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Abstract. Is it possible to determine the location of a photo from just
its pixels? While the general problem seems exceptionally difficult, pho-
tos often contain cues such as landmarks, weather patterns, vegetation,
road markings, or architectural details, which in combination allow to
infer where the photo was taken. Previously, this problem has been
approached using image retrieval methods. In contrast, we pose the prob-
lem as one of classification by subdividing the surface of the earth into
thousands of multi-scale geographic cells, and train a deep network using
millions of geotagged images. We show that the resulting model, called
PlaNet, outperforms previous approaches and even attains superhuman
accuracy in some cases. Moreover, we extend our model to photo albums
by combining it with a long short-term memory (LSTM) architecture. By
learning to exploit temporal coherence to geolocate uncertain photos, this
model achieves a 50 % performance improvement over the single-image
model.

1 Introduction

Photo geolocation is an extremely challenging task since many photos offer only
few, possibly ambiguous, cues about their location. For instance, an image of a
beach could be taken on many coasts across the world. Even when landmarks are
present there can still be ambiguity: a photo of the Rialto Bridge could be taken
either at its original location in Venice, Italy, or in Las Vegas which has a replica
of the bridge! In the absence of discriminative landmarks, humans can fall back
on their world knowledge and use cues like the language of street signs or the
driving direction of cars to infer the location of a photo. Traditional computer
vision algorithms typically lack this kind of world knowledge, relying on the
features provided to them during training. Most previous work has therefore
focused on restricted subsets of the problem, like landmark buildings [2,40,59],
cities where street view imagery is available [10,29,57], or places with enough

I. Kostrikov and J. Philbin—Work done while at Google.

© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part VIII, LNCS 9912, pp. 37-55, 2016.
DOI: 10.1007/978-3-319-46484-8_3



38 T. Weyand et al.

photos to build structure-from-motion reconstructions that are used for pose
estimation [34,44]. In contrast, our goal is to localize any type of photo taken
at any location using just its pixels. Only few other works have addressed this
task [19,20].

We treat the task of geolocation as a classification problem and subdivide
the surface of the earth into a set of geographical cells which make up the target
classes. We then train a convolutional neural network (CNN) [49] using millions
of geotagged photos. Given a query photo, our model outputs a discrete probabil-
ity distribution over the earth, assigning each geographical cell a likelihood that
the input photo was taken inside it. The resulting model, which we call PlaNet,
is capable of localizing a large variety of photos. Besides landmark buildings and
street scenes, PlaNet can often predict the location of nature scenes like moun-
tains, waterfalls or beaches, with surprising accuracy. In cases of ambiguity, it
will often output a distribution with multiple modes corresponding to plausible
locations (Fig. 1). Despite being a much simpler and less resource-intensive app-
roach, PlaNet delivers comparable performance to Im2GPS [19,20] which shares
a similar goal. A small-scale experiment shows that PlaNet even reaches super-
human performance at the task of geolocating street view scenes. Moreover, we
show that the features learned by PlaNet can be used for image retrieval and
achieve state-of-the-art results on the INRIA Holidays dataset [25]. Finally, we
show that combining PlaNet with an LSTM approach enables it to use context
to predict the locations of ambiguous photos, increasing its accuracy on photo
albums by 50 %.
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Fig. 1. Given a query photo (top), PlaNet outputs a probability distribution over
the surface of the earth (bottom). Viewing the task as a classification problem allows
PlaNet to express its uncertainty about a photo. While the Eiffel Tower (a) is confi-
dently assigned to Paris, the model believes that the fjord photo (b) could be taken
in either New Zealand or Norway. For the beach photo (c), PlaNet assigns the high-
est probability to southern California (correct), but some probability is also assigned
to places with similar beaches, like Mexico and the Mediterranean. (For visualization
purposes we use a model with a much lower spatial resolution than our full model)
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2 Related Work

