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Planning and Execution of Dynamic Whole-Body Locomotion

for a Hydraulic Quadruped on Challenging Terrain

Alexander W. Winkler†∗, Carlos Mastalli∗, Ioannis Havoutis∗,

Michele Focchi∗, Darwin G. Caldwell∗, Claudio Semini∗

Abstract— We present a framework for dynamic
quadrupedal locomotion over challenging terrain, where
the choice of appropriate footholds is crucial for the success
of the behaviour. We build a model of the environment on-line
and on-board using an efficient occupancy grid representation.
We use Any-time-Repairing A* (ARA*) to search over a tree
of possible actions, choose a rough body path and select the
locally-best footholds accordingly. We run a n-step lookahead
optimization of the body trajectory using a dynamic stability
metric, the Zero Moment Point (ZMP), that generates natural
dynamic whole-body motions. A combination of floating-base
inverse dynamics and virtual model control accurately
executes the desired motions on an actively compliant system.
Experimental trials show that this framework allows us to
traverse terrains at nearly 6 times the speed of our previous
work, evaluated over the same set of trials.

I. INTRODUCTION

Agile locomotion is one of the key abilities that legged

ground robots need to master. Wheeled or tracked vehicles

are efficient in structured environments but can suffer from

limited mobility in many real-world scenarios. Legged robots

offer a clear advantage in unstructured and challenging

terrain. Such environments are common in disaster relief,

search & rescue, forestry and construction site scenarios.

This paper presents the newest development in a stream of

research that aims to increase the autonomy and flexibility of

legged robots in unstructured and challenging environments.

We present a framework for dynamic quadrupedal locomo-

tion over highly challenging terrain where the choice of ap-

propriate footholds is crucial for the success of the behaviour.

We use perception to build a map of the environment, decide

on a rough body path and choose appropriate footholds. We

are able to generate feasible footholds on-line and on-board

for various types of scenarios such as climbing up and down

pallets, traversing stepping stones using an irregular swing-

leg sequence and passing over a 35 cm gap. We optimize

the body trajectory according to a dynamic stability metric

(ZMP) to produce agile and natural dynamic whole-body

motions up to 5.8 times the speed of our previous work

[1]. Compliant execution of the motions is performed using

a floating-base inverse dynamics controller that ensures the

accurate execution of dynamic motions, in combination with

a virtual model controller that generates feedback torques to

account for model and tracking inaccuracies.
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Fig. 1. The hydraulically actuated and fully torque controlled quadruped
robot HyQ [2]. The inset plot shows the on-line built environment perception
alongside with the planned footholds and the current on-board robot state
estimate.

Our contribution includes on-line perception, map building

and foothold planning, generation and execution of optimized

dynamic whole-body motions despite irregular swing-leg

sequences and the use of an elegant inverse-dynamics/virtual-

model control formulation that exploits the natural partition-

ing of the robot’s dynamic equations.

The rest of the paper is structured as follows: After

discussing previous research in the field of dynamic whole-

body locomotion (II) we describe the on-line map building

and how appropriate footholds are chosen (III). Section IV

explains, how dynamically stable whole-body motions are

generated based on an arbitrary footstep sequence. Section V

shows how these desired motions are accurately and compli-

antly executed. In Section VI we evaluate the performance

of our framework on the Hydraulic Quadruped robot HyQ

(Fig. 1) in real-world experimental trials before Section VII

summarizes this work and presents ideas for future work.

II. RELATED WORK

In environments where smooth, continuous support is

available (flats, fields, roads, etc.), where exact foot place-

ment is not crucial for the success of the behaviour, legged

systems can utilize a variety of dynamic gaits, e.g. trotting,

galloping. Marc Raibert pioneered the study of the principles

of dynamic balancing with legged robots [3], resulting in the

quadruped BigDog. The reactive controllers used in these

legged systems are partially capable to overcome unstruc-

tured terrain. Likewise, HyQ can traverse lightly unstructured

terrain using reactive control [4], [5] or reflex strategies [6].



