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Planning  and  Execution of Straight  Line  Manipulator 
Trajectories 

Recently developed  manipulator control languages typically specify  motions  as  sequences  ofpoints through  which a tool 
afixed  to  the end of the manipulator is to  pass. The effectiveness of such  motion specijication formalisms is greatly 
increased if the tool moves in a straight line between  the user-specijied points. This paper describes two  methods  for 
achieving  such  straight line motions. The first method is a refinement of one  developed in 1974 by R .  Paul.  Intermediate 
points are  interpolated along the Cartesian  straight line path  at regular  intervals during the  motion, and the manipula- 
tor’s  kinematic equations are solved to  produce  the corresponding  intermediate joint  parameter  values.  The  path inter- 
polation  functions developed here offer  several advantages, including  less computational cost and improved motion 
characteristics. The  second  method  uses  a  motion planning phase  to  precompute  enough intermediate points so that  the 
manipulator may be driven by interpolation of joint  parameter values while keeping the tool on  an approximately  straight 
line path. This technique allows a  substantial reduction in real time  computation and permits problems arising from 
degenerate joint  alignments  to  be handled more easily.  The planning is done by  an  eficient recursive algorithm which 
generates only enough intermediate points  to guarantee  that the  tool’s deviation from  a straight line path  stays within 
prespecijied error bounds. 

Introduction 
Over  the  past ten years, general purpose  automation ma- 
chines consisting of a sequence of motor  driven links, or 
“joints,” operating under  control of a computer  have be- 
gun to  appear in industry.  These  “manipulators” gener- 
ally terminate in a gripper-like  hand or  other  tool  and can 
be used for  assembly,  parts handling,  welding, and many 
other applications. 

The development of these  devices  requires  both provi- 
sion of suitable  formalisms for describing the motions to 
be made and implementation of suitable control strategies 
for carrying  them out.  The simplest approach is to record 
the values of the  joint  parameters which place  the hand at 
particular  desired points and  then to move the  joints inde- 
pendently  from one  set of parameters  to  the  next. More 
sophisticated  motion execution  schemes (e.g . , [ 1-31) fre- 
quently  include an  open  loop trajectory component  that 
generates intermediate  target  values for  the  joints.  These 

schemes  are often accompanied by more  sophisticated 
means of describing the desired motion to be made. 

Of particular interest  has been the  development of pro- 
gramming languages [4-71 in which manipulator  target 
points  are described by transformations relating the 
coordinate system of the hand or tool to  the coordinate 
system of the work  station. Motions in these languages 
are specified as  sequences of “knot”  points through 
which  the  controlled frame is to  pass.  The  joint  vectors 
corresponding to  each Cartesian  knot  point are computed 
by solving the link equations  for  the  manipulator, which 
are  then used by the motion  execution programs. One 
drawback  to this scheme is that it leaves undefined the 
precise path  taken by the manipulator  between knot 
points. This makes  programming more difficult, since it is 
hard to predict just how many intermediate points  should 
be  added to a  motion statement  and complicates the de- 
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velopment of model-based program automation tools 
[ 5 ,  71. 

One  obvious motion strategy is  to  cause  the hand or 
tool to  move along a straight line path between  knot 
points. Whitney [8] achieved  differential  straight line mo- 
tions in 1968 by multiplying the  inverse  Jacobean of the 
manipulator’s joint  to Cartesian space transformation by 
a  desired motion increment vector. By repeated evalua- 
tion of the inverse Jacobean, this  technique can be used 
to  produce long straight line motions. In 1974, Paul [9] 
implemented  a rather  more straightforward technique, in 
which intermediate Cartesian  space goals are evaluated 
every 100 ms during motion execution.  The manipulator 
link equations  are  then solved to  produce intermediate 
joint goals. 