Im2GPS [19,20] (¢f. Sect.3) matches a query photo against millions of geo-
tagged Flickr photos using global image descriptors and assigns it the location
of the closest match. Because photo coverage in rural areas is sparse, [35,36]
make additional use of satellite aerial imagery. [36] use CNNs to learn a joint
embedding for ground and aerial images and localize a query image by matching
it against a database of aerial images. [53] take a similar approach and use a
CNN to transform ground-level features to the feature space of aerial images.
Local feature based image retrieval [38,48)] is effective at matching buildings, but
requires more space and lacks the invariance to match, e.g., natural scenes or
articulated objects. Most local feature based approaches therefore focus on local-
ization within cities, using photos from photo sharing websites [8,39] or street
view [4,10,29,30,46,56,57]. Skyline2GPS [41] matches the skyline captured by
an upward-facing camera against a 3D model of the city. While matching against
geotagged images can provide the rough location of a query photo, pose estima-
tion approaches determine the exact 6-dof camera pose of a query image by
registering it to a structure-from-motion model [8,23,33,34,43,45]. PoseNet [28]
is a CNN that regresses from a query image to its 6-dof pose. However, because a
structure-from-motion reconstruction is required for generating its training data,
it is restricted to areas with dense enough photo coverage. Landmark recognition
systems [2,16,24,40,59] construct a database of landmark buildings by cluster-
ing internet photo collections and recognize the landmark in a query image using
image retrieval. Instead, [7,32] recognize landmarks using SVMs trained on bags-
of-visual-words of landmark clusters. [18] perform image geolocation by training
one exemplar SVM for each image in a dataset of street view images. CNNs have
previously been shown to work well for scene recognition. On the SUN database
[54], Overfeat [47], a CNN trained on ImageNet [12], consistently outperforms
other approaches, including global descriptors like GIST and local descriptors
like STIFT, and training on the task-specific Places Database [60] yields another
significant boost.

In Sect. 4, we extend PlaNet to geolocate sequences of images using LSTMs.
[9,32] address this problem by first clustering the photo collection into landmarks
and then learning to predict the sequence of landmarks in a photo sequence.
While [9] estimate travel priors on a dataset of photo albums and use a Hidden
Markov Model (HMM) to infer the location sequence, [32] train a structured
SVM that uses temporal information as an additional feature. [27] also use an
HMM, but instead of landmarks, their classes are a set of geographical cells par-
titioning the surface of the earth, which is similar to our approach. [31] train
a CNN on a large collection of geotagged Flickr photos to predict geographical
attributes like “population”, “elevation” or “household income”. In summary,
with few exceptions [19,20,35,36,53] most previous approaches to photo geolo-
cation are restricted to urban areas which are densely covered by street view
imagery and tourist photos. Prior work has shown that CNNs are well-suited
for scene classification [54] and geographical attribute prediction [31], but to our
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knowledge ours is the first method that directly takes a classification approach
to geolocation using CNN.

3 Image Geolocation with CNNs

We pose the task of image geolocation as a classification problem and subdivide
the earth into a set of geographical cells making up the target classes. The
training input to the CNN are the image pixels and the target output is a one-
hot vector encoding the cell containing the image. Given a test image, the output
of this model is a probability distribution over the world. The advantage of this
formulation over a regression from pixels to geo-coordinates is that the model
can express its uncertainty about an image by assigning each cell a confidence. A
regression model would be forced to pinpoint a single location and would have no
natural way of expressing uncertainty, especially in the presence of multi-modal
answers (as are expected in this task).

Adaptive Partitioning using S2 Cells. We use Google’s open source S2
geometry library! to partition the surface of the earth into non-overlapping cells
that define the classes of our model. The S2 library defines a hierarchical parti-
tioning of the surface of a sphere by projecting the surfaces of an enclosing cube
on it. The six sides of the cube are subdivided hierarchically by six quad-trees.
A node in a quad-tree defines a region on the sphere called an S2 cell. Figure4
illustrates this in 2D. We chose this subdivision scheme over a simple subdivi-
sion of lat/lon coordinates, because (i) lat/lon regions get elongated near the
poles while S2 cells keep a close-to-quadratic shape, and (ii) S2 cells have mostly
uniform size (the ratio between the largest and smallest S2 cell is 2.08).

Fig. 2. Left: Adaptive partitioning of the world into 26,263 S2 cells. Middle, Right:
Detail views of Great Britain and Ireland and the San Francisco bay area

A naive approach to define a tiling of the earth would use all S2 cells at a
certain fixed depth in the hierarchy, resulting in a set of roughly equally sized
cells (see Fig.1). However, this would produce a very imbalanced class distrib-
ution since the geographical distribution of photos has strong peaks in densely

! https://code.google.com/p/s2-geometry-library/, https://goo.gl/vKikP6.
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populated areas. We therefore perform adaptive subdivision based on the pho-
tos’ geotags: starting at the roots, we recursively descend each quad-tree and
subdivide cells until no cell contains more than a certain fixed number ¢; of pho-
tos. This way, sparsely populated areas are covered by larger cells and densely
populated areas are covered by finer cells. Then, we discard all cells containing
less than a minimum of ¢ photos. Therefore, PlaNet does not cover areas where
photos are very unlikely to be taken, such as oceans or poles. We remove all
images from the training set that are in any of the discarded cells. This adaptive
tiling has several advantages over a uniform one: (i) training classes are more
balanced, (ii) it makes effective use of the parameter space because more model
capacity is spent on densely populated areas, (iii) the model can reach up to
street-level accuracy in city areas where cells are small. Figure2 shows the S2
partitioning for our dataset.

