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ABSTRACT

Context. The formation of planetesimals is often accredited to the collisional sticking of dust grains. The exact process is unknown,
as collisions between larger aggregates tend to lead to fragmentation or bouncing rather than sticking. Recent laboratory experiments
have however made great progress in the understanding and mapping of the complex physics involved in dust collisions.
Aims. We study the possibility of planetesimal formation using the results of the latest laboratory experiments, particularly by includ-
ing the fragmentation with mass transfer effect, which might lead to growth even at high impact velocities.
Methods. We present a new experimentally and physically motivated dust collision model capable of predicting the outcome of a
collision between two particles of arbitrary mass and velocity. The new model includes a natural description of cratering and mass
transfer, and provides a smooth transition from equal- to different-sized collisions. It is used together with a continuum dust-size evo-
lution code, which is both fast in terms of execution time and able to resolve the dust at all sizes, allowing for all types of interactions
to be studied without biases.
Results. For the general dust population, we find that bouncing collisions prevent any growth above millimeter-sizes. However, if a
small number of cm-sized particles are introduced, for example by either vertical mixing or radial drift, they can act as a catalyst and
start to sweep up the smaller particles. At a distance of 3 AU, 100-m-sized bodies are formed on a timescale of 1 Myr.
Conclusions. Direct growth of planetesimals might be a possibility thanks to a combination of the bouncing barrier and the fragmen-
tation with mass transfer effect. The bouncing barrier is here even beneficial, as it prevents the growth of too many large particles that
would otherwise only fragment among each other, and creates a reservoir of small particles that can be swept up by larger bodies.
However, for this process to work, a few seeds of cm-size or larger have to be introduced.

Key words. accretion, accretion disks – protoplanetary disks – stars: pre-main sequence – planets and satellites: formation –
circumstellar matter

1. Introduction

One of the most popular planet formation scenarios is based on
core accretion, in which the formation of planets starts in the
protoplanetary disk with micron-sized dust particles that collide
and stick together by surface forces, forming successively larger
aggregates (Mizuno 1980; Pollack et al. 1996). Traditionally, the
next stage in the formation process is the gravity-aided regime
where planetesimals have formed that are so massive that the
gravity starts to affect the accretion and the strength of the body.

However, to reach this regime, kilometer-sized bodies are re-
quired, something that has proven difficult to produce owing to
a number of effects such as fragmentation and bouncing (Blum
& Münch 1993), rapid inward migration (Whipple 1972), and
electrostatic repulsion (Okuzumi et al. 2011a,b). A new planetes-
imal formation channel was introduced by Johansen et al. (2007,
2011), in which mutual gravity plays a role between meter-sized
boulders in turbulent and locally overdense regions, resulting in
the rapid formation of kilometer-sized bodies. However, even the
meter regime is difficult to reach only by the coagulation of dust
aggregates.

The micron-sized dust particles are coupled tightly to the sur-
rounding gas, and their relative velocities are driven primarily
by Brownian motion. Since the resulting relative velocities are
small, on the order of millimeters per second, the particles stick
together by means of van der Waals forces. However, as the par-
ticles increase in size, they become less coupled to the gas, and a
number of effects increase the relative velocities between them.
For centimeter-sized particles, the predicted relative velocity is
already one meter per second, and meter-sized boulders collide
at velocities of tens of meters per second. At these high colli-
sion energies, the particles tend to fragment rather than stick
(Blum & Wurm 2008), which effectively prevents further growth
(Dullemond & Dominik 2005; Brauer et al. 2008; Birnstiel et al.
2010).

In the protoplanetary disk, gas pressure supports the gas
against the radial component of the stellar gravity, causing it to
move at slightly sub-Keplerian velocities. Solid bodies do not,
however, experience the supporting gas pressure, and instead
drift inward. As the particles grow larger, their relative veloci-
ties with respect to the gas increase, causing a significant head-
wind and a steady loss of angular momentum. At a distance of
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1 AU, radial drift can cause meter-sized bodies to spiral inwards
and get lost in the star on a timescale of a few hundred orbits
(Weidenschilling 1977a; Nakagawa et al. 1986).

These two obstacles give rise to the somewhat inaccurately
named meter-size barrier (which ranges from millimeters to me-
ters depending on the disk properties), above which larger bod-
ies have difficulties getting formed. To reach the gravitational
regime, bodies that are roughly nine orders of magnitude more
massive are needed.

The study of the dust evolution has however until recently
primarily been done using simplified dust collision models in
which colliding dust grains would either stick together or frag-
ment (Brauer et al. 2008; Birnstiel et al. 2010). The simplicity
of the models has been a necessity because of large uncertainties
and the small parameter space covered in terms of mass, poros-
ity, and collision velocity in the laboratory experiments and nu-
merical simulations.

Recent years have however seen good progress in the labora-
tory experiments, as summarized by Blum & Wurm (2008). To
provide a more complete and realistic collision model, Güttler
et al. (2010) reviewed a total of 19 different experiments with ag-
gregates of varying masses, porosities, and collision velocities.
In these experiments, the complex outcome was classified into
nine different types. Zsom et al. (2010) implemented this colli-
sion model in a Monte Carlo dust-size evolution code. The re-
sults showed clear differences from the previous collision mod-
els, and allowed for the identification of the most important of
the different collision types. They also found the important ef-
fect of dust grain bouncing at millimeter sizes that halts the grain
growth even before it reaches the fragmentation barrier. With the
inclusion of a vertical structure, Zsom et al. (2011) still found
bouncing to be prominent, but the vertical settling also allowed
for a number of other collision effects to occur.

Progress has also been made with numerical simulations of
dust (silica and ice) aggregate collisions using molecular dynam-
ics codes (Wada et al. 2009, 2011) with up to 10 000 monomers
corresponding to aggregate sizes of around 100 µm. On the basis
of these simulations, Okuzumi & Hirose (in prep.), developed a
collision model where growth was possible for silicates for ve-
locities up to 7 m/s, and for ices up to 70 m/s. By incorporating
relative velocities in the dead zone extracted from MHD simu-
lations (Okuzumi & Hirose 2011), they were able to form plan-
etesimals made of ice, but not of silicates. Geretshauser et al.
(2010, 2011) also developed a dust collision code using SPH for
particle sizes of cm and upwards. There is currently a discrep-
ancy between the simulations and the laboratory experiments,
where the simulations have difficulties reproducing the bouncing
events and generally observe much higher fragmentation thresh-
old velocities. In this paper, we analyze primarily the (more pes-
simistic) laboratory data, but there is a great need to get the two
fields to agree.

One possible way to grow past the fragmentation barrier is
so-called fragmentation with mass transfer, which was observed
by Wurm et al. (2005) and can happen in a collision between a
small projectile and a large target. The projectile is fragmented
during the collision and a part of it is added as a dust cone to
the surface of the larger particle, provided that the mass ratio of
the two particles is large enough to avoid fragmentation of the
larger body. The mass transfer efficiency was studied by Kothe
et al. (2010), who also showed that multiple impacts over the
same area still lead to growth. Teiser & Wurm (2009a,b) showed
that growth of the target is possible even for collision velocities
higher than 50 m s−1, and Teiser et al. (2011) proved that the
target could still gain mass even at high impact angles. These

experiments have all shown that dust growth may proceed for
large bodies at high velocities, and that this effect might even
be able to produce planetesimals via collisional accretion. We
discuss this process in more detail in Sect. 2.1.

For the study of the dust-size evolution, the Monte Carlo
approach of Ormel & Spaans (2008) and Zsom & Dullemond
(2008) has the distinct advantage that it permits the simulation
of a large number of particle properties and collision outcomes.
A representative particle approach is used where a few particles
correspond to larger swarms of particles with the same proper-
ties. Each particle is given a set of properties, and each indi-
vidual collision of the representative particles is followed. This
approach uses very little computer memory, and adding extra
properties costs very little in terms of execution time. If we wish
to study the effect of mass transfer, however, the Zsom et al. ap-
proach has some problems, as it only tracks the grain sizes where
the most mass can be found in the system. It therefore has dif-
ficulties in resolving wide size distributions, which is required
for the type of bimodal growth that the fragmentation with mass
transfer effect would produce.

Another method is the continuum approach, in which
the dust population is described by a size distribution
(Weidenschilling 1980; Nakagawa et al. 1981). The conventional
continuum approach is the Smoluchowski method, where the in-
teractions between particles of all sizes are considered and up-
dated simultaneously. This leads to very fast codes for a one-
dimensional parameter-space (i.e. mass) compared to the Monte
Carlo approach. Adding additional properties such as porosity
and charge is however very computationally expensive in terms
of memory usage and execution time if one does not include
steps such as the average-porosity scheme of Okuzumi et al.
(2009). With the continuum approach, however, the dust is re-
solved at all sizes, allowing for all types of dust interactions
without any biases. This approach is also fast enough to follow
the global dust evolution in the whole disk.

The aim of this paper is to create a new collision model de-
scribing the outcome of collisions between dust aggregates of
various sizes and velocities, that is fast enough to be used with
continuum codes. In this new model, we take into account recent
progress in laboratory experiments, especially the mass transfer
effect described above, and take a physical approach to transi-
tion regions from growth to erosion where the experiments are
sparse. We then use this model in size evolution simulations us-
ing the local version of the code developed by Birnstiel et al.
(2010) to study its implications for the formation of the first gen-
eration of planetesimals.

