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Abstract: Visually foraging planktivorous fish are prey of visual predators, and their foraging 24 

behaviour may be affected by light levels both in terms of gain and risk. The large seasonal 25 

change in day length throughout a subarctic summer at 69° N was used to show the influence 26 

of light on diel vertical migration (DVM) and shoaling patterns in a planktivorous fish 27 

assemblage consisting two species (Coregonus lavaretus and C. albula). Under the midnight 28 

sun in June, night and day-time behaviour was similar with extensive shoaling and limited 29 

DVM. With increasingly darker nights towards autumn, the fish dispersed during the dark 30 

hours and showed more extensive DVM. Throughout the changing light regime of both the 31 

day and the season, the planktivores consistently chose depths with light levels compatible 32 

with visual foraging and reduced predation risk as revealed from reactive distance modelling 33 

of coregonids and their salmonid predators. The findings support the hypothesis that 34 

behavioural decisions are based on a trade-off between foraging rate and predation risk, and 35 

increased predator avoidance behaviour towards autumn suggested that this trade-off is state-36 

dependent. 37 

 38 
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Introduction 41 

Light is important for visually oriented predators as darkness provides cover for their prey, 42 

and behavioural responses to changes in light intensity are often associated with predator-prey 43 

interactions (Blaxter 1975; Helfman 1993; Pitcher and Parrish 1993). The non-consumptive 44 

effects (non-lethal, e.g. reduced growth and birth rates) of a predator on its prey population 45 

may be as important as the consumptive effects (i.e. removal of individuals) in population 46 

regulation, and are often transmitted through dynamic traits such as behaviour of individuals 47 

in the prey population  (Lima 1998a; Preisser et al. 2005; Pangle et al. 2007). The effect of 48 

modified traits may cascade to the resource populations of the prey (trait mediated indirect 49 

interactions, i.e. effects of a predator on a receiving species is mediated through a transmitter 50 

species, Dill et al. 2003; Werner and Peacor 2003). Knowledge of behavioural patterns is 51 

therefore crucial to understand community dynamics. In many fish species, behavioural traits 52 

such as diel vertical migration (DVM), shoaling, and swimming activity have been associated 53 

with predator-prey interactions and shown to be correlated to light intensity changes (Blaxter 54 

1975; Helfman 1993; Pitcher and Parrish 1993).  55 

Light intensity influences the visual acuity of prey and predator, affecting both predator 56 

efficiency and predator recognition in prey. The encounter rate and resulting feeding rate of a 57 

visual predator is a function of light intensity, prey availability, prey visibility, and activity 58 

levels of both predator and prey (Eggers 1977; Evans 1989). A predator increasing its 59 

foraging activity will simultaneously increase its predation risk, and there is therefore a trade-60 

off between foraging gain and predation risk  (Gilliam and Fraser 1987; Lima and Dill 1990).  61 

This trade-off may be state-dependent as animals that are either food-deprived or has a low 62 

reproductive value are expected to take higher risks than satiated animals or animals close to 63 

reproduction (Milinski 1993; Clark 1994; Damsgård and Dill 1998).  64 
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DVM-patterns observed for some planktivorous fish species support the trade-off 65 

hypothesis between foraging gain and predation risk (Clark and Levy 1988; Scheuerell and 66 

Schindler 2003; Hrabik et al. 2006). In aquatic environments, light intensity decreases with 67 

increasing depth and turbidity. During light hours, fish may reduce activity or migrate to 68 

deeper, darker and safer habitats to reduce predation risk. During darkness hours when 69 

predation risk from visually oriented predators is reduced, they may safely return to the 70 

surface waters where food is normally most abundant. Other hypotheses explaining DVM 71 

suggest that planktivorous fish track the DVM of their prey (Janssen and Brandt 1980; 72 

Eshenroder and Burnham-Curtis 1999), or that it is caused by bioenergetic benefits when 73 

there is a separation between the habitat optimal for foraging and the habitat optimal for 74 

growth (Brett 1971; Wurtsbaugh and Neverman 1988; Sims et al. 2006).  75 

Predation risk have also influenced the evolution of shoaling (Pitcher and Parrish 1993). 76 

Improved predator detection, recognition, and avoidance is an important motivator to form 77 

shoals, although foraging gain may be reduced due to intra-shoal competition for food (Lima 78 

and Dill 1990; Magurran 1990; Pitcher and Parrish 1993). Shoaling reduces the probability of 79 

being preyed on, and the rapid, coordinated movement by shoals serves to protect individual 80 

members (Magurran 1990; Pitcher and Parrish 1993). Shoaling is recognized as an important 81 

anti-predator behaviour, and represents an alternative or supplementary defence strategy to 82 

DVM for pelagic fish. 83 

Changes in activity patterns and vertical use of habitat typically occur during crepuscular 84 

periods (Blaxter 1975; Helfman 1993; Pitcher and Parrish 1993). In some planktivorous fish 85 

species, swimming activity has been observed to be highest in crepuscular light (Batty 1987; 86 

Iida and Mukai 1995; Gjelland et al. 2004). Periodic changes in behaviour may also be 87 

influenced by endogenous circadian rhythms as well as changes in light (Thorpe 1978), but 88 

these factors are often confounded since circadian rhythms typically have the same periodicity 89 
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as the day-night cycle. At latitudes above the polar circle, however, the sun is above the 90 

horizon for 24 hrs a day during midsummer. Later in the season dark nights approach, and by 91 

autumnal equinox in September nights are as long as days. High latitude locations therefore 92 

provide excellent natural conditions for testing the light dependence of behavioural traits.  93 

The objective of this study was to evaluate the effect of diel and seasonal changes in light 94 

intensity on DVM and shoaling patterns of planktivorous whitefish Coregonus lavaretus (L.) 95 

and vendace Coregonus albula (L.) combined in a subarctic lake in the Pasvik watercourse, 96 

northern Norway. These co-existing planktivores are predated on by piscivorous brown trout 97 

(Salmo trutta L.) (Kahilainen and Lehtonen 2002; Jensen et al. 2004, 2008). By contrasting 98 

day and night samples from June, August, and September, we investigated how behavioural 99 

traits relate to the changing light regime, i.e. both within the diel cycle and during the ice-free 100 

season. Specific hypotheses regarding the coregonid behaviour included: (1) DVM will be 101 

limited or absent in June under the midnight sun, but extensive after the onset of dark nights 102 

in August and September; (2) shoaling will be observed over 24 hrs in June, but only during 103 

daylight hours in August and September; (3) planktivorous fish choose depths with sufficient 104 

light for visual foraging, but with reduced predation risk; (4) the predator avoidance 105 

behaviour will be less pronounced in June after a long ice-covered winter, due to hunger and a 106 

long time span to the late autumn reproduction as compared to later months. 107 

Methods 108 

In order to evaluate DVM and shoaling patterns in planktivorous coregonids, we combined 109 

echosounding techniques with gillnetting for planktivores, planktivore diet analysis, and 110 

zooplankton sampling in a high latitude lake at periods of contrasting differences in the diel 111 

light cycle. Published literature on coregonid reactive distance and salmonid piscivore 112 

reactive distance in relation to light intensity were used to evaluate the influence of light level 113 

on the foraging opportunity and predation risk for the studied planktivores. 114 
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Study site and fish community 115 

