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Abstract

We introduce PlanetP, a content addressable pub-
lish/subscribe service for unstructured peer-to-peer (P2P)
communities. PlanetP supports content addressing by pro-
viding: (1) a gossiping layer used to globally replicate a
membership directory and an extremely compact content in-
dex, and (2) a completely distributed content search and
ranking algorithm that helps users find the most relevant
information. PlanetP is a simple, yet powerful system for
sharing information. PlanetP is simple because each peer
must only perform a periodic, randomized, point-to-point
message exchange with other peers. PlanetP is powerful
because it maintains a globally content-ranked view of the
shared data. Using simulation and a prototype implementa-
tion, we show that PlanetP achieves ranking accuracy that
is comparable to a centralized solution and scales easily to
several thousand peers while remaining resilient to rapid
membership changes.

1 Introduction

Peer-to-peer (P2P) computing is emerging as a power-
ful paradigm for collaboration over the Internet. The ad-
vantages of this paradigm include: (a) the ability to leave
shared, but distributed, data at their origin, rather than in-
curring the cost, privacy and safety concerns of collecting
and maintaining them in a centralized repository, (b) ease
of incremental scalability, and (c) the possibility of scaling
to extremely large sizes.

In this paper, we propose a novel approach to the con-
struction of a content addressable publish/subscribe service
that uses gossiping [4] to replicate global state across un-
structured communities of several thousand, perhaps up to
ten thousand, peers. The success of Internet search engines
in indexing newsgroups and mailing lists (e.g., Google�
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Groups) as well as the web in general argues that content-
based search and ranking is a powerful model for locating
information across data collections exhibiting a wide range
of sizes and content. We focus on unstructured P2P com-
munities because the underlying infrastructure can be made
resilient to unpredictable and rapid changes in membership
without introducing undue complexity. In contrast, typi-
cal implementations of structured communities using dis-
tributed hash tables must implement very complex stabiliz-
ing algorithms [16].

Finally, we target thousands of peers because most other
efforts have ignored this range in attempting to scale to mil-
lions of users (e.g., [27, 20, 23]). (Although we discuss
several ideas for scaling PlanetP well beyond this level in
Section 6.) Our target range can have significant impact:
there are currently many communities around this size such
as those served by Yahoo Groups, Dalnet’s IRC servers, and
thousands of other Usenet servers around the globe. Yahoo
alone hosts more than two million user groups that share
files and engage in public debates. On a different front, our
approach can also be applied to manage distributed com-
puting environments such as grid systems (e.g., maintaining
membership, service description, and aggregate statistics);
recent work shows the promise of such a P2P management
approach [24, 6]. Thus, our work explores the question of
whether certain functionalities, such as content ranking, that
are extremely difficult to implement in very large systems
becomes possible to implement at our target scale.

Our approach is comprised of two major components:
(1) an infrastructural gossiping layer to support the replica-
tion of shared data structures across groups of peers, and (2)
an approximation of a state-of-the-art text-based search and
rank algorithm1. The latter requires two small data struc-
tures to be replicated globally: a membership directory and
an extremely compact content index. All members agree
to continually gossip about changes to keep these shared

1Our algorithm can be used to search and rank multi-media as well as
text documents since today’s multi-media formats such as MP3 and AVI
support the embedding of descriptive text.
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data structures updated and loosely consistent. We explic-
itly chose gossiping because of its robustness to the dy-
namic joining and leaving of peers and independence from
any particular subset of peers being on-line.

We have realized our proposed approach in a prototype
system called PlanetP, which indexes shared documents in
a way that allows peers across the entire community to lo-
cate specific document based on their content in an entirely
distributed fashion. We argue that PlanetP is a simple, yet
powerful system for sharing information. PlanetP is simple
because each peer must only agree to perform a periodic,
randomized, point-to-point message exchange with other
peers, rather than collaborate to correctly and consistently
maintain a complex distributed data structure. PlanetP is
powerful for two reasons: (a) it can propagate information
in bounded time in spite of the uncoordinated communal be-
havior, and (b) it maintains a globally content-ranked data
collection without depending on centralized resources or
the on-line presence of specific peers.

In this paper, we address several questions, including:� How effective is PlanetP’s content search and rank al-
gorithm given that it maintains a global index that con-
tains even less information than previous related ef-
forts [9, 3]?� Can PlanetP maintain a usable level of consistency for
shared data structures given the randomness inherent
in gossiping? That is, when a change occurs, how long
does it take to reach all on-line peers and does it con-
sistently reach all on-line peers?� Are PlanetP’s bandwidth and storage requirements
consistent with the constraints of typical P2P commu-
nities?

We use simulation and measurements from our prototype
implementation to answer these questions. In particular, we
show that PlanetP achieves search and rank accuracy that
is comparable to a centralized solution and scales easily to
several thousand peers.