However, for more complex environments with obstacles

like large gaps or stairs, such systems quickly reach their lim-

its. In this case, higher level motion planning that considers

the environment and carefully selects appropriate footholds is

required. In these terrains, e.g. stairs, gaps, cluttered rooms,

legged robots have the potential to use non-gaited locomotion

strategies that rely more on accurate foothold planning based

on features of the terrain. There exist a number of successful

control architectures [7], [8], [9], [10] to plan and execute

footsteps to traverse such terrain. Some avoid global footstep

planning by simply choosing the next best reachable foothold

[8], while others plan the complete footstep sequence from

start to goal [10], often requiring time consuming re-planning

in case of slippage or deviation from the planned path.

The approach in [7] stands between the two above men-

tioned methods and plans a global rough body path to avoid

local minima, but the specific footholds are chosen only a

few steps in advance. This reduces the necessary time for re-

planning in case of slippage, while still considering a locally

optimal plan. We recently built on this approach with a path

planning and control framework that uses on-line force-based

foothold adaptation to update the planned motion according

to the perceived state of the environment during execution

[1].

The whole-body locomotion framework described in this

paper further extends this work: We use real-time perception

to create, evaluate and update a terrain cost map on-board.

Compared to previous approaches our framework does not

make use of any external state measuring system, e.g. a

marker-based tracking system. The incorporation of domain

knowledge, e.g. body motion primitives and an ARA* plan-

ner, allows us to re-plan actions and footholds on-line. As

in [7] the Center of Gravity (CoG) trajectory is now chosen

to comply with the ZMP dynamic stability metric [11] to

produce agile, fast and natural motions.

III. PERCEPTION AND (RE-)PLANNING

This section describes the pipeline from the acquisition

and evaluation of terrain information to the generation of

appropriate footholds (Fig. 2)1. The on-board terrain infor-

mation server continuously holds the state of the environ-

ment. The body action planner decides the general direction

of movement and the footstep sequence planner chooses

specific footholds along this path.

A. Terrain Information

We develop a terrain information server that computes the

required information for the body action and the footstep

sequence planners, e.g. the terrain cost map of the environ-

ment. We build a 3D occupancy grid map [13] from a RGBD

sensor mounted on a scanning pan & tilt unit, alongside with

the state estimate of the robot using the Extended Kalman

Filter [14]. The voxel-based map is built using a (x, y, z)
resolution of (4 cm × 4 cm × 2 cm) which roughly matches

the dimensions of the robot’s foot.

1A more in-depth presentation of the perception and terrain evaluation
pipeline can be found in [12].
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Fig. 2. An overview of the perception and planning system that generates
footstep sequences according to the terrain information.

The terrain cost map quantifies how desirable it is to place

a foot at a specific location. The terrain cost ct for each

voxel in the map is computed using geometric terrain features

as in [1]. Namely, we use the standard deviation of height

values, the slope and the curvature of the cell in question.

The terrain cost ct for each voxel of the map is computed

as a weighted linear combination of the individual features

ct(x, y) = wT c(x, y). The cost map is locally re-computed

(in a 2.5 m×5 m area around the robot) whenever a change

in the map is detected.

B. Body Action Planner

The state s = (x, y, θ) ∈ S of the robot body includes

the current position (x, y) and the yaw angle θ. Given a

desired goal state, the body action planner finds a sequence

of actions a0...N = {a0,a1, . . . ,aN} that move the robot

in a nearly optimal way to this state. This implies that

terrain features, the difficulty of specific actions, kinematic

reachability and collision with the environment must be

considered and quantified. A feasible action a is the change

of state that can be achieved through one step from s to s′

as

a = (∆x,∆y,∆θ) ∈ A. (1)

We define A as the set of -empirically chosen- feasible

motion primitives (e.g. move left, diagonally forward, back)

that correspond to the kinematics and dynamics of the robot.