The pelagic fish community of the oligotrophic Lake Skrukkebukta was sampled around 116 

the 20th of June, August, and September 2000. Skrukkebukta has a surface area of 6.8 km2, a 117 

mean depth of 14 m and a maximum depth of 38 m (Fig. 1a). It is part of the Pasvik 118 

watercourse, on the border between Russia and Norway at 69° N 30° E. The Pasvik 119 

watercourse originates in Lake Inari (1102 km2, 118 m above sea level). The ice-free season 120 

in the watercourse lasts from the end of May or beginning of June to October – November.  121 

The fish fauna of Pasvik is diverse for lakes at this high latitude, with 15 fish species 122 

recorded in the watercourse. Two morphs of whitefish have been described: a pelagic 123 

densely-rakered (DR) morph, which forages predominantly on zooplankton, and a larger 124 

benthic-dwelling sparsely-rakered (SR) morph, which forages on benthic prey (Amundsen et 125 

al. 2004; Østbye et al. 2006). DR whitefish and vendace are the dominant pelagic fish in the 126 

Pasvik watercourse (Bøhn and Amundsen 2001; Gjelland et al. 2007), with brown trout being 127 

the dominant pelagic predator (Bøhn et al. 2002; Jensen et al. 2004, 2008). The zooplankton 128 

community is dominated by small cladocerans, mainly Daphnia and Bosmina spp. (Bøhn and 129 

Amundsen 1998; Amundsen et al. 2008). As a consequence of spawning habitat loss of the 130 

brown trout after water regulation, at least 5000 brown trout (min. length 25 cm) are annually 131 

stocked in the watercourse in the beginning of June to compensate for the reduced natural 132 

recruitment. About 1000 of these fish are released into Skrukkebukta. The trout quickly turn 133 

to piscivory, feeding mainly on vendace and DR whitefish, and grow fast (Jensen et al. 2006a, 134 

2008). Perch (Perca fluviatilis L.), pike (Esox lucius L.), and burbot (Lota lota L.) are 135 

important benthic piscivores associated with the littoral and profundal habitats of the lake 136 

(Bøhn et al. 2002). Some piscivorous waterfowl such as mergansers (Mergus spp.), loons 137 

(Gavia spp.), and terns (Sterna spp.) feed in Skrukkebukta. They are also visual foragers, but 138 

their impact on pelagic fish populations is not known. 139 
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Reactive distance relative to light 140 

The reactive distance can be defined as the distance at which an animal reacts to and 141 

initiates an attack on a prey (Holling 1959). In order to develop a reactive distance model of 142 

visual foraging in coregonid planktivores, we analyzed data on Coregonus artedi reactive 143 

distance in relation to prey size (Link 1998) and light intensity (Link and Edsall 1996). 144 

According to the inverse square law of spherical electromagnetic radiation, one might expect 145 

the light intensity scattered from a prey item to a predator to be inversely proportional to the 146 

distance between the predator and the prey. The amount of light scattered by the prey item 147 

may furthermore be a function of prey size. We found that there was a constant relationship 148 

Cs between prey size and reactive distance in the data of Link (1998), suggesting that the 149 

relationship between coregonid reactive distance Dc and prey size S is well described by the 150 

inverse square law (Eq. 1, Fig. 2a).  151 

 152 

Eq. 1 
2

S CC S D
−

=   153 

 154 

The reactive distance in relation to light appeared to be log-linear, although there seemed to 155 

be maximum threshold at the highest light intensities (Fig. 2b, Link and Edsall 1996). Such a 156 

saturation intensity threshold (SIT) has also been observed for other fish species 157 

(e.g.Henderson and Northcote 1985; Mazur and Beauchamp 2003). We defined the 8.4 cm 158 

reactive distance observed at 1000 and 1500 lux as the maximum reactive distance reached at 159 

SIT, and used the rest of the data in a log-linear regression (Eq. 2, Fig 2b, a=0.0419 m, 160 

b=0.00839 m•lux-1, r2=0.85 for the full model including SIT).  161 

 162 

Eq. 2 
( ) 0.084m
( ) log( )

C

C

D I SIT
D I SIT a b I

≥ =
< = + 

 163 
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 164 

By solving the log-linear part of Eq. 2 for DC = 8.4 cm, the saturation intensity threshold 165 

was estimated to 151 lux. If a constant M is introduced as a function of the constants a and b 166 

such that M = exp(a/b), the log-linear part of Eq. 2 can be rewritten (Eq. 3). 167 

 168 

Eq. 3 1 1log( ) Cb M I D− −=    169 

 170 

The inverse square law applies to all light intensities, although the amount of light reflected 171 

from a prey required to stimulate an attack in a planktivore may depend on the background 172 

light intensity. Eq. 1 and Eq. 3 are now on a form that they can be combined if we take the 173 

square root of Eq. 1 and replace the constants CS and b with another constant C (Eq. 4). 174 

 175 

Eq. 4 
10.5 log( ) CC S M I D
−

=     176 

 177 

According to Link (1998), the reactive distance experiments in relation to zooplankton size 178 

was performed at 40-200 lux. We estimated constant C (5.22 m-0.5) by using the geometric 179 

mean (89 lux). This introduced a maximum bias of 8.5 % as compared to if all the 180 

experiments were done either at 40 or 200 lux. By rearrangement of Eq. 4, a model of 181 

coregonid reactive distance as a function of both light and prey size at light intensities below 182 

SIT is obtained (Eq. 5). 183 

 184 

Eq. 5 0.5 1log( )CD S M I C−=    185 

 186 

We considered the visual foraging threshold IT as the light level where the reactive distance 187 

produced by the reactive distance model would equal zero. Eq. 5 solved for IT with DC = 0 has 188 
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the solution M-1, giving an estimated visual foraging threshold at 0.0068 lux independently of 189 

prey size (Fig. 2b). The full coregonid reactive distance model as a function of light and prey 190 

size can now be given (Fig. 2d, Eq. 6, prey length and reactive distance in m). 191 

 192 

Eq. 6 
0.5

0.5

(0.0068 lux 151 lux) 0.192 log(148 )
( 151 lux) 1.92

C

C

D I S I
D I S

< < =

≥ =

 
 193 

 194 

This model produces reactive distance responses to light and prey size qualitatively 195 

consistent with the results seen in Vinyard and Obrien (1976) and Confer et al. (1978), with a 196 

smaller difference in reactive distance to various sizes of zooplankton at low light intensities 197 

than at high light intensities. To our knowledge, there is no publication on the light intensity 198 

threshold for coregonid visual foraging. Dembinski (1971) reported that vendace in Polish 199 

lakes were observed at depths with light intensities between 0.01 and 50 lux during the day. 200 