2 Gossiping

PlanetP uses gossiping to replicate shared state across
groups of peers in a P2P community. PlanetP’s gossiping al-
gorithm is a novel combination of an algorithm previously
introduced by Demers et al. [4] and a partial anti-entropy
algorithm that we have found improves performance sig-
nificantly for dynamic P2P environments. Briefly, Demers
et al.’s algorithm works as follows when synchronizing a
shared data structure that is replicated globally. Suppose �
learns of a change to the replicated data structure. Every���

seconds, � would push this change (called a rumor) to a
peer chosen randomly from its directory; the directory is a

data structure that describes all peers in the community and
is itself replicated everywhere using gossiping. If 	 has not
seen this rumor, it records the change and also starts to push
the rumor just like � . � stops pushing the rumor after it has
contacted 
 consecutive peers that have already heard the
rumor. To avoid the possibility of rumors dying out before
reaching everyone, there is also a pull component (called
anti-entropy): every

���
rounds, � would attempt to pull in-

formation from a random peer instead of pushing. In a pull
message, � would ask the target 	 to reply with a summary
of its version of the data structure. Then � can ask 	 for any
new information that it does not have.

Unfortunately, in a dynamic P2P environment, the time
required to spread new information can become highly vari-
able. This is because rapid changes in the membership leads
individual peers to have a less accurate view of the direc-
tory, elevating the problem of residual peers that do not re-
ceive rumors before they die out. The obvious solution of
increasing the rate of anti-entropy is quite expensive: ru-
mors are only as large as the update they carry but pull mes-
sages must contain a summary proportional to the commu-
nity size.

Thus, we instead extend each push operation with a par-
tial pull that works as follows. When � sends a rumor to 	 , 	
piggybacks the identifiers of a small number  of the most
recent rumors that 	 learned about but is no longer actively
spreading onto its reply to � ; this allows � to pull any recent
rumor that did not reach it. This partial pull requires only
one extra message in the case that 	 knows something that� does not since the normal rumoring process is really im-
plemented as a query/request/reply sequence using unique
rumor identifiers to save bandwidth when the target has al-
ready received the rumor. Furthermore, the amount of data
piggybacked on 	 ’s message is of constant size, on order of
tens of bytes.

Observe that while the pushing of rumors has a termi-
nation condition, pulling does not. To address this, Plan-
etP dynamically adjusts its gossiping interval

���
; if a peer

is not actively pushing any rumors, it slowly raises its
���

(to some maximum value). When it receives a new rumor,
it immediately resets its gossiping interval to the default.
This dynamic adaptation leads to negligible bandwidth us-
age shortly after global consistency has been achieved.

Finally, note that although in this paper, we assume that
shared data structures are universally replicated and are gos-
siped with a single

���
for simplicity, this is not the general

case. In fact, our implementation allows each data structure
to be associated with only a subset of peers and gossiped
at a distinct rate. This allows partial replication as well as
rapid dissemination of time-sensitive information such as
messages in group communications without increasing the
overheads of maintaining more slowly changing data struc-
tures.
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3 Content Search and Retrieval

Peers publish documents in PlanetP by providing XML
snippets containing pointers to the appropriate files. (A doc-
ument itself can be embedded in the XML snippet if it is
not too large.) PlanetP leaves the shared files in place but
runs a simple web server to support peers’ retrieval of these
files. PlanetP indexes each published document, maintain-
ing a detailed inverted index describing all documents pub-
lished by a peer locally. In addition, PlanetP uses gossiping
to replicate a term-to-peer index everywhere for commu-
nal search and retrieval. This term-to-peer index contains a
mapping “ ����� ” if term � is in the local index of peer � .

To find documents that contain a set of query terms, a
searching peer first uses the global index to derive the set
of peers that have these terms. Then, it forwards the query
to these peers and asks them to return URLs for any docu-
ments that are relevant to the query. Each target peer uses
its local index to find the appropriate documents. PlanetP
uses this two-stage search process to perform exhaustive
searches while limiting the size of the globally replicated
index. (We will refer to the globally replicated index as the
global index, while the more detailed index that describes
only the documents published locally by a peer will referred
as the local index.)

PlanetP also implements a content ranking algorithm that
uses the vector space ranking model [26]; users can use this
algorithm to find only documents that are highly relevant to
a query. In the remainder of this section, we describe how
we have adapted a state-of-the-art ranking algorithm to use
PlanetP’s two-level indexing scheme.

3.1 Background: TFxIDF

In a vector space ranking model, each document and
query is abstractly represented as a vector, where each di-
mension is associated with a distinct term. The value of
each component of a vector is a weight representing the
importance of that term to the corresponding document or
query. Given a query, we then compute the relevance of
each document as the cosine of the angle between the two
vectors using the following equation:

��� �������� ��! "$#&%('�) '�* #,+ ).- * #/ 0 � 0 + 0 � 0 (1)

where � is the query, � is a document,
0 � 0 and

0 � 0 are the
number of terms in � and � , respectively,

) '�* #
represents

the weight of term � for query � , and
) - * #

the weight of
term � for document � . A similarity of 0 means that the
document does not have any term in the query while a 1
means that the document contains every term in the query.