CNN Training. We train a CNN based on the Inception architecture [49] with
batch normalization [22]. The SoftMax output layer has one output for each S2
cell in the partitioning. We set the target output to 1.0 for the S2 cell containing
the training image and set all others to 0.0. We initialize the model weights with
random values and train to minimize the cross-entropy loss using AdaGrad [14]
with a learning rate of 0.045.

Our dataset consists of 126M photos with Exif geolocations mined from all
over the web. We applied very little filtering, only excluding images that are non-
photos (like diagrams, clip-art, etc.) and porn. Our dataset is therefore extremely
noisy, including indoor photos, portraits, photos of pets, food, products and
other photos not indicative of location. Moreover, the Exif geolocations may be
incorrect by several hundred meters due to noise. We split the dataset into 91M
training images and 34M validation images.

For the adaptive S2 cell partitioning (Sect. 3) we set t; = 10,000 and t5 = 50,
resulting in 26, 263 S2 cells (Fig. 2). Our Inception model has a total of 97,321,048
parameters. We train the model for 2.5 months on 200 CPU cores using the
DistBelief framework [11] until the accuracy on the validation set converges.
The long training time is due to the large variety of the training data and the
large number of classes.

To ensure that none of the test sets we use in this paper have any ll(near-)
duplicate images in the training set, we use a CNN trained on near-duplicate
images to compute a binary embedding for each training and test image and
then remove test images whose Hamming distance to a training image is below
an aggressively chosen threshold.

Geolocation Accuracy. We collected a test dataset of 2.3M geotagged Flickr
photos from across the world. Other than selecting geotagged images with 1 to
5 textual tags, we did not apply any filtering. Therefore, most of the images
have little to no cues about their location. Figure 5 shows example images that
illustrate how challenging this benchmark is. We measure localization error as
the distance between the center of the predicted S2 cell to the original photo
location. We note that this error measure is pessimistic, because even if the
ground truth location is within the predicted cell, the error can still be large
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Fig. 5. Example images drawn randomly from the Flickr test set

depending on the cell size. Figure3 shows what fraction of this dataset was
localized within a certain geographical distance of the ground truth locations.
The blue curve shows the performance for the most confident prediction, and the
other curves show the performance for the best of the top-{2,3,4,5} predictions
per image. Following [20], we added approximate geographical scales of streets,
cities, regions, countries and continents. Despite the difficulty of the data, PlaNet
is able to localize 3.6 % of the images at street-level accuracy and 10.1 % at city-
level accuracy. 28.4% of the photos are correctly localized at country level and
48.0% at continent level. When considering the best of the top-5 predictions,
the model localizes roughly twice as many images correctly at street, city, region
and country level.

Qualitative Results. An important advantage of our localization-as-
classification paradigm is that the model output is a probability distribution
over the globe. This way, even if an image cannot be confidently localized, the
model outputs confidences for possible locations. To illustrate this, we trained
a smaller model using only S2 cells at level 4 in the S2 hierarchy, resulting in a
total of only 354 S2 cells. Figure 1 shows the predictions of this model for test
images with different levels of geographical ambiguity.

Figure 6 shows examples of the different types of images PlaNet can local-
ize. Besides landmarks, which can also be recognized by landmark recognition
engines [2,40,59], PlaNet can often correctly localize street scenes, landscapes,
buildings of characteristic architecture, locally typical objects like red phone
booths, and even some plants and animals. Figure 7 shows some failure modes.
Misclassifications often occur due to ambiguity, e.g., because certain landscapes
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Fig. 6. Examples of images PlaNet localizes correctly. Our model is capable of localizing
photos of famous landmarks (top row), but often yields surprisingly accurate results
for images with more subtle geographical cues. The model learns to recognize locally
typical landscapes, objects, architectural styles and even plants and animals (Color
figure online)

or objects occur in multiple places, or are more typical for a certain place than
the one the photo was taken (e.g., the Chevrolet Fleetmaster in the first image is
mostly found in Cuba nowadays). To give a visual impression of the representa-
tions PlaNet has learned for individual S2 cells, Fig. 8 shows the test images that
the model assigns to a given cell with the highest confidence. The model learns
a very diverse visual representation of each place, assigning highest confidence
to the landmarks, landscapes, or animals that are typical for a specific region.