For comparison with Dembinski’s data, we estimated the depths of the 0.01 and 50 lux light 201 

levels. The estimated depths of these light intensities are summarized in Table 1. 202 

Research on piscivorous salmonids including lake trout (Salvelinus namaycush), cutthroat 203 

trout (Oncorhynchus clarki), and rainbow trout (O. mykiss) has revealed that these fish greatly 204 

increase reactive distances over the light range from 0.4 to 18 lux (Vogel and Beauchamp 205 

1999; Mazur and Beauchamp 2003). The species-specific reactive distance may differ at a 206 

given light intensity, but the shape of the reactive distance to light relationship is remarkably 207 

similar and there is no further increase in the reactive distance above approximately 18 lux for 208 

any of the species.  We assumed a similar relationship for brown trout. This assumption may 209 

be justified, since we were interested in the relative change in piscivorous reactive distance 210 

rather than the actual value of the reactive distance. The depths of the 0.4 and 18 lux light 211 

levels were therefore estimated to identify the depths of these predation risk thresholds, using 212 
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the exponential light extinction function for light transmittance in water. For a relative 213 

comparison between planktivore coregonid reactive distance and piscivorous salmonid 214 

reactive distance, we used a derived reactive distance model from Vogel and Beauchamp 215 

(1999). The model presented by Vogel and Beauchamp includes turbidity dependence, 216 

however, at turbidities of 7.4 NTU (nephelometric turbidity units), the negative interaction 217 

term between light and turbidity would cause reactive distance to fall to zero if the model is 218 

extrapolated to 700 lux. Moreover, their data and those of Mazur and Beauchamp (2003) 219 

indicated a rather constant reactive distance in relation to light intensity above SIT. We 220 

therefore fitted a new maximum reactive distance DTmax model dependent on the turbidity Tb 221 

to the datapoints above 17 lux in Vogel and Beauchamp (1999) (Eq. 7, residual standard error 222 

0.044, p<<0.001). Below DTmax we used Vogel and Beauchamps model (Eq. 7). The turbidity 223 

for Lake Skrukkebukta was not measured during this study, but according to Langeland et al. 224 

(1993) varied between 0.85 and 9.3 NTU in the beginning of September for 1990 and 1991, 225 

respectively. We used the mean 3.85 NTU of the values reported by Langeland (1993). 226 

Although the value of the reactive distance was highly dependent on the turbidity, the shape 227 

of the reactive distance model was little influenced by the turbidity. As our focus was on the 228 

relative change in piscivorous reactive distance rather than the actual value, our conclusions 229 

will not critically depend on the turbidity level. 230 

 231 

Eq. 7 ( ) 1
max

max

0.0154 0.0021log( ) ,
26.8 2.81 6.09log( ) 0.025 log( )   for 

T

T T T

D Tb
D I Tb I Tb D D

−= +

= + − − <
 232 

 233 

Light measurements 234 

The light extinction coefficient k was estimated from light profiles sampled in 0.5 m 235 

intervals during June and August. No light profile for September was available, but as the 236 
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Secchi-depth was very similar to August, we estimated k for September from the relationship 237 

a between Secchi depth ZSD and k in August (i.e. k = a*ZSD
-1). Surface illumination (unit lux) 238 

was estimated using hourly averaged global irradiation data (W•m-2) from Bioforsk Soil and 239 

Environment Division, Svanhovd research station, situated about 10 km from the study lake. 240 

Units were converted using 1 W•m-2 = 120 lux (Lampert and Sommer 1997). The exact 241 

conversion between W•m-2 and lux depends inter alia on weather and sun elevation. We 242 

verified that the converted daytime values from the global irradiation data and values 243 

produced by a illuminance model from Janiczek and DeYoung (1987) matched. For the 244 

August and September nights, when light level was too low for global irradiation 245 

measurements, the Janiczek and DeYoung (1987) model was used to estimate the surface 246 

illumination in lux.  247 

Zooplankton sampling 248 

Zooplankton samples were collected using a 30 l Schindler-Patalas trap with 65µm mesh size. 249 

Three replicates were taken at depths of 1, 3, 5, 7, 9, and 12 m during daytime at each 250 

sampling occasion, and at 1, 5 and 9 m depth at midnight in August and September. Samples 251 

were fixed with 4 % formalin. In the laboratory, all crustacean individuals in the daytime 252 

samples were counted and identified to species or genus, other prey taxa were identified to 253 

family level. Only cladocerans were counted in the night-time samples. 254 

Gillnet sampling 255 

Multi-meshed vertical gillnets (bar mesh sizes 8, 10, 12.5, 15, 18.5, 22, 26, and 35 mm 256 

from knot to knot in panels extending from the top to the bottom of the net) were used for 257 

catching fish. The nets were 12 m high and 16 m long, consisting of 2 m wide panels and 258 

marked at every second meter depth to allow for depth resolution of the catches. Two nets 259 

were set for 12 hours from the afternoon until the following morning, at the locations 260 
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indicated in Fig. 1a. Gillnetting was conducted during four nights in June, and during two 261 

nights each in August and September. Species and length distributions were tabulated from 262 

each gillnet catch. Catch per unit effort (CPUE) for each 2 m depth interval was calculated as 263 

number of fish caught per 100 m2 nets per night.  264 

Biological sampling 265 

The fish were weighed to an accuracy of 1 gram, and fork length LF measured to an 266 

accuracy of 1 mm. The relationship between target strength TS (the logarithmic domain of 267 

acoustic backscattering area, positively related to fish size) and fish length normally use total 268 

length LT of the fish (Simmonds and MacLennan 2005). LT was found by multiplying LF with 269 

1.08, a conversion factor found from subsamples of both coregonid species in the catches. 270 

The age of the coregonids was read from whole otoliths (Skurdal et al. 1985). Prey items in 271 

the coregonid stomachs were categorized as Bosmina, Daphnia, Cyclopoida, Calanoida, 272 

benthic invertebrates, insect pupae, or surface insects. The stomach fullness was subjectively 273 

determined on a scale from 0 (empty) to 100 % (full), and the contribution of each prey 274 

category to the total volume of the stomach content was likewise determined. 275 

Acoustic sampling 276 

To monitor and evaluate swimming behaviour of pelagic fish, sampling was performed 277 

using acoustics with a combination of mobile vertical (down-looking beam, oriented 90° from 278 

surface) and horizontal (side-looking beam, oriented approximately 5° from surface) 279 

techniques around midnight and mid-day (Fig. 1b). In addition, day-break recordings were 280 

made along 3 transects with the side-looking beam in August. The down-looking acoustics 281 

were used to quantify fish depth distributions, depth of shoals, and fish density estimation. 282 

The side-looking surveys covered approximately the upper 4 m of the water column (‘surface 283 

blind zone’ for down-looking acoustics) and were used in a qualitative way to judge if fish 284 
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were present in surface waters, and if present, if fish were shoaling. The acoustic sampling 285 

was performed using a EY500 split-beam echosounder (Simrad, Horten, Norway) operating at 286 