The background of the new model and all the experimental
work that it is based on is discussed in Sect. 2, and its implemen-
tation is described in Sect. 3. In Sect. 4, we discuss the proper-
ties of the disk in our local dust evolution simulations, as well as
the implicit Smoluchowski solver that we have used. Finally, in
Sects. 5 and 6, we discuss the results of the new model and show
how the existence of a bouncing barrier may even be beneficial
to the growth of planetesimals.

2. Motivation behind the development of a new

collision model

Models to describe the growth of dust aggregates can generally
be divided into two parts: a collision model describes the result
of a collision between two dust particles of arbitrary properties
(i.e. mass, porosity) and velocities. A dust evolution model uses
the collision model to describe the evolution of the particle prop-
erties of an entire population of dust particles as they collide
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and interact with each other. In this section, we describe the lat-
est laboratory experiments and our effort to produce a collision
model that can take these results into account while still stream-
lining it to work well with continuum dust evolution codes. That
means that the collision model cannot be as complex as the one
developed by Güttler et al. (2010), but needs to focus on the most
important collision types and aggregate properties. Nevertheless,
we were able to include results that were not well-established or
even known when the model of Güttler et al. was developed.

2.1. Overview of recent experiments and simulations

Numerous laboratory experiments have been performed to probe
the collision parameter space of silicate dust grains, as summa-
rized by Blum & Wurm (2008). This is a daunting task, as planet
formation spans more than 40 orders of magnitude in mass and
6 orders of magnitude in collisional velocity and collisional
outcomes are affected by for example porosity, composition,
structure and impact angle. The classical growth mechanism
of dust grains is the hit-and-stick mechanism, which has been
well-studied in both laboratory experiments (Blum & Wurm
2000, BW00) and numerical simulations (Dominik & Tielens
1997; Wada et al. 2009). Sticking collisions are also possible via
plastic deformation at the contact zone (Weidling et al. 2012,
WGB12) and geometrically by penetration (Langkowski et al.
2008, LTB08).

Owing to limited data, previous collision models have with
few exceptions only included sticking, cratering, and frag-
mentation with simplistic thresholds (Nakagawa et al. 1986;
Weidenschilling 1997; Dullemond & Dominik 2005; Tanaka
et al. 2005; Brauer et al. 2008). To study the effect of the progress
in laboratory experiments, Güttler et al. (2010) and Zsom et al.
(2010) presented a collision model containing nine different col-
lisional outcomes and used this in the Monte Carlo dust evolu-
tion code developed by Zsom & Dullemond (2008). Their model
contained three types of sticking collisions in addition to the nor-
mal hit-and-stick, and they identified two growth-neutral bounc-
ing effects and three different fragmentation effects in which the
largest particle is eroded. They found that several of the new
collision types played a role in the dust-size evolution, which
proved the necessity for a more complex dust collision approach
than previously used. Before even reaching the fragmentation
barrier, at which fragmentation events between similar-sized par-
ticles prevent further growth, they identified the so-called bounc-
ing barrier. Bouncing collisions between smaller particles of in-
termediate velocities proved to be an efficient barrier for growth
even for grains as small as a millimeter. It should be clarified
that bouncing is, in principle, not bad for growth. The bouncing
barrier is a problem because of the lack of sticking over such a
large range of masses and velocities, which prevents the particles
from growing any further.

Bouncing between dust aggregates remains a hotly discussed
topic. It has been reported from a large number by laboratory
experiments of different setups and material properties (Blum &
Münch 1993; Heißelmann et al. 2007; Langkowski et al. 2008;
Kelling & Wurm 2009; Güttler et al. 2010; Weidling et al. 2012),
but molecular dynamics simulations contain significantly less or
no bouncing (Wada et al. 2007, 2008, 2009; Paszun & Dominik
2009). These rebounding events happen in collisions where the
impact energy is so high that not all can be dissipated by the re-
structuring of the aggregates. Wada et al. (2011) argue that this
would happen only for very compact aggregates where the co-
ordination number is high, which contradicts what is seen in the
laboratory. In the present study, we base our model on laboratory
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Fig. 1. The size-size parameter space of the dust collision experiments
(blue boxes) providing the basis for the new collision model. All marked
experiments are discussed in more detail in Sect. 2.1. The contours and
gray labels mark the collision velocities in cm s−1 expected from the
disk model described in Sect. 4.1, and do not always coincide with the
velocities studied in the experiments.

experiments, but bouncing is clearly a very important matter for
the dust growth and will need to be investigated in future studies.

In our new model, we implement the most important colli-
sion types identified by Zsom et al. (2010), and also take into
account the results of a number of recent experimental studies.
Many new experiments have been performed that have increased
our understanding of the collision physics of dust aggregates. In
Fig. 1, we plot the parameter space of a selection of important
laboratory experiments that provide the basis for the new colli-
sion model.

Provided that the mass ratio is large enough between the two
particles (from now on called the projectile and the target for
the smallest and largest particles, respectively), the projectile can
fragment and parts of it stick by van der Waal forces to the sur-
face of the target. This was studied by Wurm et al. (2005) and
Teiser & Wurm (2009b, TW09b) for millimeter to centimeter-
sized projectiles shot onto a mounted decimeter-sized dust tar-
get at velocities of up to 56.5 m s−1. It was found that the accre-
tion efficiency even increased with velocity, and could be as high
as 50% of the mass of the fragmented projectile, where Güttler
et al. (2010) only assumed a constant 2%. This effect was also
observed by Paraskov et al. (2007, PWK07) in drop tower ex-
periments where the target also was free-floating without a sup-
ported back. The mass transfer efficiency at slightly smaller ve-
locities (1.5–6 m s−1) and for millimeter-sized projectiles was
studied in more detail by Kothe et al. (2010, KGB10), who con-
firmed the velocity-positive trend. Teiser & Wurm (2009a) and
Kothe et al. also studied multiple impacts over the same area,
and could conclude that growth was possible even then, with-
out the newly accreted material being eroded. It was also found
that growth was possible even at very steep impact angles. Beitz
et al. (2011, B+11) performed experiments between cm-sized
particles at even smaller velocities (8 mm s−1 to 2 m s−1) and
detected mass transfer even at velocities as small as 20 cm s−1,
right at the onset of fragmentation.
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This mode of growth, where small projectiles impact large
targets, is related to the work of Sekiya & Takeda (2003, 2005),
who performed numerical studies to determine whether small
fragments formed in an erosive collision could be reaccreted
back onto the target by gas drag. The conclusion was that if the
fragments were µm-sized, and the target is sufficiently large, the
gas flow would actually compel the fragments to move around
the target, thereby preventing reaccretion. For the mass transfer
effect, it is important to verify whether this effect could prevent
100–1000 µm-sized projectiles from impacting on the target in
the first place. The importance of this effect can be estimated
with a simple comparison of timescales using reasonable param-
eters for the disk model (discussed in more detail in Sect. 4). The
stopping time of a small particle is given by

τs =
ξap

ρg · ū
∼ 2500 s, (1)

where ξ ∼ 1 g cm−3 is the solid density of the projectile, ap ∼
100 µm is its radius, ρg ∼ 10−10 g cm−3 is the expected midplane

gas density at 3 AU, and ū ∼ 4 × 104 cm s−1 is the mean thermal
velocity of the gas. The time it would take for the projectile to
pass the target is given by

τpass =
at

∆v
∼ 0.2 s, (2)

where at ∼ 100 cm is a typical target size and ∆v ∼ 5000 cm s−1

the relative velocity between the particles. Since τs ≫ τpass, it
would take too long for the projectile to adjust to the gas flow
around the target, and the two particles would collide. If the pro-
jectiles were instead only 1 µm in size, the timescales would not
differ so much, and the gas flow might play a role.

Another recent experimental result is the refinement of the
threshold velocity for destructive fragmentation, where the tar-
get is completely disrupted. Beitz et al. (2011) performed exper-
iments to determine the onset of global fragmentation of the par-
ticles, and found that cm-sized particles fragmented at 20 cm s−1,
much below the 1 m s−1 threshold found for mm-sized particles
by Blum & Münch (1993). This points toward a material strength
that decreases with mass, as predicted for rocky materials among
others by Benz (1999). This result can be explained by a prob-
ability of faults and cracks in the material that increases with
particle size, and that it is along these cracks that both global
breaking and fragmentation takes place. No experiments have
as of yet been performed to study the fragmentation threshold
of differently sized dust aggregates, but one can generally as-
sume that the velocities needed increase with the size ratio, as
seen in both experiments and simulations of collisions between
rocky materials (Stewart & Leinhardt 2011; Leinhardt & Stewart
2012).

To provide more data in the transition region between
sticking and bouncing, Weidling et al. (2012) studied colli-
sions between particles 0.5−2 mm in size and at velocities of
0.1−100 cm s−1. In these experiments, sticking collisions were
found (in coexistence with bouncing events) for higher veloci-
ties than previously expected (Blum & Wurm 2000; Güttler et al.
2010), and enough data now exists to define a transition regime
between only sticking and bouncing. Similar experiments with
smaller particles roughly 100 µm in size were performed by
Kothe (priv. comm.), and are consistent with the threshold of
Weidling et al.

Schräpler & Blum (2011, SB11) also performed erosion ex-
periments between µm-sized monomer projectiles and mounted

high-porosity aggregates for velocities of up to 60 m s−1, to de-
termine the erosion efficiency as a function of the collision ve-
locity and the surface structure. They discovered that the ini-
tial stages of the monomer bombardment are very efficient even
at small velocities, but after the most loosely bound monomer
chains had been knocked off and the surface had been com-
pacted, the erosion was found to have greatly decreased.