The cost of an action a given a current state s is computed

as a weighted linear combination of costs:

c(s,a) = wT c(s,a) (2)

with c(s,a) consisting of:

c̄t The average of the best n terrain costs around each

leg after performing action a.

ca The difficulty of a specific action, e.g. sideways

steps are more difficult than forward ones.

cpc Penalizes actions that potentially cause the swing-

leg to collide with the environment.

cpo Penalizes actions that potentially end up in uneven

terrain that require large roll and pitch angles.



Fig. 3. A sketch of the body action graph. The objective is to find a
sequence of actions a from the current body state s = (x, y, θ) to the goal
state g, that minimizes the accumulated action costs c(s,a). For simplicity
only three possible actions are shown, namely move left (al), right (ar) and
forward (af ). The optimal action sequence {al,ar, . . . ,ar} found through
ARA* is shown in red.

The set of actions A and the current state s of the robot

is used to construct a directed graph G = (S,A) (Fig. 3).

We use the ARA* [15] algorithm to search the tree for a

sequence of actions with the lowest accumulated cost from

the current to the goal state. ARA* uses a heuristic h(s) =
−c̄F(‖g − s‖) to decide along which states to search first.

F(·) is the estimated remaining steps (actions) to reach the

goal state and c̄ is an estimated lower bound on the average

future action costs, considering the terrain costs between the

current and the goal state.

ARA* initially runs an A* search with an inflated heuris-

tic, ǫ · h(s), which quickly finds a first sequence of actions.

Unfortunately, since the inflated heuristic is no longer ad-

missible (always lower than the true cost), the sequence

of actions may be sub-optimal. As long as computational

time is still available, ARA* repeatedly runs A* search,

continuously decreasing the inflation factor ǫ and thereby

finding closer to optimal sequences of actions. Since a

first solution, although suboptimal, is found quickly, this

algorithm can be used online.

C. Footstep Sequence Planner

Given the desired body action plan, the footstep sequence

planner computes the sequence of footholds that corresponds

to these body actions. In our previous work, we selected

the optimal foothold around the nominal stance positions in

a predefined swing-leg sequence. In this paper, we modify

the position of the search area and the swing-leg sequence

depending on the corresponding action, which improves the

robustness of the planned actions. For example, when moving

left (action al) it is advantageous to swing one of the left

legs to avoid small areas of support.

The footstep location in each search area with the lowest

foothold cost, cf = wtct + wstcst + wccc + woco, is then

selected, where ct is the terrain cost below a foothold, cst is

the support triangle cost, cc is the leg collision cost and co
is the body orientation cost.

D. Re-planning/Updating during Execution

Compared to our previous approach the graph is signifi-

cantly smaller, since we only search over feasible actions A
and not over every discretized change in state. Additionally,

ARA* provides intermediate solutions, so the exhaustive and

time-costly search procedure does not need to be completed

before the robot can react. This combination of the efficient

voxel-based occupancy map, the graph representation over

feasible actions, and the efficient search through ARA*

allows us to re-plan the motions and set of planned footholds

online to cope with changes in the environment as is shown

in Fig. 4.

IV. WHOLE-BODY MOTION GENERATION

We generate a body trajectory that ensures that the robot

is dynamically stable at every time step. We follow the

approach presented in [7] that finds a CoG trajectory that

respects stability constraints without explicitly generating

a ZMP trajectory. We build on this approach by enabling

swing-leg sequences in any order through insertion of four-

leg support phases.

A. Problem Formulation

For a CoG trajectory to be feasible it must be continu-

ous and double differentiable. This way we avoid steps in

accelerations that produce discontinuous torques which can

damage the hardware and affect stability. The body trajectory,

xcog , is given by a spline comprised of multiple fifth-order

polynomials:

xcog(t) = axt
5 + bxt

4 + cxt
3 + dxt

2 + ext+ fx. (3)

At each spline junction we require the last state (t = Ti)

of spline i to be equal to the first state (t = 0) of the next

spline i+1 as:

(xcog, ẋcog, ẍcog)
i
t=Ti

= (xcog, ẋcog, ẍcog)
i+1

t=0. (4)

This ensures double differentiability and continuity of

the trajectory, required by the floating-base inverse dy-

namics. Finding an optimal CoG trajectory can then

be reduced to finding optimal polynomial coefficients

qi = (ax, . . . , fx, ay, . . . , fy)
T ∈ R

12 for each spline

segment i.