120 kHz (ping rate 5 pings•s-1 in June and 8-9 pings•s-1 in August and September, pulse 287 

duration 0.3 ms) with a 4x10° elliptic split-beam transducer mounted at 1 m depth on a rod 288 

attached to the boat. Volume backscattering strength (Sv) recording threshold was set to -70 289 

dB re 1 m-1. Beam pattern calibration was performed at the Simrad factory before the first and 290 

after the last survey.  In the field, standard target tests were performed for each survey to 291 

ensure correct system operation. A 23 mm copper sphere with expected TS of -40.4 dB re 1 292 

m2 was used. The survey boat followed a zigzag transect design (Fig. 1a). After completion of 293 

the side-looking survey, the zig-zag route was reversed and the down-looking survey 294 

performed along the same transects. Only transects parts covering depths greater than 15 m 295 

were used, with a degree of coverage c = 3 (Aglen 1983) for each of the side- and down-296 

looking surveys.  297 

The acoustic data was analysed using the Sonar5 post-processing program (Balk and 298 

Lindem 2006). To avoid bias from the acoustic near-field (Simmonds and MacLennan 2005), 299 

the minimum range from the transducer was set to 3 m. Single echo detection (SED)-criteria 300 

were set at minimum echo length 0.8 (relative to transmitted pulse), maximum echo length 301 

1.5, maximum gain compensation 4 dB, and maximum phase deviation 4 (electrical degrees). 302 

For the side-looking surveys, maximum range was set to 50 m. In the analyses of down-303 

looking surveys, the maximum range was set to 0.5 m above bottom to avoid bottom-dwelling 304 

fish being included in the analyses. The metric area scattering coefficient, sA [m2•ha-1] is a 305 

standardized measure of returned echo energy (MacLennan et al. 2002; Simmonds and 306 

MacLennan 2005). To evaluate vertical distributions, the echo energy was integrated over 2 m 307 

depth intervals. The resulting depth-specific sA-values were averaged over all transects within 308 

the day- or night-time sampling occasion, weigthed by the number of pings in each transect. 309 
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Weighted variance Var( As ) for depth interval z was obtained using Eq. 8 (Shotton and 310 

Bazigos 1984), 311 

 312 

Eq. 8 ( )
1

2
( ) ( , ) ( )1 1

( ) ( 1)n n
A z A z i A z i ii i

Var s s s d n d
−

= =
  = − −   ∑ ∑ , 313 

 314 

where d is the number of pings in transect i and n is the number of transects. 95 % confidence 315 

limits CL(z) were obtained by Eq. 9, on the assumption of a poisson distribution (Jolly and 316 

Hampton 1990). 317 

 318 

Eq. 9 ( ) ( )2

( ) ( ) ( ) ( )( ) 1 2z A A z A z A zzCL s Var s s Var s
− = + ±  

 .  319 

 320 

The zig-zag transect design may bias confidence intervals due to autocorrelation at the 321 

transect joints. However, since the transect parts closest to the joint were generally shallower 322 

than 15 m and therefore removed, this effect were reduced. The centre of gravity Cg  (Helland 323 

et al. 2007) for the day and night distributions was calculated for each transect according to 324 

Eq. 10,  325 

 326 

Eq. 10 1
( )1

m
A i i Ai

Cg s z s−
=

=∑   327 

 328 

where sA(i) is mean scattering coefficient at depth interval i, sA is scattering coefficient 329 

integrated over all m depth intervals and zi is the mean depth of depth interval i. The Cg was 330 

subsequently tested for statistical difference between day and night and between months using 331 

two-way anova and Tukey HSD multicomparison test, and the model residuals inspected. 332 
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In order to estimate the density of pelagic coregonids, we used the acoustic survey from the 333 

September night when the fish distribution was well dispersed and therefore the best for 334 

acoustic density estimation and target strength measurements. Two different approaches were 335 

used to estimate fish densities, the first implied using the Sv/TS-scaling method provided in 336 

Sonar5 (Balk and Lindem 2006), which uses the observed TS for abundance estimation. The 337 

second method implied dividing the total scattering energy sA by the average spherical 338 

scattering cross-section spσ of fish targets, where individual σsp = 4π10TS/10 and TS of 339 

individual fish was estimated from the fish catches. The variance and confidence intervals 340 

were computed as for the depth-specific sA-values. We assumed that the volume densities in 341 

the upper 4 m equalled the average of the volume densities from 4-24 m, and therefore added 342 

4/(24-4) = 20 % to the estimates from 4-24 m. The relationship between fish total length LT 343 

(cm) and TS (dB) for coregonids has been described as TS=19.72log10(LT)-68.08 (Lindem and 344 

Sandlund 1984, hereafter referred to as the Lindem-Sandlund equation) and 345 

TS=25.5log10(LT)-70.9 (Mehner 2006, hereafter referred as the Mehner equation). A 346 

comparison between the observed TS-distribution and the catch-derived TS-distribution 347 

revealed an overestimation of TS by the use of the Mehner equation, leading again to a three-348 

fold underestimate of fish density as compared to the Sv/TS scaling method (which is catch-349 

independent). We therefore chose to present the density estimates based on the Lindem-350 

Sandlund equation along with the estimates based on Sv/TS scaling. 351 

Shoals were identified from the appearance of echotraces in the echograms, and the the 352 

upper and lower range of each shoal was recorded from the downlooking surveys. The length 353 

of the acoustic pulse (0.44 m) was subtracted from the lower range. Following the 354 

terminology of Pitcher and Parrish (1993), a group of fish that remains together for social 355 

reasons is called a shoal. This expression does not imply any specific structure or function of 356 

the group. Fish groups swimming in a synchronized and polarized manner are termed schools. 357 
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Schooling can be one of the behaviours of fish in shoals, but shoaling does not necessarily 358 

imply schooling (Pitcher and Parrish 1993). In this study, no information on the polarity and 359 

synchrony of groups of fish were available. Shoaling is therefore used as a description of the 360 

observed grouping behaviour. 361 

Results 362 

Reactive distance 363 

The reactive distance relationship to light produced by the planktivore coregonid reactive 364 

distance model (Eq. 6) differed somewhat in shape from that of the piscivore salmonids 365 

reactive distance model (Eq. 7) (Fig. 2d). But the two models also share a similarity in that 366 

they reach a maximum reactive distance at light levels of 20-150 lux.. Coregonids obtain a 367 

relatively high reactive distance at light levels below approximately 2 lux, whereas the largest 368 

relative change in piscivore reactive distance occurs at approximately 2 -20 lux (Fig. 2d, Link 369 

& Edsall 1996; Vogel and Beauchamp 1999; Mazur and Beauchamp 2003). Thus, the 370 

planktivores may reach a substantial fraction of their highest reactive distance at light levels 371 

below the sharp increase in piscivore reactive distance. This may offer a foraging opportunity 372 

at light levels of low predation risk from salmonid piscivores also for the small but dietary 373 

important zooplankton Bosmina longirostris, B. longispina, and Daphnia cristata in our study 374 

lake (mean lengths in coregonid diet approx. 0.39, 0.55 and 0.70 mm, respectively, as given in 375 