TFxIDF is a popular method for assigning term weights.
This technique combines the term frequency (TF) in a docu-

ment with the inverse of how often that term shows up in the
entire collection (IDF) to balance: (a) the fact that terms fre-
quently used in a document are likely important to describe
its meaning, and (b) terms that appear in many documents in
a collection are not useful for differentiating between these
documents.

There are several accepted ways of implementing TFx-
IDF [21]. In our work, we adopt the following system of
equations from [26]:1 �32 # !547698:�<;>=@?BA,CED # �)F- * # !G;>=H47698:��D - * # � ) '�* # ! 1 �32 #
where ? A is the number of documents in the collection, D #
is the number of times that term � appears in the collection,
and D - * # is the number of times term � appears in document� .

This leads to a similarity measure of�I� ����J�K� ��! " #&%(' 1 � 2 # + �L;>=M4N6(8���D - * # ���/ 0 � 0 (2)

where
0 � 0 has been dropped from the denominator since it

is constant for query � across all documents.

3.2 Approximating TFxIDF

In designing PlanetP, we deliberately decided not to
maintain the term frequencies and “ �O�P� ” mappings nec-
essary for TFxIDF in our global index to optimize space and
reduce communication. In fact, with stop word removal and
stemming2, our global index only contains the bare mini-
mum of mappings from “important” words to peers. We
then approximate TFxIDF by breaking the ranking problem
into two sub-problems: (1) ranking peers according to their
likelihood of having relevant documents, and (2) deciding
on the number of peers to contact and ranking the identified
documents.

Ranking Peers. To rank peers, we introduce a measure
called the inverse peer frequency (IPF). For a term � , IPF

#
is

computed as 4N6(8��<;Q=$?3CR? # � , where ? is number of peers
in the community and ? # is the number of peers that have
one or more documents with term � in it. Similar to IDF, the
idea behind this metric is that a term that is present in the
index of every peer is not useful for differentiating between
the peers for a particular query. Unlike IDF, IPF can conve-
niently be computed using our constrained global index: ?
is just the number of entries in the directory while ? # is the
number of “ �S��� ” entries in the global index.

Having defined IPF, we then rank peers using:

2Stop word removal eliminates words like “the”, “of”, etc.; stemming
tries to reduce words to their root, e.g., “running” becomes “run.”
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TQU ���V�S! WX #&%('OY Z[#]\ U_^ %(`ba IPF
#

(3)

which is a sum over all query terms contained in at least one
document published by peer � , weighted by the usefulness
of each term for differentiating between peers; � is a term,� is the query,

1
is the global index, and

TcU
is the relevance

of peer � to � . Intuitively, this scheme gives peers that
contain all terms in a query the highest ranking. Peers that
contain different subsets of terms are ranked according to
the “differentiating potential” of the subsets.

Selection. As communities grow, it becomes infeasible to
contact large subsets of peers for each query. To address
this problem, we assume that the user specifies a limit d on
the number of potential documents that should be identified
in response to a query � . Then, given a pair �����Kde� , Plan-
etP does the following. (1) Rank peers for � . (2) Contact
peers in groups of  from top to bottom of the ranking3.
(3) Each contacted peer returns a set of document URLs to-
gether with their relevance using equation 2 with IPF

#
sub-

stituted for IDF
#
. This substitution is sufficient since peers

maintain per-document term frequencies in their local in-
dexes. (4) Stop contacting peers when the documents iden-
tified by � consecutive peers fail to contribute to the top d
ranked documents.

The idea behind our algorithm is to get an initial set ofd documents and then keep contacting peers only if there is
a good chance of acquiring documents more relevant than
the current d #]f -ranked one. Simulation results show that� should be a function of the community size ? and d as
follows:

�g!ih>j,=lk]hFmR?on,=qprh,sut dwv (4)

The tuple ��h j �xh m �Kh s �O!y�{z|�_;}C}~9�(�e��;uC(z|���(� can serve as
a good initial value for equation 4 since it works well for
the benchmark collections studied in this paper (see Sec-
tion 4). In general, we assume that users will adjust d when
the results are not satisfactory (as they do when using In-
ternet search engines). If users have to increase d , then we
should increase � . If users decrease d or never access the
lowest ranked documents identified for queries, we should
decrease � .

3.3 Implementing the Global Index

PlanetP’s global index can be implemented in a number
of ways [26]. We use Bloom filters [1], where each peer
summarizes the set of terms in its local index in a Bloom
filter. Briefly, a Bloom filter is an array of bits used to rep-
resent a set of strings; in our case, the set of terms in the

3 � represents a trade off between parallelism in contacting peers
against potentially contacting some peers unnecessarily.

peer’s local index. The filter is computed by using 
 dif-
ferent hashing functions to compute 
 indices for each term
and setting the bit at each index to 1. Given a Bloom filter,
we can ask, is some term � a member of the set by com-
puting the 
 indices for � and checking whether those bits
are 1. Bloom filters can give false positive but never false
negative.

