. In a follow-on paper, Pepliński, Artymowicz & Mellema (2008b) examine
rapid outward migration and find an approximate doubling of planet semimajor
axes before the outward migration stalls after ≃ 30 orbits. Outward migration in
this case is initiated by setting-up a disk with a low-density inner cavity with a
sharp edge, and placing the planet close to this edge such that it feels a strong and
positive corotation torque at the onset of the calculation. Masset & Papaloizou
(2003) also demonstrated the feasibility of rapid outward migration, and simi-
larly obtained an approximate factor of two increase in the semimajor axis of the
planet before the migration stalled and reversed. Outward migration in this case
was initiated by driving the planet outward using an artificial positive torque
and then allowing the planet to evolve freely. As discussed above, spontaneous
outward migration is not observed in disks with smooth profiles, but instead re-
quires conditions that overcome the bias toward inward migration generated by
the Lindblad torques.

2.4.3 Implications for planet formation As discussed above, runaway
or type III migration can occur for Saturn-mass planets forming in disks that are
a few times more massive than the MMSN model. If we consider the formation
of a gas giant planet via the core accretion model, then one possible scenario is
that the core forms sufficiently early in the disk lifetime that the disk is quite
massive during the gas accretion stage. During the core formation and early
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gas accretion stage, rapid type I migration may be prevented by the vorticity-
and entropy-related torques discussed in Sect. 2.2. As the planet grows through
steady gas accretion and it begins to form a gap, the corotation torque preventing
rapid type I migration weakens significantly, allowing inward migration to ensue.
This transition occurs for mp & 30 M⊕ for typical disk parameters. Continued
mass growth up to a Saturn-mass (∼ 100 M⊕) may then allow a burst of runaway
or type III rapid inward migration to occur, halving the semimajor axis in a few
thousand years before the rapid migration stalls. The planet may then migrate
inward on the type II timescale as it forms a deep gap and is locked to the viscous
evolution of the disk.

2.5 Eccentricity and Inclination Evolution

In addition to changing the semi-major axis, planet-disk interaction can modify
the planetary eccentricity (ep) and inclination (ip) as well. In this general case,
the forces acting on the planet from the disk have to be evaluated with respect
to the orbital plane of the planet, and the changes in the orbital elements are
then given in terms of normal, tangential, and radial forces (Burns, 1976). As
the radial and vertical position of the planet is no longer fixed, the disk forces
vary over an orbital period such that time averages have to be taken to calculate
the secular effect on the planet.
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Figure 6: The change in orbital elements of planets embedded in 3D radiative
disks. Left: Eccentricity change for planets with various masses starting with
an initial ep = 0.4. Right: Inclination change for a 20 M⊕ planet starting with
different initial inclinations. (Plots adapted from Bitsch & Kley, 2010, 2011a).

2.5.1 Eccentricity For smaller mass planets on eccentric orbits the linear
analysis discussed in Sect. 2.1 can be adopted, but with an extended Fourier de-
composition of the planet’s gravitational potential (Goldreich & Tremaine, 1980)

ψp(r, ϕ, t) =

∞
∑

m=0

+m
∑

n=−m

ψm,n(r) cos{mϕ+ (n−m)Ωpt}. (30)

Additional frequencies are now present in the problem compared to the circular
orbit case because of epicyclic motion of the planet around its guiding centre. The
pattern speed associated with each potential component is Ωm,n = (n−m)Ωp/m.
As with a planet on a circular orbit, Lindblad resonances occur at disk locations
where the perturbation frequency experienced by a fluid element equals the local
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epicylic frequency, and corotation resonances occur wherever the pattern speed
equals the local angular velocity of the disk. For each value of m and n there
are three resonance locations (Goldreich & Tremaine, 1980; Goldreich & Sari,
2003): external Lindblad resonances that act to increase the planetary eccen-
tricity, corotation resonances that act to damp it (if unsaturated), and coorbital
Lindblad resonances that damp ep (see also Ward, 1986; Artymowicz, 1993a).
Linear analysis for low-mass planets indicate rapid exponential damping of ec-
centricity, dep/dt ∝ −ep, on timescales of τecc ≈ (H/r)2τmig for small initial
eccentricities (Tanaka & Ward, 2004), primarily because of the damping pro-
vided by the coorbital Lindblad resonances. For larger initial eccentricity, with
ep & H/r, Papaloizou & Larwood (2000) find a different damping behaviour with
dep/dt ∝ −e−2

p . These results have been confirmed through 2D and 3D hydrody-
namical simulations of embedded low-mass planets up to 30 M⊕ (Cresswell et al.,
2007), see also Fig. 6, left panel.
The discussion concerning the influence of resonances for eccentric planets

demonstrates that the evolution of ep depends on a balance between positive
and negative contributions. A fully embedded planet has its eccentricity damped
largely because of coorbital Lindblad resonances (Artymowicz, 1993a), but if
the planet opens a gap, then these are rendered inoperative. In this case, the
question of whether or not ep increases is determined by the balance between
external Lindblad resonances and corotation resonances (that may be fully or
partially saturated). For fully unsaturated corotation resonances the eccentricity
is expected to damp, but calculations by Goldreich & Sari (2003) and Moorhead
& Adams (2008) suggest disk-driven eccentricity growth may be possible through
(partial) saturation of the corotation resonances (Ogilvie & Lubow, 2003). This
scenario, which should apply for planet masses around Saturn’s mass, seems ap-
pealing to explain the high mean eccentricity of extrasolar planets. However,
recent multi-dimensional studies of embedded planets of larger masses up to 1
MJup (Bitsch & Kley, 2010) suggest that eccentricity is damped quite generally,
see Fig. 6 (left panel). This damping behaviour is in very good agreement with
the low eccentricities found in some observed resonant planetary systems (Lee &
Peale, 2002). Indeed, the action of an (one-sided) inner disk on an outer planet
results in the damping of planetary eccentricity (Crida, Sándor & Kley, 2008).
For massive planets of a few MJup a new but related effect occurs in that