This paper  discusses  two  approaches  to  the problem of 
straight line motion between  knot  points.  The first ap- 
proach is similar to Paul’s. However, a number of refine- 
ments  are  presented which permit the  path  functions  to be 
evaluated somewhat  more efficiently, provide more uni- 
form  rotational motions, and allow “tracking” of real 
time changes in the  knot points.  Although the method is 
flexible and conceptually straightforward, it requires  con- 
siderable real time  computation and is vulnerable to  de- 
generate configurations of the  manipulator’s  joints. In the 
second approach, a motion planning phase  adds enough 
intermediate  points so that  the manipulator may be  con- 
trolled by linear  interpolation of joint values  without  al- 
lowing the hand to deviate more than a prespecified 
amount from a  straight line Cartesian  path. This sub- 
stantially reduces  the  amount of real time computation 
required to drive the machine and permits problems aris- 
ing from degenerate  joint alignments to be  handled  more 
easily. 

Notational  conventions 
We assume  that  the manipulator’s motion is specified by a 
sequence of “frame”  transformations giving the location 
and orientation of the hand with respect  to  the  coordinate 
system of the work station. Each  such frame Fi consists 
of a rotation Ri followed by translation by a  displacement 
vector p i .  Frames may be  composed by “multiplication” 
on  the left,  where 

rotation part ( F , o  F,) = R1o  R,,  

translation part (F1 0 F,) = R ,  0 p ,  + p ,  

For  instance, if FA gives the location and  orientation of an 
object A with respect  to  the work station  and p ,  is the 
location of a point  with respect  to  the origin of A, then  the 
location of the point  with respect  to  the  work station is 

given by 

P ,  = R,OP, + P A .  

Similarly, if R,  gives the orientation of a feature with re- 
spect  to A, then  its  orientation with respect to the  work 
station is 

R ,  = R,o  R, .  

We frequently express a  rotation R as a “right-handed” 
twist by an angle 0 about  an  axis n: 

R = Rot(n, 0). 

From this  definition, it follows that 

R” = Rot(n, -0) = Rot( -n ,  0). 

Frame  transformations  are commonly represented  as 4 X 

4 matrices: 

Rl,   R, ,   R, ,  P I  

R,, 

This  representation is easy  to  understand  and  use, since 
frames may be composed using the  ordinary  rules  for ma- 
trix multiplication. Also,  since  rotation  matrices  have  the 
property  that their inverse is the  same  as  their  transpose, 

the inverse  transformation for a frame is easily computed. 

On the  other  hand,  there  are  several  disadvantages  to 
the  use of matrix representations.  The  matrices  are mod- 
erately expensive to  store,  and  computations  on them  re- 
quire more operations  than  for some other  representa- 
tions. Also,  since the  representation of rotations is highly 
redundant, numerical  inconsistencies  can be a problem, 
so that occasional  renormalization may be necessary. 

Quaternions [ lo ,  1 1 1  offer another  convenient repre- 
sentation  for  rotations  and  have been  applied  extensively 
to  the analysis of kinematic linkages [12]. The quaternion 
corresponding to a rotation by angle 0 about  axis n is 

Rot(n, 0) = [cos (3 + sin (3 . n ] .  

For our purposes, this representation is rather more ef- 
ficient than the matrix representation.  Storage require- 
ments  are  reduced,  and calculations  involving  rotations 
can be  done  with fewer primitive operations (adds  and 
multiplies) than are  required if matrices are  used. Appen- 
dix  A  provides a brief review of quaternions  and includes 
a table comparing the  computational  requirements of qua- 
ternion  and matrix representations  for  rotations. 425 
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Table 1 Computational  costs. 

Operation Quaternion 
representation 

Matrix 
representation 

Segment traversal, 
Eq. (2) 

Segment traversal, 
Eq. (2), with R, fixed 

Segment traversal, 
Eq. (3), with  R,fixed 
(Ref. [61) 

Eq. (4) 
Segment transition, 

Segment transition, 
Eq. (4), with R, fixed 

Segment transition, 
Eq. ( 3 ,  with R , R , ,  
R, fixed  (Ref. f6]) 

Pursuit  solution, 
Eq. (6) 

Pursuit  traversal, 
Eq. (7) 

Joint  solution  for 
manipulation in Fig. 1 

13 adds, 24 multiplies, 
1 sine-cosine  pair 

12 adds, 12 multiplies, 
1 sine-cosine  pair 

26 adds, 52 multiplies, 
2 sine-cosine  pairs 

25 adds, 40 multiplies, 
2 sine-cosine  pairs 

27 adds, 44 multiplies, 
1 arctangent, 1 sine-cosine 
pair, 1 square  root 

52 adds, 92 multiplies, 2 
sine-cosine  pairs, 2 arc- 
tangents, 2 square  roots 

23 adds, 35 multiplies, 5 
inverse  trigonometric 
functions, 3 square roots, 
2 sine-cosine  pairs 