We chose Bloom filters because they give PlanetP the
flexibility to adjust to different needs. For example, the cost
of replicating the global index can be reduced by simply de-
creasing the gossiping rate; updating the global index with
a new Bloom filter requires constant time, regardless of the
number of changes introduced. Furthermore, Bloom filters
can be compressed and versioned to achieve a single bit
per word average ratio. Memory-constrained Peers can also
independently trade-off accuracy for storage by combining
several filters into one.

4 Performance

Having described the two major components of Plan-
etP, we now turn to evaluating PlanetP’s performance. We
start by assessing the efficacy of PlanetP’s content search
and ranking algorithm. We then evaluate the costs, space
and time, and the reliability of the supporting infrastructure,
i.e., the replication of the directory and the global index us-
ing gossiping. Our performance study is simulation-based
but most of the parameters were derived from a prototype
implementation. Also, we validated our simulator against
measurements taken from the prototype when running up to
several hundred peers.

4.1 Search Efficacy

We measure PlanetP’s search performance using two ac-
cepted information retrieval metrics, recall (

T
) and preci-

sion ( � ) [26].
T

and � are defined as follows:

T ���V�S! no. relevant docs. presented to the user
total no. relevant docs. in collection

(5)

�����V�S! no. relevant docs. presented to the user
total no. docs. presented to the user

(6)

where � is the query posted by the user.
T �{�V� captures

the fraction of relevant documents a search and retrieval al-
gorithm is able to identify and present to the user. ���{�V�
describes how much irrelevant material the user may have
to look through to find the relevant material. Ideally, one
would like to retrieve all the relevant documents (

T !�; )
and not a single irrelevant one ( ��!�; ). In our distributed
context, it would also be ideal to contact as few peers as
possible to achieve

T !�; and ��!G; .
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Figure 1. Average (a) recall and (b) precision for the AP89 collection when distributed across 400 peers. The legends
X.Y.Z are decoded as follows: X = � T: search engine using TFxIDF, P: PlanetP � , Y = � W: Weibull, U: Uniform � , and
Z = � z: indexed the most frequently appearing z% of the unique terms in each document � ; for example, T.W.100 means
TFxIDF running on a Weibull distribution of documents, where all 100% of the unique terms of each document was
indexed. (c) Average recall as a function of community size.

Collection No. No. No. Unique Size
Queries Docs Terms (MB)

CACM 52 3204 75493 2.1
MED 30 1033 83451 1.0
CRAN 152 1400 117718 1.6
CISI 76 1460 84957 2.4
AP89 97 84678 129603 266.0

Table 1. Characteristic of the collections used to
evaluate PlanetP’s search and ranking capabilities.

We assess PlanetP’s ranking efficacy by simulating and
comparing its performance for five benchmark collections
(Table 1) against a centralized TFxIDF implementation
(called CENT). Each collection has a set of documents, a set
of queries, and a binary mapping of whether a document �
is relevant to a particular query � . Four of the collections,
CACM, MED, CRAN, and CISI, were collected and used
by Buckley [2]. These collections contain small fragments
of text and summaries and so are relatively small in size.
The last collection, AP89, was extracted from the TREC
collection [12] and includes full articles from the Associ-
ated Press published in 1989.

We study PlanetP’s performance under two different
documents-to-peers distributions: (a) Uniform, and (b)
Weibull. We study a Uniform distribution as the worst case
for a distributed search and retrieval algorithm. The doc-
uments relevant to a query are likely spread across a large
number of peers. The distributed search algorithm must find
all these peers to achieve high recall and precision. The mo-
tivation for studying a Weibull distribution arises from mea-
surements of current P2P file-sharing communities. Saroiu
et al. found that 7% of the users in the Gnutella community
share more files than all the rest together [22]. We have also

studied a local community comprised of more than 1500
students sharing more than 10TB of data, which has a sim-
ilar document distribution. Our Weibull distribution is pa-
rameterized to approximate the distribution found in this lo-
cal community.

Figure 1(a) and (b) plot average recall and precision
over all provided queries as functions of d for the AP89
collection. We only show results for this collection be-
cause of space constraints; these results are represen-
tative for all collections. We refer the reader to our
web site for results for all collections: http://www.panic-
lab.rutgers.edu/Research/PlanetP/. Figure 1(c) plots Plan-
etP’s recall against community size for a constant d of 100.
Finally, Figure 2 plots the number of peers contacted againstd .

We make several observations. First, PlanetP tracks the
performance of the centralized implementation closely, even
when we index only the most frequently appearing 30% of
the unique terms in each document. Further, PlanetP’s per-
formance is independent of how the shared documents are
distributed, achieving nearly the same performance for Uni-
form and Weibull. For a Weibull distribution of documents,
when we index all 100% of the unique terms, PlanetP’s re-
call and precision is within 11% of CENT’s (average differ-
ence is 4%). When we index only the 30% most frequently
appearing terms, PlanetP’s recall and precision is within
16% of CENT’s, with an average difference of 14%. These
small differences demonstrate that it is possible to preserve
TFxIDF’s performance while limiting the global index to
only a term-to-peer mapping. The good performance given
when we only index the top 30% of the unique terms indi-
cate that we can further reduce the size of the global index at
the expense of only a slight loss in ranking accuracy. More-
over when comparing the documents returned by PlanetP
and CENT at low recall levels, we found an average inter-
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Figure 2. Average number of peers contacted in a
community of 400 peers vs. d .

section of 70%. (The intersection approaches 100% with
increasing recall.) This gives us confidence that our adap-
tations did not change the essential ideas behind TFxIDF’s
ranking

Second, PlanetP scales well, maintaining a relatively
constant recall and precision for communities of up to 1000
peers. We have not study scalability beyond that point be-
cause the collections are not sufficiently large.