the outer disk can become eccentric even if the planet is on a circular orbit
(Papaloizou, Nelson & Masset, 2001; Kley & Dirksen, 2006). This phenomenon
is also controlled by a balance between competing resonances. The instability has
been observed to occur for wide and deep gaps such that the eccentricity damping
corotation resonance that coincides with the outer 2:1 Lindblad resonance is
cleared and the eccentricity driving 3:1 resonance is dominant. The induced
disk eccentricity can react back onto the planet and excite a non-zero ep. This
effect operates strongly for massive planets above 10 MJup (Papaloizou, Nelson
& Masset, 2001). More recently, it has been reported to operate for Jovian-mass
planets (D’Angelo, Lubow & Bate, 2006), resulting in more modest ep growth
in this case. Interestingly, for an eccentric disk the planet moves periodically
into the disk, which allows for continued mass accretion onto the planet (Kley &
Dirksen, 2006). This may be a mechanism to explain some of the large planet
masses (& 6MJup) that are otherwise difficult to reach due to the onset of gap
formation.
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2.5.2 Inclination The change in the planet’s inclination has been studied
in linear theory for small planet masses and small inclinations ip . H/r. Ex-
ponential damping has been found, dip/dt ∝ −ip, which occurs on timescales
(H/r)2 times shorter than the migration timescale, quite similar to the eccentric-
ity damping time (Ward & Hahn, 2003; Tanaka & Ward, 2004). This behaviour
has been verified in 3D isothermal simulations by Cresswell et al. (2007). For
larger inclinations ip & H/r, these researchers find inclination damping on a
longer timescale with a behaviour dip/dt ∝ −i−2

p , which is the same scaling ob-
tained for eccentricity damping when ep is large. These results have been verified
in 3D radiative simulations by Bitsch & Kley (2011a). Additionally, the incli-
nation has been shown to damp by disk-planet interaction for all planet masses
up to about 1 MJup (Marzari & Nelson, 2009; Bitsch & Kley, 2011a), see Fig. 6
(right panel).

Due to the much shorter timescales of eccentricity and inclination damping
in contrast to the migration time, it is to be expected that for isolated planets
embedded in disks these quantities should be very small, at least in laminar disks,
i.e. even if planets formed in disks with ep 6= 0 and ip 6= 0, they would be driven
rapidly to ep = 0 and ip = 0.

3 Planets in turbulent disks

Disk viscosity plays an important role in controlling the dynamics of embedded
planets: saturation of corotation torques for low-mass planets and the structure
of the gap that forms in the presence of a giant planet are two examples where
viscosity provides a controlling influence. The discussion presented in previous
sections focused on laminar disks, where anomalous viscous stresses are pro-
vided through the Navier-Stokes equation combined with a prescribed viscosity.
Viscous stresses in protoplanetary disks, however, most likely arise because of
MHD turbulence generated by the magnetorotational instability (MRI) (Balbus
& Hawley, 1991). In this section, we discuss current understanding of how disk
turbulence influences the dynamics of embedded planets.
Understanding the role of disk turbulence in the context of planetary formation

and dynamics is hindered at present by an incomplete understanding of MHD
turbulence in protoplanetary disks. In the ideal MHD limit of a fully ionised
disk, the strength of turbulence and the amplitudes of density and velocity fluc-
tuations are strong functions of the net magnetic field strength and topology. Ex-
ternally imposed vertical fields generate more vigorous turbulence than toroidal
fields, and disks that only host fields generated internally through dynamo action
yield the weakest turbulent flows (Hawley, Gammie & Balbus, 1995; Steinacker
& Papaloizou, 2002). Neither the strengths nor geometries of magnetic fields in
accretion disks are well constrained by observations. The high densities and low
temperatures typical of protoplanetary disks mean that in planet-forming regions
(approximately 0.5 ≤ R ≤ 20 AU from the central star), material near the mid-
plane is likely to be insufficiently ionised to sustain MHD turbulence (fractional
gas-phase electron abundances xe . 10−11). Instead, protoplanetary disks are
expected to have a layered structure in which the surface layers are ionised by
external sources such as cosmic rays or X-rays, and the shielded midplane region
maintains a ‘dead zone’ that remains in a near-laminar state because of large
Ohmic resistivity there (Gammie, 1996). Details of this layered structure depend
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on a large number of parameters including the sizes and abundances of dust grains
(Sano et al., 2000; Ilgner & Nelson, 2006), and the intensity of external ionisation
sources (Turner & Drake, 2009), in addition to the field strength and topology.
Disk structure can also be influenced by non-ideal MHD processes such as the
Hall effect and ambipolar diffusion (Wardle, 1999; Balbus & Terquem, 2001), in-
creasing substantially the complexity and computational expense of simulating
the non linear evolution of such disks. It is for this reason that until recently most
studies of planets embedded in turbulent disks have focused on disks without dead
zones.

3.1 Low-mass embedded planets

Early studies of the interaction between low-mass, non gap-forming planets and
turbulent disks are presented by Nelson & Papaloizou (2004), Papaloizou, Nelson
& Snellgrove (2004) and Laughlin, Steinacker & Adams (2004). Using 3D ideal
MHD simulations of turbulent disks with embedded low-mass planets, Nelson &
Papaloizou (2004) showed that disk torques experienced by the planets included
a stochastic component, whose r.m.s. value was significantly larger in magnitude
than type I torques for planets with masses mp ≤ 10 M⊕, suggesting that these
planets would experience a random walk element in their migration. Laugh-
lin, Steinacker & Adams (2004) reached similar conclusions using hydrodynamic
simulations with forced turbulence excited through a stirring potential fitted to
the results of MHD simulations. The orbital evolution of planets and planetesi-
mals in turbulent disks was considered by Nelson (2005), who demonstrated that
embedded low-mass planets do indeed experience a random walk in semimajor
axis, and also experience growth in their eccentricities due to interaction with
the turbulent density fluctuations.
These studies were unable to determine the long term evolution of planets due

to the computational expense of running large MHD simulations, and could run
for only . 100 planet orbits. As such, they were unable to address the question
of whether or not stochastic torques could dominate over type I torques during
long evolution times and prevent the rapid inward migration of low-mass planets.
Considering a simple discrete random walk model in which planets receive positive
and negative kicks, δJ , in their angular momenta, the cumulative change in
angular momentum after N kicks is expected to be ∆J = δJ

√
N . Denoting the

time that elapses between kicks as tcorr (the correlation time associated with the
stochastic torques), the total time elapsed is t = N tcorr. Denoting the r.m.s.
amplitude of the stochastic torques by σT gives δJ = σTtcorr and

∆J = σTtcorr

√

t

tcorr
. (31)

The change in angular momentum induced by type I torques of magnitude ΓI in
time t is ∆J = ΓI t. Therefore, we expect type I and stochastic torques to induce
similar angular momentum changes after a time given by (Nelson & Papaloizou,
2004),

t ∼
(

σT
ΓI

)2

tcorr. (32)

For a 1 M⊕ planet embedded in a fully turbulent disk typical values are σT/ΓI ≃
50 and tcorr ≃ 0.5 planet orbits (Nelson, 2005), such that run times of > 1, 000
orbits are required to observe torque convergence.
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Figure 7: Left: Snapshot of surface density (g cm−2) from a simulation with a
10M⊕ planet embedded in a 3D turbulent disk with H/R=0.05 and effective α ≃
0.015. Right: The evolution of the planet semimajor axes for turbulent models
with different planet and disk masses. The smooth lines show the evolution of
planets in equivalent laminar disks.

