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SUMMARY 
A simple model of superficial hydrostatic equilibrium on a rotating isotropic 
self-gravitating sphere is employed to derive a planetary oblateness formula. The 
relation obtained describes oblateness on the basis of spin rate, polar radius and the 
mass of the planet only. An application to the oblate planets is made and the 
consistency with the most basic and known oblateness laws of geodesy is verified. By 
making the further hypothesis that the Earth volume and mass has stayed constant, 
one derives that the size of the terrestrial oblateness adaptation which has taken 
place during the last half a billion years is a contraction of 2 km at the equator an 
uplift of 4.1 km at the pole. For the more remote history it appears very likely that 
the central condensation of the Earth has decreased systematically over the past 3.5 
billion years. 
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1 INTRODUCTION 

From the time of Isaac Newton to the present, the flattening 
of the Earth has been the subject of considerable interest 
and speculation. If one considers that all the planets from 
the Earth onwards are also oblate and that this is almost 
certainly since the very early days of the existence of the 
solar system, flattening still remains partly an unexplained 
fact. This state of affairs is hardly affected by our ignorance 
concerning the outermost planet Pluto for which no relevant 
data have been collected hitherto. 

Our considerations on planetary oblateness bring us in 
contact with basic geodesy, planetary science and dynamics. 
They will lead us towards the evolution of the Earth 
oblateness over large palaeontological time scales. This is 
based upon the slow increase of the Length Of the Day 
(LOD) over the ages due to tidal friction. The idea that 
oblateness has changed due to a slow down of the Earth 
rotation seems inescapable if one considers that there should 
have been at least 650 solar days per year (i.e. a solar day of 
13.5 hours) some 2000 million years BP, as claimed by 
Lambeck (1978). 

We are certainly not the first to examine the change of the 
terrestrial oblateness figures (see Lambeck 1980, chapter 
11). Nevertheless, the way oblateness has been linked to 
Earth rotation has-in successful theories-normally com- 
prised inertia tensor elements or coefficients of the gravity 
potential development. In that context any definite 
representation of how oblateness has varied over the ages 
requires a statement of how oblateness and moments of 
inertia have changed together. This is an almost impossible 
task and, therefore, there is little commitment in the 
conclusions reached so far. 

In an attempt to derive an oblateness relation inde- 
pendent from inertia and gravity potential terms, we have 
worked out a simple model of superficial hydrostatic equi- 
librium of a fluid layer on a self-gravitating body. The latter 
does not need to be rigid or spherical. It is only required 
that the interior body has a spherical gravity potential near 
its boundary. If the whole body is rotating with an angular 
velocity w we will show that the height h of the equatorial 
bulge is 

where R ,  is the polar radius, M the total mass of the sphere 
and G the universal constant of gravitation. 

Formula (1) has to be seen against the background of well 
established laws of equilibrium which are known in geodesy. 
In the next section we will recall the two most basic 
independent relations linking flattening to inertia properties. 
Thereafter, we derive equation (1) in Section 3 and apply it 
to the planets in Section 4. In Section 5 we combine 
equation (1) with the flattening laws presented in the section 
hereafter. This leads to simple equations describing the 
inertias of planets. The spin axis inertia appears then to be a 
function of the total mass, the equatorial and the polar 
radius only. Application to the terrestrial data gives the 
same order of fit as we find when applying equation (1) to 
all oblate planets. In the last section we make an application 
to the Earth history. This requires a supplementary 
hypothesis and we propose to assume that the Earth volume 
and mass has not changed over the last half a billion years 
by an amount relevant for our considerations. In this way 
we derive the size of the adaptation of the Earth shape. 
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2 FLATTENING LAWS IN GEODESY 

The successful laws in geodesy-linking the geometric 
flattening f = h / R ,  to spin rate and inertia properties of the 
Earth-are intimately connected with the name of Alexis 
Claude Clairaut and the idea of hydrostatic equilibrium. In 
the middle of the 18th century he derived a second order 
linear differential equation which connects the flattening f of 
any level surface of a spheroidal liquid rotating body in 
equilibrium, with the mean radius and density of that level 
surface. A solution of this equation given by Heiskanen & 
Moritz (1967) is 

C - A  
J 2 = -  

Mr: 

The new symbols we have introduced in equation (2) are: 
Re the mean equatorial radius, the principal moments of 
inertia A = B in the equatorial plane and C along the spin 
axis, g, the mean gravitational acceleration at the equator 
and J2 the 2,O-term in the spherical-harmonic expansion of 
the gravity potential of a planet. 

