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ABSTRACT

Using a new generalization of the Eliassen-Palm relations, we discuss the zonal-mean-flow tendency 84/dt
duc to waves in a stratified, rotating atmosphere, with particular attention to equatorially trapped modes.
Wave transience, forcing and dissipation are taken into account in a very general way. The theory makes it
possible to discuss the latitudinal (¥) and vertical {z) dependence of 34/0¢ qualitatively and calculate it
directly from an approximate knowledge of the wave structure. For equatorial modes it reveals that the y
profile of 94/a: is strongly dependent on the nature of the forcing or dissipation mechanism. A by-product of
the theory is a far-reaching generalization of the theorems of Charney-Drazin, Dickinson and Holton on
the forcing of 9i1/3¢ by conservative linear waves.

Implications for the quasi-biennial oscillation in the equatorial stratosphere are discussed. Graphs of y
profiles of 37i/9¢ are given for the equatorial waves considered in the recent analysis of observational data
by Lindzen and Tsay (1975). The y profiles of 9ii/d¢ for Rossby-gravity and inertio-gravity modes, in Lindzen
and Tsay’s parameter ranges, prove extremely sensitive to whether or not small amounts of mechanical dis-
sipation are present alongside the radiative-photochemical dissipation of the waves.

The probable importance of low-frequency Rossby waves for the momentum budget of the descending
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easterlies is suggested.

1. Introduction

The Lindzen-Holton theory of the quasi-biennial
oscillation (QBO) of the equatorial stratospheric mean
zonal wind 4 (Lindzen and Holton, 1968; Holton and
Lindzen, 1972) convincingly explains many of the gross
features of the observed zonal mean accelerations 84/91,
by attributing them to the presence of upward-propa-
gating and dissipating equatorial planetary waves. The
theory assumes that the effect of the waves on the mean
flow is equivalent to a stress S¢,., acting to transfer
mean zonal momentum between the levels of wave
excitation and dissipation. A heuristically motivated
formula for S¢;. is assumed, and only the latitudinal
integral of 94/91

(6u/ )= / i (9a/at)dy

is considered. In view of the apparent success of the
theory it would seem desirable to place the calculation
of dd/9t on a firmer and more detailed theoretical
footing. In what follows we show how this can be done
without expensive numerical computation.

! Presented at the AMS Seattle Conference on Waves and
Stability (abstracts published in Bull. Amer. Meteor. Soc., Janu-
ary 1976).

The discussion depends on new results in the theory
of wave mean-flow interaction, which are of interest
in a wider context. They substantially generalize and
unify the results of Eliassen and Palm (1961 ; hercafter
referred to as EP), Charney and Drazin (1961), Dickin-
son (1969), Stern (1971), Fels and Lindzen (1974),
Holton (1974, 1975), Uryu (1974), Plumb (1975) and
others. In some cases they lead to very simple relations
between d4/df and wave forcing or transience. For in-
stance, in the case of an equatorially trapped planetary
wave with horizontal phase speed ¢ on an equatorial
beta-plane at large Richardson number,
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where

uy=01/9y,

7’ is the latitudinal particle displacement, #', ', 8" the
disturbance velocities and potential temperature, s(2)
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~a measure of the static stability at height z (such that

6"%/s is eddy available potential energy per unit mass),
and —X’, —¥’, —(Q' are unspecified forcing terms on
the right of the linearized zonal momentum, meridional
momentum and thermal energy equations. These
arbitrary forcing terms may represent either wave
dissipation or excitation, depending on whether their
correlations with the corresponding disturbance mo-
tions are positive or negative, respectively.

The above formula for 8#/8¢ also makes clear a fact
which appears not to have been appreciated before,
namely that latitudinal profiles of 94/0¢ can vary
greatly according as the dissipation or forcing is
thermal (due to Q') or mechanical (due to X’ or ¥’).
In a companion paper (Andrews and McIntyre, 1976)
the implied behavior of the horizontal Reynolds stress

«’v' is independently confirmed by direct calculation in

some simple cases.
The theoretical developments are given in Sections

1-7 and Appendix A, the new results being presented-

and discussed in Sections 5, 7 and 8. Examples of
y profiles of 94/t for the simplest models of wave dis-
sipation are presentéd in Section 9. Section 10 reviews
probable wave dissipation mechanisms for real fluids,
and Section 11 discusses some implications for the
descending easterlies.in the equatorial stratosphere.

After submission of this paper for publication, we
learned of independent work by Boyd (R. S. Lindzen,
personal communication) and by Bretherton {1977)
on generalizations of the Eliassen-Palm relations.
Bretherton’s work illuminates certain fundamentals
which will be mentioned in context. A manuscript by
Boyd (1976) reached us at a late stage, while the final
version of our paper was being typed. We have added
some brief comments on the relationship between his
results and ours.

2. Equations

Following Lindzen (1971), we start from the Bous-
sinesq, hydrostatic, primitive equations of motion for
. a beta-plane (mid-latitude of equatorial).? The equa-
tions are :
wugFut vyt wu,— fotp,=—X

vt uve ooyt wot fut-py=—Y

—0+p.= 0 ,, (2.1)
0, +ub,+v0,+wd,= —Q
Uzt y+w,= 0

where axes are chosen with the zonal coordinate x in-
creasing eastward, y northward (with y=0 at the

2 The analysis for a hydrostatic, compressible atmosphere in
pressure coordinates requires only slight modifications. Our
general results have also been obtained for finite-amplitude
disturbances to nonhydrostatic, compressible flow on a sphere
(see Andrews and McIntyre, 1977).

A
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equator) and z upward. Here f(y) is the Coriolis
parameter, (#,3,) is the fluid velocity, and 8 is now
defined as the total buoyancy acceleration given by
minus the gravity acceleration times the fractional
departure of the density from its constant reference
value po. The departure of the pressure from the hydro-
static value associated with po is denoted by pep (p and
6 are Lindzen’s & and —gép/p). In Section 9, f will be
taken equal to By, where 8 is the equatorial planetary
vorticity gradient.

The terms —X, —Y and —Q represent arbitrary
body forces and heating, whose possible physical causes
may be left unspecified for the moment.

3. Zonal-mean problem

We let an overbar denote the usual zonal average and
a prime the departure therefrom; then the averaged
equations are

G0y — )+t = — W), — (wv'),—X, (3.1a)
000,400, fat+ Py = — (),— 0'w).—¥, (3.1b)
—04-p.==0, (3.10)
648,08, = — (0'8),~ @'8).—Q, (3.1d)

By 410, =0, (3.1¢) |

In our analysis all quantities on the right-hand sides
will be regarded as known and O(a?) as a — 0, where
a is a measure of disturbance amplitude.? If the right-
hand sides are zero, then we have a solution represent-
ing steady zonal motion, in which §=w=9/3t=0, and
(3.1b) reduces to geostrophic balance. All mean de-
partures from this basic, unforced zonal flow will be
taken to be O(a?). Thus # and @ are O(e?) and the
terms ¥B,~+-17, in (3.1b) are O(a?). :

The following transformation of (3.1a—e) will prove
important. We define w*, 7* by

W=0*— (:1)767/52)1" D=0*+ (ﬁ/gz)h . (3-2)

and
Szn) =17;7_(B;707/§=’ (3.3a)
: S oy =00+ G20 /B, (3.3b)
where
Q=ty—f, B=14.. (3.4)

@ and ® are functions of y, z and, at O(a?), of £. Then

3 The reader is reminded that the O symbol signifies an upper
bound in the limit, to within an arbitrary constant of proportional-
ity (Lighthill, 1958, p. 3). For instance some of the terms could
be zero.
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the equations become

d i) _
@t QTR = ~—S (2 '—'G—S(u) —-X, (3.5a)
Z

ay
T+ fatp, = — )y — @),

—(0/8)—T+0(at), (3.5b)

_.g-l-ﬁz:.-o, (3.5(:)
and after a little manipulation
o 0 _— —
Gt’*"eyﬁ*'i‘ Bzu')*= _'a_(w,el‘f‘”/g,ﬁy/ﬁz) _Q; (3-5d)
2
0y +wi =0. (3.5¢)

4. Disturbance problem

Using the definition Dy=38/8i-+#3/dx, the equations
for the disturbances are

D' 4G+ @'+ p,= — X', (4.1a)
Do+ ful +p,=~ V", (4.1b)
—0'+p,=0, (4.1¢)
DO +8,0 0.0 = =0, (4.1d)

u;+v;+w;=0.‘ (4.1e)

If X'=Y'=(Q =0, these are the usual linearized equa-
tions for conservative waves. But they may also be
regarded as the equations for finite ¢ if X/, ¥’ and Q'
are defined to include all the nonlinear terms omitted
from the left-hand sides. Some specific physical mecha-
nisms, all of which amount to known ways in which
these nonlinear terms could contribute systematically
to X', ¥’ and ', are discussed in Section 10.