Comparison to Im2GPS. One of the few approaches that, like ours, aims
at geolocating arbitrary photos is Im2GPS [19,20]. However, instead of classifi-
cation, Im2GPS is based on nearest neighbor matching. The original Im2GPS
approach [19] matches the query image against a database of 6.5M Flickr images
and returns the geolocation of the closest matching image. Images are repre-
sented by a combination of six different global image descriptors. The data was
collected by downloading Flickr images that have GPS coordinates and whose
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Fig. 7. Examples of incorrectly localized images
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Fig. 8. The top-5 most confident images from the Flickr dataset for the S2 cells on the
left, showing the diverse visual representation of places that PlaNet learns

tags contain certain geographic keywords including city, country, territory and
continent names. To filter out irrelevant content, images tagged with keywords
such as “birthday” or “concert” were removed.

A recent extension of Im2GPS [20] uses both an improved image represen-
tation and a more sophisticated localization technique. It estimates a per-pixel
probability of being “ground”, “vertical”, “sky”, or “porous” and computes color
and texture histograms for each of these classes. Additionally, bag-of-visual-word
vectors of length 1k and 50k based on SIFT features are computed for each
image. The geolocation of a query is estimated by retrieving nearest neighbors,
geo-clustering them with mean shift, training 1-vs.-all SVMs for each resulting
cluster, and finally picking the average GPS coordinate of the cluster whose SVM
gives the query image the highest positive score.

In contrast, PlaNet is a much simpler pipeline. We performed only little
filtering to create our input dataset (see above), localization is performed as
a straightforward n-way classification, and image features are jointly learned
with the classifier parameters during the training process instead of being hand-
engineered.
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Fig. 9. (a) Performance for different resolutions of S2 discretization representing dif-
ferent tradeoffs between the number of classes and the number of training images per
class (Table 1b). (b) Performance for different numbers of model parameters. The full
model has 97.3M parameters. (¢) Comparison of PlaNet with image retrieval based on
local features and CNN embeddings
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Table 1. (a) Comparison of PlaNet with Im2GPS. Percentages are the fraction of
images from the Im2GPS test set that were localized within the given radius. (Numbers
for the original Im2GPS are approximate as they were extracted from a plot in the
paper.) (b) Parameters of PlaNet models with different spatial resolutions

(a)

Method Street 1 km | City 25 km Region 200 km | Country 750 km | Continent 2500 km
Im2GPS (orig) [19] 12.0% 15.0% 23.0% 47.0%
Im2GPS (new) [20] |2.5% 21.9% 32.1% 35.4% 51.9%
PlaNet (900k) 0.4% 3.8% 7.6% 21.6 % 43.5%
PlaNet (6.2M) 6.3% 18.1% 30.0 % 45.6 % 65.8 %
PlaNet (91M) 8.4 % 24.5 % 37.6 % 53.6 % 71.3%
(b)

t1 #classes med. imgs per class | #model

100k 214 21,039 23.9M

10k 2,056 2,140 29.1M

5k 3,852 1,225 34.2M

1k 16,307 320 69.3M

We evaluate PlaNet on the Im2GPS test dataset [19] that consists of 237
geotagged photos from Flickr, curated such that most photos contain at least
a few geographical cues. Table la compares the performance of three versions
of PlaNet trained with different amounts of training data to both versions of
Im2GPS. The new Im2GPS version is a significant improvement over the old
one. However, the full PlaNet model outperforms even the new version with
a considerable margin. In particular, PlaNet localizes 236 % more images accu-
rately at street level. The gap narrows at coarser scales, but even at country level
PlaNet still localizes 51 % more images accurately. The ‘PlaNet 6.2M’ model is
more directly comparable to Im2GPS, which uses a database of 6.5M images.
While Im2GPS wins on city and region levels, ‘PlaNet 6.2M’ still outperforms
Im2GPS on street, country and continent levels. Using similar amounts of input
data, PlaNet shows performance comparable to Im2GPS. However, we note that
Im2GPS has an advantage over PlaNet in this experiment, because PlaNet’s
training set comes from random websites and is thus much more noisy and of
lower quality than the Flickr images Im2GPS uses (Flickr is targeted at ama-
teur and professional photographers and thus hosts mainly high quality images).
Moreover, because Im2GPS is based on Flickr photos, it has an advantage on
this test set which is also mined from Flickr. PlaNet’s training data are general
web photos which have a different geographical distribution and a higher fraction
of irrelevant images with no geographical cues (Fig.5).