Another relation often referred to as Clairaut’s equation, 
reads 

( 3 )  

It applies to the first order and is obtained by equating the 
polar and equatorial surface potential. Hence, equation ( 3 )  
does not even imply that the outer surface is ellipsoidal. 
Rotational symmetry is sufficient for equation (3) to apply. 
An expansion of Clairaut’s equation to a higher order of 
validity is known (see, e.g. Levallois 1970). For our 
purposes, the higher accuracy of that equation cannot be 
exploited as it requires coefficients of the Earth potential 
expansion higher than J2,,, which we try to avoid. 

Equations (2) and ( 3 )  show that the body as a whole is in 
hydrostatic equilibrium. The basic equilibrium properties of 
rotating planetary bodies seem to be exhausted by the two 
independent relations just presented. Any further inde- 
pendent equation describing f requires a supplementary or 
alternative model assumption, thereby leaving the grounds 
of obvious and basic dynamical principles. Levallois (1970) 
has reviewed a number of such causal theories, i.e. models 
which try to explain why the Earth is approximately a 
revolution ellipsoid with its particular properties. Such 
theories can be made either to fit reality by the selection of 
some free parameters, or, if there are no such parameters, 
they usually fail to provide satisfactory results. Amongst the 
more recent alternative theories, Gregori (1981) suggests 
that spinning planets should reach their indifferent 
equilibrium. The indifferent equilibrium principle does not 
lead to a hydrostatic equilibrium theory. It also fails to 
produce theoretical flattenings which approach reality. In 
another approach, Bobrov (1984) presents a theoretical 
study extending over 3 . 5  billion years of the whole history of 
the LOD. To establish the link between the spin rate and 
the angular momentum of the Earth he needs the principal 
moment of inertia along the spin axis. He assumes that the 
latter is constant together with the Love number k,. Relying 

further on conventional means as presented in this section, 
Bobrov computes the hypothetical past flattenings of our 
planet. As his assumptions are purely intuitive, the results 
remain questionable. 

The model we present in the next section is also of a 
causal and speculative nature. It agrees with the idea of 
hydrostatic equilibrium and-as is necessary in physics-its 
applicability can be established by means of verification. 
This verification has become possible by the availability of 
reasonable oblateness and spin rate information for the 
spinning planets. 

3 A SUPERFICIAL EQUILIBRIUM MODEL 

In order to highlight the merits and limitations of our model 
we introduce the hydrostatic principle we will apply to the 
outer layer of spinning planets in a very simplified example. 
Consider the plane cross-section of a vessel of length L. Let 
is represent a receptacle filled with a homogeneous 
incompressible liquid subject to a downward acceleration g 
and a perpendicular lateral acceleration a. The horizontal 
acceleration goes towards the right side, and the horizontal 
distance from the left is measured by a coordinate called 1 
(sL) .  We introduce a horizontal reference line starting at 
the liquid surface at l = 0. At 1 = I , ,  the integral over the 
forces created by the acceleration a amounts to the pressure 
pal,, if p is the density of the fluid. At the same location on 
the reference line the relative surface height h is h,,, where 
h = 0 at 1 = 0. The corresponding hydrostatic pressure is 
pgh, on the reference line. Thus, in equilibrium, we have 
al, = gh,. This remains true even if the bottom of the vessel 
is an inclined or irregular surface, provided no obstacle 
emerges over the liquid surface and runs fully across the 
vessel without being parallel to the left-right direction. 

If we adopt this basic hydrostatic concept for the outer 
layer of a self-gravitating rotating body, we see that this 
implies: 

(i) A sufficient thickness of the outer layer so that the 
centrifugal forces are unable to remove the layer completely 
at the rotation poles. 