B. Dynamic Stability

To execute the planned footsteps, a body trajectory must

be found that ensures a stable stance at all time instances.

For slow movements this is achieved by keeping the CoG

inside the support polygon, i.e. the polygon formed by

the legs in stance. To consider dynamic effects of larger

Fig. 4. (Re-)planning and perception. The left image shows how a map
of the environment is built (cost values in grayscale) along with the body
path (green line) and the footstep sequence plan (colored spheres). Once
the environments changes the map is updated and the footsteps re-planned.



Fig. 5. Left: Cart-Table model for representing a quadruped robot: The
total mass of the robot is concentrated in the cart that moves on the table.
The base of the table represents the current area of support, determined
by the current footholds. The ZMP must lie inside this area for dynamic
stability. Right: Disjoint support triangles due to the added stability margin
d. When switching between swinging the left-front (LF) to right-hind (RH)
the ZMP must move from the brown to the blue support triangle. Since all
four feet are in stance during this phase, the ZMP is only restricted by the
red support polygon.

body accelerations we estimate the position of the ZMP by

modeling the robot as a cart-table (Fig. 5, left). The ZMP

can then be calculated by:

xzmp = xcog −
zcogẍcog

z̈cog + g0
, (5)

where xzmp and xcog are the position of the ZMP and the

CoG respectively, zcog describes the height of the robot

with respect to its feet, z̈cog is the vertical acceleration of

the body and g0 represents the gravitational acceleration.

Dynamic stability requires the ZMP to be inside the current

support triangle, expressed by three lines l of the form

px + qy + r = 0. The ZMP is considered to be inside a

support triangle, if the following conditions are met at every

sampling interval:

plxzmp + qlyzmp + rl > 0 for l = 1, 2, 3. (6)

In reality there exist discrepancies between the cart-table

model and the real robot. Additionally, desired body trajec-

tories cannot be perfectly tracked as modelling, sensing and

actuation inaccuracies are hard to avoid. Therefore, it is best

to avoid the border of stable configurations by shrinking the

support triangles by a stability margin d (Fig. 5, right). With

the introduction of d, there is no continuous ZMP trajectory

when switching between diagonally opposite swing legs

as the support triangles are disjoint. We therefore allow a

transition period (‘four-leg support phase’) during which the

ZMP is only restricted by the shrunk support polygon created

by the four stance feet.

We built on [7] by allowing a completely irregular se-

quence of steps for the ZMP optimization. Our trajectory

generator needs no knowledge of a predefined gait. For every

step it checks if the next swing leg is diagonally opposite of

the current swing leg. If so, the disjoint support triangles

require a four-leg support phase for the optimization to find

a solution. This allows a greater decoupling from the footstep

planner, which can generate swing leg sequences in any order

useful for the success of the behaviour.

C. Cost function

In addition to moving in a dynamically stable way, the

trajectory should accelerate as little as possible during the
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Fig. 6. Pipeline that uses planned footholds to generate dynamic whole-
body motions and compliantly executes them using a combination of
feedforward and feedback terms.

execution period T . This increases possible execution speed

and reduces required joint torques. This is achieved by

minimizing

J = wx

∫ T

0

ẍ2
cog(t) dt+ wy

∫ T

0

ÿ2cog(t) dt. (7)

The directional weights w penalize sideways accelerations

(wy = 1.5wx) more than forward-backward motions, since

sideways motions are more likely to cause instability. This

results in a convex quadratic program (QP) with the cost

function (7), the equality constraints (4) and the inequality

constraints (6). We solve it using the freely available QP

solver, namely QuadProg++ [16] to obtain the spline coef-

ficients q and therefore the desired and stable (x, y)-body

trajectory (3). The remaining degrees of freedom (zcog , roll,

pitch, yaw) and the swing-leg trajectories are chosen based

mostly on the foothold heights and described in detail in [1].