To illustrate the results of MHD simulations with embedded planets we present
the results of four simulations in Fig. 7, where the disk set-up is as described in
Nelson & Gressel (2010) with H/R = 0.05. Stresses generated by the turbulence
give α ≃ 0.015 throughout the disk. The four simulations have planet masses
mp ∈ {1, 10} M⊕, and surface density at the initial planet location (rp = 5 AU)
of Σp ∈ {180, 900} g cm−2. A snapshot from the run with a mp = 10 M⊕ planet
embedded in the lower mass disk is shown in the left panel of Fig. 7. The planet
wakes are just visible against the background turbulent fluctuations, providing
a vivid illustration of why turbulence is able to affect the orbital dynamics of
embedded planets. The right panel of Fig. 7 displays the semimajor axis evolution
of the four planets, in addition to migration trajectories of equivalent laminar disk
simulations. Orbital eccentricities are also excited by the turbulence, and for the
mp = 1 M⊕ cases, values of ep ≃ 0.02 are obtained in the simulations. Each
model shows clear influence of the turbulence affecting orbital evolution.

The simulations described above provide a degree of insight into the role of
turbulence in driving the long term evolution of planet orbits, but this is ulti-
mately a statistical problem in which the evolution of an ensemble of planets
should be considered. An individual simulation provides a unique evolution his-
tory for a single planet, but offers limited information about the evolution of a
planet population. Ideally, a large number of independent simulations should
be used to build-up a statistical picture of the distribution of outcomes, but the
computational expense is prohibitive at present.
An alternative approach that captures exactly this statistical nature of the

problem, and allows the long-term evolution to be examined, has been presented
by Johnson, Goodman & Menou (2006) and Adams & Bloch (2009). Their
studies examined the problem of type I migration in the presence of stochastic
torques using a Fokker-Planck formalism. This results in an advection-diffusion
equation that governs the probability, P (J, t), of there being a planet with angular
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momentum J at time t:

∂

∂t
P (J, t) =

∂

∂J
[ΓIP (J, t)] +

∂2

∂J2
[DJP (J, t)] , (33)

where ΓI is the underlying type I torque and DJ is the diffusion coefficient that
determines the rate at which planet angular momentum random walks due to
stochastic torques. Given an initial distribution of planet orbits, eq. (33) de-
scribes how the distribution evolves over time. The diffusion coefficient, DJ, can
be approximated by DJ ≃ σ2Ttcorr, this being consistent with eq. (31). Given
values for the r.m.s. fluctuating torque amplitude and correlation time of the
stochastic component, the problem is well defined (subject to the assumption that
the torques can be described as a simple superposition of type I and stochastic
components).
Johnson, Goodman & Menou (2006) expressed the torque r.m.s. in terms of

the gravitational force experienced by a particle suspended just above a flat 2D
disk with underlying surface density Σ (namely 2πGΣ):

σT = CD2πGΣ ap , (34)

where CD is an unknown constant that can be determined from simulations. The
value of CD obtained from the simulations shown in Fig. 7 is CD = 0.035, similar
to the fiducial values of 0.046 adopted by Johnson, Goodman & Menou (2006)
and 0.05 adopted by Adams & Bloch (2009). The correlation time derived from
the simulations is tcorr = 0.45 [see the discussion in Nelson & Gressel (2010)
concerning calculation of correlation times, and the range of correlation times
obtained in simulations], again similar to the value tcorr = 0.5 adopted in the
above studies.

Figure 8: This figure shows the ratio tI/tD for the two different disk models
described in the text, and for two different values of the turbulence parameter
CD. The various curves fall beneath the value of unity in the outer disk, indicating
that diffusive migration dominates type I migration there.

The long-term evolution of planetary orbits is determined by the relative values
of the diffusion time tD = J2/DJ and the type I migration time, tI = J/ΓI. For
a fully turbulent disk with a radially uniform value of the effective viscosity
parameter, α, it is reasonable to suppose that the mean relative surface density
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fluctuations, δΣ/Σ, are constant, such that the parameter CD defined above is
constant also. The ratio of diffusion to type I timescale is

tD
tI

=
J ΓI

C2
D(2πGΣap)

2
, (35)

where evolution dominated by stochastic torques requires tD < tI. Considering
eq. (35) we note that type I torques depend linearly on Σ, so that the influence
of stochastic torques is increased relative to type I torques for a higher surface
density, Σ. This is a prediction that has yet to be confirmed satisfactorily by
numerical simulations because of the need to run a large ensemble of models.

Assuming that the disk surface density and temperature obey radial power
laws with indices equal to βΣ and βT , respectively, the ratio of timescales given
by eq. (35) obeys the following proportionality relation

tD
tI

∝ mpC
−2
D a(βΣ+βT−3)

p . (36)

As expected, increasing the planet mass increases the influence of type I migra-
tion. Increasing the value of CD increases the influence of stochastic torques
and reduces tD/tI. In most disk models, the power-law indices have values
0 ≤ βΣ ≤ 3/2 and 1/2 ≤ βT ≤ 1, such that the influence of diffusion increases as
one moves to larger radii in a disk. This point is illustrated in Fig. 8, in which
we plot the ratio tD/tI for two disk models. The first model is five times more
massive than the MMSN with Σ(R) = Σ0(R/1AU)

−3/2 and Σ0 = 8, 500 g cm−2.
The second model has Σ(R) = Σ0(R/1AU)

−1/2 with Σ0 = 641 g cm−2, and both
models adopt T (R) = T0(R/1AU)

−1/2 with T0 = 270 K. Clearly, the region where
stochastic torques dominate over type I torques (tD/tI < 1) is in the outer disk
beyond 10 AU for a disk that sustains MHD turbulence throughout its interior
with effective α ≃ 0.01 [see also Johnson, Goodman & Menou (2006) and Adams
& Bloch (2009)].