Regardless of accuracy, PlaNet has several advantages over Im2GPS: PlaNet
is a single model trained end-to-end, while Im2GPS is a manually engineered
pipeline that uses a carefully selected set of features. Furthermore, PlaNet uses
much less resources than Im2GPS: Since the Im2GPS feature vectors have a
dimensionality of 100,000, Im2GPS would require 8.3 TB to represent our corpus
of 91M training examples (577 GB for 6.2M images), assuming one byte per
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descriptor dimension. In contrast, PlaNet uses only 377 MB, which even fits into
the memory of a smartphone.

Effect of S2 Discretization. An important meta-parameter of PlaNet is the
resolution of the S2 cell discretization. A finer discretization means that the
number of target classes increases, while the number of training examples per
class decreases. At the same time, the number of model parameters increases
due to the final fully-connected layer. We trained models with different levels of
discretization by varying the t; parameter that determines the maximum number
of images in a cell, while leaving t5 fixed at 50 images. We used the same subset
of 6.2M training images we used above for comparability with Im2GPS. Table 1b
shows the parameters of the different models used and Fig. 9a shows the results.
As expected, the lower the resolution, the fewer images can be localized at street
accuracy. Interestingly, while the 1k model performs similar to the 5k model at
region level and above, it performs significantly better at street level, localizing
4.2% of the images correctly, while the 5k model only localizes 1.3 % of images
at street level. This is surprising since this model has the highest number of
parameters and the lowest number of training images per class, making it prone
to overfitting. However, it still performs well since the images it can localize
at street level are from dense city centers with a fine S2 discretization, where
sufficient training examples exist.

Effect of Model Size. To analyze how many model parameters are required,
we trained models with reduced numbers of parameters. As Fig.9b shows, a
model with 74.7M parameters performs almost as well as the full model which
has 97.3M parameters, but when reducing the number of parameters further,
performance starts to degrade.

Fig. 10. Left: Input image, right: Heatmap of the probability of the correct class when
sliding an occluding window over the image [58]. (a) Grand Canyon - Occluding the
region containing the distinctive mountain formation makes the confidence in the cor-
rect location drop the most. (b) Norway - The snowy mountain range on the left is the
most important cue. (c) Hong Kong - Confidence in the correct location increases if
the palm trees in the foreground are covered since they are not typical for Hong Kong

Comparison to Image Retrieval. We compare the PlaNet 6.2M model with
two image retrieval baselines that assign each query photo the location of the
closest matching image from the PlaNet 6.2M training data (Fig.9¢). ‘Local
Features’ retrieves images using an inverted index and spatially verifies tentative
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matches [39,48]. ‘CNN embeddings’ represents each image as a 256 byte vector
extracted with a CNN trained on a landmark dataset using the triplet loss [52].
Matching is performed w.r.t. the Lo distance. ‘Local Features’ work well on rigid
objects like landmarks, but fail to match, similar scenes, causing its low recall.
‘CNN embeddings’ outperform PlaNet at street level (9.28 % vs. 6.33 %), but fall
behind at region level (23.63 % vs. 29.96 %) and above. PlaNet’s disadvantage
on street level is that its geolocations are quantized into cells, while the retrieval
model can use the exact geolocations. Using the same quantization for retrieval
(‘CNN embeddings quant.’) has the same performance as PlaNet on street and
city level. This suggests that both retrieval and classification are well-suited for
recognizing specific locations inside cities, but classification seems more suitable
for recognizing generic scenes and subtle location cues. We also note that the
embeddings use 1.5 GB for 6.2M images and would use 21.7 GB for the full 91M
images while the PlaNet model uses only 377 MB regardless of the amount of
training data.

Model Analysis. To analyze which parts of the input image are most impor-
tant for the classifier’'s decision, we employ a method introduced by Zeiler
et al. [58]. We plot an activation map where the value of each pixel is the classi-
fier’s confidence in the ground truth geolocation if the corresponding part of the
image is occluded by a gray box (Fig. 10). The first two examples show that the
image regions that would be most useful for a human are also most important
for the decision of the model. However, as the last example shows, the model
can also be fooled by misleading cues.