V. EXECUTION OF WHOLE-BODY MOTIONS

Dynamic whole-body motions require orchestrated and

precise actuation of all the joints. Simple PD controllers do

not suffice for such motions, especially when considering

uncertainties in the environment and/or model inaccuracies.

We use a control scheme (Fig. 6) that combines a virtual

model with a floating-base inverse dynamics controller. After

receiving an arbitrary sequence of footholds from the foot-

step planner, the whole-body motion generator calculates

desired (feedforward) accelerations ẍd for the body and a

virtual model (VM) control loop adds feedback accelerations

ẍfb should the robot deviate from the desired trajectory.

The inverse dynamics produce the majority of the joint

torques which are combined with a low-gain joint-space PD

controller to compensate for possible model inaccuracies.

The computed reference torques are then tracked by the low-

level torque controller. Note that x describes the linear and

rotational coordinates of the body as

x = (xcog,Rb), ẋ = (ẋcog,ωb), ẍ = (ẍcog, ω̇b), (8)



where Rb ∈ R
3×3 is a coordinate rotation matrix represent-

ing the orientation of the base w.r.t. the world frame and

ωb ∈ R
3 is the angular velocity of the base.

A. Virtual Model

The feedback action which compensates for inaccurate

execution and drift can be imagined as virtual springs and

dampers attached to the robot’s trunk on one side and the

desired body trajectory on the other [17]. Deviation between

these causes the springs and dampers to produce virtual

forces Fvm and torques Tvm on the body that “pull” the

robot back into the desired state through

Fvm = Px(x
d
cog − xcog) +Dx(ẋ

d
cog − ẋcog)

Tvm = Pθe(R
d
bR

⊤

b ) +Dθ(ω
d
b − ωb),

(9)

where the superscript d refers to the desired values, planned

by the whole-body motion generator and non-superscript

values describe the state of the robot as estimated by the

on-board state estimator. Respectively, e(.) : R3×3 → R
3 is

a mapping from a rotation matrix to the associated rotation

vector [18]. Px,Dx,Pθ,Dθ ∈ R
3×3 are positive-definite

diagonal matrices of proportional and derivative gains, re-

spectively. Expressing the body feedback action in terms of

forces and moments allows us give the virtual model gains a

physical meaning of stiffness and damping and thus can be

intuitively set and used.

Since the inverse dynamics computation requires reference

accelerations, we multiply the forces/moments (wrench)

Wvm = (Fvm,Tvm) with the inverse of the composite

rigid body inertia Ic of the robot at its current configuration.

Adding this body feedback acceleration to the desired body

acceleration produced by the whole-body motion generator

creates the 6D reference acceleration (linear and rotational)

for the inverse dynamics computation as:

ẍref = ẍd + I−1
c Wvm. (10)

By combining a feedforward acceleration ẍd with a body-

feedback acceleration, we achieve accurate tracking while

maintaining a compliant behaviour.

B. Floating Base Inverse Dynamics

The floating base inverse dynamics algorithm calculates

the joint torques required to execute the reference body

accelerations. We can partition [19] the dynamics equation

of the robot into the unactuated base coordinates qb ∈ R
6

and the active joints’ q ∈ R
12 as

M(R,q)

[
q̈b

q̈

]

+

[
hb

hq

]

(R,q,ω, q̇)

︸ ︷︷ ︸

b

=

[
0

τ

]

+

[
JT
cb

JT
cq

]

λ,

(11)

where M is the floating base mass matrix, h = (hb,hq) is

the force vector that accounts for Coriolis, centrifugal, and

gravitational forces, λ are the ground contact forces, and

their corresponding Jacobian Jc =
[
Jcb Jcq

]
and τ are the

torques that we wish to calculate.