(ii) A relatively low density and limited oblateness of the 
outer layer in order to be able to neglect its self-gravitation. 

(iii) an underlying body whose boundary consists of 
higher density material. 

(iv) No limitation on the exact geometrical shape of the 
underlying body which can be an oblate spheroid with 
irregularities. 

We further assume that the gravitational flattening 
(ge-gp)/ge can be neglected. Here, g, represents the 
gravitational acceleration at the poles. This is certainly the 
most stringent limitation which may reduce the quality of the 
result for the planets with larger oblateness, namely Jupiter 
and Saturn. For both giant planets the mean density is low 
( 0 . 7 g ~ m - ~  for Saturn and 1.3gcmP3 for Jupiter) and 
central condensation is high. Their oblate layers will thus 
have a very low density, thereby mitigating their 
self-gravitating effect. 

Let us now consider a rotating oblate planet whose polar 
radius is R. The latter corresponds to the spherical level 
surface of radius R. It will be the reference surface for the 
hydrostatic equilibrium of an outer incompressible liquid 
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layer. We stress that this reference sphere may cross other 
layers of higher density without affecting the equilibrium 
equation. The main simplifying assumption states that the 
gravitational acceleration g at the reference surface is 
everywhere equal and oriented radially and, further, that 
the self-gravitation of the outer layer can be neglected. 

The centrifugal force acting on a unit mass volume at the 
equator amounts to Ro’p, where p is now the density of the 
outer layer. At latitude cp this force will reduce by the factor 
cos cp. This can be broken down in a tangential component 

4 = -pRw2 cos ip sin ip 

and a radial component 

F, = p{Ro2 COS’ ip - g }  

comprising the gravitational acceleration g. The tangential 
component is measured positive in the direction parallel to 
the positive spin axis. The radial force F, subsists on the 
reference sphere after equilibrium is achieved. The change 
of F, along a meridian, namely 

aF, 
a0 
- = -2pRw2cos ip sin ip, 

will therefore translate into a differential pressure per unit 
length, which also induces a tangential force of the same 
magnitude. Hence, p on the reference sphere is subject to a 
tangential force 36 which can only be counteracted by a 
higher liquid level at lower latitudes. 

The integral over all tangential forces acting at the 
reference sphere between the pole and a latitude 
namely 

fi I?<R’ cos cp dip 

must be equal to the force per length exerted by a liquid 
column on the reference sphere. The coordinate A 
represents the longitude. The previous integral is equal to pg 
times the surface of a conical frustrum of small radius 
Rcosa , ,  of large radius ( R +  h,)cos @, and of height 
H = h,  sin a,. Here, h, is the outer layer surface height in 
function of a(, with respect to the reference sphere. Thus, 
we find 

R2W2 
h, =- cos2 a,, 

g 
(4) 

where R is R, and g can be approximated by GM/Ri.  For 
a0 = 0 this yields equation (1). 

Compared to Clairaut’s equilibrium principle we may 
notice that equations (2) and (3) apply to self-gravitating 

rotating bodies of any oblateness. Equation (4) is not in 
contradiction with these laws as long as oblateness is small, 
i.e. the gravitation of the equatorial bulge influences the 
shape of the external surface to a negligible extend. We will 
be able to quantify this limitation in Section 5. 

4 APPLICATION TO THE PLANET DATA 

In Davies et at. (1980) we find the equatorial radius, the spin 
period and the flattening defined as h,/(R, + h,) for each 
planet. As for the Sun, the observable rotation period is also 
latitude dependent for Jupiter and Saturn. We propose to 
take both extreme values reported by Davies et al. (1980), 
when making a practical comparison between the observed 
and the theoretical oblateness. 

