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Planning an Experiment
in the Company of Measurement Error
Joel R. Levin and Michael J. Subkoviak

University of Wisconsin

"Textbook" calculations of statistical power
and/or sample size follow from formulas that as-
sume that the variables under consideration are
measured without error. However, in the "real
world" of behavioral research, errors of measure-
ment cannot be neglected. A recent sample-size
determination approach is easily adapted to incor-
porate unreliability information for both com-
pletely randomized and randomized block anal-
ysis-of-variance designs. A worked example pre-
sents an instance wherein a blocking strategy is
clearly advantageous assuming infallible measur-
ing instruments, but not when the same instru-
ments are granted fallibility.

When it comes to designing an experiment, a
behavioral researcher can draw from a variety of
sources-some in the form of old wives’ tales

and some in the form of theoretically sound
recommendations (e.g., Feldt, 1958)-to deter-
mine whether it is preferable to assign subjects
randomly to K experimental conditions and sub-
sequently to perform an analysis of variance on
the dependent variable Y (hereafter referred to
as a completely randomized design) or whether
to include in the analysis antecedent informa-
tion based on variable X (known or assumed to
be related to Y). The antecedent information in-

cluded can be operationally dealt with in various

ways: in terms of randomized blocks analysis,
analysis of covariance, or analysis of an index of
response (such as change scores)--cf. Porter &

Chibucos (1974).
The major advantage of these procedures,

relative to the completely randomized design, is
one of reducing the within-treatment variability
by removing the variation in Y that is due to the
relationship between X and Y. This paper fo-
cuses on one of these procedures, namely the
randomized block design, as a competitor to the
completely randomized design; and, in particu-
lar, it considers an alternative to the traditional

way of deciding whether or not to block and in-
cludes real-life situations in which errors of

measurement associated with X, Y, or both are

likely to be present. Moreover, since the discus-
sion by Porter and Chibucos (1974) suggests that
in &dquo;true&dquo; (Campbell & Stanley, 1966) experi-
ments of moderate sample size, analysis of co-
variance and analysis of an index of response
may be regarded as essentially equivalent proce-
dures to blocking. Allowing for degrees-of free-
dom differences and slight differences in their
error expected mean squares, the material pre-
sented here has implications for the other two
proced ures as well.’ 1

’The present discussion focuses on the classical randomized
block design in which only one subject within each block is
assigned to each treatment condition (i.e., n = 1). It is with

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



332

Reliability and Sample Size

Statistics texts typically acknowledge four in-
gredients of hypothesis testing: a) Type I error
probability (a); b) Type II error probability ((3) or
its complement, power (I - (3); c) sample size;
and d) the magnitude of the experimental effect
of interest. In planning an experiment, a re-

searcher can specify a and the power desired to
detect an effect of specified magnitude and sub-
sequently calculate the required sample size (or,
in evaluating an experiment, the predetermined
a level and sample size can be used to compute
the power available to detect an effect of given
magnitude).

Such calculations tacitly assume that depen-
dent variables and/or antecedent variables are

measured without error, i.e., they are perfectly
reliable (true scores). In actual practice, how-
ever, both antecedent and dependent variables
are likely to be measured with error, i.e., they
are fallible (observed scores). The result is that
&dquo;textbook&dquo; power/sample size calculations

which do not take the unreliability of the ob-
served data into account will produce inaccurate
estimates. In particular, they will produce un-
derestimates of required sample sizes (or overes-
timates of available power). This paper demon-
strates the necessity for behavioral researchers
to pay explicit attention to the issue of measure-
ment error when planning an experiment. To as-
sist in this endeavor, procedures for computing
power and/or sample size are provided that in-
clude the reliability coefficient of observed

scores as a fifth hypothesis-testing ingredient.
It is possible, of course, to obtain variables

with litfle or no measurement error associated

with them. For example, one could include

&dquo;weight&dquo; as both an antecedent and a depen-

dent variable to study the effect of various diets
or one could block on &dquo;family size&dquo; to determine
the consequences of various intervention pro-

grams. Here, however, arguments will be de-

veloped for variables possessing less than perfect
reliability, with perfectly reliable antecedent

and/or dependent variables falling out as spe-
cial cases.