The left hand term b = (bb,bq) can be computed

efficiently using the Featherstone implementation of the

Recursive Newton-Euler Algorithm (RNEA) [20]. Since the

CoG acceleration ẍref
cog is defined in a frame aligned with

the base frame but with the origin in the CoG, we perform a

translational coordinate transform bXcog to get the 6D base

spatial acceleration: q̈b = bXcogẍ
ref as in [20].

By partitioning the dynamics equation as in (11) and given

that the base is not actuated, we can directly compute, in a

least-squares way, the vector of ground reaction forces λ

from the first nb equations, λ = J+

cbbb, where ()+ denotes

the Moore-Penrose generalized inverse. We then use the last

n equations to produce the reference joint torques, τ
id =

bq − JT
cqλ.

VI. EXPERIMENTAL RESULTS

This section describes the experiments conducted to val-

idate the effectiveness and quantify the performance of our

framework.

A. Experimental Setup

We use the hydraulically-actuated quadruped robot HyQ in

our experiments. HyQ weighs approximately 90 kg, is fully-

torque controlled and equipped with precision joint encoders,

a depth camera (Asus Xtion) and an Inertial Measurement

Unit (MicroStrain). We perform on-board state estimation

and do not make use of any external state measuring system,

e.g. a marker-based tracking system. All computations are

done on-board, using a PC104 stack for the real-time critical

part of the framework, and a commodity i7/2.8 GHz PC for

perception and planning.

The first experiment starts with flat, obstacle-free terrain.

After the robot has planned initial footsteps, a pallet is placed

into the terrain. In the next experiments the robot must climb

one and two pallets of dimensions 1.2 m × 0.8 m × 0.15 m.

The height of one pallet is equal to 20% of the leg length.

Furthermore we show that the robot traverses a gap of 35 cm,

which is approximately half the robot’s body length. The

final experiment consist of two pallets connected by a sparse

path of stepping stones. The pallets are 1.2 m apart and the

stepping stones lie 0.08 m lower than the pallets.

For each experiment, we specify the (x, y, θ) goal state.

The footstep planner finds a sequence of footsteps of an arbi-

trary order, which the controller then executes dynamically.

We validate the performance of our framework in 4 scenarios

as seen in Fig. 7 and compare it to our previously achieved

results (Table I) on the same benchmark tasks. Additionally,

the reader is strongly encouraged to view the accompanying

video2 as it provides the most intuitive way to demonstrate

the performance of our framework.

B. Results and Discussion

1) Perception and (re-)planning: Efficient occupancy

grid-based mapping and focusing our computations to an

area of interest around the robot body greatly increase

computation speed. This allows us to incrementally build

a model of the environment and update the terrain cost

map at a frequency of 2 Hz. Using the action based search

2http://youtu.be/MF-qxA_syZg

http://youtu.be/MF-qxA_syZg
http://youtu.be/MF-qxA_syZg
http://youtu.be/MF-qxA_syZg


Fig. 7. Snapshots of experimental trials used to evaluate the performance of our framework. From top to bottom: crossing a 15 cm pallet; climbing a
stair-like structure consisting of two stacked pallets; traversing a 35 cm gap and crossing a sparse set of stepping stones.

TABLE I

FORWARD SPEED AND SUCCESS RATE OF EXPERIMENTS AVERAGED

OVER 10 TRIALS AND COMPARED TO PREVIOUS RESULTS FROM [1].

Speed [cm/s] Success Rate [%]

Terrain Curr. Prev. Ratio Curr. Prev. Ratio

Step. Stones 7.3 1.7 4.2 60 70 0.9
Pallet 9.5 2.1 4.5 100 90 1.1
Two Pallets 10.2 1.8 5.8 90 80 1.1
Gap 12.7 - - 90 0 -

graph together with ARA* allows us to replan footholds at a

frequency of approximately 0.5 Hz for goal states up to 5 m.