2.2. Individual treatment of collisions

In the collision model of Güttler et al. (2010), a binary approach
was used for the particle mass ratios and porosities. Below a cer-
tain set critical mass ratio, rc = mt/mp = 10, 100, 1000, the col-
lision was treated as being between equal-sized particles, lead-
ing for example to global fragmentation if two large particles
collided at high velocities. If the mass ratio was above the criti-
cal ratio, the particles were assumed to have different sizes, and
a high-velocity collision would instead lead only to cratering.
The same approach was taken for the porosity. Below a criti-
cal porosity φc = 0.4, a particle was considered to be porous
for the purpose of determining the collision outcome, and above
it, the particle was assumed compact. Combining these two bi-
nary properties gave eight different collision scenarios, where
the collision outcome was determined by the particle masses,
porosities, and relative velocities.

In the new model, we instead used the current laboratory
data to interpolate between the two extreme mass-ratios. This
provides a continuous transition from equal-sized to differently
sized collisions, and allows us to distinguish between the col-
lisions of particles of different sizes at intermediate mass-ratios,
and provides a natural and smooth transition between the two ex-
tremes. We can therefore determine the velocity needed to cause
global fragmentation for a specific mass-ratio, which gives us a
more precise tool to assess when global fragmentation becomes
local cratering.

It is however necessary for us to make a simplification re-
garding the porosity of the dust grains. Adding additional prop-
erties to the dust grains is very computationally expensive for
continuum codes such as the Smoluchowski solver that we use
for the dust-size evolution, compared to Monte Carlo codes. In
the Monte Carlo approach, each timestep consists only of one
collision between a representative particle and a swarm of identi-
cal particles. After the collision, the properties (i.e. mass, poros-
ity, charge) of the representative particle is updated, and a new
timestep is initiated. This means that for a simulation with n rep-
resentative particles, each new property adds only an additional
time O(n) to the execution time.

In the Smoluchowski method, one has to numerically solve a
number of differential equations to update the number density of
all mass bins. For each grain size, n2 interaction terms need to be
considered, where n is the number of mass bins. This is because
a mass bin can collide with all bins including itself, but fragmen-
tation can also cause mass to be put into it by a collision between
two other bins. If an additional property such as porosity were
included, m = n porosity bins would need to be included, and
for each n · m bin, (n · m)2 interactions need to be considered,
and the code would be slower by a factor of O(m3). To include
porosity in the Smoluchowski solver, we would therefore require
some analytical trick such as an average porosity for each mass
bin described in Okuzumi et al. (2009). This is however outside
the scope of this paper, and we instead assume that all particles
are compact at all times. This is likely a good approximation for
larger particles outside the hit-and-stick region, as bouncing col-
lisions quickly lead to compaction of the particles. This finally
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Sticking (S) Bouncing (B)

Mass Transfer (MT)

Erosion (E)

Fragmentation (F)

Before collision

collision velocity

Fig. 2. Sketch of the five possible outcomes described in Sect. 3 sorted in rough order of collision velocity. Mass transfer and erosion act simulta-
neously in a collision, and we define a mass transfer collision as leading to net growth for the target, and an erosive collision leading to net mass
loss. This outcome is extremely dependent on the mass-ratio of the particles, thus adding a second, vertical dimension to the sketch.

gives us one single collision scenario, where we can for a col-
lision between any two given particles determine the outcome
based on their masses and relative velocities.

3. Implementation of the model

We now describe how the new collision model was created and
implemented into the code. We choose to include only the col-
lision types that proved to be the most important in the simula-
tions of Zsom et al. (2010). The collision types considered here
are sticking and bouncing as well as the transition between them,
mass transfer combined with erosion, and destructive fragmen-
tation. These types are shown schematically in Fig. 2, and dis-
cussed in detail in Sects. 3.1–3.3. In Table 1, we provide a sum-
mary of all the symbols used in this section.

3.1. Sticking and bouncing thresholds

We consider two dust grains colliding with a relative velocity
∆v. The projectile has a mass mp and the target a mass mt ≥ mp.
Weidling et al. (2012) found that the mass-dependent sticking
and bouncing threshold velocities can be written as

∆vstick =

(

mp

ms

)−5/18

[cm s−1] (3)

and

∆vbounce =

(

mp

mb

)−5/18

[cm s−1], (4)

where ms = 3.0 × 10−12 g and mb = 3.3 × 10−3 g are two
normalizing constants calibrated by laboratory experiments, and
the ∆v ∝ m−5/18 proportionality is consistent with the theoretical
models of Thornton & Ning (1998). The above two thresholds
mean that collisions with ∆v < ∆vstick result in 100% sticking,

Table 1. Symbols used in the collision model.

Symbol Meaning

ap/t radius of the projectile/target
mp/t mass of the projectile/target
∆v relative velocity between the particles
∆vstick sticking threshold velocity
ms sticking threshold normalizing constant
∆vbounce bouncing threshold velocity
mb bouncing threshold normalizing constant
vp/t center-of-mass velocity of the projectile/target
µ relative mass of the largest remnant
mrem mass of the largest remnant
mmt mass transferred from the projectile to the target
ǫac accretion efficiency during mass transfer
mer mass eroded from the target due to cratering
∆mt net mass change from mass transfer and erosion
ǫnet net accretion efficiency from mass transfer and erosion
vµ velocity needed to fragment with largest remnant µ
mµ fragmentation threshold normalizing constant

m0 mass of a monomer (=3.5 × 10−12 g)
mfrag total mass of the fragments

and∆v > ∆vbounce result in 100% bouncing (provided that neither
of the particles involved are fragmented). Inbetween these two
thresholds, we have a region where both outcomes are possible,
as described in more detail in Sect. 3.5.

3.2. An energy division scheme for fragmentation

From the fragmentation with mass transfer experiments de-
scribed in the previous section, we assume that mass transfer
with a range of efficiencies occurs in all cases where the pro-
jectile fragments. If the target also fragments, the mass trans-
fer is negligible compared to the huge mass loss, and we can
safely ignore it. We therefore need to determine for each colli-
sion whether one, both, or neither of the particles fragment.
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The majority of the dust collision experiments have however
been performed between either equal-sized or very different-
sized particles. To interpolate between these two extremes, we
need to consider the collision energy of the event, and deter-
mine how this energy is distributed between the two particles.
Not only the collision energy of an event matters when deter-
mining the degree of fragmentation, but also the mass-ratio be-
tween the two particles. In two collisions with equal collision
energy but different mass-ratios, we expect the higher mass-ratio
collision to be less efficient in completely disrupting the target,
as the energy will be more locally distributed around the contact
point. To take this into account, we choose to look at the particles
in the center-of-mass frame. In this frame, the massive particle
moves more slowly than the small one, and during the moment
of collision, the kinetic energy of the particles is reduced to zero.
Physically, this corresponds to a fully plastic collision where all
the energy is consumed by deformation and fragmentation.

In this approach, we assume that the kinetic energy of each
particle in the center-of-mass frame will be used to try to frag-
ment itself. The velocities of the two particles in the center-of-
mass frame are given by

vp =
∆v

1 + mp/mt

, (5)

vt =
∆v

1 + mt/mp

, (6)

all velocities in the center-of-mass frame will from now on be
denoted as v and then mean either vp or vt. The above equa-
tions imply that the largest particle has the lowest velocity in
the center-of-mass frame. In the case of an extreme mass ratio,
mp/mt → 0, the center-of-mass velocity of the projectile and
target is given by vp = ∆v and vt = 0, respectively.

During a fragmenting collision, the relative size of the largest
remnant can be described by

µp/t =
mrem

mp/t

, (7)

where mrem is the mass of the largest remnant and mp/t the
original particle mass. Depending on their sizes and material
strengths, the two original particles can be fragmented to dif-
ferent degrees. In this model, each collision partner is treated
individually with a µt and µp for the remnant of the target and
the projectile, respectively. We define the center-of-mass veloc-
ity required for the largest remnant to have a relative mass µ
as vµ.

Blum & Münch (1993) and Lammel (2008) studied the
threshold velocities needed for two mm-sized particles to frag-
ment with largest remnants of relative masses µ = 1.0 and
µ = 0.5, where the former corresponds to the onset of frag-
mentation and the latter to a largest remnant equal to half of the
original particle. Beitz et al. (2011) studied the threshold veloc-
ities for cm-sized particles. Interpolating between the results for
the two sizes, the center-of-mass frame threshold velocity can be
written as

vµ = (m/mµ)
−γ [cm s−1], (8)

where mµ is a normalizing constant calibrated by the laboratory
experiments and γ = 0.16. The fragmentation threshold velocity
is given by v1.0, where m1.0 = 3.67 × 107 g. The velocity required
for the largest fragment to have half the size of the original par-
ticle is v0.5, where m0.5 = 9.49 × 1011 g. The relative mass of the

largest fragment is fitted by a power law that depends on velocity
and mass

µ(m, v) = C ·
(

m

1 g

)α

·
(

v

1 cm s−1

)β

, (9)

the above equation is valid for all velocities v > v1.0. By fitting
the µ(m, v) plane to the two parallel threshold velocities given by
Eq. (8), we get

α = log(2)/ log(m1.0/m0.5) = −0.068, (10)

β = α/γ = −0.43, (11)

C = m−α1.0 = 3.27 [g−α]. (12)

This means that at a larger collision velocity, the particle will
fragment more considerably and the size of the largest fragment
will decrease. More mass is therefore put into the lower part of
the mass spectrum.

We can from Eq. (9) determine the largest fragment for each
of the particles in the collision, and also use it to identify frag-
menting collisions. If µp < 1 and µt ≥ 1, only the projectile frag-
ments and mass transfer occurs. If both µp < 1 and µt < 1, both
particles fragment globally. Since the center-of-mass velocity v
is inversely proportional to the mass of the particle, we never
have a case where only the target fragments and the projectile is
left intact, even if vµ decreases with mass.