Upon multiplying (4.1a-d) by #/, 7', w’ and ¢'/8,,
respectively, averaging, and making use of (4.1e), we
obtain the usual wave-energy equation

i . . __ -
p —a—z(u’2+v’2+6'2/f7z>+ W' X'+o'V'4+-6'Q'/8,)

==L (") + (p'w") 0,00+ +8,29 /8.,
4.2)

5. The generalized Eliassen-Palm relation and
Charney-Drazin theorem

To find 44/t for equatorial planetary waves directly
from (3.1) or (3.3), it turns out that wave solutions
are needed at a higher order of accuracy than usually
calculated. The reason lies in an ill-conditioned behavior
of the term in #/o’ (which will be examined further in
Section 6e and in the companion paper).
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Now EP showed that for any f(y)
d a
"—S(zy)‘l‘—s(zz)'—’o (5.1)
ay 9z

exactly, for steady, conservative, linear waves—hence
the celebrated result that 8(S.))/d2=0 exactly, where
(( W=JS()dy. Our central result is similarly an exact
formula for (85 (zyy/3y+85 2y/92), but valid for any
disturbance satisfying Eqs. (4.1). Moreover we can
easily simplify it for the case of equatorial planetary
waves by introducing appropriate scaling assumptions,
since it turns out that there are no important terms

having an ill-conditioned behavior like #'7'.
We define particle displacements § (x,9,2,8), 7' (x,9,2,t)

and {’(x,9,5,1) such that &4y +¢,=0, §=n"=¢"=0,
and

Dﬂ},-‘—'-‘ﬂ’, Dtg-’:w,) Dl£,=ul; (5'2)
where (e.g., Hayes 1970)
wt=u'+a,m L. (5.3a)

[Note that (5.2) implies D, (£,+7,+{2) =D:(¥)=D.(n")
=D,(") =0, etc., so that the definitions are self-consis-
tent.] We also define

¢=—0—0,0' 8", (5.3b)
so that ¢’=0 and, from (4.1d),
Dyg'=(". (5.4)

Then it follows quite generally from Eqgs. (4.1) that
] ] N —
""S(zy)+_‘5(zz) = (ﬂ/X/)u‘,' (5' Xl)s
dy 0z
+HEX LY 5~ B Q0+ G (/D)

al APt T, T T, T,
+—a—t[<n'u'>,,+(r'u'),+zz(ul—fn')+w' '

_ {CB[W+%5,,(17’5)]_%@ (’75)] ”

z

70 +38,(n")
Ho =5

~————+T§']+%<B(F)}J

+ (B4 fa) '), (5.52)

The term on the last line is O(a*), by (3.1b, c), since the
departure from thermal wind balance is O(a?). The
symbol 9’/d¢ denotes time-differentiation of primed
quantities only (and not of @, ® and §); but when
O(a*) is neglected, 8’/3¢ may be replaced by 9/dt. The
derivation of (5.5a) is given in Appendix A.

Unauthenticated | Downloaded 08/25/22 02:09 PM UTC
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Using (5.3b) we may rewrite the last group of terms
within braces in (5.5a) as

O [Mg+38,0 -
—‘{ - @[ﬁ—:—'n—]-l-%@ () } .
ot g,

The asymmetry between y and z in the @ and ®
terms is due to the transformation (3.2), which invokes
a nonvanishing stratification 8,. [But (5.5a) holds
whether or not f=0, and so applies, e.g., to internal
gravity waves, af ter adding terms {2’ and (¢,2"), if the
waves are not hydrostatic.]

The right-hand side of (3.5d) may be written in a
form similar to (5.5a); multiplying (4.1d) by ¢ and
taking the average leads immediately to a relation
whose z derivative is

(5.6)

—(w'0'+v’0’0,,/0,)

=—@Q/ 62)z+ [ 37/8.).], (5.5b)
and which has a familiar 1nterpretat10n in terms of the
rate of change of disturbance available potential energy.

Taken together with Egs. (3.5), the two relations
(5.5) expose the essential role of wave dissipation, exci-
tation and transience in the mean-flow problem. More-
over they show how wave transience by itself cannot
give rise to permanent O(¢?) mean-flow changes. When
X=Y=0Q=¢'=0, (3.5) and (5.5) imply that the mean-
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flow problem takes the very special form
@+ QT+ ®w* = 3,( )+0(a), (5.72)
Byt fatPu=0L()+0(],  (5.7b)
—0+5:.=0, {5.7¢)
8, 4+0,5*+0.0*=0,( ) +0(at), (5.7d)
7,4w,=0, (5.7¢)

where 3,=9/9!, and the overbar sta.nds for various
linear comblnatlons of 'disturbance covariances, with
coefficients involving only mean-flow quantities; in
(5.7a, d) the expressions aré minus those within square
brackets in (5.5a, b), respectively. Egs. (5.7a-€) com-
prise a complete set of partial differential equations for
the set of mean-flow quantities ‘

{'ﬁhat:p—ba*;u_)*}- (58)

The statement that all the O(a?) forcing terms on the
right of (5.7) have the exact form 9,( ) constitutes a
new generalization, in two senses, of the earlier results
of Charney and Drazin (1961), Dickinson (1969) and
Holton (1974, 1975). Those important results were in
the first place restricted to steady waves [8,( )=0],
and in the second place assumed either small Rossby
or large Richardson number. No such assumptions are
needed here .

For reference, we note the forms taken by (5.5a, b)
in spherical coordinates 7, A, ¢, in place of z, x, v, where
A is longitude and ¢ is latitude:

1 _ o . __
—[cos?p (v —®E /8,) J+—[u'w'+ av'e'/8,]
R cos?p d¢ or
1 . — e ® A cos 7Y
e cos)t TR ——— GH AT o)~ [T ‘0] + a["_Q ]
R cos% COSg R cose L 0, " 6, d,
9’ [
("7 COSZ‘P):;‘I‘ (g" ’)r+ {E)\ (uz Gﬂ’)‘f"ﬂ)\'y }
at R cos%p R cosep
1 4 77/0,+%5¢77,2/R — d ;770—I+%5¢77_,‘2/R -—_ —
o o) s o P
. R cos?o d¢ . 0, ar 0. .
d, —_
+ (—-l- (2e~f )ﬁr)nli‘ »  (5.92)
R cose
and s o
;{W+m¢/ (R8,)}=— (‘7@/‘7’”5}["% 67/8,).]. (5.9b)
r

Here R denotes the radius of the earth, (w,u,v) the
velocity components in the (r,¢) directions, and
(—X, — ) the forcing terms in the (A,¢) momentum
equations. The definitions of 8, Q and ¢’ are analogous
to the beta-plane case. With D,=8/9i+ (41/R cos¢)d/ o,

the displacements are still defined by (5.2) except that
D —R'i tang -9’ =u!, where instead of (5.3a) we

41 The significance of the 3,() form of the forcing when the
waves are conservative but not steady may be further brought out
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have
wt=u'+R an +a.¢.
Also
‘ (@ cos @) o % tang
=——f, ®=d, C=——dt],
R cose

where f=2Qsiny, Q denoting the earth’s angular ve-
locity. We omit the equations analogous to (5.7), since
an even more general result for a compressible, non-
hydrostatic fluid on a sphere is derived in our forth-
coming (1977) paper.

Boyd [1976, Eq. (3.9)] has independently found a
result equivalent to a special case of (5.9a) [but in the
approximate pressure-coordinate system presented by
Holton (1975)7]. Boyd’s result is for a linear wave
disturbance with a single, constant zonal wavenumber
and a phase speed exactly constant in time. The wave
amplitude is allowed to grow or decay exponentially in
time at fixed phase (see end of Appendix A). Boyd also
obtains for the case of steady waves our extension of
the Charney-Drazin theorem to arbitrary Rossby and

Richardson numbers [the case ,()=0in Eqs 5.7
above]].

6. Approximations valid for “tall”” mean-flow scal-
ing and large Richardson number
a. Assumplions

Let U, H and N2 be scales or typical magnitudes for
#, 7 and 8, in the mean flow equations (3.1) such that
the inverse square root #,/8.% of the Richardson number

/84S U/NH.

as follows:

1) If ﬁ; may be neglected in (5.7b), i.e., if significant zonally-
symmetric inertio-gravity oscillations are not excited in the zonal-
mean flow, then the left-hand sides of (5.7) involve partial differ-
entiation with respect to ¥ and z only, of the basic set of dependent
variables (5.8). Moreover, the “coefficients” @, ®, 8, and 8, on the
left of (5.7) may bé taken independent of ¢ with error O(af). It
follows that a solution of (5.7) may be found in the time-differenti-
ated form

4 =8.F+4-0(a),
where F is zero at all times when the wave amplitude, as defined
by the dlsplacements g, 7', ¢, is zero.

2) Evenif 0,, is not negligible, we may formally take it onto the
right of (5.7b) and conclude that a solution exists such that

Ty=8{ F+G*)}+0(a?)

with F as before, and G a time-independent linear operator. Thus
a wave which propagates past a given point in a finite time inter-
val (f,41), and leaves no net particle displacement, forces no
permanent O(a?) mean-flow change:

[23=[C@*)15+0(a,

which must oscillate about zero, since G is linear and 17, must so
oscillate after the disturbance covariances have returned to zero.
(Otherwise #* and therefore # would have to increase without
bound against the stratification and Coriolis constraints in the
absence of forcing!)
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We define
M= h/H»

where h is a scale for z in the disturbance equations
(4.1). A self-consistent and useful set of approximations
for equatorial waves [and also for the mid-latitude,
quasi-geostrophic, vertically-propagating Rossby waves
studied by Uryu (1974)] can be found if we assume that

U/NHSu<1. 6.1)

These are equivalent to assumptions used by Lindzen
(1971, 1972) and Holton (1975, p. 43), and will make
it possible for the standard equatorial wave solutions
to be used later as a first approximation. Then h will
be identified as the vertical wavelength divided by 2.
In cases of practical interest h and H may vary with
altitude, but they can often do so in such a way that
(6.1) remains true (Lindzen, 1971, Figs. 5, 10; Appendix
B), provided that U is also allowed to vary with height
like H times a typical value of %..