The values of Davies et al. (1980) can no longer be 
considered as ‘up to date’ for Uranus and Neptune. For the 
former we have taken values from Elliot et af. (1981). The 
oblateness of Uranus quoted there is 0.024 f 3 and we have 
opted for 0.027 as a compromise with the IAU value which 
is 0.03. The spin rate of Uranus has been measured 
accurately by the space probe VOYAGER II  and has been 
taken from Ness et af. (1986). The figure of Neptune has 
been the subject of a recent campaign which is reported by 
French et af. (1985). The proposed best values given by 
French et al. (1985) have been used hereafter. The units 
employed in our comparison in Table 1 are km for the 
polar radius R,, the observed equatorial increment h, and 
the theoretical increment h, resulting from the application of 
equation (1); the spin period is expressed in ephemeris days 
of 86 4000 ephemeris seconds and the mass constant GM for 
each planet is given in km3sp2. The percentage error is 
defined as 100(h, - h,)/h,, though this error criterion may 
give a somewhat severe impression for very low flattenings 
like those of the Earth and Mars. 

Except for Mars, the overall impression provided by the 
results of the Table 1 is in agreement with our expectations. 
The errors are modest for the Earth, Uranus and Neptune, 
they are larger for the very oblate jovian planets. It may be 
interesting to note that equation (1) applied to h,, w and 
GM of the Earth yields an R, which is 30 km smaller than 
the actual one. This is plausible if one considers that 
hydrostatic equilibrium is realised in the astenosphere and 
not in the lithosphere. 

The problem encountered with Mars is not new, as the 
topographic flattening reported by Balmino (1981) is known 
to be (6.12+0.4) This corresponds to RE-R,=  
20.8km. This is also quite different from the dynamic 
flattening which is derived from J2,, by using equation (3) 

Table 1. Comparison of observed and computed planetary oblateness. 

Planet R ,  Flattening Spin period GM ho 

Earth 6356.76 0.0033528 0.9973 3.986 x lo5 21.30 
Mars 3375.8 0.0051865 1.0260 4.283 X lo4 17.60 
Jupiter 66770.8 0.0648088 0.4101 1.267 X 10’ 4627.2 

0.4137 

0.4375 
Saturn 53542.7 0.1076209 0.4264 3.794 x 10’ 6457.3 

Uranus 25412.9 0.0280 0.7204 5.794 X lo6 732.1 
Neptune 24785.4 0.0191 0.7680 6.871 X lo6 482.6 

h, 

21.78 
15.23 

4933 
4847 
6298 
5983 
733.5 
492.5 

70 error 

+1.9 
-13.5 
+6.6 
+4.8 
-2.5 
-7.4 
+0.2 
+2.0 
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and which corresponds closely to the IAU value of Table 1 .  
Combining these results indicates that Mars has an 
oblateness which should correspond to a lower spin period, 
namely to 0.955 days if the dynamical flattening is entered 
into equation (1). This is conceivable if the martian 
lithosphere is rigidified to an extent not allowing a full 
oblateness adaptation to compensate for a potential de-spin 
due to tidal friction caused by the sun upon the planet. 

To conclude this section, we can state that equation (1) 
seems satisfied to a good approximation for the planets with 
low oblateness, except Mars, and to an acceptable 
approximation for Jupiter and Saturn. Thus, there is 
sufficient evidence to claim that for a larger variation of w 
equation (1) prescribes-within a few per cent-a planetary 
shape adaptation. 

5 APPLICATION TO THE GEODETIC 
DATA 

We can now combine equation ( 1 )  with equations ( 2 )  and 
(3) .  The only simplification we introduce is given by: 

Substituting equation ( 1 )  in equation (2) yields 

where C,, is the coefficient of the polar moment of inertia 
equal to CIMR?. In the limit Re = R,, the value of C,, 
becomes 0.3400 for all planets. For it is not possible that C, 
becomes zero or negative, the applicability of equation (6) 
ceases completely if Re tends to (2.9)1’4Rp. This corresponds 
to a flattening of 0.305 and means that for say f > 0.2, the 
assumptions leading to equation ( 1 )  conflict with the 
hydrostatic equilibrium law expressed by equation (2). 