3.3. A new mass transfer and cratering model

We use a new realistic approach to distinguishing between col-
lisions where the target experiences either net mass gain due to
mass transfer, or a net mass loss due to cratering. During each
collision, we assume that there is simultaneously:

– mass added to the target from the projectile via mass transfer;
– mass eroded from the target due to cratering.

We also assume that these two effects act independently of each
other. This is illustrated in Fig. 3, and can also be seen in the
high-velocity experiments of Teiser & Wurm (2009b). The mass
change of the largest particle can be described by

∆mt = mmt − mer, (13)

where mmt = ǫac · mp is the mass added by mass transfer with
the accretion efficiency 0 ≤ ǫac ≤ 1 and mer is the mass lost
due to cratering. An increase in the velocity not only leads to
increased mass transfer, but also increased cratering. This makes
it possible to naturally determine when growth becomes erosion.

The mass transfer efficiency is obtained from Beitz et al.
(2011), and depends on both the particle porosity and velocity.
Since we are unable to track the porosity of the particles, we as-
sume a constant porosity difference of ∆φ = 0.1 between the two
dust aggregates, where the target is always the more compact
one. This is likely a reasonable approximation for larger parti-
cles that have left the hit-and-stick phase and have had time to
compact during bouncing collisions, which is the region where
mass transfer can be expected. In our prescription, we also in-
clude a fragmentation threshold velocity dependence, so that the
efficiency is always the same for the same degree of projectile
fragmentation. This results in

ǫac = −6.8 × 10−3 + 2.8 × 10−4 ·
v1.0,beitz

v1.0
·
∆v

1 cm s−1
, (14)

where v1.0,beitz = 13 cm s−1 is the onset of the fragmentation
for the 4.1 g particles used by Beitz et al. (2011), and v1.0 is the
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mp

mt

mmt

mer

mp - mmt

mt - mer

Fig. 3. Sketch of the combined cratering and mass transfer process that
occurs during a high-enough velocity collision between a projectile with
mass mp and a target with mass mt. During the collision, an amount mmt

is added from the projectile to the target, and the rest of the projectile
is converted into small fragments with a total mass mp,frag. An amount
mer is simultaneously eroded from the target, and the final mass of the
target is given by m′t = mt + mmt − mer.

fragmentation threshold calculated for the mass of the projec-
tile, both calculated using Eq. (8). We here assume a maximum
mass transfer efficiency of ǫac = 0.5, as indicated by Wurm et al.
(2005). Owing to the process of fragmentation and mass trans-
fer considered here, a higher value would not be reasonable as it
would be indicative of complete sticking, which has never been
observed at these velocities.

If the collision energy is not high enough to fragment the par-
ticles globally, some of the energy is still used to break up local
bonds between monomers around the contact point, resulting in
cratering. The cratering efficiency has however only been studied
in a couple of laboratory experiments. For monomer projectiles,
Schräpler & Blum (2011) found an erosion efficiency given by

mer

mp

= 1.55 × 10−4 ·
∆v

1 cm s−1
− 0.4, (15)

where mer is the amount of eroded mass and mp = m0 is the

projectile mass, and m0 = 3.5 × 10−12 g is the monomer mass.
Paraskov et al. (2007) studied the erosion of porous targets with
both solid and porous projectiles, and found widely results de-
pending on the porosities of the projectile and target. Their re-
sults are therefore highly uncertain, but roughly agree with an
erosion efficiency of

mer

mp

=
3

400
·
∆v

1 cm s−1
, (16)

we however note that for the more compact dust aggregates ex-
pected after the compression by the bouncing phase, the ero-
sion efficiency should be far lower, as generally seen by Teiser
& Wurm (2009b). To interpolate between the two experiments
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Fig. 4. The threshold between growth and erosion from the model com-
pared to the mass-transfer experiments performed by Teiser & Wurm
(2009b). Filled circles show experiments where the target gained mass,
and open circles where it lost mass. The white dotted line shows the
threshold for the highly uncertain erosion prescription from cratering
experiments (collisions above the line result in erosion, and collisions
below result in growth). The contours are in intervals of 4% net accre-
tion efficiency and mark the region with net growth in the final prescrip-
tion calibrated using the Teiser & Wurm data.

where the degree of erosion has been measured, we assume a
mass power-law dependence of

mer

mp

= a ·
(

mp

m0

)k

·
∆v

1 cm s−1
+ b, (17)

where a, b, and k are fitting parameters. The above two erosion
experiments indicate the efficiency of the two different physical
effects. In monomer impacts, the projectile hits single surface
monomers and sometimes manages to break the bonds between a
couple of them. For larger projectiles, restructuring of the target
absorbs a lot of the collision energy, and a crater is formed both
because of surface compaction and the breaking of monomer
bonds. Direct comparisons and interpolations between the effi-
ciencies of the two effects can not be done without huge un-
certainties. A direct interpolation between the two effects yields
a = 1.55 × 10−4, b = −0.4, and k = 0.14, but we present below
another way of obtaining a reasonable erosion prescription.

As previously discussed, during a collision, erosion and mass
transfer usually occur simultaneously, and the net mass change
of the target is given by Eq. (13). For ∆mt > 0, the target expe-
riences net growth, and for ∆mt < 0, the target experiences net
erosion. With this prescription, the transition region is extremely
sensitive to the efficiency of the erosion.

In Fig. 4, we plot the results of the mass transfer experiments
performed by Teiser & Wurm (2009b). We compare this to the
threshold between growth and erosion (∆mt = 0) obtained from
the mass transfer prescription of Eq. (14) and the erosion pre-
scription of Eq. (17). The threshold derived using the experi-
ment erosion interpolation is given by the white dashed line, and
is very pessimistic compared to the mass-transfer experiments.

Since the experimental erosion prescription is obtained from
a very different parameter space than we are interested in, it is
highly uncertain, and much more so than the mass transfer ex-
periments discussed below. We therefore choose to calibrate the
three parameters a, b, and k of Eq. (17) using the experimentally
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Fig. 5. The fragment mass distribution for a 1 cm-sized particle after de-
structive fragmentation events of varying degrees. The largest remnant
is equal to in a) µ = 1, b) µ = 0.9, c) µ = 0.5, and d) µ = 0 in units of
the original particle mass.

obtained threshold between growth of erosion of Teiser & Wurm
(2009b). This results in

a = 9.3 × 10−6,

b = −0.4, (18)

k = 0.15.

Comparing the net growth efficiency of this fit marked by the
contours in Fig. 4 to the mass transfer experiments of Kothe et al.
(2010) (with 1 mm projectiles at velocities of 1–6 m s−1) and
Wurm et al. (2005) (with 1–10 mm projectiles up to 25 m s−1)
results in a rough agreement, even though our model is slightly
pessimistic compared to their results, with net efficiencies that
are roughly half of theirs. Regardless of this discrepancy, we take
this conservative estimate of the experiments and use it for our
model.

3.4. Fragmentation distribution

During cratering, mass transfer, and destructive fragmentation
events, the mass of each fragmented particle is divided into two
parts: the power-law distribution and the largest fragment. The
fragment power-law was determined experimentally by Blum &
Münch (1993), used in the model of Güttler et al. (2010), and is
written

n(m)dm ∝ m−κ dm, (19)

where n(m)dm is the number density of fragments in the mass
interval [m,m + dm], and κ = 9/8.

If the mass of the largest remnant is given by µ · m, where µ
is the relative size of the largest remnant described by Eq. (9),
the total mass that is put into the power-law distribution is equal
to (1 − µ) · m. We define the upper limit to the fragmentation
distribution to be min[(1 − µ), µ] · m. This means that as long as
µ < 0.5, we have a single distribution up to the largest remnant.
For µ > 0.5, on the other hand, more than half of the mass is
put into the largest remnant, which is then detached from the
power-law distribution.

This fragmentation recipe is similar to the four-population
model of Geretshauser et al. (2011), with the difference that we
treat the fragmentation of both particles individually. It is able to
describe all different degrees of fragmentation, and in Fig. 5, we
present the fragment distribution for four different values of µ.
In a), we are at the onset of the fragmentation, and all of the mass

is returned to the remnant, leading to no erosion. In b), more than
half of the mass is put into the remnant, which is therefore de-
tached from the size distrubution, and in c), the erosion is so
strong that the remnant becomes part of the power-law distribu-
tion. Finally, in d), the particle is completely pulverized, and all
of the mass is converted into monomers.

3.5. Implementation of the model

We now summarize the conditions and outcome of each
individual collision type as they have been implemented into
the code. The different types are, in order, sticking, transition
from sticking to bouncing, bouncing, mass transfer combined
with erosion, and destructive fragmentation, and they are all
shown schematically in Fig. 2. The conditions for sticking and
bouncing are given in Eqs. (3) and (4), and we use Eq. (9) to
determine which, if any, of the particles get fragmented during
a collision, resulting in fragmentation with mass transfer or
destructive fragmentation.

Sticking: (∆v < ∆vstick). The two particles stick together
and form a bigger particle of size mbig = mt + mp.