Third, PlanetP’s adaptive stopping heuristic is critical
to its performance. Figure 1(c) shows that PlanetP’s recall
would degrade with community size if the stopping heuris-
tic were not a function of community size. (The effect is
similar if the stopping heuristic was not a function of d .)
In addition, PlanetP’s adaptive stopping heuristic allows it
to perform well independent of how the documents are dis-
tributed. Figure 2 shows that the dynamic stopping heuristic
allows PlanetP to search more widely among peers when
documents are more widely distributed, preserving recall
and precision independent of document distribution.

PlanetP’s good distributed search and ranking perfor-
mance does have a small cost: PlanetP contacts more peers
than CENT. We observe from Figure 2 that while this cost
is not trivial, it does not seem unreasonable. For example,
PlanetP contacts only 30% more peers at dH!�;u�E� for the
Weibull document distribution. Further, the percentage of
peers contacted is small: PlanetP only contacts a little over
25% of the 400 peers at dJ!y;u�E� .
4.2 Storage Cost

Having demonstrated that PlanetP can preserve TFx-
IDF’s ranking accuracy, we now turn to assess the storage
requirement of our approach. In particular, we estimate the
size of the global index using the entire TREC collection
(944,651 documents, 256,686,468 terms, 592,052 unique
terms, 3,428.41 MB) for the worst case of uniform docu-
ment distribution. This is the worst case because any other
distribution (e.g. Weibull) would likely give a smaller sum-
mation of unique terms per node. Moreover, TREC is a
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Figure 3. Estimating the size of the global index
when the TREC collection is uniformly distributed
across a community of ? peers. Each group of two
bars shows, from left to right, the average number of
unique words found on each peer and the size of the
global index (in KB) if individual Bloom filters were
big enough to summarize the per-node unique terms
with at most 5% probability of error. Each bar is
named after the community size, the replication fac-
tor (R1 or R3), and the percentage of per-document
unique terms indexed.

collection of text documents, so the ratio of unique terms
to collection size is very high. For collections with multi-
media documents, this ratio is likely to be much smaller. For
example, a collection of 326,913 MP3 files requiring 1.4TB
of storage collected from an existing P2P community only
yielded 55,553 unique terms.

In Figure 3, we count the number of unique words at
each peer and compute the size of the global index if each
Bloom filter was sized to summarize the per-node unique
terms with less than 5% probability of error. We also show
what happens if each document is replicated 3 times in the
community.

Observe that at 1000 peers, the global index is quite
small: 16.1MB, which is just 0.5% of the collection. If each
document were replicated 3 times, the storage requirement
would increase to 28.7MB, which is actually only 0.3% of
the enlarged collection. At 5000 peers, the storage cost
is somewhat higher, rising to 62.3MB if each document is
replicated 3 times. Observe, however, that if we sacrifice a
little accuracy (per Figure 1(a,b)) by indexing only the 30%
most frequent unique terms in each document, the storage
requirement is reduced again to 26.9MB, which is just 0.3%
of the replicated collection.

Based on these results, we conclude that PlanetP should
easily scale to several thousand peers in terms of the re-
quired per peer storage for the replicated global index.

4.3 Gossiping Performance

Finally, we assess the reliability and scalability of Plan-
etP’s gossiping algorithm. By reliability, we mean does
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Parameter Value

CPU gossiping time 5ms + (transfer-time � no. bytes)
Base gossiping interval 30sec
Max gossiping interval 60sec

Network BW 56Kb/s to 45Mb/s

Message header size 3 bytes
1000 terms BF 3000 bytes
20000 terms BF 16000 bytes
BF summary 6 bytes
Peer summary 48 bytes

Table 2. Constants used in our simulation of Plan-
etP’s gossiping algorithm.

each change propagate to all on-line peers? We perform
this study using a simulator parameterized with measure-
ments from our prototype. Table 2 lists these parameters.
We validated our simulator by comparing its results against
numbers measured on a cluster of eight 800 MHz Pentium
III PCs with 512MB of memory, running a Linux 2.2 ker-
nel and the BlackDown JVM, version 1.3.0. Because of the
JVM’s resource requirements, we were limited to 25 peers
per machine, allowing us to validate our simulation for com-
munity sizes of up to 200 peers.