We shall further assume that the waves have y-scale
L'and x-scale 2> L, such that

fL/Nh=1, (6.2)

where f is a typical magnitude for f; in the equatorial
problem f=pL. That is, the disturbance height and
length scales are in Prandtl’s ratio £/N. The mean flow
will be assumed to satisfy

#, SU/L. (6.3)

Next, typical magnitudes u’, &, etc., are postulated
for the disturbance fields:

o'~0o, £~¥, ¢~

with the understanding that n’ denotes the typical
magnitude of 5" except in the case of Kelvin waves for
which »'&yn’. They are assumed to be such that dis-
turbance kinetic and available potential energies are of
comparable magnitudes :

ro ot re ot
u~u, 715"1,

. u2=0"%/N2. (6.4)
We also assume

U=0'/N2, »n'=Lu'/U, " (6.5a, b)

£Sw/U, ¢SQ/0, oS, SE, (6.6a-d)

where Q' is a typical magnitude for Q. Relations (6.2)
and (6.4)-(6.6) are true (as may be verified from Sec-
tion 9) for all equatorially trapped waves of low
latitudinal mode number, and of zonal radian wave-
length <L; they are also typically true of vertically
propagating, quasi-geostrophic Rossby waves. Intrinsic
horizontal phase speeds 2> Nh>U (phase speeds >U
for equatorial Rossby-gravity or inertio-gravity waves
of zonal wavelength >>2#L); thus (6.6a, b) are con-
sistent with Egs. (5.2c) and (5.4). Together with (6.1),
relations (6.4) and (6.5) imply that

¢/n'S (U/NHH/LSH/L. (6.7)

Unauthenticated | Downloaded 08/25/22 02:09 PM UTC
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[The quasi-geostrophic case actually has ¢'/9’<h/L,
since U/fL«1 there, and U/NH~nU/fL by (6.2).]

An additional assumption restricting Q’ will be made
in Section 6d, relation (6.25).

b. Simplification of the mean-flow problem

We wish to concentrate attention upon the mean-flow
tendency due to the waves, and so from now on set

X=Y=@=0. (6.8)
Let < be a time scale for wave dissipation, excitation
or transience, so that typical magnitudes for X’, ¥" and

Q' satisfy o
X'=u'/z, Y=vV/z, Q'=0/x (6.9)

Then in (5.5a) the typical magnitude of both (n’X"),
and (0%, is

A=9'X'/L=y'u’'/Lx.
It will emerge that A is in fact the magnitude for the

mean acceleration %;. From Eqgs. (6.4), (6.5b) and (6.9)
it is seen that alternative expressions for A are

A=0'Q’/N2U=0"/N2Ux. (6.11)

Eqs. (3.1b, c) imply that thermal-wind balance holds
with error O(a?) : _
0,=— fa+0(a%);

ySIU/H. (6.13)

Hence, by (6.1) and (6.2), 8, <u*N?H/L. That is, the
basic stability . can in Egs. (3.1d) and (4.1d) be taken
as a function of z only, with relative error O(u?), over
our domain of width L, |y]| SL, say. We shall assume
moreover that

(6.10)

(6.12)
SO

Oy~ — fit. (6.14)
[Approximate eguality need not hold unless the waves
are steady, because the right-hand side of (3.1b) may
be comparable with the time-dependent O(a?) part of
. fa.] It is then consistent to take

6, <fLa,/H. (6.15)
.We may now simplify (3.5a) to
d d
Fr=——=5 (zy) =S 2y + O (W*A) (6.16)
dy 9z

for |y] SL. To show this we first estimate the term
®w* in (3.5a). From (3.5d) and (5.5b),

*<N-2 max{8,8,5,0.[6°0"/5.,4 (0% .,/8.]}.

Respectively invoking (6.15), (6.13) and (6.11) we get

h U UA UA
N+ < max{Hut,

(6.17)
NH 'NH'NH)
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Therefore, by (3.4) and (6.1),

U
mw*sﬁ-Nw*smmax{A,a,,fﬁ*}. (6.18)

Since the wave forcing terms on the right of (3.5) vary
significantly over the y-scale L, any contribution to
* forced by the waves will do likewise within y<L so
that by (3.5¢)

7*/L~w*/H. (6.19)
Since #, <t by (6.3), (6.2) and (6. 1,
e+ S,
~Nho*/L~Nhw*/H [by (6.2, 6.19)],
S—h— max{ﬂut,—[—];fv* UA} [by (6.17)7].
H H NH NH
Therefore
G* S1* S p? max{Aa,,f0*). (6.20)

It now follows from (6.18), (6.20) and the assumption
that p<1 that both @* and ®w*Su?max {A,4},
whence from (3.5a), after setting X =0,

B9S24y / 0y 0S5 20y /05 Sp® max {A,a,}.

But it will be found that aS(;w)/ay‘l—aS(")/aZSA
(Section 6d), whence %, <A, and (6.16) follows. In
other words, to two orders in g the mean meridional
circulation is dominated by the o0’ terms in (3.2), and
#* and w* can be ignored in (3.5a).

¢. Remarks aboul the simplified mean-flow problem

The explicitness of (6.16), which gives %, without in-
version of a partial differential operator, is a direct
consequence of the mean-flow configuration being ““tall’”’
by assumption (fL/NH<«1). It is noteworthy in itself
that the waves do not, to the first two orders in g,
force a mean meridional circulation #, w, extending
over a broader latitudinal scale L;>>L such that fL;/NH
=1. The reason lies in the particular mathematical
form of the forcing, in that the dominant forcing term
— (+'6"), on the right of (3.1d) has the form of a y
derivative.

We note in passing that the “residual”’ mean vertical
velocity 1* is not the same as the Lagrangian-mean
velocity @, which vanishes to leading order in g, but
not generally to the next order [although it does vanish
to two orders in cases like that studied by Uryu (1974)].
As shown in Andrews and McIntyre (1977) the Lagran-
gian-mean meridional circulation forced by the waves
is given by '

wk= (77_,{7)111_ (77_,@7/62)11_{'0(7])*)’

=1, + 0'0'/8,).4+0@F").

(6.21)

(6.22)
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Note that 7% does not vanish even to leading order.

[This means that 85%/8y>>0w%/dz, but no paradox is
involved since the waves force a divergence of the
Lagrangian-mean velocity at leading order; see also
McIntyre (1973, p. 810).7

In (6.16), Sz could be called an “effective’ stress
or momentum flux, purely as a reminder of the fact
that it approximately governs the integrated accelera-
tion (#;). The quantity

Sheuristiczai;_f;'—é_’/ah (623)

sometimes quoted in the literature, is relevant only
when 2, =0.

d. Stmplification of the generalized EP relation (5.5a)

It remains to show that the right-hand side of (5.5a)
has typical magnitude A, and to find which terms
should be neglected when (5.5a) is used together with
(6.16).

Under assumptions (6.1-6.6) it may first be verified
that no term in (5.5a) has typical magnitude greater
than A, with two exceptions in the quasi-geostrophic
case only, namely, the terms 3@ (9%),, and — f(£.'7").
These are separately larger than A if £2>4,. But in that
case their sum is dominated by

— 31 yi— (B

=~ I EAm) =S5, (6.24)
which <A because of (6.5b), (6.10), and the fact that
'S (U/fL)9'H/L as was indicated below (6.7). The
term (g = —{'q,<SA in all cases, by (6.11), (6.5a) and
(6.6b); the other terms are most easily estimated by
comparing them with (6.10) or (6.11), except that

7Y and ('), are best compared with £X’ and

(&)

To obtain the most useful simplification of (5.5a) we
restrict the time scale = for wave excitation, dissipation
and transience as follows:

<D, (6.25)

Then the expression (5.6) is O(u?A) since, invoking (5.4)
and (6.9), Dy =0'~¢ /vSuD,#, so that

g Sub’.
Then (5.5a) simplifies to

9 9 - — o TS T
__S(zz,)—f"-‘s(u) = (W,X,)y+ (g.IX’)z_i_ EZX,+WIY’+§1QI
dy 9z * ® * *
~®B0'Q'/8.)y+a(0'Q'/8.)
a " 7 o T, T
+—{ ')y ) A £ (wl — fr) e’
at * %* *

~[®79 /7.~ @]} +0(A)+0(a). (6.26)
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The terms marked with asterisks dominate and the rest
are O(ud).
In the quasi-geostrophic case the terms (¢'X'),,

(§'%)ze, as well as all the terms in ®, are not only
O(uA) but are in fact O(u?A), and may be neglected.

e. Further remarks

Our earlier assertion that (#'y), is “ill-conditioned”
may now be verified. Egs. (6.25), (6.10) and (5.2a)
imply that

u'v /L2 utA. (6.27)

Each term in (6.16) other than the contribution (#2"),
t0 S'ay is O(A), and so since A is the typical magnitude
of 1, it follows that

(u'v)y Swu'v'/L, (6.28)
under the conditions assumed in this section. (For
latitudinally-trapped waves this shows that %’ and o
are almost in quadrature.)