From equation ( 3 )  we deduce that 

w2(2R; - R:) 
Jz = 

3GMR, ( 7 )  

It  will be noticed that the accuracy of equation (7) is 
questionable, because it expresses J2 as the difference of two 
very large numbers. Assume that R ,  is the mean radius of a 
planet and let ARi be an inaccuracy on R ,  or Re.  Especially 
for the jovian planets, the radius data of the liquid or solid 
boundary could not yet be observed directly, which leaves 
some room for a non-zero AR, .  The error magnification due 
to AR, in equation (7) is proportional to R i ,  while in 
equation (6) it is only proportional to R i * .  Hence, equation 
(6 )  should be a rather reliable formula i f f  stays well below 
0.2. 

For all oblate planets, Table 2 gives J2 values derived 
from equation (7) (the model value) together with the 
accurate value as known from the gravitational potential 
determination (observed). Table 2 also gives C,, obtained 
from equation (6) (the model value) and Co derived from 
equation (2) (the reference value). The latter corresponds to 
the values found in the literature, because equation (2) is 
the common way to find the spin inertia coefficient. 

The comparison of J2 observed with J2 model confirms the 
limited value of equation (7) .  The comparison of model and 
reference Co yields-except for the outlayer Mars-a 

Table 2. Comparative table of J2 and C,  obtained from equations 
(6) and (7) with J2 and C, obtained otherwise. 

Planet J2 model J2 observed C, model C, reference 

Earth 0.00112 0.001083 0.338 0.331 
Mars 0.00146 0.001965 0.336 0.373 
Jupiter 0.0156 0.014750 0.284 0.251 
Saturn 0.0141 0.027000 0.244 0.232 
Uranus 0.00818 0.003354 0.317 0.308 
Neptune O.OO60 (0.0035-0.0046) 0.324 0.313 

surprise. All model inertia coefficients suggest a lower 
central condensation than the reference C, values do. It 
seems likely that the difference noted for Jupiter is 
significant, but for the rest it is difficult to decide whether 
the systematic differences are due to the imperfection of our 
model or not. The reasonable validity of equation (6) also 
suggests that central condensation of planets is essentially a 
matter of hydrostatic equilibrium and only indirectly a 
matter of carnogenesis. 

The terrestrial parameters fit the model rather well. Also, 
the ratio ( C - . A ) / C  is-according to equations (6) and 
(7)-equal to 11300.4, thereby deviating by 1.7 per cent 
from the empirical value. Therefore, we may conclude that 
equation ( 1 )  is consistent with the basic geodetic properties 
of our planet within a few per cent. 

As a consequence, equations ( 1 )  and (6) are well suited to 
make statements about h and Co for planets for which no 
better data are available, and for spin rates of the Earth 
very different from the value today. In such a context errors 
of a few percent can easily be tolerated. 

The previous formulae on their own are not sufficient to 
study the shape of the Earth. When we take w as an 
independent variable, then not only h, A, and Ci, are 
unknown, but also R ,  or Re = R ,  + h. Therefore, a further 
condition is required. We propose to call ‘palaeogeodesy’ 
the speculative theories providing a full set of equations 
which allow to compute shapes of the Earth for remote 
palaeontological times. In the next section we give our view 
upon that question. 

6 PALAEOGEODESY 

If we consider equation (6) for the special case of our 
planet, it appears that C, varies very little with changes 
below 10 km in either Re or R,. In other words, the mass 
density distribution of the Earth is hardly affected if the 
oblateness varies within palaeontologically relevant limits. 
Hence, it is reasonable to assume that the tellurian volume 
is a constant, or 

RaR, = V,, = 2.5859 x 10” km3. (8) 

This hypothesis is also consistent with the presumed 
incompressibility of the surface layer. We may further 
assume that GM has not changed noticeably over the ages, 
and then equation (8) leads to 

- 1 + V l  + 8V, W 
4w R; = , (9) 

where W = w 2 / G M .  
An important question is related to the neutral latitude 

below which the geoid apparently contracts and above which 
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it apparently dilatates upon a major despin. If r is the 
position vector for a point on the oblate terrestrial surface at 
latitude Q,, then R can be approximated by 

R2 = R: cos2 Q, -k R', sin' Q, (10) 

under the assumption that the oblateness is small and that 
the Earth can also be considered to be a revolution ellipsoid 
for the remote past. The neutral latitude Q,() is obtained 
from dR = 0. By equation (8) we know that -Re dR,  = 
2R, dRe and thus we find 

Today Q,~) is at the latitude of f35.36" and in the limit 
Re = R, it becomes f35.26". 