Bøhn and Amundsen (1998)) (Fig 2d). 376 

Gillnet catches and fish density 377 

A total of 330 fish were caught in the pelagic gillnets. Of these, 10 SR whitefish and 1 pike 378 

was excluded from the further analyses. The remaining 97 % were planktivore coregonids; 379 

28 % vendace and 69 % DR whitefish.  DR whitefish dominated the catches in all months. 380 

The pelagic coregonid fish community consisted of small individuals with modal lengths of 381 
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approximately 10 cm for both vendace and DR whitefish (Table 2). For the September night, 382 

when the fish were dispersed throughout the water column and young of the years (YOY) 383 

were included in the catches, comparison between the acoustically-derived TS distribution and 384 

the TS distributions estimated from catches had a relatively good agreement. The pelagic fish 385 

density in September was estimated to 1799 fish ha-1 (range 801 to 3197 for the 95 % lower 386 

and upper confidence intervals, respectively) by the Sv/TS scaling method. By the use of 387 

catch-derived TS estimates with the Lindem-Sandlund equation, the density was estimated to 388 

1520 fish ha-1 (range 781 – 2503). The relatively good correspondence between density 389 

estimates obtained by the catch-independent method and the catch-dependent method in 390 

September, and also between the size distribution in catches and that observed with the 391 

echosounder, indicated that our September catches were representative for the pelagic 392 

community in this month, with the modification that the smallest fish were somewhat under-393 

represented in the catches. The 20 % lower density estimate based on the catch-derived TS 394 

may thus be caused by an under-representation of YOY in the catches. 395 

Zooplankton distribution and coregonid diet 396 

The highest daytime zooplankton densities were found close to the surface in all sampling 397 

months. Around midnight, the vertical distributions of Bosmina and Daphnia were relatively 398 

even, whereas the depth distribution of both these species was skewed towards the surface 399 

during mid-day (Fig. 3). This indicated that there was a tendency towards reversed DVM in 400 

these two zooplankton species. The order of importance of the prey categories found in 401 

coregonid stomachs was Bosmina, chironomid pupae, Daphnia, surface insects, Cyclops 402 

scutifer, Leptodorea kindti, and with benthic prey items such as Chydorus and chironomid 403 

larvae as the least important of included prey items (Fig. 3). The coregonid stomach fullness 404 

was least in June, and increased towards September (Fig. 3). 405 
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Diel vertical migration and shoaling patterns 406 

There was a consistent pattern of vertical migration, with day vertical fish distributions 407 

being deeper than midnight distributions in all months (Fig. 4). However, the difference in the 408 

centre of gravity Dcg between day and midnight depth distributions in June was only 1.2 m 409 

and not significant (Tukey test, P=0.77), as seen with the down-looking surveys (Fig. 4). The 410 

extent of the migration increased markedly from June towards August and September, with 411 

daytime fish distributions found at greater depths than in June. These differences were also 412 

statistically significant (Tukey test, Dcg=7.0 m and P<0.001 in August, Dcg=3.5 m and 413 

P=0.011 in September). By August, day and night distributions had little vertical overlap (Fig. 414 

4). Day and night distributions partially overlapped in September, as most fish stayed deep in 415 

the water column during day, whereas fish dispersed and were widely distributed over the 416 

depths during night (Fig. 4 and 5).  The overall effects of the time of the day (TOD) and 417 

season (month) and the interaction between these factors on the centre of gravity of the depth 418 

distributions were statistically significant (anova, r2=0.84, P(TOD)<0.001, P((Month)<0.001, 419 

P(TOD x Month)=0.002). The water column was isothermal in June, whereas there was a well 420 

developed thermal stratification in August with a thermocline from 14 to 18 m (Fig. 4). By the 421 

September survey, surface temperatures had cooled and only a very weak thermocline at 422 

about 20 m depth was detected (Fig 4). 423 

Water clarity increased from June to September, and the light therefore penetrated deeper in 424 

August and September. The difference between day and night vertical fish distributions were 425 

concordant to the depth differences of the light levels between day and night surveys in June, 426 

and the fish stayed at similar light levels during both night and day (Fig. 5). The increased 427 

depth of the day vertical fish distributions towards August and September was stronger than 428 

the increased light penetration (Fig. 4). Part of the coregonid distribution were above the 18 429 

lux level in June. Virtually all of the acoustic energy (i.e. the fish) was returned from depths 430 
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well below this light level in August and September (Fig. 4). In June, the peak of the density 431 

distribution overlapped with the 0.4 lux light level by day (12.2 m) and night (10.9 m). The 432 

distribution peaks were below the 0.4 lux light level in August and September (Fig. 4. In all 433 

surveys, the majority of the fish population (77-92 % of the echo distribution) was found 434 

above the 0.01 lux level, except during September night surveys when the light level was 435 

below 0.01 lux throughout the water column (Fig. 4 and 5). 436 

Fish observed in the upper part of the vertical fish distribution were generally shoaling 437 

during daylight conditions, i.e. during both night and day in June and during days in August 438 

and September, whereas fish dispersed during August and September nights (Fig. 6). This 439 

pattern was seen both with the down-looking and side-looking surveys. Although there were 440 

relatively large variations in light levels for the uppermost shoals, the variation in the light 441 

levels at the deepest part of the deepest shoals was much less and centred around 0.1 lux (Fig. 442 

5b). A sequence of side-looking echograms in August illustrates that after being dispersed at 443 

the low light levels around midnight, fish started shoaling before they migrated out of the 444 

epipelagic zone by day (Fig. 6).  445 

Discussion 446 

Our findings show that DVM behaviour in coregonids consistently varied with changes in 447 

the day-night light cycle. Deeper day-time than night-time distributions of the fish were 448 

observed in all months, and the range of the DVM increased with increasing differences in 449 

light levels between night and day from June to September. Through large seasonal changes 450 

in the light regime, the coregonid depth distribution was consistently observed between light 451 

intensities of approx. 0.01 and 20 lux when these light levels were available. This observation 452 

is likely to have an ecological significance, although we acknowledge that there may be 453 

species- and/or size specific differences within the depth distributions that we were unable to 454 

explore with our sampling scheme. Observations made with bottom-mounted up-looking 455 
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echosoundings in the present sampling year (Gjelland et al. 2004) as well as long time series 456 

from the lake (Gjelland et al. 2007) ensures that we can be confident that young of the years 457 

(YOY) and both DR whitefish and vendace were present in the pelagic fish community in all 458 

three sampling months. The day and night distributions of fish had almost no depth overlap in 459 

August, indicating that DVM was performed by all year-classes of vendace and DR whitefish 460 

at least in this month. DVM has previously been reported for both species (e.g. Dembinski 461 