3.1.1 Effect of a dead zone To date, there have been no global dynam-
ical studies of planets embedded in disks with dead zones that are capable of
measuring net migration torques. Local shearing box simulations of protoplanets
and planetesimals embedded in disks with dead zones have been presented how-
ever (Oishi, Mac Low & Menou, 2007; Gressel, Nelson & Turner, 2011). These in-
dicate that embedded bodies experience significantly reduced stochastic torques.
In a recent study, the dynamics of planetesimals embedded in disks with dead
zones of different depths were examined by Gressel, Nelson & Turner (2011). For
disk models similar to those used to generate Fig. 8, the reduction in stochastic
torque amplitude, σT, is at least one order of magnitude when comparing a fully
active disk with an equivalent one containing a dead zone. The ratio of diffusion
to migration times tD/tI ∝ σ−2

T (the diffusion coefficient determining the rate of
stochastic migration scales with the square of the r.m.s. stochastic torque), such
that even the most optimistic model plotted in Fig. 8 would predict that type I
torques will dominate at all disk radii interior to 100 AU. It is interesting to note,
however, that recent models of protoplanetary disks indicate that the dead zone
may extend up to a radius of ∼ 15 AU (Turner & Drake, 2009) or only to ∼ 5
AU (Flaig et al., 2012), such that turbulence can still play an important role in
the outer disk.
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3.2 Corotation torques

Viscous diffusion is required to prevent saturation of both the vorticity- and
entropy-related contributions to the corotation torque (see Sect. 2.1.6). A key
question is whether or not MHD turbulence acts in a similar way to the anomalous
viscosity used in most studies of the corotation torque, and prevents saturation.
This issue was examined by Baruteau & Lin (2010) using 2D hydrodynamic
simulations in which turbulence was forced using the prescription proposed by
Laughlin, Steinacker & Adams (2004). Their study suggested that Lindblad and
corotation torques in turbulent disks converge to values similar to those obtained
in viscous laminar disks for planets with masses equal to a few Earth masses, at
least for disks in which the viscous α value was relatively small (α . 10−3).
Customised MHD simulations designed to specifically examine the issue of

corotation torque saturation in turbulent disks have been presented by Baruteau
et al. (2011). Given the long runs times required for torque convergence, these
simulations examined the torque experienced by Saturn-mass planets in relatively
thick disk models (H/R = 0.1) for which the turbulent stress generated α ≃ 0.01-
0.03, and these planets remain in the non gap-forming type I regime. Disk models
were considered with either power-law surface density profiles, or with profiles
that included a region with a strongly positive surface density gradient that
generates a large corotation torque (i.e. a planet trap). The surface density profile
from these latter models is shown in the left panel of Fig. 9. The planet is held on a
fixed circular orbit at radius Rp = 3, and the running time averages of the torques
experienced are shown in the right panel of Fig. 9. The average torque for the
planet in the turbulent disk maintains a positive value, indicating a tendency for
outward migration. The value of the torque converges toward the value obtained
in a viscous laminar disk simulation with α ≃ 0.01, similar to that obtained
in the MHD simulation, demonstrating clearly that an unsaturated corotation
torque operates. The right panel in Fig. 9 also shows the torques obtained from
a number of laminar disk simulations with different levels of viscosity and shows
that, in the absence of viscosity, the positive corotation torque expected from a
‘planet trap’ fully saturates, leaving just the negative differential Lindblad torque
operating.

The results for power-law disk models from Baruteau et al. (2011) were com-
pared with equivalent viscous laminar disk simulations and with analytic torque
estimates, and were found to be in good agreement, demonstrating further the ex-
istence of unsaturated corotation torques in turbulent disks. Uribe et al. (2011)
presented simulations for a range of planet masses embedded in 3D stratified
turbulent disks, and for intermediate-mass planets located in regions where the
surface density gradient was positive locally in their disks, positive corotation
torques were observed. In summary, evidence suggests that turbulent stresses do
indeed act like viscous stresses and prevent saturation of corotation torques.
A number of unexplored issues remain, however. Do low-mass planets ex-

perience corotation torques if they can only induce fluid velocities around the
horseshoe U-turns that are smaller than the typical turbulent velocity ? If so, is
the value of the torque experienced equal to that obtained from linear theory, as
expected in the high-viscosity limit ? Do the reduced turbulent stresses in a dead
zone lead to saturation of corotation torques for embedded low-mass planets ?

3.2.1 Effect of a dead zone There have been numerous numerical stud-
ies of the dynamics of protoplanetary disks with dead zones (Fleming & Stone,
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Figure 9: Left: Surface density profile [normalised by Σ(rp)] for the simulation
with a planet orbiting at the edge of an inner cavity/planet trap (rp = 3) in a
turbulent disk. Right: Running averaged torques experienced by the planet in
the turbulent disk, and those experienced by planets in equivalent laminar models
with different values of the viscosity.

2003; Ilgner & Nelson, 2008; Turner & Sano, 2008; Oishi & Mac Low, 2009; Gres-
sel, Nelson & Turner, 2011; Flaig et al., 2012). These indicate that the Reynolds
stress at the midplane, induced by sound waves propagating into the dead zone
from the active layer, has an effective viscosity parameter α ∼ 10−4. Assuming
that this Reynolds stress acts to prevent saturation of the corotation torque in
the same way as full MHD turbulence, we can estimate the planet mass for which
the horseshoe drag is fully unsaturated. We assume that this occurs when the
viscous diffusion time is approximately equal to half the horseshoe libration time,
such that the corresponding planet-star mass ratio is

mp

M∗

≃ (1.1)−2

(

4πα

3

)2/3( H

Rp

)7/3

, (37)

where we have used eq. (16) for the horseshoe width, xs, with C(ǫ) = 1.1. For a
dead zone with midplane α = 10−4 in a disk with typical parameters (H/R ≃ 0.05
at 5 AU), a fully unsaturated horseshoe drag occurs for mp ≃ 1.4 M⊕ (assuming
a Solar mass central star). Planets with masses larger than this are subject
increasingly to saturation of their corotation torques in the manner displayed in
Fig. 2, where the total torque experienced by a 20 M⊕ planet is displayed as a
function of disk viscosity. This suggests that planets in the super-Earth- and
Neptune-mass range may experience rapid inward migration if embedded in a
disk with parameters similar to those that arise from the above cited simulations
of dead zones.