The ill-conditioned term (#/v'), vanishes from (6.26)
if the latitudinal integral, ((6.26)), is taken, assuming
that n’=12"=0 at the sides. Thus ((6.26)) can be used,
in conjunction with leading-order wave solutions such
as those in Section 9, to determine the variation with
time and height of the amplitude of latitudinally-
trapped waves. Thus to leading order {(6.26)) must
when X' =¥’ =(Q’ =0 be equivalent to Whitham’s wave-
action conservation law ; see also remark (v) in Section7.
The connection with Bretherton and Garrett’s (1968)
form of this law will be clarified by Eq. (7.5).

7. Explicit approximate formulas for i,

For small i the simplified mean-flow problem (6.16)
and generalized EP relation (6.26) give the mean zonal
acceleration explicitly, correct to two orders in u, when

X=Y=Q=0):

Ge=— (' X")y— X" s~ &X' ~na¥ '~ o’
* >!< sk *

A7 AT 3 o o
+<B["_Q ] —a["_Q] -~{<n'u'>u+ Ew),
0. v 9, 4, d¢ *

7’6’ —
—:—%@n'z]
7] L

+0(2A)+0(a). (1.1)

The terms distinguished by asterisks are of order A, and
the rest are O(uA) (some being smaller still if the dis-
turbances have the phase relationships characteristic of
equatorially-trapped waves).

If we desire only the leading approximation for small
1, and restrict attention to a disturbance with horizontal

+EG— |
* *
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phase speed ¢ such that
D,=(1—¢)d/3x+0(z"1) = (u—c)0/6x+0(ﬂDt)
by (6.25), then we have

(@—0){ o g} = {0 2",0)
and hence, since {.¢'=—{'q,, and —¢'~6'/8,,

(71.2)

—_ 1T
== ) ATV Q0]
u

c—

il )+_]}‘
ul “l_ ’ 7}’2
_) 11 N

c—Uu
+0(uA)+0(at).

There is an alternative form, for some purposes more
useful, but valid only for disturbances (such as equa-
torially-trapped waves) for which %’ and %’ may be
assumed to be in phase with relative error O(u). This
differs from (7.3) only in the tlme-dlﬁerentlated con-
tribution, and is

a _ —
-G +ar)

(7.3)

- 1 r—— — 6¢
1Z¢=—(n'X')y+( — #X'+9'V'+— ]

c—u 0,

14 . 67
+——{ (') + [u‘u’+v’2+_—]}
29t (C*'u) 6.

+O0(pA)Y+0(af). (74)

This is the relation quoted in the Introduction. The -

equality of the right-hand sides of (7.3) and (7.4) under
the stated conditions implies a generalization of the
classical “‘equipartition” law for disturbance energy :

07/8, =uP+v24-n'ul (@, ~2f)

+ (G—c) v+ @n'*],+0 (') +0(a*)  (7.5)

for latitudinally-trapped modes (see also end of Ap-
pendix A). This is exact when 4.=0 and the waves are
linear, steady and conservative, and would be useful
for checking numerical calculations of latitudinal eigen-
structures. For #,=0, (7.5) has been verified directly
from the solutions given in Section 9, and also for mid-
latitude Rossby waves.

An elementary derivation of (7.4) is given in Appen-
dix A. In (7.3)-(7.5) we may take

wt=u'+n'ty.
The following additional points can be made:

(i) It is remarkable that the simple form g'Q’ in (7.3)
and (7.4)—precisely equivalent to that found by Fels
and Lindzen (1974) for the case of two-dimensional
gravity waves [cf. Dickinson 1969, Eq. (13); Plumb
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1975, Eq. (18)J—gives not only (&) but also the de-
tailed latitudinal “waveguide structure” of the con-
tribution to %, due to Q’, to leading order.?

(ii) In Eq. (7.1) the negative of the first two terms,

WXt X =E X0 X, 4+ X,,

comprises a “Stokes correction” XZ—X, where -(_SL
denotes a Lagrangian mean (approximately the mean -
following a fluid particle). As a particle is displaced to
the north or south of the equator, for example, and if
X' is an odd function of y, sgnX’ may change in syn-
chronism, contributing systematically to the zonal ac-
celeration of the particle. Similar contributions arise
from east-west and vertical displacements. Terms like

142X, are absent since X has been set to zero.

Corresponding terms (Andrews and McIntyre, 1977)
are present in #% and contribute to the time-differ-
entiated part of (7.1), along with a number of other
effects which will not be gone into here.

(iii) Similarly, the terms in @ and ® in the first line
of (7.1) can be regarded as due to a mean meridional
circulation w9= — (4'(’/8.),, 9= (n'Q’/8.). induced by
the leading approximation to the Stokes correction to
Q; see (6.21) and (6.22).

(iv) The quantity «!(x,)) is approximately the
Lagrangian zonal disturbance velocity for the particle
assoclated with the point x.

* (v) As the last three remarks suggest, a Lagrangian-
mean description is a more natural framework for de-
riving our results. The required generalization of the
work of Bretherton (1969a) and Dewar (1970) is
given in our paper. Bretherton (1977) has derived a
similar generalized framework independently, and has
shown that results like (5.5a) stem fundamentally from
Whitham’s wave-action law, in the generalized form
proposed by Hayes (1970). Hayes’ wave-action con-
tains -2 contribution equal to twice the disturbance .
kinetic energy, and no available potential energy term
[cf. Hayes 1970, p. 205; Bretherton 1977; Eq. (7.5)
above. For a full discussion see Andrews and Mclntyre
1977)].

(vi) When a critical line #(y,2) =c¢ is present it might
be thought that (7.3) and (7.4) should contain delta-
function contributions independent of X', ¥’ and ¢,
as in Dickinson [1969, Eq. (13)]. But the situation

8 1t follows that there is one special case in which #, does have
the same y profile ag Sheuristic to leading order, namely when Q’
and 6’ have the same y profiles, #,=0 and (except for Kelvin

waves) X'=V'=&[  ]/8t=0. The requirement concerning Q’
is evidently met for Newtonian cooling. When #,=0, it can be
shown to be met by the linearized Blake-Lindzen (1973) model for
Q' which, in the presence of vertical gradients of ozone, etc., in
the basic flow, implies that Q' is given by a complex linear com-
bination of 8’ and w’ with frequency-dependent but y independent
coefficients and associated phase shifts. Further, when #7,=0itcan °
be shown with the aid of (4.1c, d), (6.23), (A9) and (Allb) that

6’2, ' and Sheuristic have the same y profiles.
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appears essentially different for vertical propagation
at the equator, under the approximations of Section 6;
a reason for this is given in Appendix B.

(vil) Note finally that the formula corresponding to
(7.4) for the latitudinal integral {#,) is

(@)= ((c~@) " { W +n'a,) X" +v'Y'+0'Q'/0,})

19 S ——
+5 &((C—d)“{ (' +n'a,)u'+v"+8%/8.})
+O0WAL)+0(a?).

8. Profiles of i, as qualitative indicators of forcing
or dissipation mechanisms for equatorial waves

(7.7)

Eq. (7.4), when applicable, is particularly useful for
qualitative theoretical reasoning. As an example, sup-
pose that 4 has the symmetry

a(y)=a(—y). (8.1)
Then if the waves are antisymmetric, like Rossby-
- gravity waves,® entailing vanishing of 6°Q" at the
equator y=0, Eq. (7.4) immediately suggests that the

shape of the y profile of %, depends qualitatively on the
relative importance of ¢, on the one hand, versus any

of X', ¥’ and wave transience 8[ /9t on the other.
The latter all make contributions to #, which are not
generally zero at the equator.?

Thus for free, steady, thermally dissipating Rossby-
gravity waves, #: is zero to leading order at the equator,
and 1 double-peaked profile is the simplest possibility,
illustrated for instance by the curve A=0 in Fig. 1
below. The sign is usually pinned down by Eq. (7.7},
which for instance constrains (4,) to be westward if
Q¢ is positive, as for dissipating waves, and if ¢ is
westward relative to 4 for all y, at the height z of
interest.

Similarly, the twin eastward maxima of #, found by
Hayashi (1970, Fig. 15) in the wave-CISK problem for
Rossby-gravity waves can be attiributed via (7.4) to a

s If (8.1) holds, the wave solutions of (4.1) can without loss of
generality be taken as having the symmetry properties either of
Kelvin waves or of Rossby-gravity waves. We follow the usage of
tidal theory and call such solutions symmetric and antisymmetric,
respectively. Symmetric means that the y dependence of ¢/, 4 is
odd and of #', w/, p’, 0 even, while antisymmetric means v/, 9’
even and «, »', ', 8 odd. We shall also assume, unless stated
otherwise, that X/, ¥’ and Q' have the symmetry of «/, ¥’ and ¢".

7 The possibility of more than one 4, profile is connected with

the fact [see (6.27)] that the leading approximation to #/2’ is not
just a function of the leading-order wave solutions but depends
also on the O(p) corrections, such as those derived in the compan-
ion paper. Neglect of this fact appear to be the reason why Fels
and Lindzen (1974) mistakenly concluded that antisymmetric
modes always give #.=0 at the equator, and why Lindzen and
Tsay (1975) state that “none of the individual modes produce a
meridional flux of momentum.” [Note that #%'#0 even for
Kelvin waves in models satisfying the special conditions mentioned
in footnote 5; see Egs. (4.2) and (4.3) of the companion paper. ]
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contribution from §'Q’. Here Q' represents wave excita-
tion by latent heat release. Hayashi also found a sub-
stantial westward acceleration near the equator, and

this is explained by the fact that a[ ]/d¢>0: there is
no dissipation (op. c¢it., p. 154), but the whole distur-
bance is growing exponentially. Eq. (7.4) shows im-
mediately that Hayashi would, for instance, have ob-
tained hardly any acceleration at the equator had he
considered a steady, upward-propagating disturbance
dissipated entirely by Newtonian cooling.