Sticking/bouncing transition: (∆v < ∆vbounce). Transition
from 100% sticking to 100% bouncing. We assume a logarith-
mic probability distribution between ∆vstick < ∆v < ∆vbounce

given by

pc = 1 − k1 · log10(∆v) − k2 (20)

where pc is the coagulation probability. At the sticking threshold
(Eq. (3)), we know that the sticking probability is pc = 1, and at
the bouncing threshold (Eq. (4)), the coagulation probability is
pc = 0. The constants are then

k1 =
18/5

log10(mb/ms)
= 0.40 (21)

k2 =
log10(mp/ms)

log10(mb/ms)
· (22)

Bouncing: (∆v > ∆vbounce), (µp > 1) and (µt > 1), (∆v < ver). If
the collision energy is too high to result in a sticking collision
but too low to fragment or erode any of the particles, the
collision results in a growth-neutral bouncing event. The two
masses involved in the collision are left unchanged. This type
of collision results in the compaction of both particles, although
we ignore any porosity changes in this model.

Mass transfer/erosion: (µp < 1) and (µt > 1) or (mer > 0). If the
collision velocity is high enough, erosion of the target will occur
(Eq. (17)). Simultaneously, if only the projectile fragments, we
have a fragmentation with mass transfer event (Eq. (14)). The
resulting mass change of the target is given by Eq. (13).

The fragmented mass from the projectile is divided into
two parts, a power-law and the largest remnant, with a total
mass of m = (1 − ǫac)mp. The power-law distribution has a total
mass of mfrag = (1 − ǫac)(1 − µp)mp and the largest fragment a
mass mrem = (1 − ǫac)µpmp. The fragments excavated from the
target by the cratering are distributed according to a power-law
distribution as described in Sect. 3.4, with an upper limit equal
to mer.

Fragmentation: (µp < 1) and (µt < 1).
Finally, if the collision velocity is high enough and the mass
ratio not too large, we get a destructive fragmentation event
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Table 2. Disk model parameters used in the simulations.

Parameter Symbol Value Unit

distance to star r 3 AU

gas surface density Σg 330 g cm−2

dust surface density Σd 3.3 g cm−2

gas temperature T 115 K

turbulence parameter α 10−3 -

maximum drift velocity vn 3.9 × 103 cm s−1

sound speed cs 6.4 × 104 cm s−1

solid density of dust grains ξ 1.6 g cm−3

where both particles are fragmented. We treat the fragmentation
of each particle individually, and get two separate fragment
distributions, one for the projectile and one for the target. Each
distribution is divided into two parts; the fragmentation power-
law distribution with a total mass of mfrag = (1−µp/t)mp/t and the
largest fragmentation remnant with a mass of mrem = µp/tmp/t.

4. The dust-size evolution model

With the collision model described in the previous section, it is
possible to determine the outcome of the collision between any
two particles. To study the evolution of the dust in the protoplan-
etary disk, however, we need to know the properties of the gas
and the sources of the relative velocity between the particles. In
this section, we describe the disk model used in this paper, along
with the dust evolution code of Birnstiel et al. (2010) that has
been used together with the new collision model to study the
dust-size evolution. A summary of the parameters used for the
disk model is given in Table 2.

4.1. The disk model

We follow the dust-size evolution locally at a distance of
3 AU from the star. To describe the gas distribution over the
disk, we use the minimum-mass solar nebula (MMSN) model
(Weidenschilling 1977b; Hayashi et al. 1985). This model is
based on the current Solar System, where the mass of all the
planets is used to predict the minimum total mass that would
have been needed to form them. It however excludes the effects
of both planetary migration and the radial drift of dust grains,
and the real initial disk profile might have been much different
(Desch 2007). It is however useful for comparison with previous
collision models. The gas surface density profile of the MMSN
is given by

Σg(r) = 1700

(

r

1 AU

)−1.5

[g cm−2], (23)

where r is the distance to the central star. At 3 AU, this results in
a gas surface density of 330 g cm−2, and if we assume an initial
dust-to-gas ratio of 0.01, a dust surface density of 3.3 g cm−2.

We assume four different sources of the relative velocities
between dust grains: Brownian motion, turbulence, and both az-
imuthal and radial drift. Since we use a local simulation at a set
point, we take into account the relative velocities that arise, but
do not allow the particles to move around in the disk. The differ-
ent sources are discussed briefly below (see Birnstiel et al. 2010,
for a more complete description).

Brownian motion arises from the thermal movement of the
particles, and is most effective for the smallest particles. It

depends on the mass of the particles as according to

∆vBM =

√

8kbT (mt + mp)

π · mtmp

, (24)

where kb is Boltzmann’s constant, and T = 115 K is the gas
temperature that we assume at 3 AU.

Turbulent motion arises from the particle interaction with the
surrounding gas, as it is accelerated by turbulent eddies of dif-
ferent size scales. We use the closed-form expressions derived
by Ormel & Cuzzi (2007). The turbulence strength is given by
the α parameter, which is generally assumed to lie between 10−2

and 10−4. The degree at which different particles are affected
by the turbulence is given by the Stokes number, denoting how
strongly a particle is coupled to the surrounding gas, which for
small particles can be written as

St =
ξa

Σg

π

2
for a <

9

4
λmfp, (25)

where ξ = 1.6 g cm−3 is the solid density of the dust grains, Σg

the surface density of the gas, and λmfp the mean free path of the
gas.

Radial drift gives rise to a relative velocity between particles,
as they are coupled differently to the surrounding gas (Whipple
1972; Weidenschilling 1977a). This can be written as

∆vRD =
∣

∣

∣vr(Mt) − vr(Mp)
∣

∣

∣ , (26)

where the radial velocity of a particle is given by

vr =
vg

1 + St2
−

2vn

St + St−1
· (27)

The first term comes from the drag of the surrounding gas on the
particle as the gas migrates radially, and vg is the the velocity of
the surrounding gas (Lynden-Bell & Pringle 1974). The second
term corresponds to the drift of the particle with respect to the
gas. Owing to the gas pressure, the gas moves at a slightly sub-
Keplerian velocity, and the particle thus experiences a constant
headwind, which causes it to lose angular momentum and drift
inwards. This effect is strongly related to the coupling between
the particle and the gas, where vn representing the maximum drift
velocity is derived by Weidenschilling (1977a) as

vn = −
∂Pg

∂r

2ρgΩk

(28)

and
∂Pg

∂r
is the gas pressure gradient, ρg the gas density, and Ωk

the Kepler frequency.
Azimuthal relative velocities are similar to radial drift, and

arise from gas drag in the azimuthal direction. The relative az-
imuthal velocity can be written as

∆vϕ =

∣

∣

∣

∣

∣

∣

∣

vn ·
⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

1 + St2
t

−
1

1 + St2p

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

· (29)

In Fig. 6, we plot the resulting relative velocity field between
each particle pair, taking into account the four sources described
above. For particles smaller than ∼10 µm, Brownian motion is
the predominant contributor to the relative velocity, causing ve-
locities on the order of mm−1. At larger sizes, turbulence be-
comes important, and velocities quickly increase to ∼1 m s−1.
As can be seen in Eq. (27), the radial drift is largest for particles
with a Stokes number of 1, which at 3 AU corresponds to around
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Fig. 6. The relative velocities for each particle pair calculated from
the four sources described in Sect. 4.1 using the parameters given in
Table 2.

30 cm in size. At roughly this size, owing to the combined ef-
fect of radial and azimuthal drift, the particles collide with the
smaller particles at velocities of around 50 m s−1, which then
decrease to 40 m s−1 as the particles grow larger and the radial
drift decreases.

4.2. The Smoluchowski equation

The dust-grain number density n(m, r, z) is a function of the grain
mass m, the distance to the star r, and the height above the mid-
plane z, and describes the number of particles per unit volume
per unit mass. The total dust density can therefore at a point (r, z)
be written as

ρ(r, z) =

∫ ∞

0

n(m, r, z) · m dm (30)

and the change in number density with respect to time can be
given by the Smoluchowski equation as

∂

∂t
n(m, r, z) =

∫ ∫ ∞

0

M(m,m′,m′′, r, z) (31)

× n(m′, r, z)n(m′′, r, z) dm′dm′′,

where M(m,m′,m′′, r, z) is called the kernel, and describes how
the mass m is distributed after an interaction between particles
of masses m′ and m′′. This distribution is determined by the use
of a collision model similar to the one developed in this paper
and is described in Sect. 3. Birnstiel et al. (2010) describe how
one constructs M from a collision model.

In the code implementation, the density distribution is dis-
cretized over logarithmically spaced mass bins. The resulting
mass(es) of a collision between two particles will generally not
coincide with one specific mass bin. To solve this, the result-
ing mass is therefore divided between the two neighbouring
mass bins by using the Podolak algorithm described in detail
by Brauer et al. (2008).

To solve the above equation and track the size-evolution of
the dust grains, we use an implicit scheme developed by Brauer
et al. (2008) and Birnstiel et al. (2010). This scheme allows for
longer timesteps and therefore shorter execution times.
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Fig. 7. Comparison between the new collision model (top) and the
model of Güttler et al. (2010) (bottom). The left and right panels
show the outcome for equal- and differently sized collisions, respec-
tively. Green regions mark collisions that are growth-positive for the tar-
get, yellow marks growth-neutral, and red marks growth-negative. “S”
marks sticking, “SB” the sticking to bouncing transition, “B” bounc-
ing, “MT” net mass transfer, “E” net erosion, and “F”, fragmentation.
In the transition region, the green parallel lines each mark a decrease in
sticking probability by 20%.

5. Results

We performed local simulations of the dust-size evolution us-
ing the collision model described in Sect. 3 and the evolution
code briefly described in Sect. 4. In this section, we discuss the
outcome of the new collision model and compare it to those of
previous models. We also show the results of the simulations and
compare the growth of the large particles to a simple analytical
model.