3.3 Massive gap opening planets

There has only been a modest amount of research examining the evolution of
giant, gap-forming planets embedded in turbulent disks, and to date all stud-
ies have adopted the ideal MHD approximation. Global, cylindrical models of
turbulent disks with embedded giant planets have been presented by Nelson & Pa-
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paloizou (2003), Winters, Balbus & Hawley (2003), Nelson & Papaloizou (2004),
and Papaloizou, Nelson & Snellgrove (2004). Shearing box simulations were
also presented by Nelson & Papaloizou (2004) and Papaloizou, Nelson & Snell-
grove (2004). More recently, global simulations of vertically stratified disks have
been presented by Uribe et al. (2011). These simulations all show gap forma-
tion for planets with masses in the range of 1 ≤ mp ≤ 5 MJup for disks with
0.05 ≤ H/R ≤ 0.1 and with effective stress parameters α ∼ few ×10−3, in agree-
ment with the gap-formation criteria discussed in Sect. 2.3.1. A snapshot from a
simulation discussed by Nelson & Papaloizou (2003) is displayed in the left panel
of Fig. 10, showing the formation and maintenance of a gap by a mp = 5 MJup

planet in a disk with H/R = 0.1 and α ≃ 5× 10−3.

Figure 10: Left: Snapshot of the midplane density for a 5 Jupiter mass planet
orbiting in a turbulent disk with H/R = 0.1. Right: Normalised midplane
density profiles for a magnetised turbulent disk, and an equivalent laminar disk,
containing an embedded giant planet.

Comparisons between the MHD simulations and equivalent laminar, viscous
hydrodynamic simulations show broad agreement in global properties, but also
some interesting differences. For example, good agreement is found for the mi-
gration timescales of giant planets in turbulent disks, these being approximately
equal to the viscous timescale of the disks at the planet locations ≃ 105 yr (Nel-
son & Papaloizou, 2003, 2004; Uribe et al., 2011). It is generally found that the
gap formed in turbulent disks is wider than that obtained in equivalent lami-
nar simulations, a point illustrated by the right panel of Fig. 10 that shows the
azimuthally averaged surface density profile for a laminar and a turbulent disk
simulation discussed by Papaloizou, Nelson & Snellgrove (2004). It is also found
that the magnetic field in the turbulent disk simulations becomes compressed
and ordered in the post-spiral shock region near the planet, and is advected into
the Hill sphere of the planet along with the gas. This latter effect may lead to
magnetic braking of the circumplanetary disk, leading to enhanced accretion onto
planets in turbulent disks with magnetic fields compared to non magnetised disks.
(Nelson & Papaloizou, 2003; Papaloizou, Nelson & Snellgrove, 2004). The right
panel of Fig. 10 demonstrates this effect through the enhanced density of mate-
rial that has accumulated onto the planet (modeled as a non-accreting, softened
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point mass) in the magnetised run. This effect, however, may be substantially
modified when non-ideal MHD effects such as Ohmic resistivity and ambipolar
diffusion are taken into account. The high surface density circumplanetary disk
that forms around the growing giant planet will probably be largely neutral and
not strongly coupled to the magnetic field, except for a thin active layer at the
surface in analogy with dead zones discussed in the previous sections. Given that
the rate of accretion onto a giant planet is determined by the rate of angular
momentum transport within the circumplanetary disk, this is an important ef-
fect for future study as it will play a crucial role in setting the mass distribution
function for fully formed giant planets.

4 Planets formed through gravitational instability

Shortly after formation of the central protostar and protostellar disk by collapse
of a rotating molecular cloud core, the disk mass is comparable to the mass of
the protostar and its self-gravity is dynamically important. The formation of
planets by direct fragmentation of self-gravitating protostellar disks has been the
focus of research over a number of decades (Kuiper, 1951; Cameron, 1978; Boss,
1998). A general consensus has begun to emerge that fragmentation is most likely
to occur in the outer regions (R > 50 AU) of protostellar disks where they are
optically thin to their own thermal emission during this early stage. The gas is
able to cool in these regions on timescales less than about the local orbital period,
allowing gravitationally unstable clumps to collapse to high densities (Gammie,
2001). The optically thick inner disk, however, allows only inefficient cooling that
prevents fragmentation. The discovery of massive planets orbiting at large radii
from their stars by direct imaging has led to suggestions that these objects may
have formed via gravitational instability.
Once self-gravitating clumps have formed, it is important to consider the sub-

sequent long-term evolution of their orbits and masses. Vorobyov & Basu (2005,
2006) presented simulations of disk and protostar formation through cloud col-
lapse, followed by disk fragmentation into a succession of protostellar/protoplanetary
clumps that underwent rapid migration through the disk and the inner boundary
of the computational domain (located at a radius of 10 AU). Customised sim-
ulations have been presented more recently (Baruteau, Meru & Paardekooper,
2011; Michael, Durisen & Boley, 2011) that examine the migration of planets of
different masses in self-gravitating disks that support gravito-turbulence with-
out fragmenting. In the gravito-turbulent state, the disk is in near-equilibrium
with heating generated by spiral shocks balancing radiative cooling on average
[although additional heat sources such as stellar radiation may also be important
Cai et al. (2008); Zhu et al. (2012)]. The simulations considered planets with
masses ranging from a Saturn mass up to 5 MJup, and showed inward migration
on type I migration timescales, albeit with a stochastic component superposed be-
cause of interaction with spiral shocks generated by the disk self-gravity. Planets
with 5 MJup masses migrated from 100 AU to 30 AU in ≃ 3× 103 yr (≃ 3 initial
orbital periods) (Baruteau, Meru & Paardekooper, 2011), demonstrating that
very rapid inward migration of isolated self-gravitating clumps is to be expected.
Under conditions more appropriate to later stages of disk evolution, where self-
gravity is not important, such a massive planet would form a gap in the disk
and migrate slowly. The heavier disks that sustain gravito-turbulence considered
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by Baruteau, Meru & Paardekooper (2011), however, have larger vertical scale
heights and effective viscosities such that a 5 MJup protoplanet does not satisfy
the gap formation criterion given by eq. (24). In the situation of lower mass self-
gravitating disks that do not display gravito-turbulence Lin & Papaloizou (2012)
have shown recently that unstable modes at the gap edges can drive outward
type II migration.
A number of uncertainties remain concerning the evolution of protoplanetary

clumps formed by gravitational instability. An obvious one is understanding the
long term orbital evolution of systems that form multiple clumps contempora-
neously that then interact gravitationally. Boley et al. (2010) discuss one such
simulation in which a clump is scattered onto a highly eccentric orbit, leading
to tidal destruction at periastron. Cha & Nayakshin (2011) show examples of
fragmenting disks that result in multiple fragments, some of which are scattered
to large radius and do not migrate inward rapidly. Perhaps the most significant
uncertainty relates to the rate of mass accretion that can be sustained onto a
clump, which needs to lose angular momentum in order to contract and allow
disk material to accrete into its Hill sphere (Boley et al., 2010). The mass ac-
cretion history will clearly affect the migration history, as rapid mass accretion
may allow migration to slow down through gap formation. The rate of contrac-
tion and growth of the central temperature will also influence the ability of a
clump to survive tidal destruction if it migrates inward, determine whether or
not the growth and sedimentation of grains can lead to differentiation and core
formation (Helled & Bodenheimer, 2011), and consequently determine whether
or not tidal downsizing of inwardly migrating protoplanetary clumps can lead to
the formation of super-Earth planets (Cha & Nayakshin, 2011). Clearly, substan-
tial further research is required to clarify the role of gravitational instability and
subsequent disk-protoplanet interactions in the formation of planetary systems.
But it seems to be clear that a single planet-mass object that forms in a massive
self-gravitating disk is very likely to experience rapid migration into the inner
disk.