We may anticipate, moreover, that the dependence of
the i, profile on X' will be extremely sensitive in the case
of “long” Rossby-gravity or inertio-gravity waves. The

reason is that the Stokes correction term — (»’X’), then
becomes large compared to the term in (¢—#%), as will
become clearer when a dimensionless description is in-
troduced in the next section. It will be seen that this
state of affairs is always approached when the wave is
sufficiently near a critical level.

It is emphasized that (7.1), (7.3) and (7.4) assume no
particular forms for X', ¥’ and Q'; it is sufficient that
their magnitudes satisfy Egs. (6.9) and (6.25). They
may even be nonlinear, for instance through contribu-.
tions of a “half-wave-rectified” character (which could
of course also contribute directly to #; especially
through X). Examples of such weak but nonlinear
effects might include 1)-realistic models of latent-heat
contributions to ' (CISK), 2) contributions to X’, ¥’
and Q' associated with sporadic wave-induced patches
of turbulence, and 3) photochemically controlled heat-
ing processes involving temperature-sensitive reaction
rates (Blake and Lindzen 1973) such that there is
significant nonlinearity in the dependence of & on Q'
and w’ even when the remaining terms can be linearized
to give Eqgs. (4.1). For further discussion of possible
mechanisms equivalent to dissipative contributions to
X', Y’ and @', see Section 10.

9. Explicit calculations for a simple model
In this section we take

X', Y, Q' =pa(M' M0, 9.1)
where @ and X are O(1) and independent of y. If o and
A are positive this represents Rayleigh friction and
Newtonian cooling, with rate coefficients in the ratio A.
With this model the 4, profile for a transient, con-
servative wave is the same as that for a steady, dis-
sipating wave with A=1, from (7.4).

To the scaling assumptions of Section 6 we add an
assumption of weak horizontal shear :

i1, <uU/L&U/L. 9.2)

The standard wave solutions for zero vertical and
horizontal shear can then be used as the leading ap-
proximation for p<<1. When combined with (9.1) and
an equation such as {(6.26)) for the height-dependence
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of wave amplitude, use of these solutions is equivalent
in the steady-waves case to the WKB analysis of
Lindzen (1971, 1972). Lindzen’s illuminating com-
parisons of such solutions with observational data, and
with numerical solutions in which fewer terms were
neglected, suggest that the approximations involved
may be a good deal better than might have been
anticipated from the observational data alone. A reason
is that the vertical wavelength 2rh diminishes (below
observational resolution) as critical-level conditions are
approached. This basic behavior tends to keep the
scaling of Section 6 locally-valid at each height (see
Appendix B).

At each height z we thus have a local vertical wave-
number m(z)=h"! and a length L(z) which we may
define such that

ﬂLzlm!/N=‘1y

where N(z)=8,}, the local buoyancy frequency. For
the purpose of making the equations dimensionless it
is convenient to scale the time by

T(z)=L|m|/N=(|m]|/BN)*. (9-3b)

To leading order for u<1, the linearized equations—
with x, v, 3, ¢, w’, v/, w’, p’, 6’ made dimensionless with
respect to L, L, |m|~\, T, L/T, L/T, {m|™Y/T, I2/T?,
NL/T—are then identical to (4.1) with 8 and 8. each
replaced by unity, and #,, 4., 8,, X', ¥’, Q' ignored.

(9.3a)

The resulting equations are satisfied by the wave

solutions

{7, ... }=Re[{4,9, ... } exp(thx—isz—iwt)], (9.4)

where s==1 and the dimensionless zonal wavenumber
k, intrinsic frequency w and phase speed (¢—#) are
defined by the correspondence

3/dx & ik, (9.5a)

D, —iw= —ik(c—1), (9.5b)

where s =sgnw corresponds to an upward group velocity.
Observe that & will vary slowly with height if m and
therefore L does so, and in fact will tend to zero as a
critical level is approached (Appendix B) because L
then decreases and the dimensional wavenumber L%
is a constant.

The y dependences of 4, 9, # and 8 for all the possible
wave modes may be summarized as follows:

Kelvin wave

{4,5,5,0) =a{i,0,0,s}e (9.6a)
where the dispersion relation is
w=Fk. (9.6b)
All other modes
(1,0,1,8) =a(iBu (9), Ha(y), i Ha(9),
. —sB,_(y)}e ¥, (9.7a)
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where
By (3)=£5(0—k) " Hop1(9)+n(w+E)Ha i (y)

and H,(y) are the Hermite polynomials H_;=0, Hy=1,
H,=2y, Hy=4y*—12, etc. For the =0 mode,

1
w——=k.
w

(9.7b)

We shall refer to this. as the Rossby-gravity mode, at
least for westward phase speeds w/k<0 (Holton 1975,
p. 68). Forn>1,

Wr—k/w=F+2n+1, (9.7¢)

where for each % the two largest |w| correspond to
inertio-gravity modes, and the remaining, third root to
the Rossby mode, in the usual terminology.

We now present some vy profiles of 4; for some of
these modes. In selecting examples for graphical pre-
sentation we shall focus attention mainly on parameter
values corresponding to waves which Lindzen and
Tsay (1975) consider important in the descending
easterlies for the period April-June 1958.

For the Kelvin mode the 4, profile implied by Eq.
(7.4) is independent of A, and is the same for transient,
conservative waves as for steady, dissipating waves:

o eV, 9.8)
But it should be noted that more realistic dissipation
models (Section 10) could imply a different y depen-
dence, such as would arise from taking a=a(y).

For the Rossby-gravity mode, profiles for steady,
dissipating waves are given in Fig. 1 for a small nega-
tive value of %, and for values of A ranging from O to .
The curve for A=1 also represents the profile for a
transient, conservative wave (X'=Y¥'=Q'=0), as is
obvious from (7.4) and (9.1).

In view of the usual modeling assumption which
tentatively supposes that A=0, i.e., that Q' is the
principal cause of wave dissipation, the apparent sensi-
tivity of the @, profile to the value of A when M is small
is of interest. As mentioned earlier, this sensitivity is
to be expected, for small &, from a consideration of the
magnitudes of the first and subsequent terms in (7.4).
As £-—0, & and all the functions in (9.7a) remain
finite, but the factor (¢—#)~*— 0 in the dimensionless
form of (7.4). The same is evidently true of all inertio-
gravity modes, since they all have w finite at 2=0. For
the #=0 mode, the %, profile turns out to be sensitive
to X at large negative % also, because the v/ terms then
dominate in (7.4). These results are summarized by the
solid curve in Fig. 2 which gives as a function of %, for
w>0, the critical value of A separating one-peaked from
two-peaked profiles for Rossby-gravity waves. The
critical value of A is small both for small and large

negative % sgnw.
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(dimeénsionless)

F1c. 1. Profiles of zonal mean westward acceleration —, for a
Rossby-gravity mode (n=0), dissipating in accordance with the
simple model (9.1) on a basic state of no horizontal shear. The
curves are labeled with values of A, the ratio of mechanical to
thermal dissipation rate coefficients, and are normalized to unit
area. The profile for a transient, conservative wave is the same as
that for A=1; the profile of Steuristic ['gee (6.23)] is the same as
that for A=0.

Dimensionless wave parameters are wk= —3/(2X4.4)=—0.341
(=~ —0.4, @=0.8), which when 7=0 correspond to the wave (of
zonal wavenumber 3 and period 4.4 days) considered by Tindzen
and Tsay (1975). In their case #=0 at the equator at a height of
about 22 km at which height the scale L for dimensionless dis-
tance v from the equator is about 8° latitude, according to their
Fig. 6,

¥ig. 3 gives profiles for a westward-propagating,
inertio-gravity mode with #=1 and small k2. There is
again a critical value of A separating one-peaked from
two-peaked profiles, given by the dashed curve in Fig.
2. For inertio-gravity waves the critical value of \ is
small and positive only for small negative & sgnw.

The actual parameter valucs in the examples so far
have been chosen to correspond when %=0 to the
waves postulated by Lindzen and Tsay (1975). In the
vertical profiles of # observed at the equator in their
case study, #=0 at heights around 22 km (see Fig. 5,
middle right-hand panel). Above that height, critical-
level conditions are approached, so that k diminishes
and the sensitivity of the 4, profiles to A is greater than
indicated in Figs. 1 and 3.

Of course when % is very small some of the higher
order terms in (7.1), neglected here, could become
relatively important—especially with a dissipation
model (e.g., complex o) in which Q' is not approxi-
mately in quadrature with #'.

For the Rossby modes there is no reason to expect
arbitrarily great sensitivity to A for small %, but the
examples in Fig. 4 (all for small %, again corresponding
to conditions near a critical level, as for the 25 mb
curves in Lindzen and Tsay’s Fig. 10) show consider-
able variation with X, This is especially pronounced for

n>1, when 6" has two widely separated peaks near the

D. G. ANDREWS AND M. E. McINTYRE

2041

i 0-5
\

1N . forn=1 I-Gwave ______.\
10 crit \

\

\\ 4 0-25

\
Xt (R-G wave N
~
\\
- — A A A 0
-5 -4 -3 -2 -1
o k {(non-dimensional )
“___,__“N\
N 1-0-25
1A . forn= ¥}
10 crit 2\
\
\
\ -05

Fi16. 2. Critical value of \, the ratio of mechanical to thermal dis-
sipation rate coefficients, for the Rossby-gravitly (#=0) and in-
ertio-gravity (n=1) modes, as a function of dimensionless zonal
wavenumber k=L/(radian wavelength). The critical value is
defined as the value of A for which 8%;;/9y2=0 at the equator y=0.
At k=0, —d\ait/dk equals } for Rossby-gravity waves, and
equals w™ (=0.58) for inertio-gravity waves.

regions of maximum divergence, which for high-order
Rossby modes tend to be concentrated near the critical
latitudes.