In our current implementation of PlanetP, a global direc-
tory that includes the list of peers, their IP addresses, and
their Bloom filters is replicated everywhere. Events that
change the directory and so require gossiping include the
joining of a new member, the rejoin of a previously off-line
member, and a change in a Bloom filter. We do not gossip
the leaving (temporary or permanent) of a peer. Each peer
discovers that another peer is off-line when an attempt to
communicate with it fails. It marks the peer as off-line in
its directory but does not gossip this information. When
the peer � comes back on-line, its presence will eventu-
ally be gossiped to the entire community; each peer that
has marked � as off-line in its directory changes � ’s sta-
tus back to on-line. If a peer has been marked as off-line
continuously for

� -O�L�b�
time, then all information about it

is dropped from the directory under the assumption that the
peer has left the community permanently.

Propagating new information. We begin by studying the
time required to gossip a new Bloom filter throughout stable
communities of various sizes. Measuring propagation time
is important because it represents the window of time where
peers’ directories are inconsistent, so that some peers may
not be able to find new (or modified) documents.

In this experiment, we use a Bloom filter with 1000
words. Because PlanetP sends diffs of the Bloom filters
to save bandwidth, this scenario simulates the addition of
1000 new terms to some peer’s inverted index. Note that,
while 1000 new terms may seem small, it actually is quite
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Figure 4. Number of new unique terms found per
million words vs. the percentage of words already
stored at a node (TREC collection).

large. Figure 4 shows that if a peer already contains 0.4%
of the TREC collection, it would have had to add approxi-
mately 3000 more documents, totaling 800,000 more terms,
to have found an additional 1000 unique terms. (The trend
we found in Figure 4 is consistent with that found by a much
larger study of word distribution [25].)

Figure 5(a) plots the simulated propagation times for six
scenarios:

LAN Peers are connected by 45 Mbps links. Peers use
PlanetP’s gossiping algorithm.

LAN-AE Peers are connected by 45 Mbps links. Peers
use only push anti-entropy: each peer periodically
push a summary of its data structure. The target re-
quests all new information from this summary. This
approach has been successfully used to synchronize
smaller communities in Name Dropper [11], Bayou [5]
and Deno [14].

DSL-10,30,60 Peers are connected by 512 Kbps links.
Peers use PlanetP’s gossiping algorithm. Gossiping in-
terval is 10, 30, and 60 seconds respectively.

MIX Peers are connected by a mixture of link speeds. Us-
ing measurements of the Gnutella/Napster communi-
ties reported by Saroiu et al. [22], we create a mix-
ture as follows: 9% have 56 kbps, 21% have 512 kbps,
50% have 5 Mbps, 16% have 10 Mbps, and 4% have
45 Mbps links.

Figure 5(b) shows the average gossiping bandwidth used
per peer during the experiment for DSL-10, DSL-30, and
DSL-60.

Based on these graphs, we make several observations.
(1) Propagation time is still a logarithmic function of com-
munity size [4], implying that gossiping new information is
very scalable. For example, propagation time for a com-
munity with 500 peers using DSL-30 is about 200 seconds,
rising to only 250 for a community with 5000 peers. (2)
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Figure 5. (a) Time and (b) average per-peer bandwidth required to propagate a single Bloom filter containing 1000
terms everywhere vs. community size. (c) Time required for ���5;��(�9� peers to simultaneously join the community of
1000 stable online peers, each wishing to share 20000 terms.

Even though a change is gossiped throughout the entire
community, the total number of bytes sent is very modest,
again implying that gossiping is very scalable. For exam-
ple, propagation of a 1000 new terms throughout a com-
munity of 5000 peers requires an aggregated total of about
100 MB to be sent, leading to a per-peer average bandwidth
requirement of less than 100 Bps when the gossiping inter-
val is 30 seconds. (3) We can easily trade off propagation
time against gossiping bandwidth by increasing or decreas-
ing the gossiping interval. And, (4) Our algorithm signifi-
cantly outperforms ones that use only push anti-entropy for
both propagation time and network volume. Using rumor-
ing enables PlanetP to reduce the amount of information
exchanged between nodes while the mixture of pull (anti-
entropy) and push (rumors) rounds reduces convergence
time. While we did not show the difference in network vol-
ume, on average, LAN-AE required 2.3 times the network
volume of LAN.

Joining of new members. We now assess the expense of
having large groups of new members simultaneously join an
established community. This represents the transient case of
a rapidly growing community and is the worst case for Plan-
etP because each of these new members has to download
the entire global index. Our simulator currently assumes
that each client is single-threaded. Thus, a new member
that is busy downloading the global index for a long time
can cause significant variation in the propagation time of
changes; this member cannot receive gossip messages while
it is busy downloading.

In this experiment, we start a community of 
 peers and
wait until their views of membership is consistent. Then, new peers will attempt to join the community simulta-
neously. We measure the time required until all members
have a consistent view of the community again as well as
the required bandwidth during this time. For this experi-
ment, each peer was set to share 20,000 terms with the rest
of the community through their Bloom filters. (Looking at

Figure 3, observe that this is the equivalent of having a col-
lection larger than the entire TREC collection shared by this
community.)