5 Multiple planets

A number of multiple extrasolar planetary systems are known to have at least
two planets in mean motion resonance, and the mere existence of these systems
is strong evidence that dissipative mechanisms changing the semi-major axes of
planets must have operated. The probability of forming these configurations in
situ or later through mutual scattering is likely to be small [for a different per-
spective, however, see Raymond et al. (2008)]. Convergent migration of a pair
of planets will lead to resonant capture under quite general conditions. Planets
can approach each other from widely separated orbits if they have different mi-
gration speeds, or if they form in close proximity and are sufficiently massive to
form a joint gap (as illustrated in Fig. 11). In this case, the outer disk pushes
the outer planet inward, and the inner disk pushes the inner planet outward,
causing convergence. If the planets approach a commensurability, where the or-
bital periods have a ratio of two integers, orbital eccentricities will be excited
and resonant capture may arise. Whether or not this happens hinges primarily
on the time the planets take to cross the resonance. This must be longer than
the resonance libration time, which sets a limit on the relative migration speed
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Figure 11: Density structure for two embedded planets engaged in a 2:1 reso-
nance. The red lines indicated the Hill radius sizes of the two planets. The two
planets orbit in a joint wide gap and each of the planets feels only a one-sided
disk, which helps to maintain the resonant condition.

of of the planets (Snellgrove, Papaloizou & Nelson, 2001). Resonant capture
increases the eccentricities, and the two planets migrate (usually inward) as a
joint pair maintaining the commensurability. Continued migration in resonance
drives the eccentricities upward, and they only remain small during migration
if the planets also experience eccentricity damping (Lee & Peale, 2002). If the
planets orbit within the disk, as depicted in Fig. 11, the inner and outer disk act
as damping agents, and it has been shown using 2D simulations that the eccen-
tricity damping rate (due to either the inner or outer disk) for massive planets is
about 5-10 times faster than the induced migration rate (Kley, Peitz & Bryden,
2004). The question of which resonance the system ends up in depends on the
masses, the relative migration speed and initial separation of the planets (Nelson
& Papaloizou, 2002). Because the 2:1 resonance is the first first-order resonance
that two initially well-separated planets encounter during convergent migration,
it is common for planets to become locked in this commensurability provided
migration is not too rapid.
Application of these results to the best observed system GJ 876 (Marcy et al.,

2001; Laughlin et al., 2005) leads to excellent agreement between theoretical evo-
lution models and observations (Lee & Peale, 2002; Kley et al., 2005; Crida,
Sándor & Kley, 2008). Because formation of resonant planetary systems depends
on disk-planet interaction, the present dynamical conditions in observed systems
present an ideal indicator of evolutionary history. This has been noticed recently
in the system HD 45364, where two planets in 3:2 resonance have been discovered
by Correia et al. (2009). Fits to the data give semi-major axes a1 = 0.681AU and
a2 = 0.897AU, and eccentricities e1 = 0.168 and e2 = 0.097, respectively. Non-
linear hydrodynamic planet-disk models have been constructed for this system by
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Rein, Papaloizou & Kley (2010). For suitable disk parameters, the planets enter
the 3:2 resonance through convergent migration. After the planets reached their
observed semi-major axis, a theoretical RV-curve was calculated. Surprisingly,
even though the simulated eccentricities (e1 = 0.036, e2 = 0.017) differ signif-
icantly from the data fits, the theoretical model fits the observed data points
as well as the published best-fit solution (Rein, Papaloizou & Kley, 2010). The
pronounced dynamical differences between the two orbital fits, that both match
the existing data, can only be resolved with more observations. Hence, HD 45364
serves as an excellent example of a system in which a greater quantity and quality
of data will constrain theoretical models of this interacting multi-planet system.
Another interesting observational aspect where convergent migration may have

played an important role is the high mean eccentricity of the observed extraso-
lar planets. As discussed above, for single planets, the disk’s action will nearly
always lead to damping of eccentricity (or at best modest growth for Jovian
masses). Strong eccentricity excitation will occur, however, during convergent
migration and resonant capture of two planets. In the end-phase of the planet
formation process the disk will slowly dissipate and the damping will be strongly
reduced. This may leave the resonant planetary system in an unstable config-
uration, triggering dynamical instabilities (Adams & Laughlin, 2003). Through
the subsequent dynamical scattering between the planets, their eccentricities can
be pumped up to higher values. This scenario has been proposed to explain the
observed wide eccentricity distribution of extrasolar planets (Chatterjee et al.,
2008; Jurić & Tremaine, 2008; Matsumura et al., 2010).
The simultaneous disk-planet interaction of a set of low-mass embedded planets

(5 − 20 M⊕) undergoing differential type I migration leads to crowded systems
as shown by Cresswell & Nelson (2008). These researchers also find that the
planets often form resonant groups with first-order mean-motion resonances hav-
ing commensurabilities between 3:2 - 8:7 [see also McNeil, Duncan & Levison
(2005); Papaloizou & Szuszkiewicz (2005)]. Strong eccentricity damping allows
these systems to remain stable during their migration. In general terms, these
systems are reminiscent of the systems of low-mass planets being discovered by
the Kepler mission, such as Kepler-11 (Lissauer et al., 2011). The proximity of
the planets to the star in this system and their near coplanarity hints strongly
toward a disk-driven migration scenario for the formation of this system.
Another highly interesting dynamical situation occurs for a pair of embedded