Comparison to Human Performance. To find out how PlaNet compares
with human intuition, we let it compete against 10 well-traveled human subjects
in a game of Geoguessr (www.geoguessr.com). Geoguessr presents the player
with a random street view panorama (sampled from all street view panoramas
across the world) and asks them to place a marker on a map at the panorama’
location. We used the game’s “challenge mode” where two players are shown the
same set of 5 panoramas. We entered the PlaNet guesses manually by running
inference on a screenshot of the view presented by the game and entering the
center of the highest confidence S2 cell as its guess. We did not allow the human
players to pan, zoom or navigate, so they did not use more information than
the model. For each player we used a different set of panoramas, so humans and
PlaNet played a total of 50 different rounds. PlaNet won 28 of the 50 rounds with
a median localization error of 1131.7km, while the median human localization
error was 2320.75 km. Neither humans nor PlaNet were able to localize photos
below street or city level, showing that this task was even harder than the Flickr
dataset and the Im2GPS dataset. PlaNet was able to localize twice as many
photos at region level (4 vs. 2), 1.54x as many photos at country level (17 vs.
11), and 1.23x as many photos at continent level (32 vs. 26). Figure 11 shows
example panoramas with the guessed locations. Most panoramas were taken in
rural areas containing little to no geographical cues.

When asked what cues they used, human subjects said they looked for any
type of signs, the types of vegetation, the architectural style, the color of lane
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Fig. 11. Top: GeoGuessr panorama, Bottom: Ground truth location (yellow), human
guess (green), PlaNet guess (blue) (Color figure online)

markings and the direction of traffic on the street. Furthermore, humans knew
that street view is not available in certain countries such as China allowing
them to further narrow down their guesses. One would expect that these cues,
especially street signs, together with world knowledge and common sense should
give humans an unfair advantage over PlaNet, which was trained solely on images
and geolocations. Yet, PlaNet was able to outperform humans by a considerable
margin. For example, PlaNet localized 17 panoramas at country granularity
(750 km) while humans only localized 11 panoramas within this radius. We think
PlaNet has an advantage over humans because it has seen many more places than
any human can ever visit and has learned subtle cues of different scenes that are
even hard for a well-traveled human to distinguish.

Features for Image Retrieval. A recent study [42] showed that the activations
of Overfeat [47], a CNN trained on ImageNet [12] can serve as powerful features
for several computer vision tasks, including image retrieval. Since PlaNet was
trained for location recognition, its features should be particularly suited for
image retrieval of touristic photos. To test this, we evaluate the PlaNet features
on the INRTA Holidays dataset [25], consisting of 1,491 personal holiday photos,
including landmarks, cities and natural scenes and the and Oxford5k dataset
[39], consisting of 5,062 images of historic buildings in Oxford. We extract image
embeddings from the final layer below the SoftMax layer (a 2048-dim. vector)
and rank images by the L, distance between their embedding vectors. As can
be seen in Table 2a, the PlaNet features outperform the Overfeat features. Using
the spatial search and augmentation techniques described in [42], PlaNet even
outperforms state-of-the-art local feature based image retrieval approaches on
the Holidays dataset. PlaNet is not as competitive on Oxford since the query
images of this dataset are small cut-out image regions, requiring highly scale-
invariant matching, which gives local feature based approaches an advantage. We
note that the Euclidean distance between these image embeddings is not neces-
sarily meaningful as PlaNet was trained for classification. We expect Euclidean
embeddings trained for image retrieval using a triplet loss [52] to deliver even
higher mAP.
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Table 2. (a) Image retrieval mAP using PlaNet features compared to other methods.
(b) Results of PlaNet LSTM on Google+ photo albums. Percentages are the fraction
of images in the dataset localized within the respective distance

(a)

Method Holidays Oxford
BoVW 57.2 [26] 38.4 [26]
Hamming Embedding 77.5 [26] 56.1 [26]
Fine Vocabulary 74.9 [37] 74.2 [37]
ASMK+MA 82.2 [51] 81.7 [51]
GIST 37.6 [13]

Overfeat 64.2 [42] 32.2 [42]
Overfeat+aug+ss 84.3 [42] 68.0 [42]
AlexNet+LM Retraining 79.3 [6] 54.5 [6]
CNN+aug+ss 90.0 [3] 79.0 [3]
Aggr. local CNN features 80.2 [5] 58.9 [5]
Pooled CNN features+QE 66.9 [50]
NetVLAD 83.1 [1] 71.6 [1]
NBNN on CNN features 88.7 [55]