1971; Kahilainen et al. 2004; Mehner et al. 2007). The pattern of a more extensive DVM as 462 

differences between day and night light levels increased supports the hypothesis that DVM is 463 

strongly influenced by the light level (Blaxter 1975). The preference of vendace for light 464 

levels above 0.01 lux reported by Dembinski (1971) adequately described the lower boundary 465 

for the planktivore coregonid depth distributions in our study. We also observed that shoal 466 

formation occurred in the upper parts of the depth distributions during daylight conditions. 467 

Changing light regimes was thus an important factor in controlling DVM and shoaling. 468 

However, several of the underlying risks and benefits related to these behaviours may be 469 

discussed. 470 

The light range between approximately 0.01 lux to 150 lux appears to be of high ecological 471 

importance in pelagic communities dominated by planktivore coregonids and piscivore 472 

salmonids (Dembinski 1971, Link and Edsall 1996; Vogel and Beauchamp 1999, Fig. 2). 473 

Link and Edsall (1996) found that the reactive distance of C. artedi to Limnocalanus 474 

macrurus at the lowest tested light level (2 lux, 5.3 cm) was 63 % of the highest light level 475 

(1500 lux, 8.4 cm). According to the reactive distance function presented here, planktivorous 476 

coregonids may be able to initiate visual foraging at light levels about 0.007 lux. From this 477 

threshold and approximately two orders of magnitude of increasing light, the relative increase 478 

in piscivore reactive distance is negligible and the relative change in predation risk thus also 479 

small. At light levels above 20 lux the piscivores have reached their maximum reactive 480 
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distance, and further increases in light intensity also offer little relative increase in the reactive 481 

distance of planktivore coregonids. Planktivore reactive distance is also influenced by the 482 

zooplankton prey size. Prey item sizes were not measured from the diet samples in the present 483 

study, but large zooplankton prey is rare in Skrukkebukta and many other Coregonus 484 

dominated lakes. Copepods and chironomid pupae may be 1-2 mm long, and Daphnia 485 

cristata may reach 1 mm length. The dominant coregonid prey in August and September was 486 

Bosmina. B. longispina and B. longirstris mean lengths in the coregonid diet has been 487 

measured to ca. 0.55 and 0.39 mm, respectively (Bøhn and Amundsen 1998). Even for these 488 

small prey items, the planktivore reactive distance is relatively high at the light levels when 489 

the sharp increase in piscivore reactive distance occurs. Link and Edsall (1996) showed that 490 

the coregonid reactive distance was substantial at 2 lux, the lowest light intensity used in their 491 

experiments. We made an extrapolation when we estimated a visual foraging threshold from 492 

the model derived from their data, and the precision of the threshold estimate may be difficult 493 

to evaluate without controlled experiments. There are, on the other hand, reasons to trust that 494 

the model produces reactive distance estimates that are real and reflect coregonid foraging 495 

behaviour. The reactive distance function is similar in shape to the reactive distance responses 496 

to light level and prey size in other planktivores (Vinyard and Obrien 1976; Confer et al. 497 

1978), the size dependence of the model has a theoretical foundation in the inverse square law, 498 

and the model produce a visual foraging threshold that is close to the light levels at the lower 499 

end of the distribution of coregonids (Deminski 1971, this study). The fact that planktivore 500 

coregonids obviously must be able to feed on small zooplankton at low light intensities (0.01-501 

1 lux), but that they seemed to avoid light levels below 0.01 lux (Deminski 1971, our 502 

observations) suggests a preference for a visual foraging mode with a visual threshold around 503 

this light level. The good correspondence between the estimated visual foraging threshold and 504 
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the observed lower boundary of the fish distribution is therefore supporting the validity of the 505 

presented coregonid reactive distance model (Fig. 2d).  506 

A positive relationship between reactive distance and foraging efficiency leads to a higher 507 

foraging efficiency in illuminated habitats, everything else being equal. Janssen’s (1980) 508 

experiments showed that planktivorous Coregonus artedi is a selective, particulate feeder 509 

under illumination, but is also capable of less efficient non-selective gulp-feeding in darkness 510 

even at low prey densities. Our results support the hypothesis that increased foraging gain 511 

associated with increased light levels leads to a visual foraging mode preference in 512 

planktivorous coregonids. The relatively even coregonid distribution throughout the water 513 

column in the dark September night could be attributed merely to the lack of environmental 514 

cues for shaping the distribution. The observed pattern could however also be expected if 515 

planktivores were gulp feeding. In this foraging mode, one would predict highest foraging 516 

efficiency in habitats with the highest prey density (Janssen 1980), and foragers distributed 517 

according to an ideal free distribution. The night-time zooplankton distribution was relatively 518 

even during the period of autumn circulation, possibly resulting in the similarly even fish 519 

distribution. 520 

The assumption that predation risk is significant in the planktivore fish community of 521 

Skrukkebukta is supported by our estimates of pelagic fish density and previous estimates of 522 

brown trout piscivory. Jensen et al. (2006a) estimated the annual brown trout consumption to 523 

140 coregonids ha-1 at an average density of 0.6 trout ha-1. The population of piscivorous 524 

brown trout was estimated to 1.6 times that of the annual brown trout stocking in the 525 

watercourse. As approx. 1000 trout of the annual stocking are released into Skrukkebukta, the 526 

brown trout predation in Skrukkebukta is likely to be 2-3 times the average of the watercourse. 527 

Thus, the brown trout consumption of coregonids in Skrukkebukta was probably in the range 528 

of 300 – 400 fish ha-1 year-1. This represents about 20 % of the 1800 pelagic fish ha-1 529 
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estimated in this study, or between 10 and 50 % taking the 95 % confidence limits into 530 

account. Knowing that on top of this comes the visual predation from waterfowls which may 531 

also be substantial (Steinmetz et al. 2003), we may conclude that the predation from visual 532 

predators in Skrukkebukta is significant. The small lengths of the pelagic coregonids also 533 

implies that they are vulnerable to predation throughout their whole life span (Bøhn et al. 534 

2002; Jensen et al. 2004, Jensen et al. 2008). According to the cylinder foraging model 535 

(Eggers 1977), the encounter probability with a predator will be linearly related to predator 536 

density, whereas encounter probability will be related to predator reactive distance with a 537 

power of two. We therefore argue that the relative change in predator reactive distance with 538 

depth is much more important than predator depth-specific density for the predation risk of 539 

pelagic coregonids. Assuming that brown trout have a similar reactive distance to light 540 

relationship as other salmonid predators (e.g. Salvelinus namaycush, Oncorhynchus clarki, O. 541 

mykiss), brown trout reach maximum reactive distance at light levels above 18 lux (Vogel and 542 

Beauchamp 1999; Mazur and Beauchamp 2003). Since a large part of the coregonids in June 543 

and virtually all in August and September avoided light levels above 18 lux, we conclude that 544 

the coregonids consistently chose to reduce piscivore predation risk. The fact that the majority 545 

of the coregonids were found at depths of low piscivore foraging efficiency (i.e. below 0.4 lux) 546 

in August and September indicates a strong antipredator behaviour.  547 

Predation risk can induce habitat shifts within size groups vulnerable to predation (Werner 548 

et al. 1983). According to the μ/g-rule (Werner and Gilliam 1984), animals with continuous 549 

growth up to a minimum reproductive size should choose behaviours that minimize mortality 550 