planets when the outer planet is less massive and in a regime susceptible to
rapid type III migration. In this case, the outer planet migrates inward more
rapidly than the inner one such that the 2:1 resonance may be crossed, and
capture occurs into the 3:2 resonance (Masset & Snellgrove, 2001). This is, in
fact, the preferred outcome if the outer planet has about a third of the mass of the
inner planet (Pierens & Nelson, 2008). Suprisingly, after capture, both planets
begin to migrate outward, maintaining the 3:2 resonance (Masset & Snellgrove,
2001). This occurs because the two planets form a joint gap, but one that has
an asymmetry between its inner and outer edges because of the lower-mass of
the outer planet. This situation allows the inner disk to exert stronger torques
than the outer disk, leading to outward migration. The situation is assisted
by the fact that the lower mass outer planet funnels mass through the gap and
eventually into the inner disk, thus maintaining a high surface density there. One
application of the Masset-Snellgrove process refers to the formation of systems
such as HR 8799 or Fomalhaut where the planets reside at very large distances
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from the star (Marois et al., 2008; Kalas et al., 2008). Here, it has been suggested
that this very mechanism can take the planets, under suitable disk conditions,
all the way from about 10 AU up to 100 AU (Crida, Masset & Morbidelli, 2009).
As explained above and shown in Fig. 11, multiple planets carve very wide

gaps in the disk. The situation where the inner disk has been completely cleared,
for example accreted onto the star, gives rise to so-called transitional disks that
display a large inner hole, inferred by the lack of near-IR radiation in their SEDs.
This possibility has been studied by Quillen et al. (2004), Varnière et al. (2006),
Dodson-Robinson & Salyk (2011), and Zhu et al. (2011).

6 Planet formation with migration: comparison with observa-
tions

The migration scenarios discussed in this review depend on the planet mass,
so it is crucial to consider the combined effects of mass growth and migration
when assessing the role of migration during the formation of planetary systems.
Two approaches that have been used extensively for this purpose are planetary
population synthesis and N-body simulations. Population synthesis studies use
Monte-Carlo techniques to construct synthetic planetary populations for compari-
son with exoplanet observations, with the aim of determining which combinations
of model ingredients lead to statistically reasonable fits to the observational data
(orbital elements and masses in particular). The basis of published models has
been the core-accretion scenario of planetary formation, combined with simple
prescriptions for type I and type II migration and viscous disk evolution models
(Armitage et al., 2002; Ida & Lin, 2004; Alibert et al., 2005). Almost all studies to
date have adopted type I migration rates according to eq. (8), supplemented with
a reduction factor that slows type I migration. The influence of the vortensity and
entropy-related horseshoe drag discussed in Sect. 2.2 has not yet been explored
in general, although there are a couple of recent exceptions to this statement.
Ida & Lin (2008), Mordasini, Alibert & Benz (2009), and Mordasini et al.

(2009) consider the effects of type I and type II migration in their population
synthesis models. Although differences exist in the modeling procedures, these
studies conclude that unattenuated type I migration leads to planet populations
that do not match the observed distributions of planet mass and semimajor axis.
Models presented by Ida & Lin (2008) fail to produce giant planets at all if full-
strength type I migration operates. Acceptable planet populations are reported
for reductions in the efficiency of type I migration by factors of 0.01 to 0.03,
with type II migration being required to form ‘hot Jupiters’. With the type II
timescale of ∼ 105 yr being significantly shorter than disk life-times, numerous
giant planets also migrate into the central star in these models. The survivors are
planets that form late as the disk is being dispersed (through viscous evolution
and photoevaporation). Mordasini, Alibert & Benz (2009) and Mordasini et al.
(2009) present models with full-strength type I migration that are able to form
a sparse population of gas giants. Cores that accrete late in the disk life-time
are able to grow to large masses as they migrate because they do not exhaust
their feeding zones. Type I migration in this case leads to too many short-period
massive gas giants that contradict the exoplanet data.
The above studies focused primarily on forming gas giant planets, but numerous

super-Earth- and Neptune-mass planets have been discovered. In a recent study,
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Howard et al. (2010) compared the predictions of population synthesis models
with radial-velocity observations of extrasolar planets orbiting within 0.25 AU
around 166 nearby G-, K-, and M-type stars (the ηEarth survey). The data
indicate a high density of planets with mp = 4 - 10 M⊕ with periods of less than
10 days, which is not present in the population synthesis models because of rapid
migration and mass growth. Ida & Lin (2010) recently considered the formation
of super-Earths using population synthesis. In the absence of an inner disk cavity
(formed by interaction with the stellar magnetic field) the simulations failed to
form systems of short-period super-Earths because of type I migration.
N-body simulations with prescriptions for migration have also been used to ex-

amine the interplay between planet growth and migration. This approach has the
advantage of including important planet-planet interactions that can induce or-
bital changes, as opposed to the ‘single-planet in a disk’ approach adopted by most
population synthesis studies. Simulations that explore short-period super-Earth
formation and tidal interaction with the central star for disk models containing
inner cavities have been presented by Terquem & Papaloizou (2007). McNeil &
Nelson (2009, 2010) considered the formation of hot super-Earth- and Neptune-
mass planets using N-body simulations combined with type I migration. They
examined whether or not the standard oligarchic growth picture of planet forma-
tion combined with migration could produce systems such as Gliese 581 and HD
69830 that contain multiple short-period super-Earth- and Neptune-mass plan-
ets. These super-Earth and Neptune systems probably contain up to 30 – 40
Earth masses of rocky or icy material orbiting within 1 AU, but the simulations
failed to produce any systems with greater than 12 Earth masses of solids interior
to this orbital radius.
Thommes, Matsumura & Rasio (2008) presented a suite of simulations of giant

planet formation using a hybrid code in which emerging embryos were evolved
using an N-body integrator combined with a 1D viscous disk model. Although
unattenuated type I and type II migration were included, a number of models led
to successful formation of systems of surviving gas giant planets. These models
consider an initial population of planetary embyos undergoing oligarchic growth
extending out to 30 AU from the star, and indicate that the right combination
of planetary growth times, disk masses and life times can form surviving giant
planets through the core-accretion model provided embryos can form and grow
at large orbital distances before migrating inward.
The role of the combined vorticity- and entropy-related corotation torque, and

its ability to slow or reverse type I migration of forming planets, has not yet been
explored in detail. The survival of protoplanets with masses in the range of 1 ≤
mp ≤ 10 M⊕ in global 1D disk models has been studied by Lyra, Paardekooper &
Mac Low (2010). Their models demonstrate that there are locations in the disk
where planets of a given mass experience zero migration due to the cancellation of
Lindblad and corotation torques (zero-torque radii). Planets have a tendency to
migrate toward these positions, where they then sit and drift inward slowly as the
gas disk disperses. Preliminary results of population synthesis calculations have
been presented by Mordasini et al. (2011), and N-body simulations that examine
the oligarchic growth scenario under the influence of strong corotation torques
have been presented by Hellary & Nelson (2012) These studies indicate that the
convergent migration that arises as planets move toward their zero-migration
radii can allow a substantial increase in the rate of planetary accretion, and the
formation of gas giants at large distance from the central star. Hellary & Nelson



36 Kley & Nelson

(2012) find, however, that planet-planet scattering can increase the eccentricity to
values that effectively quench the horseshoe drag, such that crowded planetary
systems during the formation epoch may continue to experience rapid inward
migration. Further work is clearly required to fully assess the influence of the
corotation torque on planet formation in the prescence of significant planet-planet
interactions.