29 adds, 44 multiplies, 
1 sine-cosine  pair 

17 adds, 19 multiplies, 
1 sine-cosine  pair 

35 adds, 57 multiplies, 
2 sine-cosine  pairs 

58 adds, 90 multiplies, 
2 sine-cosine  pairs 

49 adds, 66 multiplies, 
2 sine-cosine  pairs 

53 adds, 79 multiplies, 
2 sine-cosine  pairs 

57 adds, 78 multiplies, 
2 square roots, 1 arc- 
tangent, 1 sine-cosine pair 

112 adds, 156 multiplies, 
2 square roots, 3 sine- 
cosine  pairs, 2 arctangents 

*19 adds, 35 multiplies 
5 inverse  trigonometric 
functions, 3 square  roots 

*See Ref. [I41 

Cartesian  path  control cussion, since  they depend  quite strongly on manipulator 
The basic algorithm of Cartesian  path control is quite geometry  and represent fixed overhead  to  the various 
simple: path  algorithms. 

loop: wait for  next  control interval 

t := t + At, 

F( t )  := where hand  should  be  at  time t ,  

j ( t )  :=joint solution corresponding  to F ( t )  

[ j ( t )  is now the new “open  loop” goal], 

go to loop. 

The computation thus  consists of a “path  function,” F(t) ,  
followed by a “joint solution,” j ( F ( t ) ) .  The  path functions 
developed in this paper resemble those  developed in 1974 
by R. Paul [ 2 ,  9, 131. However, they handle  rotations 
more efficiently and uniformly, provide a cleaner 
mechanism for  transition  between  segments,  and permit 
the manipulator to  chase  down  changes  to  knot points 
during  execution of the  path. Table 1 summarizes  the 
computational costs  associated with the different  path 
functions.  The  computational  requirements of joint solu- 

0 Single  segment  motion 
We wish to move the manipulator’s tool  frame along  a 
“straight”  path  from  frame F, to frame F, in time T .  We 
envision  this path  as consisting of translation of the tool 
frame’s origin from p o  to p l ,  coupled with rotation of the 
tool  frame orientation part from R,  to R , .  Let h(t) be the 
fraction of the motion  segment still to  be  traversed  at time 
t .  For uniform motion we pick 

A(t) = -. T -  t 
T 

The displacement and rotation parts of the tool frame  at 
time t are given  by 

R(t )  = R,o  Rot[n, -0 . A ( t ) ] ,  

P ( t )  = P 1  - W ( P ,  - P o ) .  (1) 

Here, Rot(n, 0) is a rotation by 0 about  axis n required to 
reorient R,  into R,:  

i 426 tion algorithms are ignored  throughout most of this  dis- Rot(n, 0) = R;’ 0 R , .  
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The  computational  requirements of this algorithm vary 
somewhat,  depending  on  the  representation  chosen  for 
rotations, what elements  are kept constant,  and details of 
coding.  A  typical  implementation is shown below: 

(T - 1) X : =  - 
T ’  

p(t) := p1 - X . Ap, 

Here, Ap = (p, - p,), n, and 8 are  assumed  to remain  con- 
stant  throughout  the motion, and  rotations  are assumed 
to be represented by quaternions. If R ,  is known to be 
fixed throughout the segment execution, it is possible to 
precompute many of the intermediate expressions re- 
quired to  produce R(t ) ,  with a corresponding reduction 
in the  real time calculation. 