In the problem studied by Uryu (1974) of transient,
conservative, quasi-geostrophic Rossby waves propa-
gating vertically in a mid-latitude channel, on a basic

Fi6. 3. As in Fig. 1 for an (n=1) inertio-gravity wave with
whk=—4/(2X5)=—0.4 (k=—0.2, w=~1.7), which corresponds to
the wave (of zonal wavenumber 4 and period 5 days) in Lindzen
and Tsay’s Fig. 12 when #=0. (For this wave L~4° latitude at a
height of 22 km.)
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F16. 4. As in Fig. 1 for Rossby waves in the long-wave limit
kE=0—, w/k=—1/(2n+1) for n=1 (a), n=2 (b), n=3 (c). Pro-
files for —1<k<0 (not shown) are found to be qualitatively simi-
lar. For n=1 the displayed profiles are appropriate to conditions
at the 25 mb (25.5 km) level in Lindzen and Tsay’s Fig. 10, where
k is small because of proximity to a critical level.

flow with no shear, we have v' and 8’ « sinly for suitable
1, and #'« cosly. Since u,+v,~0 in that quasi-geo-
strophic problem, it can be shown that the sum of the
terms involving #’ in (7.4) is proportional to sin%y, if
X'« ', Thus if we add Rayleigh friction and Newton-
ian cooling to Uryu’s problem we find #%;o sin®ly for
all A '

10. Possible wave dissipation mechanisms in real

fluids

Even if the radiative-photochemical contribution to
Q' is the most important wave - dissipation mechanism
in the equatorial stratosphere, the results of Section 9
illustrate how additional, small contributions to wave
dissipation from other mechanisms can drastically
change #, profiles, especially for Rossby-gravity and
inertio-gravity waves near critical levels. The propor-
tion of mechanical to thermal dissipation required to
go from a two-peaked to a one-peaked #, profile in
Fig. 1, for instance, is far smaller than could be deduced
from independent estimates of Q" plus observations of
the variation of wave amplitude with height. The
latter observable is too sensitive to other factors
[especially the dependence of (c—%) on z] to furnish
useful estimates for even a total dissipation rate coeffi-
cient in practice (Lindzen, 1972, Section 6; Lindzen
and Tsay, 1975, p. 2013).
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There are several known ways in which the waves
could feel an effective dissipation independent of radia-
tive contributions, particularly by becoming unstable
to smaller scales of motion. (Viewed mathematically,
all such mechanisms are just ways in which nonlinear
terms like v"%’, can have a systematic effect as con-
tributions to X’, ¥’ and Q’.)

(i) Resonant-interactive instability, due to resonant-
triad interaction with pairs of other free modes initially
of smaller amplitude (Davis and Acrivos, 1967 ; Hassel-
mann, 1967). )

(ii) Xelvin-Helmholtz instability or local- static
instability. -

(iii) Three-dimensional, large-scale instabilities such
as quasi-barotropic instability associated primarily with
the horizontal variation of the disturbance velocity
fields.

(iv) Interaction with preexisting disturbance motions
not directly caused by the equatérial wave motions.

. For instance these other motions could be the result of

barotropic instability of the # profile itself.

Mechanism (i) has been extensively studied both
theoretically and experimentally for the case of in-
ternal gravity waves (e.g., Bretherton, 1969b ; McEwan,
1971; Martin et al., 1972; Olbers, 1976), and can im-
mediately be expected to be a possibility at least for
Kelvin waves. This is because of the close dynamical
correspondence between Kelvin waves and two-dimen-
sional internal gravity waves, expressed for instance by
their having almost the same dispersion relation. In
either case the dispersion relation allows plenty of
suitable resonant triads, even among the hydrostatic
waves (h<L) considered here. Triads involving two
antisymmetric and one symmetric wave exist also (R.
Griffith-Jones, personal communication).

Mechanism (ii) may well be important for the
strongest observed Kelvin waves, as has been argued
in some detail by Kousky and Koermer (1974). Lindzen
and Tsay (1975, p. 2014) suggest that it could be im-
portant for the observed Rossby-gravity waves near
critical levels.

Mechanisms (iii) are not contained in Kousky and
Koermer’s two-dimensional model and have not been
studied in detail. The scale analysis of Section 6 implies
that plausible heuristic criteria such as u,,’~8 are in-
distinguishable in terms of order of magnitude from
criteria for mechanism (ii) and it is a delicate problem
to determine which of (ii) and (iii) will be important
first in given circumstances.

Two further points are worth emphasis. First, while
it is convenient.for heuristic purposes to speak of in-
stability mechanisms with various suggestive names,
the distinctions between them may not be sharp in
reality. For instance, Gill (1974) traces a continuous
transition, as wave amplitude increases, between mech-
anisms (i) and (iii) for barotropic flow on a beta-plane.
Second, while the several mechanisms may be distinct
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at small wave amplitude, their mutual interaction may
be important. The discussion by Bretherton (1969b)
and the experimental results of McEwan (1971, 1973)
on various instabilities of internal gravity waves show
how mechanism (i), by transferring wave-action into
smaller scales, can enormously enhance the effectiveness
of (ii) and, in our case, (iii). Thus (i) and (iii) can be
effective, sporadically, even when the most prominent
waves have small amplitude.

11. Remarks concerning the descending easterlies
a. Barotropic instability of the mean zonal flow

Figs. 1, 3 and 4 suggest that the y profile of 4; can be
highly inflected. The profile of # itself would presum-
ably never become strongly inflected, because of baro-
tropic instability. For instance, simple numerical esti-
mates for Rossby-gravity waves in the descending
easterlies show that, for # profiles shaped like the A=0
curve in Fig. 1, 8—4,, becomes two-signed as soon as
differential velocities in the horizontal reach values of
several meters per second.

Our guess is that such instabilities would tend to
occur intermittently. With 4, values of order 5 m s™?
per month, for instance, it would take a time presum-
ably of the order of a month or more for an unstable
profile to redevelop after being smeared out by an
instability.

b. The deficit found by Lindzen and Tsay for April-June
1958

The discussion of mean zonal accelerations in Section
4 of Lindzen and Tsay (1975, denoted hereafter by LT),
requires some reassessment in the light of our results.
But it is important o note that their main conclusion,
that the “observed”’ waves cannot account for the mean
zonal acceleration at all heights, in their case study,
stands unaffected. LT postulate a marginally-observa-
ble, westward-propagating, #=1 inertio-gravity mode
which could make up most of the shortfall in %, at the
equator. There is an even greater shortfall away from
the equator in the layer 20-23 km, which cannot be
accounted for by this inertio-gravity wave even with
the possible y profile variations suggested by our Fig. 3.
For reasons now to be explained we regard this dis-
crepancy as more significant than do LT, and believe
that it indicates the probable importance of Rossby
modes (#2> 1) with periods longer than 6 days.

Inspection of our Figs. 1, 3 and 4 together with LT
Figs. 10 and 11 (which as already noted are correct

if X', ¥/ and o[ /9! are all very close to zero, with
decreasing tolerance as critical levels are approached)
strongly suggests that the discrepancy cannot be re-
solved simply by invoking additional dissipation mech-
anisms. These could redistributc the momentum ten-
dency poft; horizontally and vertically, but would leave
a similar shortfall somewhere else in the meridional
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section. In other words, the total mean momentum
change would remain unaccounted for. The shortfall
appears even more striking on inspection of the % (y,2)
sections in Fig. 5 (taken from Newell ef al., 1974), for
March, May and July 1958, which suggest a latitudinal
scale of nearly 40° for the slab, lying between about
20°N and 20°S, and between 20 and 23 km alti-
tude, whose mean momentum change should be ac-
counted for.

It should be noticed that our theoretical results, with
their implications concerning the role of /s, make it
clear that the equator cannot be considered dynamically
isolated from neighboring latitudes, insofar as planetary
waves are involved. Thus deficits at and away from the
equator call for discussion on an equal footing. LT
tentatively suggest that a mean meridional circulation
term f7 could help make up the shortfall away from the
equator. This is possible, but plausible only if a suitable
zonally symmetric forcing X, ¥, or @ independent of the
waves is available to drive such a circulation. The re-
maining part of the mean meridional circulation, i.e.,
the ¥ appearing in our analysis and forced mainly by

the term ¢ in Eq. (3.1d), cannot be invoked to ex-
plain accelerations additional to that given by the
formulas of Section 7. That contribution to 7 is intrinsic

to the disturbance dynamics, just as much so as u'v';
indeed, their effects upon 4%, are not separately identi-
fiable in our alternative, generalized Lagrangian-mean
description (Andrews and McIntyre, 1977). But a suffi-
ciently strong zonally symmetric forcing independent
of the waves and fluctuating quasi-biennially does not
seem plausible ;8 the reasons are already familiar from
the well-known failure of early attempts to explain the
QBO purely in terms of such forcing. Thus we are led
to expect that large-scale, zonally asymmetric disturb-
ances additional to those considered by LT are im-
portant for the momentum budget of the descending
easterlies.