We can now attempt to quantize the terrestrial oblateness 
change. The secured fossil evidence which allows the LOD 
to be estimated does not go beyond 450 million yr BP. From 
a fit made to the available LOD estimates presented by 
Lambeck (1978), we deduce that there were 412 days in a 
terrestrial year 0.5 billion yr ago. By application of equation 
(9) to this value it is found that the polar radius has 
increased by 4.09 km while Re has decreased by only 
2.04 km. 

At a first glance we may believe that the oblateness 
adaptation leads to an obvious scenario. It could look as 
follows: upon Earth de-spin, hydrostatic pressure on the 
oceanic masses at low latitude decreases. Thereby the seas 
will immediately seek their new equilibrium. The continents 
emerging out of the oceans will adapt with some delay. 
Their prime and immediate role is to disturb the old 
symmetry by impeding that equal water volumes move to 
the poles at all longitudes. The principal moments of inertia 
will then change their location. Pole wandering follows. We 
can further guess that isostatic equilibrium requires a global 
uplifting of the continents as well as an ocean bottom 
subsidence for all areas between the neutral latitude and the 
poles. The reverse should occur at low latitudes. 

The speed of such a scenario implies a pole length 
adaptation dR, of some 16.4cm in 20000yr. This rate of 
change is vanishing small compared to ocean level changes 
each time on ice-age sweeps over our planet. In the last 
20000yr we went through changes of at least 100m in sea 
level in most regions of the Earth. Hence, the steady 
oblateness change may be quite difficult to isolate amongst 
the other geodetic phenomena, except if crustal adaptation 
is heavily delayed and occurs in bursts, a possibility which 
may be worth considering. 

If we try to go further than half a billion years BP we can 
only rely on two relatively well-established facts. First, we 
can assume that the Earth must have reached its hydrostatic 
equilibrium already in the very early days of its history. 
Secondly, the Earth must have lost angular momentum due 
to tidal friction-also without moon and without oceans- 
from the beginning onwards. The latter is not necessarily 
equal to saying that the spin rate has decayed from the 
beginning, as moment of inertia changes may also absorb 
the angular momentum loss. Nevertheless, there is some 
general consensus to assume that the spin rate has probably 
decreased since 3-3.5 billion yr, perhaps with some 
parallel change of the spin moment of inertia. If we now add 
the hypothesis that the Earth mass has not changed 
noticeably in the last 3 billion yr, then we can derive 

that the central condensation of the Earth has decreased, 
i.e. C, in equation (6) has increased. This follows from the 
fact that despin implies a decrease of flattening f. By making 
the differential df, the definition of a flattening reduction 
reads: 

R,  dR,  - Re dR,  < 0. 

If we take the differential of equation (6) we find that dC, is 
always proportional to -df. 

This is quite important because it implies that outward 
migration must have reduced the density of the Earth core 
since say 3 billion yr. This conclusion is inescapable if C,, 
has increased while R,  has decreased. 

7 CONCLUSION 
We have been able to show that the spinning planets have 
an oblateness which largely originates from the behaviour of 
their outer non-gaseous layer. Combining the flattening 
formula describing the aforementioned fact with two 
independent oblateness formulae-going directly or in- 
directly back to Clairaut-allows us to find an approximate 
law for the inertia of spinning planets. This law indicates 
that principal inertia coefficients along the rotation axis are 
confined in a narrow range of values and thereby the mass 
density distribution of the spinning planets must be similar if 
considered on a relative scale. 

By adding the hypothesis that the Earth volume and mass 
has been constant over the last half a billion yr, we have 
found that the terrestrial radius at the equator must have 
decreased by 2.04km while the polar radius grew by 
4.09 km. 

Considering a time span of up to 3.5 billion yr reasonable 
evidence that the central condensation of the Earth has 
decreased systematically provided the Earth mass has re- 
mained the same. 
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