5.1. The collision outcome space

With the new collision model, we can determine the outcome of
a collision between two particles of arbitrary masses and veloci-
ties. In the upper panels of Fig. 7, we plot the collision outcome
as a function of projectile size and collision velocity for two
different mass ratios. This can be compared to the outcome of
Güttler et al. (2010) for compact particles shown in the bottom
panels. It can here be noted that our model naturally describes
the transition between the two extreme cases of equal-sized and
differently sized particle collisions, while Güttler et al. defined a
critical mass ratio to distinguish between the two regimes. The
upper right panel in the figure thus only gives a single snapshot
in this transition.

In the left panels, the two particles are of equal size, and
the models produce comparable results. In the new model, the
sticking region has been enlarged by the inclusion of a transition
region where both sticking and bouncing is possible. In the frag-
mentation region, the mass-dependent fragmentation threshold
has decreased the velocity needed to fragment larger particles,
and increased the velocity needed for the smallest particles. The
net outcome is that the width of the bouncing region has de-
creased significantly.

In the right panels, the target has a mass that is 1000 times
the mass of the projectile. Some important differences can be
seen in the fragmentation regime. We can first of all note the new
natural transition from growth to erosion that is produced by the
balance between growth from fragmentation with mass transfer
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Fig. 8. The collision outcome for all pairs of particles with the relative
velocity field calculated in Fig. 6 and with the same labels and color
code as in Fig. 7. Also included is the net mass transfer efficiency, given
in intervals of 4%.

and erosion from cratering (Eq. (13)). At this mass ratio, erosion
quickly becomes complete fragmentation. When the mass ratio
is increased yet further, the fragmentation region decreases and
is replaced by erosion.

As long as the projectile is fragmenting, velocities below the
erosion threshold always cause to growth, and a cm-sized pro-
jectile can initiate mass transfer at velocities as small as about
20 cm s−1 (which is exactly the result of Beitz et al. 2011). At
∆v = 10 m s−1, projectiles smaller than around 1 cm are required
for growth. The maximum projectile size decreases with veloc-
ity as the erosion grows stronger, and at ∆v = 50 m s−1, growth
is only possible for projectiles smaller than 100 µm.

We predict overall more fragmentation and cratering than in
the previous model of Güttler et al. (2010). However, one very
important change is that growth via fragmentation with mass
transfer is now possible at higher velocities than the 20 m s−1

that was the previously predicted threshold, and provided that
the projectile is small enough, even a collision at 50 m s−1 as pre-
dicted in the disk model can lead to growth of the target (which
was a direct conclusion of Teiser & Wurm 2009b).

Sticking collisions are also possible at larger sizes, and
growth-positive mass transfer works at much lower velocities
than the previously assumed 1 m s−1. Even if the bouncing region
shrinks in size, we demonstrate below that this is insufficient to
remove the bouncing barrier. If we insert a particle above the
bouncing barrier, however, the relative velocity required for it to
interact beneficially with the particles below the bouncing bar-
rier has been decreased. These two results turn out to be quite
important, as discussed in more detail in Sect. 5.2.

The collision outcome for the new model depends on the
mass of both the projectile and the target, and in the current disk
model, we use only the average relative velocity between each
particle pair. This means that a collision between a given pair
in the evolution model always results in the same outcome, and
it would therefore be instructive for us to plot the outcome in
the particle size-size space. In Fig. 8, we have used the relative
velocity field calculated in Sect. 4.1 at a distance of 3 AU to
determine the outcome for each collision pair.

small
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Fig. 9. A zoomed-in sketch of the collision outcome space shown in
Fig. 8. The dashed horizontal line shows the interaction path that the
seed will experience during its growth. The h parameter illustrates the
minimum distance between the interaction path and the erosive region.
A positive h means that the boulder/small particle interactions will al-
ways be growth-positive, and a negative h means that the growth will at
some point be stopped by erosion.

In this figure, the bouncing barrier is clearly visible. Owing
to the too high collision velocities, dust grains of sizes 100–
800 µm that interact with smaller particles will bounce if the
particle is not smaller than 10 µm. In this case, a small num-
ber of collisions will lead to sticking, but in order to pass the
wide bouncing region, a grain would need to experience 109 such
sticking collisions. The small particles however themselves co-
agulate to 100 µm, making growth through the bouncing barrier
very difficult.

Collisions between two equal-sized particles larger than
1mm will result in destructive fragmentation, but depending on
what it collides with, a 1 mm-sized particle can also be in-
volved in sticking, bouncing, mass transfer and erosive colli-
sions. Owing to the fragmentation with mass-transfer effect, a
meter-sized boulder can grow in collisions if its collision partner
is of the right size, in this case smaller than 200 µm. As we can
see in this plot, the key to growing large bodies is therefore to
sweep up smaller particles faster than they get eroded or frag-
mented by similar-sized collisions.

From Fig. 8, we can already see without performing any sim-
ulations that a cm-sized particle would be capable of growing to
large sizes if it collides with the right projectiles. The important
parameter needed to determine this is illustrated in Fig. 9, which
contains a sketch of a part of the collision outcome plot. Because
of the bouncing region, most of the particles will be found in the
region marked in the figure. A boulder needs to interact ben-
eficially with these bouncing particles in order to grow, so the
horizontal interaction path needs to at all times be in the growth-
positive mass-transfer region. This can be illustrated with the h
parameter, which gives the minimum difference between the in-
teraction path and the erosive region. If h is positive, the boulder
will always interact beneficially with the bouncing particles, but
if h for some reason were to become negative, the growth of the
boulder would stop.

We can now highlight the interesting effect that turbulence
has on the collision outcome. For particles of sizes between
10 µm and 10 cm, turbulence is the dominant velocity source. If
the relative velocity is higher in this regime, the bouncing barrier
will be pushed to smaller sizes. The larger particles are not how-
ever as much affected by a stronger turbulence, as these sizes are
also affected by both radial and azimuthal drift. This means that
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Fig. 10. The surface density evolution of the dust population for three
different simulations at a local simulation at 3 AU. The gray diagonal
lines correspond to the required surface densities for a total number of
particles of 1, 103 and 106 in an annulus of thickness 0.1 AU. In the
upper panel, all particles initially have a size of 10−4 cm, and snapshots
are taken between 2 and 106 years. In the middle panel, we have run
the same simulation, but after 10 800 years, a small number of 1 cm-
particles have artificially been inserted. In the lower panel, the bouncing
barrier has been replaced with sticking, allowing the particles to freely
coagulate to larger sizes.

the h parameter will remain constant or possibly even increase
with stronger turbulence. Strong turbulence might therefore even
be beneficial for this mode of growth, as the larger particles will
now interact with generally smaller particles, which we from
Fig. 4 know promotes the mass transfer effect. Because of this,
even if the boulders due to strong turbulence have relative veloc-
ities of ∼100 m s−1, they can grow in interactions with the small
particles at the bouncing barrier, as these have correspondingly
decreased in size.

5.2. The dust-size evolution

We performed simulations using the new collision model to-
gether with the local version of the Birnstiel et al. (2010) contin-
uum dust-size evolution code. In Fig. 10, the mass distribution
of the particle sizes is given at different timesteps for the three
different experiments discussed in detail below.

5.2.1. Growth up to the bouncing barrier

In the fiducial case presented in the top panel, the simulations
are initiated using all dust made up of µm-sized monomers. At
these small sizes, the relative velocity is driven by Brownian
motion, and as the particles collide with each other, they stick

together and form larger aggregates. This leads to a rapid coag-
ulation phase where the aggregates grow to 100 µm in around
1000 years. At this point, the particles have grown large enough
to become affected by the turbulence, which quickly increases
the relative velocities. As we predicted in Fig. 8, the bouncing
region is too wide to be surpassed, and the growth halts at the
bouncing barrier.

At this stage, the only particles that can grow are the smaller
ones, and as time proceeds, more and more particles get trapped
at the bouncing barrier. This causes the number of small parti-
cles to continue decrease, leading to a continuously narrowing
size-distribution. After 105 years, virtually all particles can be
found to have sizes of 100 µm, with very steep distribution tails
between 60 and 300 µm. If nothing else is done, this is how
the dust evolution ends. The bouncing barrier efficiently prevents
any further growth, and all particles remain small.

5.2.2. A seeding experiment

To investigate the potential of the mass transfer effect, we per-
formed an experiment where a very small number (i.e. 10−18

of the total mass) of 1 cm-particles are artificially inserted as
“seeds”. As can be seen in Fig. 8, the interaction between the
1 cm and 100 µm-particles results in mass transfer and growth of
the larger particle, and we expect the inserted particles to be able
to grow. The seeds are inserted at a single time t = 10 800 years,
when the particles have reached the semi-stable state at the
bouncing barrier, and the result can be seen in the middle panel
of Fig. 10. Exactly how the seeds are formed will not be dis-
cussed in this paper, but given the small number of seeds re-
quired, stochastic effects, small variations in local disk condi-
tions or grain composition and/or properties might suffice to
produce them. Some other possibilities are briefly discussed in
Sect. 5.4.

To better understand the complex interaction between all the
particles in this experiment that now follows, we introduce the
collision frequency plot given in Fig. 11. This shows the colli-
sion frequency between each particle pair plotted on top of the
collision outcome map of Fig. 8, making it possible for any given
time to identify the dominating collision type for a given particle
size.

The first two snapshots in the collision frequency plot are
taken after 2 and 5900 years, and are identical to the fiducial
case discussed earlier. At the bouncing barrier, we can see some
interaction between the 200 µm particles and the smallest parti-
cles that do lead to growth, but the frequency is much too small
to have any significant effect.