Figure 5(c) plots the time to reach consistency vs. the
number of joining peers for an initial community of 1000
nodes. These results show that, if there is sufficient band-
width (LAN), consistency is reached within approximately
600 seconds (10 minutes), even when the community grows
by 25%. In contrast to propagating a change, however, the
joining process is a much more bandwidth intensive one; a
joining member must retrieve 1000 Bloom filters represent-
ing a total of 20 million terms from the existing commu-
nity. Also, having 250 members join at once means that 250
Bloom filters representing 5 million terms must be gossiped
throughout the community. As a result, convergence times
for communities interconnected only with DSL-speed links
are approximately twice that of LAN-connected commu-
nities. Finally, convergence times for the MIX-connected
communities become unacceptable, possibly requiring from
50 minutes to over two hours.

We draw two conclusions from these results. First, even
in this worst-case scenario for PlanetP, which we do not ex-
pect to occur often, if peers have DSL or higher connectiv-
ity, then PlanetP does quite well. Second, we need to mod-
ify PlanetP if we are to accommodate users with modem-
speed connections. While the artificial lengthening of gos-
siping convergence time can be easily fixed if peers are as-
sumed to be multi-threaded, when a new peer first join, the
time to download the entire directory would still likely take
too long. Thus, we should either exclude peers with less
than DSL connectivity or allow a new modem-connected
peer to acquire the directory in pieces over a much longer
period of time. We would also need to support some form of
proxy search, where modem-connected peers can ask peers
with better connectivity to help with searches.

We also decided to modify our gossiping algorithm to
be bandwidth-aware, assuming that peers can learn of each
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other’s connectivity speed. The motivation for this is that a
flat gossiping algorithm penalizes the community to spread
information only as fast as the slow members can go. Thus,
we modify the basic PlanetP gossiping algorithm for peers
with faster connectivity to preferentially gossip with each
other and peers with slower connectivity to preferentially
gossip with each other. This idea is implemented as fol-
lows. Peers are divided into two classes, fast and slow. Fast
includes peers with 512 Kb/s connectivity or better. Slow
includes peers connected by modems. When rumoring, a
fast peer makes a binary decision to talk to a fast or slow
peer. Probability of choosing a slow peer is 1%. Once the
binary decision has been made, the peer chooses a particular
peer randomly from the appropriate pool. When performing
anti-entropy, a fast peer always chooses another fast peer.
When rumoring, a slow peer always chooses another slow
peer, so that it cannot slow down the target peer, unless it is
the source of the rumor; in this case, it chooses a fast peer
as the initial target. Finally, when performing anti-entropy,
a slow peer chooses any node with equal probability. We
will study the effects of this modified algorithm below.

Dynamic operation. Finally, we study the performance
of PlanetP’s gossiping when a community is operating in
steady state, with members rejoining and leaving dynami-
cally but without massive, simultaneous joins of new peers
needing the entire global index. We expect this to be the
common operational case for PlanetP. We begin by study-
ing the potential for interference between different rumors
as peers rejoin the community at different times. This ex-
periment is as follows. We have a stable community of 1000
on-line peers; 100 peers join the community according to a
Poisson process with an average inter-arrival rate of once
every 90 seconds. Peers are connected at LAN speed. Each
on-line peer has a Bloom filter with 1000 terms that off-line
peers do not have. Each joining peer shares a Bloom fil-
ter with 1000 terms. Again, this represents the case where
off-line peers will have some new information to share, but
they have to collect new information that may have accrued
since they have been off-line. Figure 6(a) plots the cumula-
tive percentage of events against the convergence time—the
time required for an arrival event to be known by every-
one in the on-line community—for PlanetP’s gossiping al-
gorithm against what happens if the partial anti-entropy is
not included. Observe that without the partial anti-entropy,
overlapping rumors can interfere with each other, causing
much larger variation in the convergence times.

To complete our exposition, we study a dynamic com-
munity with the following behavior. The community is
comprised of 1000 members. 40% of the members are on-
line all the time. 60% of the members are online for an av-
erage of 60 minutes and then offline again for an average of
140 minutes. Both online and offline times are generated us-
ing a Poisson process. 20% of the time, when a peer rejoins

the on-line community, it sends a Bloom filter diff contain-
ing 1000 new terms. These parameters were again based
roughly on measurements reported by Saroiu et al. [22] (ex-
cept for the number of new terms being shared occasionally)
and are meant to be representative of real communities. We
note again that 1000 new unique terms typically represents
the sharing of a significant set of new documents. (We have
also studied a more dynamic community, where 50% of the
time, a peer coming back on-line shares 100 new words.
The results are similar to those present below.)

Figure 6(b) plots the cumulative percentage of events
against the convergence time. We observe that with suffi-
cient bandwidth, convergence time is very tight around 400
seconds. For the MIX community we separate the CDF in
two classes: the time it takes for fast nodes to propagate
events to other fast nodes (MIX-F) and the time it takes for
slow nodes to reach the whole community (MIX-S). The
graph shows that our bandwidth aware gossiping algorithm
allows fast nodes to propagate events as in the LAN case
without harming the speed of propagation to slow nodes.
Although it is not shown on the graph, the slow nodes are
equally fast when propagating to fast nodes (because they
can rumor to a fast node once and then let the fast nodes
continue the propagation).