The most plausible candidates are Rossby modes
with periods longer than those of 4-6 days singled out
for special consideration by LT. Rossby modes auto-
matically select westward phase speeds (¢c—#%) and
hence, by (7.3), a tendency for 4, to be westward. The
broad latitude scale for the descending easterlies in
Fig. 5 suggests, perhaps, that modes higher than n=1
are significant. It may of course be quite wrong to
think of such modes as incident from below : departures
from latitudinal normal-mode structure associated with
a preponderance of southward or of northward propa-
gation are likely. Indeed the possible importance of
vertically and horizontally propagating Rossby waves
was the subject of an earlier suggestion by Dickinson
(1968, p. 1001) based upon unpublished observational
evidence due to J. M. Wallace.

8 We note, how-ever, the caveat implied by the arguments of
Newell e al. (1974, pp 255-262) for the lowest part of the strato-
sphere.

Unauthenticated | Downloaded 08/25/22 02:09 PM UTC



2044 JOURNAL OF THE ATMOSPHERIC SCIENCES VoOLUME 33

o . P (mb) [T] m sec™! At (km)
Pimb) 0] m sec Altgkm) g T
I

130 - 225
September 1957 < /Marcn 1958
20

2d[-

30

70+

100

150}

2001

300
400+
500
7001

8501
(e e]e]
40°]

10 20 30 - 40°S

May 1958

November 1957

20’»

\ ~27
30p
t

sl 0 . a

701

150+

200

300}

ao0}
500
I

700

aso[

10001
- 40°N

, anuary 1958
20 o +27 20
s/ \20/
30- s 4 30|
N~ 0 . 10 A8
50} e 21 50|
5 e]
T 5

-30

July 1958
Aav
25
20 N\
15 22q

10
5 .

7ok \___,/

: WSz A

o

~

©

3 700
850)
10007

40

30 40%s o
LATITUDE LATITUDE

Fi16. 5. Meridional sections of the zonally-averaged monthly mean zonal wind %(y,z) given at two-month intervals for the period
September 1957 to July 1958 (from Newell et al., 1974, Fig. 10.24). Easterlies are shown shaded. The middle right-hand panel corre-
sponds to the time of Lindzen and Tsay’s case study.



NovVEMBER 1976

Tt might be questioned whether the presence of such
Rosshby waves is consistent with the observed con-
tinuum of low-frequency spectral power. However, the
most important waves might well be nearly stationary
{¢=0) and not detectable in time series at fixed sta-
tions. We observe that ¢=0 corresponds to a critical
line (the zero isotach in the middle right-hand panel
of Fig. 5) which lies just where LT’s Fig. 11 indicates
the greatest deficit in the momentum budget.
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APPENDIX A
Derivation of Eqgs. (5.5a) and (7.4)

In this Appendix we drop the primes from symbols
representing disturbance fields. The following identities
hold for any two fields ¢ (x,#) and ¥(x,0):

o= —dst, (A1)
$D=—¥D g+ ($¥), (A2)
#D =% (8. (A3)
Thus from
v=Dpm, w=Dg, (A4)
we deduce that
7D = —wuv+ (qun),, (A5)
D= —uw+ (u).. (A6)
Trurther,
=30 (A7)
fw=3(D, (A8)
ot = —nw+ (F).. (A9)
We now rewrite Eq. (4.1a) as
—Du—p,— Gr—Bw=X. (A10)

Multiplication of (A10) by 4, and then by { [ Bretherton
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1969a, Eq. (18); Uryu, 19737, followed by use of (A1)
and (A5)-(A9) yields

wv-np—@mw =X +1 G (r?) A+ (7)., (Alla)

ww{op+ Qo =¢X+3B ()t Cu)t @(n0)e. (Allb)
Viewed physically, these serve to relate the disturbance
momentum fluxes as defined by (3.1a), namely #» and
uw, to the momentum fluxes

—np and —{.p (A12)

which appear in Lagrangian-mean analogues of (3.1a)
and which represent mean tangential forces across
material surfaces corrugated by the waves (see Brether-
ton 1969a, Fig. 1).

Multiplying (4.1d) by % gives

— 06+ (10) +39, () 48w = —10Q.
This allows (A11) to be rewritten as

(A13)

70+ (n‘o)t+-%éy<%3>,]

S(zy)‘i";;.f—’"—‘ﬁ—@[ 7

+3@D) (), (Alda)

1

— — [0+ (018,00,
S(zz)+§'zp=§X+ @[ - -+ (ﬂg‘)t]

z

+3® (%) i+ (u).  (Aldb)
Now

20y G ap)e= (E)st (120) st (Cap) e

=t nadyt-Eabs,

since £,+n,-+¢.=0. Taking the scalar product of
(&2, 14, ¢2) with (4.1a—c) and using (5.3b) and the fact
that D= Daut— (G f)v—@®w, we obtain

D)yt Ca)o=—EX —n.¥ —Cog
3’ - . .
_E[tfz(ul—fﬂ)','nzv]_ (§y+fdz)g‘m77~ (AIS)

Taking 8(Al4a)/dy-+0(A14b)/dz and eliminating the
terms in p by means of (A15) now gives (5.5a).

Eq. (7.4) results from a different, approximate,
treatment of the pressure terms in (A14), making use
of the wave-energy equation as in EP and in Eliassen
(1968). Under assumption (7.2) we may write each
disturbance field in the form

¢(x_(:t, Y, &, T);
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where T=pt, a “slow” time. Then
D,=W8/dx+pd/dT, (A16)

where U=#—¢. The relation [cf. EP Egs. (10.5) and
(10.7)] between the wave-energy flux and the “radia-
tion stress” contributions (A12) is simply

(Al7a)
(A17b)

pr—Upn.=pprr,
PTU-‘ILP—_?; =”’}§—7:’

an immediate consequence of (A4). We now add
3(A17a)/3y+3(A17b)/3z to

o[uX (Al4a)]/9y+o[UX (A14b)]/dz;

the left-hand side of the resulting equation is

0S ()
m( “+
ay 9z

where the expression within square brackets denotes the
square brackets in the wave-energy equation (4.2),
and where (6.12) has been used. The right-hand side
may be simplified, by order-of-magnitude considera-
tions which parallel those used in arriving at (6.26), to

aS (z2)

)+[<ﬁ>u+- 40, (Al8a)

Cupng+U{nX +3u @ () g+u ()¢}
' +0(uuA).

In (A18b) p is needed only to leading order. We may
therefore use the relation

p=—U(u+Gn)+0(Uu)+func(y,zt)  (A19)

which follows as in Eliassen [1968, Eq. (3.7)] from
writing (A10) as

p.=—Di(ut+Cy+®)—X
and invoking (A16), (6.7), (6.9) and (6.25). Substitut-

(A18b)

ing (A19) into the first term of (A18b), and (4.2) into

(A18a), and equating (A18a, b) we get
(35 @ 0 (zz))
w +
ay 0z

o o _ . _ .
=XV +00/ b (/D)

UGEE 4w}y O GUA)HO (). (A20)
If ‘

HUgn = unqgth

(A21)

toleadingorder, then both are equal to 3u(nu)r=13 (qu).,
and if Us#0 (7.4) follows, upon noting (7.6) and (6.16).

Eq. (A21) is true if, for instance, each Fourier compo-
nent #e** (==t ig in phase with the corresponding com-
ponent fet*(==¢t_ to leading order. Under (7.2), (A16)
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and (6.9) we may write 4=~ a(T)do(y,2), 4=~ a(T)H0(y,2),
where #o and 4, are constrained by Egs. (4.1) to have
the structure of a conservative, linear wave and, by the
above phase assumption, are such that #¢f, is real.
Then (A21) follows since (for each Fourier component)

ugn=} Re(agoa*fs), (A22a)

1

ngt=3% Re(aqfoa*dp). . (A22b)

Eq. (A21) would be true without the phase assump-
tion, i.e., for complex #ofy, if it were assumed alterna-
tively that a(7) were real. This amounts to assuming a
special form of transience in which ug is strictly in
phase with %, and ng with . Boyd (1976) makes this
assumption—in fact he assumes that e« exp(bf) where
b is a real constant. This is the reason why his terms
describing transience take the same form as his terms
in X, ¥ and Q, even for u not small [contrast with our
result (5.9a)].

APPENDIX B
Critical Lines

In this Appendix we shall show that for equatorial
waves the scaling of Section 6, and hence Lindzen’s
WKB approximation, remains uniformly valid up to a
critical line. In saying this we are presuming a con-
figuration for the critical-line isotach in a meridional
section such that it lies well outside the region enclosed
by the critical latitudes 2[c—%(y,2) 1= = f(3), meeting
that region only at its apex P, i.e., its highest point,
where #—c= f=0 on the equator. -

Thus the ray time (group-velocity time) to the point
P is physically meaningful. Moreover, the ray time is
infinite ; consequently the wave amplitude goes to zero
at P (apart from terms exponentially small in x) when-
ever any dissipation is present, no matter how small.
The interaction of linear waves with the mean flow
must therefore be consistently described by (7.1) with-
out any extra critical-line terms such as seem to be
required in the quasi-geostrophic problem studied by
Dickinson (1969).