After 10 800 years, the 1 cm seeds are inserted, and they
grow to larger boulders by sweeping up the small particles
trapped at the bouncing barrier. As the boulders grow, one can af-
ter ∼200 000 years see a tail of particles with intermediate sizes
appear behind them. These are formed by the rare collisions be-
tween the large boulders, and from a single event, two large bod-
ies have been multiplied to a myriad of fragments also capable
of sweeping up the particles at the bouncing barrier. This ef-
fect causes the population of boulders to not only grow in total
mass, but also in number, which causes a steady and significant
increase in similar-sized fragmentation.

It can also be noted how the vertical distribution of dust
around the midplane affects this stage of the evolution. Even if
there is a huge amount of particles trapped at the bouncing bar-
rier, they are so small that many of them are pushed out from the
midplane due to turbulent mixing. The boulders are however so
large that they have decoupled significantly from the gas, and are
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Fig. 11. The collision frequency map for the scenario where 1 cm-particles are artificially inserted at t = 10 800 years. The interaction frequency
is plotted for each particle pair at six different timesteps plotted on top of the collision outcome space of Fig. 8. This makes it possible to identify
the dominating interaction for each particle size. Note the persistently high peak of interactions with particles stuck below the bouncing barrier at
1 mm in size. As the large particles grow, they also sometimes collide among themselves, producing a tail of particles capable of also sweeping up
the bouncing particles. This causes an increase in both mass and number for the large particles, and a continuous widening of the size-distribution.

therefore mostly trapped in the midplane. This causes the sweep-
up rate of the mm-sized particles by the boulders to be distinctly
lower than without a vertical structure, and also the internal col-
lisions between the boulders to be relatively more common.

The smallest particles that are produced by global fragmen-
tation and erosion mainly experience two different interactions.
In the early stages, the smallest fragments are generally being
swept up by the 100 µm-sized particles stuck at the bouncing
barrier, since these particles dominate completely both in num-
ber and mass. They have therefore never any time to coagulate
to larger sizes themselves, but instead aid in the growth of the
bouncing particles, which are in turn swept up by the boulders.
At later stages, as the boulders become more numerous, it is also
possible that the smallest fragments are swept up directly by the
boulders. If this growth continues even longer, the two effects
become equally efficient, and even later, the boulders will start
dominating in the sweep-up. Regardless of what sizes the small
fragments interact with, in the end, they are still beneficial for
the growth of the boulders.

In the end, a number of 10–70 m boulders have managed
to form, and the total amount of mass in the large particles has
increased by the huge factor of 1012 from what was initially in-
serted into the system, even though the total boulder mass is still
very small compared to the total dust mass. We find that the lim-
iting case for the growth at this point is not so much erosion or
fragmentation as it is the growth timescale (see also Johansen
et al. 2008). If the simulation runs for longer than 106 years, the
boulders can keep on growing and several hundred-meter boul-
ders can form. In other places in the disk with higher dust den-
sities and relative velocities, larger boulders will be able to form
on the same timescale.

Growth by sweep-up gives us an explanation of how the col-
lision part of the growth barrier can be circumvented, but we

have in these simulations disregarded the effect of the orbital de-
cay from gas drag. The growth timescales in Fig. 10 exceed by
several orders of magnitude the lifetime of meter-sized bodies
subject to radial migration. To survive, the bodies need to either
form on a timescale very much shorter than observed in our sim-
ulations, which we find unlikely, or some effect needs to exist
that prevents the orbital decay over an extended period of time
(Barge & Sommeria 1995; Klahr & Henning 1997; Brauer et al.
2007; Pinilla et al. 2012).

5.2.3. Removing the bouncing barrier

To illustrate the importance of the bouncing barrier, we devised
an experiment in which all the bouncing collisions are removed
and replaced by sticking. There is therefore nothing that prevents
the coagulation phase from continuing to larger sizes. The results
of this simulation are shown in the lower panel of Fig. 10.

The particles can now grow unhindered until they reach
about 1 mm in size. At this point, they begin to fragment among
themselves, as we can see in Fig. 8. Since most of the dust can be
found at this size, heavy fragmentation occurs, and a cascade of
smaller particles are produced. These small particles again grow
up to larger sizes, where most of them again fragment. From the
collision outcome plot, we can however see that some particles
can be lucky, and instead sweep up only smaller particles via
mass transfer. They therefore avoid fragmentation, and keep on
growing, and form the distribution tail extending from 1 mm and
upwards.

At a size of roughly 1 m, the only way to grow is by colliding
with 100 µm or smaller particles. However, in the absence of a
bouncing barrier, most of the mass is found instead in 1 mm par-
ticles. This means that almost all of the interactions become ero-
sive, and the growth halts.
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Fig. 12. The surface density evolution of the dust population for three
different turbulence strengths (α = 10−4, 10−3, 10−2) at 3 AU, with seeds
inserted artificially after t = 10 800 years.

In the above example, we saw that increasing the stickiness
of particles in the end actually prevented the growth of large
boulders. From this result, we can draw the conclusion that the
bouncing barrier might even be beneficial for the formation of
planetesimals. By hindering the growth of most particles, growth
might be possible for the lucky few.

5.2.4. The effect of turbulence

We have so far studied only one single turbulence parameter of
α = 10−3. This value is however uncertain for nebular models,
and to investigate the dust evolution in different velocity fields,
we also study the cases of α = 10−4 and α = 10−2. The latter rep-
resents a strong turbulence that completely predominates over
the azimuthal and radial drifts and results in relative velocities
up to 100 m s−1. In the former case, the turbulence is weak, and
contributes very little to the velocities of the larger particles. In
Fig. 12, we plot the resulting size evolutions for the three turbu-
lence parameters but otherwise identical initial conditions. The
middle panel is here the same as the middle panel of Fig. 10 and
included for reference.

It can first of all be noted that growth to larger sizes is pos-
sible even in the case of very high turbulence, as we predicted
using Fig. 9. This is due to the decrease in size of the bounc-
ing particles as the turbulence increases. The smaller impacting
projectiles can therefore cause the boulder to grow also at higher
velocities, as seen in Fig. 4.

The growth timescale is affected by the turbulence in several
different ways. Firstly, it increases the relative velocities between
the particles, leading to higher collision frequencies and there-
fore to more rapid growth. Higher impact velocities also lead

to a higher net mass transfer efficiency, which in Fig. 4 is seen
to be particularly low for velocities below 10 m s−1. A higher
turbulence also mixes small particles further away from the
midplane, which decreases their midplane densities where the
largest boulders gather, lowering the growth rate. From Fig. 12,
it is clear that the growth-positive effects predominate, leading
to enhanced growth at higher turbulence. In the low turbulence
case, the growth is especially slow for particles of sizes between
1 cm and 100 cm. In this regime, the relative velocities are very
low since the contributions from the azimuthal and radial drift
are small, causing very low net mass accretion efficiencies dur-
ing the sweep-up growth.

In the α = 10−2 case, we can see in the final snapshot that a
separate peak has appeared for the largest boulders. This peak
occurs when the boulders have fragmented so much between
themselves that the large intermediate-sized fragments are at
number densities roughly equal to the boulders, which in this
case happens after∼600 000 years. At this point, the boulders are
significantly eroded and fragmented, which creates even more
intermediate-sized particles capable of yet more fragmentation.
This results in a fragmentation cascade, and a rapid flattening of
the size-distribution. This does not however cause all the large
particle to be destroyed, and those that survive can continue to
grow by sweeping up the small bouncing particles that still dom-
inate both in terms of number and total mass. This effect also
occurs for the cases of weaker turbulence if the simulations run
long enough, but is never severe enough to cause a complete halt
of the growth.

We have demonstrated that growth can also proceed in re-
gions of high turbulence. An MRI turbulent disk might how-
ever also create an additional velocity source, where local gas
density fluctuations can excite the orbital eccentricities of the
planetesimals. Ida et al. (2008) found that this can lead to ve-
locities beyond break-up even for small planetesimals, although
they studied only collisions between equal-sized bodies. In our
model where only the material strength of the body is included,
a collision between two large and similarly sized bodies will be
destructive even in regions of very low turbulence, such that in
this regime, it has little effect on our conclusions. Excited plan-
etesimal orbits however also increase the impact velocities of
the small particles, which could pose a problem. In previous
cases, growth had been possible in regions of high turbulence
because the sizes of the bouncing particles were simultaneously
suppressed by the turbulence, but this is not necessarily the case
in the scenario studied by Ida et al. This might cause greater ero-
sion of the growing planetesimals, but investigating this further
is beyond the scope of this paper.

5.3. A simple analytical model

To verify the results of our simulations, where growth is caused
by the sweeping-up of small particles by a few lucky seeds, we
develop a simple analytical growth model in a similar fashion
to Johansen et al. (2008) and Xie et al. (2010). We consider a
scenario where a single large body of mass m moves around in
a sea of small particles of mass ms stuck at the bouncing barrier.
The growth of the large body can then be described by

dm

dt
= σ∆v · ǫnetnsms, (32)

where σ = π (as + a)2 ∼ πa2 is the collisional cross-section, ∆v
the relative velocity, ns the number density of the small particles,
and ǫnet the average net mass-gain efficiency of a collision. The
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change in size a with respect to mass can be written as dm =
4πξa2 da, where ξ = 1.6 g cm−3 is the internal density of the
large body. We can now write

da

dt
=

1

4

ρs

ξ
ǫnet∆v, (33)

where ρs = nsms is the mass density of the small particles. For
now, we assume that the relative velocity is only caused by tur-
bulence, and for small particles can therefore be estimated by
(Weidenschilling & Cuzzi 1993; Cuzzi et al. 2001)

∆v =

√

9

2
αSt · cs, (34)

where α = 10−3 is the turbulence parameter, St the Stokes num-
ber for the boulder given by Eq. (25), and cs the sound speed in
the gas given by

cs =

√

kbT

µmp

, (35)

where kb is Boltzmann’s constant, T = 115 K the temperature of
the gas, µ = 2.3 the mean molecular weight, and mp the mass of
a proton.