Figure 6(c) plots the aggregate bandwidth against time.
This graph shows that the normal operation of a commu-
nity requires very little bandwidth, ranging from between
10 KB/s to 100 KB/s across the entire community.

5 Related Work

While current P2P systems such as Gnutella [8] and
KaZaA [13] have been tremendously successful for music
and video sharing communities, their search and informa-
tion diffusion capabilities have been frustratingly limited.
Our goal for PlanetP is to increase the power with which
users can locate information in P2P communities by pro-
viding content based search and ranking capabilities.

Several efforts parallel to PlanetP have also looked at
better querying mechanisms [7, 19]. Their focus, however,
is on serving very large-scale communities. In order to be
scalable these systems trade off performance and function-
ality by using iterative queries and distributed inverted in-
dexes. None of this previous work supports content rank-
ing.

Numerous research efforts have produced highly scal-
able distributed hash tables (DHT) over P2P communities
[27, 20, 23, 18]. In general DHTs spread (key, value) pairs
across the community and provide retrieval mechanisms
based on the key. Although this abstraction has been suc-
cessfully used to build file system services [17, 15], we be-
lieve it is less suitable for the type of communities stud-
ied in this paper. The high cost of publishing thousands of
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Figure 6. (a) CDF of gossiping convergence time in a community of 1000 when there are 100 Poisson arrival (New
arrivals share 1000 keys). LAN-NPA is our gossiping algorithm without the partial anti-entropy component. (b) CDF
of gossiping convergence time during the normal operation of a dynamic community with 1000 members. MIX-F is
the time it takes a fast node to reach all other fast nodes and MIX-S is time it takes a slow node to reach the whole
community. (c) Aggregated bandwidth usage while running (b).

keys per file and the lack of update propagation make it dif-
ficult to implement content-addressable publish/subscribe
systems on DHTs. PlanetP overcomes these difficulties us-
ing gossiping to propagate information and replicating a
compact inverted index on every peer.

Gossiping has been used in a variety of settings such as
membership [11], information aggregation [24], and P2P
DHTs [10], because of its robustness to failures. In Plan-
etP we have adapted them for better bandwidth usage and
propagation time stability in scenarios were nodes join and
leave constantly and in an uncontrolled manner (similar to
the work done by Liben-Nowell et.al. [16] for DHTs).

More related to PlanetP’s information retrieval goals,
Cori [3] and Gloss [9] address the problems of database se-
lection and ranking fusion on distributed collections. Both
systems use servers to keep a reduced index of the con-
tent stored by other servers. Because PlanetP is targeted
toward communities that are larger, more dynamic, yet does
not have any centralized resources, we have chosen to keep
even less information in the global index to minimize com-
munication as well as storage. We have shown that our
distributed search and rank algorithm using this minimal
global index is nearly as effective as a centralized imple-
mentation of TFxIDF.

6 Conclusions and Future Work

The number of on-line communities has exploded with
the growth of the Internet. Traditionally, these commu-
nities have been hosted on centralized servers, even when
the information being shared exists (and is collected natu-
rally) in a distributed form. In this paper, we seek to pro-
vide a powerful alternative for avoiding centralization when
centralization is costly or presents privacy and safety con-
cerns. In particular, we have presented PlanetP, a P2P pub-

lish/subscribe information sharing infrastructure that sup-
ports distributed content search, rank, and retrieval. Plan-
etP uses gossiping to robustly disseminate new information,
even under rapid membership changes, and replicate a lim-
ited amount of global state to support content search. This
combination allows PlanetP to support a powerful content
addressing model without requiring peers to maintain com-
plex distributed data structures.

We have shown that PlanetP’s extremely compact global
index does not affect its ranking accuracy: on average, Plan-
etP’s ranking performance is only a few percent less than
that of a centralized implementation of TFxIDF. Further, the
overall required storage and gossiping bandwidth are mod-
est enough that PlanetP can easily scale to several thousand
peers. Our real target is around ten thousand peers.

While we did not start this work with the intention of
scaling to millions or billions of users, we believe that it
is possible to scale PlanetP beyond our initial target of ten
thousand peers if desired. One possible approach is to di-
vide the community into a number of groups. Peers within
the same group operate as described here. Peers from dif-
ferent groups will gossip an attenuated Bloom filter that is a
summary of the global index for their groups. Peers mostly
gossip within their groups but, occasionally, will gossip to
peers from other groups. When searching, if the attenuated
Bloom filter of group � contains terms relevant to a query� , then the searching peer, say � , would contact a random
peer in group � , asking it to return a ranked list of peers in �
that might have documents relevant to � . � can then contact
these peers using the current algorithm for ranking. Indeed,
Gupta et. al.[10] recently proposed using a hierarchy of
peers in a very similar manner, although their system uses a
distributed hash table across groups instead of gossiping.

Finally, we are in the process of building a number of ap-
plications to validate the utility of PlanetP. Specifically, we
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have built a prototype semantic file system and chat appli-
cation on top of PlanetP. Other applications are underway.
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