(μ) per unit increase in growth (g). This simple relationship has been extended to other 551 

animals in the μ/f-rule (Lima 1998b), were f denotes foraging rate (Gilliam and Fraser 1987; 552 

Clark and Levy 1988). The μ/f-rule emphasizes the trade-off between foraging and predator 553 

avoidance (e.g. Gilliam and Fraser 1987). In this study, zooplankton densities were highest in 554 
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the upper water column during daytime, and a planktivore that were maximizing foraging 555 

gain should therefore have been expected to stay in upper waters instead of migrating to 556 

darker waters during daytime. On the other hand, such diel migration could be expected if the 557 

planktivores were following the µ/f-rule. The light level at which planktivorous fish can 558 

efficiently feed is lower than that of their predators and provides an anti-predation window at 559 

light levels sufficient for visual planktivorous foraging but with low predation risk.  This 560 

combination minimizes the μ/f-ratio (Clark and Levy 1988). Observations of juvenile sockeye 561 

salmon in Alaskan lakes (Scheuerell and Schindler 2003), coregonids in Lake Superior 562 

(Hrabik et al. 2006; Jensen et al. 2006b), and coregonids in the present study all support the 563 

anti-predation window hypothesis.  564 

Theoretical and empirical work has shown that food deprived or energetically stressed 565 

animals take larger predation risks than animals without such energy constraints. According 566 

to the asset protection principle (Clark 1994), individuals close to starvation should be more 567 

prone to experience high predation risk compared to animals in better condition. The optimal 568 

trade-off between foraging and predation risk is thus argued to be state dependent (Lima and 569 

Dill 1990; Milinski 1993; Lima 1998b), although field evidence is sparse. Damsgård and Dill 570 

(1998) showed that coho salmon (Oncorhynchus kisutch) in spring increased their risk-taking 571 

behaviour with resulting compensatory growth. In spring, after an ice-covered period of 572 

nearly 7 months in our study system, the energetic demands are likely high according to the 573 

need for compensatory growth. Combined with the low zooplankton abundance and the low 574 

stomach fullness of pelagic coregonids observed in June, this may have forced the coregonids 575 

to give a priority to food acquisition at the cost of higher predation risk, and resulting in a 576 

coregonid distribution at somewhat higher light levels than in later months. Animals should 577 

also lower their risk-taking in proportion to their reproductive value (Clark 1994). As 578 

reproductive value generally increases with age until first reproduction (Begon et al. 2006) 579 
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and the reproductive value of maturing fish increases with increasing gonad development, one 580 

would expect the risk-taking behaviour to decrease towards autumn for both the immature and 581 

the mature coregonids in Skrukkebukta, which are autumn spawners. Both the hunger and age 582 

aspects of the asset protection principle are in accordance with the observation that a large 583 

part of the coregonid populations stayed at light levels above 0.4 and some even above 18 lux 584 

in June, whereas virtually all stayed at lower light levels later in the season. Interestingly, the 585 

μ/g principle discussed earlier is a special case of the asset protection principle, assuming a 586 

constant environment and a lack of temporal or age effects (Clark 1994).  587 

Brett (1971) proposed with his bioenergetic hypothesis that DVM in planktivorous sockeye 588 

salmon depends on the spatial separation between optimal food densities and the optimal 589 

thermal habitat of the fish. Fish feeding in a warm, food-rich epilimnion would have higher 590 

growth efficiency by descending to colder water for digestion, which will increase their 591 

assimilation fraction and reduce their metabolic expenditure. Intuitively, this would result in 592 

fish foraging in the surface waters during the day, and then descending to deeper and colder 593 

water for digestion during the night when foraging opportunities in the surface waters are 594 

poor, i.e. a ‘reversed’ DVM (Stockwell and Johnson 1999). In all surveys, we observed DVM 595 

patterns that were opposite to this pattern. Moreover, the distribution patterns of the fish in 596 

June and September were very different, although the temperature regimes were similar. We 597 

therefore reject the hypothesis that temperature was driving the observed DVM-patterns in 598 

our study. A number of other authors have also reported coregonid DVM outside of summer 599 

stratification periods (Sydänoja et al. 1995; Jurvelius et al. 2000; Mehner et al. 2007; 600 

Jurvelius and Marjomäki 2008). 601 

Given that many zooplankton taxa are capable of performing DVM (Wetzel 2001; Hays 602 

2003), it is possible that DVM in fish reflects tracking of their prey (Janssen and Brandt 1980; 603 

Eshenroder and Burnham-Curtis 1999). The day- and night distributions of Bosmina and 604 
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Daphnia indicated a slight DVM in this two species, but in opposite direction to the migration 605 

of the coregonid fish. The observed pattern of coregonid DVM in Skrukkebukta could 606 

therefore not be attributed to tracking of prey DVM. 607 

Light periodicity is a major synchronizer of the endogenous circadian clock (Boujard and 608 

Leatherland 1992), and it is possible that the observed DVM behaviour by coregonids may be 609 

initiated by endogenous rhythms. Mehner et al. (2007) suggested that coregonid DVM in 610 

Lake Stechlin is a genetically fixed behaviour inherited from adaptations in a different 611 

environment (e.g. stronger historical predation rate), rather than a behaviour adopted as to 612 

reduce the present-day predation risk. On the basis of our data, we cannot support this 613 

hypothesis as we demonstrate that there was an increase in the extent of the DVM through the 614 

season, compatible with increasing predator avoidance. Also, the findings of Hrabik et al. 615 

(2006) and Jensen et al. (2006b) support the hypothesis that ciscoes Coregonus spp. in Lake 616 

Superior alter their DVM pattern in response to variations in predation risk from lake trout. 617 

On the other hand, if the DVM behaviour was a fixed heritable trait, even a low predation rate 618 

could act to stabilize this trait, since a mutation in one individual leading to abandoning of 619 

DVM behaviour would lead to a large increase in the probability of this individual being 620 

among those few eaten by visual predators. As argued above, given that a visually oriented 621 

piscivore searches a cross-section as it swims, the predation risk for the prey fish will be 622 

proportional to the square of the reactive distance of the piscivore. This emphasizes the 623 

important role of light intensity in the predator-prey interaction when vision influences 624 

efficiency.  625 

A fish trying to hide from a potential predator in open water has two potential shelters: 626 

darkness, or shelter among conspecifics. The former action can lead to vertical migration, 627 

while the latter leads to shoaling. In the present study, the deepest shoal extended down to 628 

0.04 lux. This is in accordance with Milne et al. (2005), who found shoal formation in 629 
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Coregonus artedi to occur at 0.04 lux. However, most shoals and shoal members were at light 630 

levels between 0.1 lux and 100 lux. Shoal formation at higher light levels supports our 631 

assumption that the predation risk from piscivorous brown trout significantly increased with 632 

light intensity in a similar manner as reported for American piscivore salmonids (Vogel and 633 