6.1 Observational evidence for disk-driven migration

The discovery of the first extrasolar planet orbiting around a solar-type star,
51 Peg (Mayor & Queloz, 1995), provided immediate evidence for the migration
of planets. In situ formation models cannot explain Jupiter-like planets orbiting
with periods of a few days because the dust required to build a core sublimates at
the disk temperatures expected at these small radii (T > 1, 500 K).The existence
of hot Jupiters, however, does not tell us which of the various modes of migra-
tion that we have discussed are dominant during or after planet formation. In
principle, type I migration of a solid core followed by in situ accretion of gas may
explain hot Jupiter systems, as can a picture based on near-complete formation
at large orbital radii followed by type II migration inward.
Recent observations of the Rossiter-McLaughlin effect indicate the presence of

short-period planets whose orbit planes are strongly misaligned with their host
star equatorial planes (Triaud et al., 2010; Winn et al., 2010). This dynamical
feature may be difficult to reconcile with disk-driven migration that comes about
with inclination damping. As an alternative, it has been suggested that different
processes such as planet-planet scattering (Chatterjee et al., 2008) and/or the
Kozai mechanism combined with stellar tides (Fabrycky & Tremaine, 2007) may
play an important role. The most natural explanation for short-period systems
whose orbital angular momenta are aligned with the stellar spin axis, however,
remains to be disk-driven migration. Furthermore, planets with intermediate
periods of a few tens of days cannot have their migration explained by scattering
or the Kozai mechanism as stellar tides do not operate effectively in these systems.
The discovery of multiple systems of super-Earth and Neptune-like planets

orbiting interior to ∼ 0.5 AU, such as Gliese 581 (Udry et al., 2007) and HD 69830
(Lovis et al., 2006) seem to provide compelling evidence for type I migration
of low-mass planets, albeit at slower rates than the standard values. In situ
formation is very difficult to explain for these systems, which likely contain up to
30 - 40 Earth masses of rocky and icy material. The mass of solids interior to 1
AU in typical disk models is at most a few Earth masses. The discovery by the
Kepler mission of multiple systems of low-mass planets on near coplanar orbits in
resonant or near-resonant configurations, such as the Kepler-11 system (Lissauer
et al., 2011) provides further compelling evidence for formation and migration in
a highly dissipative disk environment given the apparent dynamical quiesence of
these closely packed systems.
As discussed in Sect. 5, the existence of giant planets in 2:1 mean motion res-

onances, such as the GJ 876 (Marcy et al., 2001) and Kepler-9 (Holman et al.,
2010) systems, suggests that the differential migration in these systems was rel-
atively slow when the resonances were established. The more rapid migration
rates associated with type I or type III migration do not result in capture into
2:1, but in resonances of higher degree such as 3:2 (Masset & Snellgrove, 2001).
Although this evidence is circumstantial rather than direct, it points to migration
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rates that are characteristic of type II migration. The success of models based on
type II migration in explaining the basic orbital parameters of the GJ 876 system
makes this circumstantial evidence even more compelling.

7 Summary Points

1. Disk-planet interaction is a natural process operating when young plan-
ets are still embedded in the protoplanetary disk. Torques are created by
the induced non-axisymmetric features in the disk: spiral waves and the
horseshoe region. Disk-planet interaction impacts all orbital elements of a
planet. Eccentricity and inclination are usually damped quickly, but the
speed and direction of migration depends intricately on disk physics.

2. Disk-planet interaction is intrinsically three-dimensional. Using the latest
numerical methods, new unexpected results, such as outward migration,
have been discovered.

3. Standard migration (in viscous, laminar disks) comes in 3 flavours: type I
migration operates for nongap-forming low-mass planets (it can be inward
or outward). In type II migration, the planet opens a gap and moves with
the viscously evolving disk. It is typically inward and slower than type I.
Type III describes fast runaway migration driven by the radial drift of the
planet (it can be either inward or outward).

4. In turbulent, magnetically driven disks, low-mass planets experience stochas-
tic motion. The evolution of more massive planets can be described approx-
imately by viscous disk-planet interaction.

5. The disk’s thermal structure plays a decisive role in determining the direc-
tion of type I migration. For radiative disks, outward migration is possible
for planets below about 30 M⊕ on circular orbits. This effect helps to solve
the too-rapid migration problem.

6. Disk-planet interaction is one major ingredient in shaping the final archi-
tecture of planetary systems as we observe them today.

7. Evidence for migration comes from three basic observational facts: i) Hot
Jupiters close to the star with orbital angular momentum vectors approx-
imately aligned to the spin-axis of the star. ii) Coplanar multiple systems
containing low-mass planets with short and intermediate orbital periods, as
discovered, for example, by the Kepler mission, and iii) The high fraction
of mean motion resonances in multi-planet systems.

8 Future Issues

1. Planetary growth and evolution takes place in protoplanetary disks, and
the final state of a planetary system is determined by the disk’s structure.
Theoretical, computational, and observational developments are required
to improve models of the planet formation environment, with particular
emphasis on their structural evolution over time. Important ingredients
are the disk’s self-gravity, irradiation from the central star, chemistry, and
non-ideal MHD processes.
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2. Because the planet mass is the important parameter determining the strength
of planet-disk interaction, its mass growth needs to be known simultane-
ously with its orbital evolution. Orbital eccentricity also plays a role in
determining disk torques. Detailed models that combine the temporal his-
tory of mass growth, migration, and planet-planet interactions are required.

3. Refined torque formulae to be used in population synthesis models are
needed that take into account the results of full 3D disk-planet modeling.

4. Improvements in population synthesis-style modeling are required to in-
crease the connection between theory and observations. The success of
missions such as CoRoT and Kepler, continuing discoveries from ground-
based observatories, and the prospect of future missions such as PLATO or
TESS make this a high priority.

5. Future ground-based observatories such as ALMA have the potential to
observe planet-forming disks around young stars in unprecedented detail.
Improved modeling of processes such as gap formation in more realistic disk
models will be required to interpret future observations.
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Pepliński A, Artymowicz P, Mellema G. 2008a. MNRAS 386:179–198
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