We assume ρs to be constant and unaffected by the sweeping-
up of the large boulder. When the boulder has grown large
enough, it is hardly affected by the vertical mixing from tur-
bulence, and is mostly found near the midplane. We therefore
take ρs = 10−12 g cm−3 to be the midplane density assuming a
Gaussian vertical profile with a surface density Σs = 3.3 g cm−2

and that all the dust mass can be found in the small particles.
Eq. (33) can then be solved analytically

a(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

8
ǫnet

ρs

ξ

√

9

4

ξ

Σg

πα · cs (t − t0) +
√

a0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2

. (36)

In Fig. 13, we plot the above analytical solution of the boulder
growth assuming ǫnet = 0.006, which is the expected efficiency
for the interaction between a 1 cm and a 1 mm body. We assume
that the other parameters are identical to those in the simulations.
This was compared to the observed growth of the largest particle
from the seeding simulations in Sect. 5.2.2 using the full col-
lision model. As can be seen, our analytical solution compares
well to the growth rate of the simulations for the first stage of
growth, and then at later stages differs greatly.

This is due to mainly two reasons. Assuming a constant ǫnet

means that at larger sizes it will be underestimated, as in the full
model it depends on the collision velocity and varies between
0 and 0.15. The relative velocity prescription in Eq. (34) only
takes into account the turbulence, and is also not valid for large
particles. In order to take this into account, we use the full net
growth efficiency from Eq. (13) and all four velocity sources dis-
cussed in Sect. 4. We then solve Eq. (33), and plot the resulting
solution in Fig. 13. The new solution and the simulation results
now agree very well, only to differ slightly at the largest particle
sizes.

We found that this enhanced growth is triggered by the ex-
istence of the tail of intermediate-sized particles that form from
fragmenting events between large bodies. The largest boulders
found in the simulations are those that manage to grow by avoid-
ing interactions with other large bodies. When they manage to
interact beneficially with some of the intermediate-sized frag-
ments, the growth rate increases.
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Fig. 13. The growth of a boulder in the simulations (black) compared
to two growth estimates. The red line corresponds to the simplified an-
alytical estimate, and the blue line to the estimate using the full relative
velocity and accretion efficiency prescriptions.

5.4. Forming the first seeds

The width of the bouncing barrier has been found in recent
sticking and fragmentation experiments to be smaller, but still
prevents particles from exceeding its limit. As previously dis-
cussed, this might even be positive for the planetesimal forma-
tion, as it prevents too many large bodies from forming, keep-
ing them from fragmenting and eroding among themselves. It is
however necessary for some cm-sized seeds to form and initiate
the sweep-up.

In this work, we have found that the bouncing barrier can
be circumvented, and growth via mass transfer initiated, even if
only a very small number of cm-sized particles is introduced into
the system. In this paper, we have not investigated in detail how
this might happen, but there are many possibilities. Larger par-
ticles may form outside the snow-line mixed with ices, and drift
inwards to a region where sweep-up becomes possible. Calcium-
and alumunium-rich inclusions (CAIs) are cm-sized particles
that are believed to have been formed early near the Sun and
transported outwards within the disk (Ciesla 2009), and might
also have constituted the first generation of seeds.

It is also possible that some lucky particles grow through
the barrier simply by interacting with a sufficient number of
smaller particles, as can be seen in the collision outcome plot
in Fig. 8. For this to happen, however, it is necessary to have a
wide enough size-distribution for there to be enough small par-
ticles for the lucky particles to interact with. This, it turns out,
is difficult, as we have in these simulations found that the par-
ticle size-distribution will quickly narrow as all the small dust
coagulate up to the bouncing barrier. If extra mass is continu-
ously introduced into the system during the first 10 000 years or
so, for example by the nebular infall of the collapsing protostel-
lar cloud, the particle size-distribution could be wide enough for
some seeds to be formed. Beitz et al. (2012) also found in lab-
oratory experiments that chondrules and dust aggregates tend to
stick at higher velocities than collisions between two dust ag-
gregates, so that early chondrules could grow where dust could
not.

Another possibility is the introduction of a velocity distribu-
tion for each particle-size. Most studies of the dust-size evolu-
tion have considered only the average relative velocity between
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two particles, but in reality, some particles will also collide at
both much higher and lower velocities. If some particles were
lucky enough to only collide with others at low velocities, they
might stick together when they would otherwise only bounce,
and then grow large enough to initiate sweep-up.

6. Discussion and conclusions

To explore the possibility of growth of dust particles into plan-
etesimal sizes by collisions, we have implemented a new colli-
sion model that is motivated both physically and experimentally.
It has been streamlined to work with continuum codes, while
still being able to take into account all important collision types
identified in previous work. In combination with continuum dust
evolution codes, all dust grains can be resolved independently of
their numbers, something that we have found essential for the
study of growth of dust grains to greater than cm-sizes.

Even though collisions between large similarly sized dust
grains generally lead to fragmentation, this is not necessarily true
for larger mass ratios if the projectile is small enough. As shown
in laboratory experiments, if the projectile is smaller than 0.1–
1 mm in size, fragmentation with mass transfer can cause growth
of the target for impact velocities as high as 60 m/s. For dust
grains to grow larger than cm-sizes via collisions, the number of
large particles has therefore to be very small to avoid destruc-
tive fragmentation among themselves, and most of the dust mass
remains at small sizes.

In our simulations, we have found that direct growth of plan-
etesimals via dust collisions is a strong possibility. In addition,
the bouncing barrier introduced by Zsom et al. (2010) might be
beneficial or even vital for the planetesimal formation, as it pro-
vides a natural way of ensuring that most of the dust population
remain small. These small dust particles are ideal for the sweep-
up process if larger bodies manage to form. By artificially insert-
ing a few 1 cm-sized seeds into our simulations, we have dis-
covered that they can sweep up the small dust via fragmentation
with mass transfer and grow to ∼100 m in size on a timescale
of 1 Myr. This leads to exciting new possibilities that need to be
taken into account when studying dust growth in protoplanetary
disks.

The observed growth rate is relatively slow, mainly due to a
low mass transfer-efficiency, the high turbulence that kickis the
small particles away from the midplane where the boulders are
concentrated, and the low dust densities even at radii as small
as 3 AU. This means that it might be necessary to form plan-
etesimals in regions with enhanced densities such as in pressure
bumps, where it can be accelerated, and also that there is a need
for the radial drift to be prevented over long timescales. We have
found that planetesimals formed in this way would be small, be-
tween 100 m to some kilometers in size, which is smaller than
what was generally predicted by Xie et al. (2010), who assumed
a higher mass-transfer efficiency.

This mode of growth is however also able to function in
regions of high turbulence with relative velocities reaching
100 m s−1. This is because the turbulence affects not only the
size at which projectiles start to erode larger particles, but also
simultaneously the size of the particles at the bouncing barrier.
Another important effect we have found is that a very small num-
ber of seeds are necessary to initiate sweep-up. As the large
particles collide with each other, they will create a number of
intermediate-sized particles that are also able to sweep-up the
small particles, causing the population of large particles to in-
crease not only in total mass, but also number.

Exactly how these seeds would be introduced into the sys-
tem needs to be explored in greater detail. We have shown that
thanks to a combination of more efficient sticking found in re-
cent laboratory experiments and our ability to numerically re-
solve very small numbers of particles, the bouncing barrier can
be either overcome or circumvented. If the dust size-distribution
is wide enough, a small number of lucky particles might grow
over the barrier via hit-and-stick collisions with much smaller
particles. This shows that the initial conditions of planet forma-
tion might be very important to how the dust growth proceeds.
Another option, which we intend to investigate further, is the ef-
fect of adding a velocity distribution for each particle size, which
would make it possible for some lucky particles to always ex-
perience low-velocity collisions and thus grow to large enough
sizes.

Our present study has helped to illustrate where the focus
of future laboratory experiments should lie. It is clear that for
collisional growth of larger particles to be possible, it has to
occur between particles of very different sizes. However, very
few experiments have been performed to quantify the amount of
erosion or mass transfer that occurs for various projectile sizes,
porosities, velocities, and impact angles, and the understanding
of the physical process remains unclear. The maximum size a
projectile can reach while aiding the growth of the target by mass
transfer determines whether the small bouncing particles cause
erosion or growth of the large boulders. It is also necessary in
the lab to determine the smallest projectile size that still leads
to growth. Laboratory experiments show that monomer impacts
lead to erosion, but whether erosion still occurs at 10 or 100 µm
is unknown. To determine in which parameter space fragmen-
tation with mass transfer occurs, more experiments need to be
performed.

With an implicit scheme, this code runs fast in terms of ex-
ecution time, and should be suitable for global disk simulations,
something that is not possible with a Monte Carlo approach. In
future work, we intend to implement our new collision model
in the global dust evolution code of Birnstiel et al. (2010). This
will make it possible to naturally study the number of seeds that
can be formed in the disk and how they migrate inwards to other
parts of the disk, and also to see how this more sophisticated
collision model affects the dust sizes further out in the disk at
80–100 AU where comparison with observations is possible.
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