Beauchamp 1999; Mazur and Beauchamp 2003). No species should be considered an obligate 634 

shoaler, as shoaling is argued to be the result of an individuals’ instantaneous decision of 635 

whether to join, stay, or leave a group (Pitcher and Parrish 1993), and as there may not be a 636 

distinct light intensity threshold for shoal formation (Ryer and Olla 1998). Foraging gain, 637 

predation risk and information transfer between shoal members are light dependent, and the 638 

prerequisites for the join-stay-leave decisions are thus dynamic with changing light conditions 639 

as the main trigger. Milne et al. (2005) found that Coregonus artedi increased the foraging 640 

gain during daylight condition, and also suggested that shoaling enhanced foraging gain. The 641 

observations of i) shoaling during upward migration (Knudsen and Gjelland 2004) and shoal 642 

formation preceding the downward migration; ii) shoal formation in the upper parts of the 643 

coregonid distribution; and iii) that coregonids generally avoided light levels corresponding to 644 

maximum predator efficiency, indicate that these coregonids try to extend their foraging 645 

periods in the surface waters, but are ultimately better off in somewhat darker parts of the 646 

water column due to a classical foraging gain to predation-risk trade-off.  647 

In conclusion, the behavioural responses of the two coregonid species to the large changes 648 

in light conditions found at 69° N provided evidence for a strong link between the observed 649 

DVM and the diel patterns in light regime. The planktivore coregonids avoided light levels 650 

below the light threshold for visual foraging inferred from foraging experiments in other 651 

coregonids, suggesting a preference for a visual foraging mode. The planktivores also avoided 652 

light levels associated with high piscivore reactive distance, suggesting that the planktivore 653 

vertical distribution was influenced by piscivore predator efficiency. The observed DVM 654 
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patterns are consistent with the antipredation window hypothesis both under conditions with 655 

continuous daylight and for conditions with alternating daylight-darkness. There was also a 656 

change in relative risk-taking behaviour from early to late summer, in accordance with state-657 

dependence theory. Alternative hypotheses were found inferior as explanations accounting for 658 

the changing DVM-pattern during the investigated time period.  659 
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Table 1. Secchi-depth ZSd (m, measured during mid-day), vertical extinction coefficient k (m-883 

1), and the estimated depths Z for the light levels 50, 18, 0.4 and 0.01 lux in the different 884 

surveys. Confer the text for estimation details. “--“ means that all light levels were below the 885 

given level. 886 

Survey ZSd k Z50 lux Z18 lux Z0.4 lux Z0.01 lux 

June day 
2.8 0.96 

7.1 8.2 12.2 16.0 

June night 5.9 7.0 10.9 14.8 

August day 
4.5 0.74 

7.3 8.7 13.8 18.8 

August night -- -- 3.8 8.8 

September day 
4.6 0.72 

8.6 10.0 15.3 20.4 

September night -- -- -- -- 

 887 

 888 

889 
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Table 2. Summary description of the vendace and DR whitfish catches, with number of 890 

caught fish, minimum, median and maximum fork length (cm) and age (winters), and the 891 

percentage of mature fish.  892 

  Length Age  

 n Min. Median Max. Min. Median Max. % mature 

DR whitefish 225 7.1 10.2 29.0 0 3 10 29 

Vendace 93 7.8 10.4 14.4 1 1 4 87 

 893 

 894 

895 
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Figure captions 896 

 897 

Fig. 1. (a) Bathymetric map of Lake Skrukkebukta with the five echosounder transects 898 

indicated by the thick white lines, and gillnetting/zooplankton sampling sites indicated by 899 

triangles. The colour of the depth polygons shifts for every 5 m depth. The geographical 900 

location of L. Skrukkebukta in Northern Europe is also indicated. (b) Illustration of the side-901 

looking (horizontally directed beam) and down-looking (vertically directed beam) acoustic 902 

applications. 903 

 904 

Fig. 2. (a) The relationship between prey size divided by reactive distance squared was 905 

constant over all prey sizes in the data of Link (1998), indicating that the inverse square law 906 

may apply. (b) Relationship between coregonid reactive distance (DC) according to Eq. 2, 907 

triangles are the data points from Link and Edsall (1996). (c) DC as a function of zooplankton 908 

size (Eq. 5), circles are the data points from Link (1998). (d) DC in relation to light (Eq. 6) for 909 

various zooplankton sizes (solid=0.70 mm Daphnia, dash-dots=0.55 mm Bosmina longispina, 910 

dotted line=0.39 mm B. longirostris) compared to the reactive distance DT  (Eq. 7) of a 911 

piscivore salmonid (broken line, scale on the right side), adapted from the lake trout model of 912 

Vogel and Beauchamp (1999). 913 

 914 

Fig. 3. (a-c) Catch per unit of effort (CPUE) of DR whitefish (light grey) and vendace (dark 915 

grey) in the gillnets from 0 to 12 m at the three sampling occations. (d-f) Bars indicate day-916 

time depth distributions (± 1 SD) of Bosmina (B) and Daphnia (D) at the three sampling 917 

occations. o (± 1 SD, thick symbols) indicates the respective night-time depth distributions. 918 

Pies indicate the relative contribution of prey items in the coregonid diet; B=Bosmina, 919 

D=Daphnia, z=other zooplankton (predominantly Cyclops and Leptodora), p=chironomid 920 
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pupae, s=surface insects, t=benthic prey. Mean stomach fullness (SF) is given above the pies, 921 

with the number of analyzed stomachs in parenthesis. 922 

 923 

Fig. 4. Vertical distribution of integrated echo energy sA (lower x-axis) during day and night 924 

(solid lines), the weighted average over the five transects with down-looking echosounding 925 

shown in Fig. 1. Analyses were done in 2 m depth intervals for 4-24 m depth. Dotted lines 926 

show 95 % confidence intervals. Note the different x-scale between June and the other two 927 

months. Dash-dot lines show temperature profiles, scale on the upper x-axis. 928 

 929 

Fig. 5. (a) Cumulative presentation of the distributions of average echo energy sA from Fig. 4, 930 

here plotted against light level. — = day distributions, ···· = night distributions, o = June, ∆ = 931 

August, □ = September. (b) Cumulative presentation of shoals seen in down-looking surveys, 932 

represented by their deepest end plotted against the light level at the relevant depth. The 933 

number of symbols in (b) equals the number of shoals. 934 

 935 

Fig. 6. The sequence of echograms show examples of night (left) and day (right) recordings 936 

with side-looking acoustics in June (upper), August (middle), and September (lower). The 937 

echograms show acoustic registrations from 0 to 50 m range aside of the survey boat, for a 938 

distance of about 100 m. The side-looking acoustics sampled the upper 4 m of the water 939 

column. In August, additional recordings were made at daybreak (middle echogram) 940 

941 
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Fig. 4. 956 
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Fig. 5 963 
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