Several authors have considered the effect of

unreliability on statistical tests (e.g., Cleary &

Linn, 1969; Cleary, Linn, & Walster, 1970;
Overall & Dalal, 1965; Porter, 1967; Sutcliffe,
1958). Cleary et al. (1970), for example, have
demonstrated that the power of the F-test in a

one-way, fixed-effects analysis of variance

(ANOVA) decreases as the reliability-and also
as the validity-of the dependent variable de-
creases. One purpose of the present paper is to
extend some of the Cleary et al. notions to de-
signs in which antecedent information is con-

sidered (in particular, to the randomized block
design). Moreover, in contrast to the commonly
recommended strategy for deciding whether or
not it would be advantageous to block [i.e., by
determining the relative efficiency of a random-
ized block design to a completely randomized
design for a fixed number of subjects (cf. Kirk,
1968, pp. 147-149)], the strategy adopted here
consists of framing the decision in terms of the
respective sample sizes associated with the two
designs that are required to yield equivalent
power for detecting specified effects of interest
(see, for example, Cohen, 1969, pp. 46-50).

Case 1: Latent True Variables

Sample Size Determination for
the Completely Randomized Design

Levin (1975) discusses sample size determina-
tion based on a researcher’s a priori specifica-
tion of the minimum value of any given linear
contrast of interest (which has been called ~) in
accordance with desired a and 1-{3. The resulting
number of subjects required per experimental
condition (assuming N, = N2 = ... = NK = n)
guarantees the researcher the desired power to

this design and its assumption of within-block homogeneity
on the antecedent variable that the above "equivalence"
statement holds. For the generalized randomized block de-

sign with more than one subject in each block-treatment
combination (i.e., n > 1) and/or when within-block hetero-

geneity is present, other considerations such as the number
of treatments, blocks, and subjects included become relevant
(cf. Feldt, 1958).
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detect a contrast as large or larger in magnitude
than that specified. In the case of a planned-
comparison approach to hypothesis testing, an
F-test of the contrast is performed with I and

Klir-Il degrees of freedom (these referring to the
degrees of freedom associated with the contrast
and the mean square within respectively); and in
this situation the probability of detecting a con-
trast of the magnitude specified is alternatively
the probability of obtaining a significant F-ratio
(both I - (3). In the case of a post hoc approach to
hypothesis testing, an omnibus F-test is per-
formed with K-1 and K(n-Il degrees of freedom
(where K - I represents the degrees of freedom
associated with the mean square between v,);
and in this situation the probability of detecting
a contrast of the magnitude specified is alterna-
tively the probability of obtaining a significant
F-ratio and then identifying that contrast as sta-
tistically significant according to Scheff6’s

(1953) multiple comparison procedure (see
Levin, 1975). According to this formulation, 4JQ
represents the magnitude of the contrast in

means considered to be of interest to the re-

searcher and which is expressed in within-treat-
ment standard deviation units (a). Thus if

(where the a, represent contrast coefficients

K
chosen such that 2 Uk = 0), then

k=1

Sample Size Determination for
the Randomized Block Design

Rather than adopting the completely random-
ized design, a researcher may choose to form n
blocks of K subjects (on the basis of some rele-
vant antecedent information) and then ran-

domly assign subjects within blocks to the K
treatment conditions. It is well known that the

effect of introducing a blocking variable into the
design reduces o by a factor of V 1 - Qh, where
Q.n represents the correlation between the ante-
cedent variable and the dependent variable (see,
for example, Feldt, 1958). Thus, in terms of the
present approach, all that needs to be done is to
redefine a standardized contrast as

The effect of blocking, then, is to increase the

value of 4~a of the completely randomized de-
sign. If this increase overcompensates for the

corresponding loss in error degrees of freedom,
i.e., from K(n - 1) to (K - 1 ) (n - 1 ), then there will
be a decrease in the number of subjects required
to maintain equivalent power to that in the com-
pletely randomized case.