PlaNet (this work) 73.3 34.9
PlaNet+aug+ss 89.9

(b)

Method Street 1km | City 25 km | Region 200 km | Country 750 km | Continent 2500 km
PlaNet 14.9% 20.3% 27.4% 42.0% 61.8%
PlaNet avg 22.2% 35.6 % 51.4% 68.6 % 82.7%
PlaNet HMM | 23.3 % 34.3% 471 % 63.2% 79.5%
LSTM 32.0% 42.1% 57.9% 75.5 % 87.9%
LSTM offl 30.9% 41.0% 56.9 % 74.5 % 85.4 %
LSTM off2 29.9 % 40.0% 55.8% 73.4% 85.9 %
LSTM rep 34.5% 45.6 % 62.6 % 79.3 % 90.5 %
LSTM rep 25 | 28.3% 37.5% 49.9 % 68.9 % 82.0%
BLSTM 25 33.0% 43.0% 56.7 % 73.2% 86.1 %

4 Sequence Geolocation with LSTMs

While PlaNet is capable of localizing a large variety of images, many images are
ambiguous or do not contain enough information that would allow to localize
them. However we can exploit the fact that photos naturally occur in sequences,
e.g., photo albums, with a high geographical correlation. Intuitively, if we can
confidently localize some of the photos in an album, we can use this information
to also localize the photos with uncertain location. Assigning each photo in an
album a location is a sequence-to-sequence problem which requires a model that
accumulates a state from previously seen examples and makes the decision for
the current example based on both the state and the current example. There-
fore, long-short term memory (LSTM) architectures [21] seem like a good fit for
this task. Moreover, using LSTMs allows us to express the entire pipeline as a
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single neural network. While previous works [9,27] have used HMMs, our results
indicate that LSTMs are better suited for this problem.

Training Data and Model Architecture. We collected a dataset of 29.7M
public photo albums with geotags from Google+, which we split into 23.5M
training albums (490M images) and 6.2M testing albums (126M) images. We
use the S2 quantization scheme from the previous section. The basic structure
of our model is as follows (Fig. 12a): Given an image, we extract an embedding
vector from the final layer before the SoftMax layer in PlaNet. This vector is
fed into the LSTM unit. The output vector of the LSTM is then fed into a
SoftMax layer that performs the classification into S2 cells. We feed the images
of an album into the model in chronological order. For the Inception part, we
re-use the parameters of the single-image model. During training, we keep the
Inception part fixed and only train the LSTM units and the SoftMax layer.

LSTM LSTM LSTM LST™M LST™M LST™M LST™M LST™M II LST™M LST™M
.

P e BN T . B BN s

Image 1 Image2  Image3 Image 1 Image2 Image3 Image1 Image2 Image3 Image1 Image2 Image3 Image1 Image2  Image3

(a) (b) (©) )

;

Fig. 12. Time-unrolled diagrams of the PlaNet LSTM models. (a) Basic model. (b)
Label offset. (c) Repeated sequence. The first pass is used to generate the state inside
the LSTM, so we only use the predictions of the second pass (red box). (d) Bi-directional
LSTM (Color figure online)

Results. We compare our LSTM results to three baselines: ‘PlaNet’ is our
single-image model, ‘PlaNet avg’ assigns each image in the album the average of
the confidences of the single-image model, ‘PlaNet HMM’ is a Hidden Markov
Model on top of PlaNet. Like [9,27], we estimate the HMM class priors and
transition probabilities by counting and compute the emission probabilities by
applying Bayes’ rule to the class posterior probabilities of PlaNet. Unlike [27],
we do not incorporate time or distance into the transition probability, but use
a much finer spatial resolution (26,263 bins vs. 3,186 bins). We determine the
maximum likelihood state sequence using the Viterbi algorithm.

The results are shown in Table2b. ‘PlaNet avg’ already yields a significant
improvement over single-image PlaNet (49.0% relative on street level), since
it transfers more confident predictions to ambiguous images. Interestingly, the
HMM does not perform much better than the simple averaging approach. This is
surprising since ‘PlaNet avg’ predicts the same location for all images. However,
its advantage over HMMSs is that it sees the whole sequence, while the HMM
only uses the images before the current one.