2) Speed while dynamically stable: The pallet climbing

and gap experiments show the speed (Table I) that our

framework can achieve: This is due to the fact, that the

body can move faster while still being stable, since we are

using a dynamic stability criterion. All accelerations and

decelerations are optimized, so that the ZMP never leaves

the support polygon. In addition, since we are not directly

producing torques with the virtual model feedback controller,

but only accelerations for the inverse dynamics controller,

our feedback actions also respect the dynamics of the system.

Furthermore, the duration of the four-leg-support phase is

significantly reduced: It is much faster to move the ZMP

from one support triangle to another than the CoG (e.g.

entire body), because this can be achieved by manipulating

the acceleration.

3) Model accuracy: Walking over a 35 cm gap (approx-

imately half of the body length) shows the stability of the

robot despite of highly dynamic motions. When crossing the

gap the robot accelerates up to a body velocity of 0.5 m/s

and is able to decelerate again without loosing balance.

This shows, that the simple cart-table model is a sufficient

approximation for large quadrupeds performing locomotion

tasks.

4) Avoiding kinematic limits: Attempting to cross the

gap with a statically stable gait tends to overextend the

legs, since large body motions are required to move the

robot into statically stable positions. Dynamic motions allow

us to keep the CoG closer to the center of all four feet,

since stability can be achieved by appropriate accelerations,

avoiding kinematic limits.

5) Stability despite irregular swing-leg sequences: Walk-

ing over the stepping stones demonstrates the ability of

the controller to execute irregular swing-leg sequences in

a dynamically stable manner (Fig. 8). Starting from a lat-

eral sequence gait (LH-LF-RH-RF) the foothold sequence

changes to traverse these irregularly placed stepping stones.

Despite this, the produced CoG trajectory (colored solid line)

is dynamically stable, since the ZMP (asterisk) is always

kept inside the current support triangle. When comparing the

actual (top) and desired (bottom) CoG trajectories, a tracking

error is evident. By keeping the ZMP e.g. d = 6 cm away

from the stability borders, we are robust even against these

inaccuracies.

The whole body motion generator inserts four-leg-support

phases (red section) only whenever it detects disjoint support

triangles in the swing-leg sequence. While executing steps 1

and 2 (Fig. 8) no four-leg-support phase is necessary, because

the triangles are not disjoint. Only after returning to swing

the right-front leg, the robot requires a four-leg support phase

for the ZMP to transition from the green (LH) to the yellow

(RF) support triangle at (x, y) = (1.1, 0).

VII. CONCLUSION

We presented a dynamic, whole-body locomotion frame-

work that executes footholds planned on-board. We showed,
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Fig. 8. Top: The body motion when walking over the stepping stones
is show in black. The planned footholds are shown and the irregular step
sequence LF(1) → LH(2) → RF(3) is highlighted (red). Bottom: The 3
shrunk support triangles corresponding to the highlighted step sequence
brown → green → yellow are shown. Additionally the planned CoG (solid
line) and ZMP trajectory for the duration of these 3 steps is illustrated
(asterix). While the CoG (solid line) does not reach the support triangles,
the ZMP does, causing dynamic stability. When switching between disjoint
support triangles (green → yellow) four-leg support phases are inserted (red)
to allow a smooth transition.

how a change in the environment causes the foothold gener-

ator to re-plan footholds on-line. We presented a whole body

motion planner, which is able to generate a ZMP-stable body

trajectory despite irregular swing-leg sequences to execute

footholds dynamically. We showed how a combination of

virtual model and floating-base inverse dynamics control

can compliantly, yet accurately, track the desired whole-

body motions. Real world experimental trials on challenging

terrain demonstrate the capability of our framework.

We are currently working on bringing the kinematic plan-

ning and dynamic execution closer together. The idea is

to produce desired state trajectories and required torques

through one trajectory optimization problem, taking into

account torque/joint limits, the dynamic model of the robot,

foothold positions, friction coefficients and other constraints.

With this approach we aim to produce even more dynamic

motions such as jumping and rearing, during which fewer or

no legs are in contact.
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