Case 2: Fallible Variables

The above discussion has proceeded under the
assumption that the only &dquo;error&dquo; in the ANOVA

model consists of subject error. If there is meas-
urement error as well, one’s effective power will
not be so great as one’s nominal power; or,

stated differently, a researcher will require more
subjects than the &dquo;textbook&dquo; sample size deter-
mination indicates are needed in order to have

the desired power (see, for example, Cleary et
aL, 1970). Classical test theory (Lord & Novick,
1968) assumes that the observed score Y; for per-
son i is equal to his or her true score Ti plus
measurement error E;, such that Yi = Ti + Ei.
Since Ti and E; are assumed to be independently
distributed with respective expected values Of PIT
and 0 and respective variances of aT and aE, it

follows that:

and
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The reliability of observed scores Y; is the ratio
of true score variance to observed score vari-

ance :

Sample Size Determination for
the Completely Randomized Design

How do these properties affect sample size de-
termination in the completely randomized de-
sign ? As was noted previously, 4~a is simply a
contrast involving the treatment means which is
expressed in within-treatment standard devia-

tion units. Because of the relationship in Equa-
tion 4, the numerator of 4~a is unaffected by
measurement errors. What is affected is the de-

nominator. Thus, o in 4~o reflects the within-

treatment standard deviation of true scores, or

aT. Following Cleary et al. (1970) and employing
Equation 6, we note that in terms of observed
scores,

Thus, for the usual case where measurement er-
rors associated with the dependent variable are
expected, we simply redefine 4~Q as:

where it may be easily shown that en’ represents
the (assumed common) within-treatment re-

liability of the dependent variable (see Sub-

koviak & Levin, in press).
In the case of the randomized block design,

the numerator of 41~ is again unaffected by
measurement errors in X and Y, while the quan-
tities o and ~ in the denominator are both
affected. Thus, if Tx and T>. are used to symbol-
ize the true score parts of X and Y, 4~o can be re-
defined (in the presence of measurement error)

as:

where Qxx’ and Qyy< are the respective reliabilities
of X and Y, and Q?XTy = Q2,,I(Q.,Q,,Y,) x follows
from the correction-for-attenuation formula. (As
will become apparent in the example presented
in the next section, in practice one need not
&dquo;know&dquo; the value of 67~. Rather, Equation 8
may be used in conjunction with reasonable esti-
mates of the observed within-treatment quan-
tities, ~XY, Qxx&dquo; and Qyy,.)

It should be noted that this expression can be
easily adapted to fit various special cases. In

particular, if only X is assumed to be fallible, it

may be seen that:

On the other hand, if onlv Y is fallible:
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Finally, if neitherX nor Y is fallible:

which is as it should be.

, 
An Example

Levin’s (1975) sample size determination

formula is given by:

where: ~ = a parameter in the Pearson and
Hartley (1951 ) power charts, avail-
able in most experimental design
textbooks; more complete tables

displaying § are also available (e.g.,
Tiku, 1967, 1972).

Let us apply Equation 13 to the simplest
ANOVA situation, namely for K = 2 which is

equivalent to the independent two-sample non-
directional t-test situation.