There have been no investigations of the correspond-
ing nonlinear critical-layer problems, but the various
finite-amplitude critical-layer effects which have been
studied for simpler systems (e.g., Breeding, 1971;
Maslowe, 1971; Geisler and Dickinson, 1974 ; Murakami,
1974) suggest that critical-layer absorption has no more
effect, and sométimes much less, on s, than is indicated
by linear theory.

The crucial scaling requirement is

pw=h/H=(|m]Az)«1 (B1)

uniformly as H— 0; we have identified H with the
vertical distance Az to the point P, and h—! with the
vertical wavenumber |m|. Now all the dispersion rela-
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tions of interest have a power law behavior for large
|m], as can be seen by converting (9.6b) and (9.7b, c)
back into dimensional form:

(a—c)~im|~, [m|—w. (B2)
For Rossby-gravity and equatorial inertio-gravity
waves, ¢=7%. For Kelvin, equatorial Rossby, and two-
dimensional internal gravity waves, =1, (The differ-
cnt values correspond to whether or not the relevant
dispersion curve meets the origin of the usual dimen-
sionless kw  diagram.) Near P; #—c~,A3, and so
{m{Az is large as Az~ 0 if either (i) 0<o<1, or (ii)
o=1 and |m[Az>>1 away from P. In case (i), appro-
priate to Rossby-gravity waves, |m|Az—. In case
(ii), appropriate to Keclvin and equatorial Rossby
waves, |m|Az will be large near P if it is already large
away from P, as was assumed in Section 6. The different
behavior of m for the two cases is well illustrated by
Fig. 3 of Lindzen (1971).

The mid-latitude, quasi-geostrophic Rossby waves
considered by Dickinson correspond to ¢=2, which
violates (i) and (ii). So Dickinson’s problem is essen-
tially different from the equatorial problem, in that a
WKB approximation cannot be valid near a critical
line.

The fact that the ray time is infinite is just a conse-
quence of (B2) when ¢>0. The ray time is defined
as f'da/v, where v is the vertical group velocity,
« d{@—c)/dm, and the integration is taken up to the

point P:
S sl
REFERENCES

= at P when ¢>0.

Andrews, D. G., and M. E. McIntyre, 1976: Planctary waves in
horizontal and vertical shear: Asymptotic theory for equator-
ial waves in weak shear. J. Afmos. Sei., 33, 2049-2053.

, and ——, 1977: An exact theory of Langrangian mean

flow, radiation stress and pseudomomentum, with application

to nonlinear waves in a stratified, rotating fluid. Submitted
to J. Fluid Mech.

Blake, D., and R. S. Lindzen, 1973: The effect of photochemical
models on calculated equilibria-and cooling rates in the
stratosphere. Mon. Wea. Rev., 101, 783~802.

Boyd, J., 1976: The noninteraction of waves with the zonally-
averaged [low on a spherical earth and the interrelationships
of eddy fluxes of energy, heat and momentum. Submitted to
J. Atmos. Sci.

Breeding, R. J., 1971: A non-linear investigation of critical levels
for internal atmospheric gravity waves. J. Fluid Mech., S0,
545-563.

Bretherton, I°. P., 1968: Propagation in slowly-varying wave-
guides. Proc. Roy. Soc., London, A302, 555-576.

~——, 1969a: Momentum transport by gravity waves. Quart. J.
Roy. Meteor. Soc., 95, 213 243.

~——, 1969h: Waves and turbulence in stably stratified fluids.
Radio Sci., 4, 1279-1287.

-~ , 1971: The general linearized theory of wave propagation.
Lectures in Applied Mathematics, Vol. 13, Amer. Math. Soc.,
61-102.

@, (u—— c)
9 (u —¢)/om

dm

U,

=, (B3)

since |m]

D. G. ANDREWS AND M. E. McINTYRE

2047

——, 1977: Conservation of wave action and angular momentum
in a spherical atmosphere. J. Fluid Mech. (in press).

——, and C. J. R. Garrett, 1968: Wavetrains in inhomogeneous
moving media. Proc. Roy. Soc., London, A302, 529-554.
Charney, J. G., and P. G. Drazin, 1961 : Propagation of planetary-
scale disturbances from the lower into the upper atmosphere,

J. Geophys. Res., 66, 83-109.

Davis, R. E., and A. Acrivos, 1967: The stability of oscillatory
internal waves. J. Fluid Mech., 30, 723-736.

Dewar, R. L., 1970: Interaction between hydromagnetic waves
and a time-dependent inhomogeneous medium. Phys. Fluids,
13, 2710-2720.

Dickinson, R. E., 1968: Planetary Rbssby waves propagating
vertically through weak westerly wind wave guides. J. Atmos.
Sei., 25, 984-1002.

——, 1969: Theory of planetary wave-zonal flow interaction.
J. Atmos. Sci., 26, 713-81.

Eliassen, A., 1968: On mesoscale mountain waves on the rotating
Earth. Geofys. Publ., 27, No. 6, 1-135,

——, and E. Palm, 1961: On the transfer of energy in stationary
mountain waves. Geofys. Publ., 22, No. 3, 1-23.

Fels, S. B, and R. S. Lindzen, 1974: The interaction of thermally
excited gravity waves with mean flows. Geophys. Fluid Dyn.,
6, 149-191.

Geisler, J. E., and R. E, Dickinson, 1974: Numerical study of an
interacting Rossby wave and barotropic zonal flow near a
critical level. J. Atmos. Sci., 31, 946-955.

Gill, A. E., 1974: The stability of planetary waves on an infinite
beta-plane. Geoplrys. Fluid Dyn., 6, 29-417.

Grimshaw, R., 1975: Nonlinear internal gravity waves in a rotat-
ing fluid. J. Fluid. Mech., 71, 497-512.

Hasselmann, K., 1967: A criterion for nonlinear wave instability.
J. Fluid Mech., 30, 737-739.

Hayashi, Y., 1970: A theory of large-scale equatorial waves gen-
erated by condensation heat and accelerating the zonal wind.
J. Meteor. Soc. Japan, 48, 140-160.

Hayes, W. D., 1970: Conservation of action and modal wave ac-
tion. Proc. Roy. Soc., London, A320, 187-208.

Holton, J. R., 1974: Forcing of mean flows by stationary waves.
J. Atmeos. Sci., 31, 942-945.

——, 1975: The Dynamic Meteorology of the Stratosphere and
Mesosphere. Amer. Meteor. Soc., 218 pp.

——, and R. S. Lindzen, 1972: An updated theory for the quasi-
biennial cycle of the tropical stratosphere. J. Atmos. Sei., 29,
1076-1080.

Kousky, V. E., and J. P. Koermer, 1974: The nonlinear behavior
of atmospheric Kelvin waves. J. Atmos. Sci., 31, 1777-1783.

Lighthill, M. J., 1958: Fourier Analysis and Generalised Functions.
Cambridge University Press, 79 pp.

Lindzen, R. S., 1971 : Equatorial planetary waves in shear, Part L,
J. Atinos. Sci., 28, 609-622.

——, 1972 : Equatorial planetary waves in shear, Part I1. J. Atmos.
Sci., 29, 1452-1463.

——, and J. R. Holton, 1968: A theory of the quasi-biennial os-
cillation. J. Atmos. Sci., 25, 1095-1107.

——, and C-Y. Tsay, 1975: Wave structure of the tropical strato-
sphere over the Marshall Islands area during 1 April-1 July
1958. J. Atmos. Sci., 32, 2008-2021.

McEwan, A. D., 1971: Degeneration of resonantly-excited stand-
ing internal gravity waves. J. Fluid Mech., 50, 431-448.
——, 1973: Interactions between gravity waves and their trau-
matic effect on a continuous stratification. Bound.-Layer

Meteor., 5, 159-175.

McIntyre, M. E., 1973: Mean motions and impulse of a guided
internal gravity wave packet. J. Fluid Mech., 60, 801-811.

Martin, S., W. Simmons and C. Wunsch, 1972: The excitation of
resonant triads by single internal waves. J. Fluid Mech., 54,
17-44.

Maslowe, S. A., 1972: The generation of clear air turbulence by
nonlinear waves. Stud. Appl. Matk., 51, 1-16.

Unauthenticated | Downloaded 08/25/22 02:09 PM UTC



2048

Murakami, M., 1974: Influence of mid-latitudinal planetary
waves on the tropics under the existence of critical latitude.
J. Meteor. Soc. Japan, 52, 261-272.

Newell, R. E,, ] W. Kidson, D. G. Vincent and G. J. Boer, 1974:
The General Circulation of the Tropical Atmosphere, Vol. 2.
The MIT Press, 371 pp.

Olbers, D. J., 1976: Nonlinear energy transfer and the energy bal-
ance of the internal wave field in the deep ocean. J. Fluid
Mech., 74, 375-399.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoLuME 33

Plumb, R. A., 1975: Momentum transport by the thermal tide in
the stratosphere of Venus. Quari. J. Roy. Meteor. Soc., 101,
763-776. - )

Stern, M. E., 1971: Generalizations of the rotating flame effect.
Tellus, 23, 122-128. .

Uryu, M., 1973: On the transport of energy and momentum in
stationary waves in a rotating stratified fluid. J. Meteor. Soc.
Japan, 51, 86-9.

——, 1974: Mean zonal flows induced by a vertically propagating
Rossby wave packet. J. Meteor. Soc. Japan, 52, 481-490.

Unauthenticated | Downloaded 08/25/22 02:09 PM UTC