The LSTM model clearly outperforms the averaging and HMM (44.1 % and
37.3 % relative improvement over single-image on the street level, respectively).
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Visual inspection of results showed that if an image with high location confidence
is followed by several images with lower location confidence, the LSTM model
assigns the low-confidence images locations close to the high-confidence image.
Thus, while the original PlaNet model tends to “jump around”, the LSTM model
tends to predict close-by locations unless there is strong evidence of a location
change. The LSTM model outperforms the averaging baseline because averaging
assigns all images in an album the same confidences and can thus not pro-
duce accurate predictions for albums that include different locations (such as
albums of trips). The LSTM model outperforms the HMM model, because it is
able to capture long-term relationships. For example, at a given photo, HMMs
will assign high transition probabilities to all neighboring locations due to the
Markov assumption, while LSTMs are capable of learning specific tourist routes
conditioned on previous locations. A problem with this simple LSTM model is
that many albums contain a number of images in the beginning that contain no
helpful visual information. Due to its unidirectional nature, this model cannot
fix wrong predictions that occur in the beginning of the sequence after observ-
ing a photo with a confident location. For this reason, we now evaluate a model
where the LSTM ingests multiple photos from the album before making its first
prediction.

Label Offset. The idea of this model is to shift the labels such that inference
is postponed for several time steps (Fig.12b) The main motivation under this
idea is that this model can accumulate information from several images in a
sequence before making predictions. Nevertheless, we found that using offsets
does not improve localization accuracy (Table2b, LSTM offl, LSTM off2). We
assume this is because the mapping from input image to output labels becomes
more complex, making prediction more difficult for all photos, while improving
predictions just for a limited amount of photos. Moreover, this approach does
not solve the problem universally: For example, if we offset the label by 2 steps,
but the first image with high location confidence occurs only after 3 steps, the
prediction for the first image will likely still be wrong. To fix this, we now consider
models that condition their predictions on all images in the sequence instead of
only previous ones.

Repeated Sequences. We first evaluate a model that was trained on sequences
that had been constructed by concatenating two instances of the same sequence
(Fig. 12¢) For this model, we take predictions only for the images from the sec-
ond half of the sequence (i.e. the repeated part). Thus, all predictions are condi-
tioned on observations from all images. At inference time, passing the sequence
to the model for the first time can be viewed as an encoding stage where the
LSTM builds up an internal state based on the images. The second pass is
the decoding stage where the LSTM makes predictions based on its state and
the current image. Results show that this approach outperforms the single-pass
LSTMs (Table 2b, ‘LSTM rep’), achieving a 7.8 % relative improvement at street
level, at the cost of a twofold increase in inference time. However, visual inspec-
tion showed a problem with this approach: if there are low-confidence images at
the beginning of the sequence, they tend to get assigned to the last confident
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location in the sequence, because the model learns to rely on its previous pre-
diction. Therefore, predictions from the end of the sequence get carried over to
the beginning.

Bi-directional LSTM. A well-known neural network architecture that condi-
tions the predictions on the whole sequence are bi-directional LSTM (BLSTM)
[17]. This model can be seen as a concatenation of two LSTM models, where
the first one does a forward pass, while the second does a backward pass on
a sequence (Fig.12d). Bi-directional LSTMs cannot be trained with truncated
back-propagation through time [15] and thus require to unroll the LSTMs to
the full length of the sequence. To reduce the computational cost of training, we
had to limit the length of the sequences to 25 images. This causes a decrease in
total accuracy since longer albums typically yield higher accuracy than shorter
ones. Since our experiments on this data are not directly comparable to the
previous ones, we also evaluate the repeated LSTM model on sequences trun-
cated to 25 images. As the results show (Table 2b: ‘LSTM rep 25’, ‘BLSTM 25’),
BLSTMs clearly outperform repeated LSTMs (16.6 % relative improvement on
street level). However, because they are not tractable for long sequences, the
repeated model might still be preferable in practice.

5 Conclusion

We presented PlaNet, a CNN for image geolocation. Regarding the problem as
one of classification, PlaNet produces a probability distribution over the globe.
This allows it to express its uncertainty about the location of a photo and assign
probability mass to potential locations. While previous work mainly focused on
photos taken inside cities, PlaNet is able to localize landscapes, locally typical
objects, and even plants and animals. Our experiments show that PlaNet far
outperforms other methods for geolocation of generic photos and even reaches
superhuman performance. We further extended PlaNet to photo album geoloca-
tion by combining it with LSTMs, achieving 50 % higher performance than the
single-image model.
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