Assume that a researcher wishes to have an 80

percent chance of detecting a difference in K =
2 means of at least 1 standard deviation unit,
how many subjects per treatment group should
he/she include, based on a Type I error prob-
ability of .05? [With reference to Equation 13, it
should be noted that v, + 1 will always equal K
in the one-way layout (here v, + 1 = 2); and
when only pairwise differences in means are of

K 
, ,

interest, 2 a2 = 2. However, in some situations,
k=1

complex comparisons may interest the re-

K
searcher, in which case the value of I ak will

k=1

change (see Levin, 1975).] ]
The information contained in the preceding

paragraph may be translated as follows: a = .05,
1 - f3 = .80, 4-’0 = 1.00. Incorporating this into
Equation 13 and the appropriate power charts
and proceeding in the manner described by
Levin, we find that in the completely random-
ized situation (assuming a perfectly reliable de-
pendent variable), a total of 17 subjects per
treatment group is required to yield the desired
power.

If we further assume that an antecedent vari-

able is selected that correlates .50 with perform-
ance on the dependent measure (i.e., eXY = .50),
then it can be seen that 4JQ = 1/V 1-(.50)2 =
1.155. Substituting this into Equation 13 and

checking with the appropriate vz, we find that if
the randomized block design were employed
(and assuming perfectly reliable antecedent and
dependent variables), a total of 14 blocks (n =
14) would be required to yield equivalent power
to that in the completely randomized design
above.

Now let us suppose that either or bot~ of the

two variables involved (antecedent and depen-
dent) are fallible. Given separate (and equal) re-
liabilities of Q,,,, = Qyy, = .80, for example, we
are able to retrace the steps associated with

Equation 13, incorporating 4fo and W« as pre-
viously defined. Table 1 summarizes the results

of this endeavor.

What is especially interesting about this ex-
ample is that even though we start out with a
situation in which it is clearly preferable to block
(as reflected by a total savings of six subjects for
Situation 1 of Table 1 ), the randomized block

advantage disappears (as retlected by the 0 total
subject savings difference in Situation 4 of Table
1) by the time the antecedent and dependent
variables are both granted fallibility on the order
of Qxx, = rYY~ = .80.
To make this lesson somewhat more concrete,

assume that a researcher is interested in com-

paring the efficacy of two instructional varia-
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tions designed to teach eighth-grade mathe-
matics. Both variations are to be incorporated
into programmed instruction booklets and ran-
domly assigned to students within classrooms or
schools), and end-of-year performance will be
assessed via a standardized mathematics

achievement test. Suppose further in this hypo-
thetical situation that the production cost of the
booklets is somewhat of a factor; in this case, an

experimental design that will yield the desired
power with the fewest students is the one to be

selected. Given this information, should the re-
searcher randomly assign students to the two
treatment conditions or block on seventh-grade
standardized mathematics achievement scores

found empirically (based on a review of the liter-
ature and/or pilot research) to be correlated .50
with eighth-grade scores? Ignoring the unrelia-
bility associated with two achievement tests (as
in the &dquo;textbook&dquo; case), the researcher would

clearly do well to block; he/she would require six
fewer students with a randomized block design
than with a completely randomized design.
However, considering that the published relia-

bilities of the two tests were .80, the researcher

would discover that it makes little difference

which of the two experimental designs he/she se-
lects, since there is a 0 subject savings. In fact, if
it would require some additional effort to obtain
and/or record the seventh-grade achievement
data, the researcher may well opt for the seem-

ingly less efficient (though not so in this case),
completely randomized design.

Conclusion

This example is but one of several that could
have been contrived to demonstrate the follow-

ing points. First, each potential experiment
should be examined on an a priori basis to deter-
mine whether or not it is advantageous to block.
This decision cannot be made without consider-

ing the number of treatment conditions in-

cluded, the magnitude of the relationship be-
tween the antecedent and blocking variables
(QXY)’ as well as the various hypothesis-testing in-
gredients described at the outset of the paper.

Second, to follow these procedures without

simultaneously considering errors of measure-
ment is to live in a &dquo;fool’s paradise,&dquo; for these,
too, will affect block/no-block decisions. In

cases where a priori reliability information is

lacking, pilot research or sagacious judgements
(to obtain approximate and conservative esti-

mates, respectively) will surely do better than
nothing.
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