In  contrast, Paul [9] defined a “straight line” motion 
from F, to F, as consisting of a uniform  translation of the 
tool frame’s origin from p,, to p, coupled  with a nonuni- 
form rotation  from R, to R, :  

t := t + 1, 

7 := t /T ,  

~ ( 4  := P, + ~ A P ,  

R(t) := [R ,  0 Rot(k, 1701 0 Rot(z, 7@). (3) 

The rotation consists of a uniform twist by an  amount Q, 
about  the  tool  frame z axis, coupled  with another  rotation 
of amount 0 about  an axis k reorienting the tool’s z axis 
from its initial to  its final orientation. Since  the composi- 
tion of these  two  rotations will usually produce some  an- 
gular acceleration, this method may be less desirable  than 
that of ( 2 )  for  applications where  uniform  motion on seg- 
ment traversal is important.  The  computational  cost,  as- 
suming that R,, k ,  Ap, 0,  and Q, are held constant, is 
roughly twice that of ( 2 )  under  comparable  assumptions, 
since  rotations  about two axes must  be computed. 

In return  for  the nonuniform rotation  and  the higher 
computation costs involved,  a “decomposed” rotation 
technique such  as  that of (3) may offer compensating  ad- 
vantages in some  cases. Paul describes his rotation strat- 
egy as  easy  to visualize  and  relatively  insensitive to 
changes in the final orientation of the  tool’s z axis.  It may 
well be  worthwhile to consider such  factors when design- 
ing a motion strategy. 

Note  that  the  method of (2) subtracts a shrinking in- 
crement from the destination point, F,.  Thus, if the value 
of F,  changes  during  the motion,  then the  path function 

Joint 2 ( 1  

W 
Figure 1 Typical  manipulator geometry. 

c 

0 

Joint 5 

Joint 1 

“tracks”  the  change. So long as  the  change is sufficiently 
gradual,  the discontinuity  introduced whenever F ,  is 
changed  should cause little difficulty. Later we describe a 
form of the  path algorithm which may be  applied  when 
such discontinuities may be significant. Important uses of 
this  tracking  ability  include tasks in which television im- 
ages or  other  sensor  data  are used to  locate  objects in real 
time, in which the motion destination is modified with 
forces  encountered along the  way,  or in which the  objects 
being manipulated are being transported  on a conveyor 
belt. 

Paul used an  alternative technique to  achieve tracking 
of conveyor  belts.  Essentially, his approach is to define 
each  knot  point by its  transformation  with respect  to a 
base  coordinate  system  (the  conveyor).  Intermediate Car- 
tesian goals are  generated with respect  to this coordinate 
system.  The  intermediate goals are then  transformed into 
the manipulator’s base coordinate system before joint 
goals are  computed. This method, which is compatible 
with any of the  path functions described  above, is prob- 
ably better  suited than  target  point  tracking for  cases 
where a program  developed for  stationary  objects must 
be executed with the  objects  on a conveyor, but it seems 
less well adapted  for  cases where  individual  object posi- 
tions are  updated sporadically or  are  computed from real 
time  sensory  information. 

Transition between  path  segments 
Assume we are moving along a segment  from F, to F, ,  as 
discussed in the  previous  section. On the  next segment 
we wish to go with uniform velocity from F ,  to F,. If ac- 
celeration is to  be limited, then the transition must start 
before the  knot point F ,  is reached.  The cornering  method 
described here  starts turning at a precomputed time T be- 427 
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fore  the  scheduled arrival at F ,  and  completes the  transi- 
tion to  the new segment  at time 7 after  the scheduled de- 
parture through F,. When the transition is completed,  the 
manipulator will be  at  the  same point and moving at  the 
same velocity as if it had  gone all the way to F ,  and then 
made an  instantaneous transition to  the  next segment. 

For the  moment,  consider only the position part of the 
motion. The  “boundary conditions” for  the segment  tran- 
sition are 

where Ap, = p 1  - p2 ,   Ap ,  = p2  - p , ,  and T, and T, are  the 
“constant  rate”  traversal times for  the  two segments. 

During the  transition, we apply a constant acceleration: 

Integrating  this twice  and applying the boundary  condi- 
tions  gives 

where t’ = T, - t is  the time  from the  knot point. 

The path equation  for rotation transitions is similar: 

where 

Rot(n, ,  0,) = R ; ’ o   R , ,  

Rot(n,,  0,) = R;’o  R,. 

This  formula produces a smooth  transition between the 
two  segments,  although  the angular acceleration will not 
be  quite constant  unless  the  axes n ,  and n2 are parallel or 
unless  one of the spin rates 

428 is zero. 

The  computational  costs  for  an implementation  which 
keeps Ap,,   Ap, ,  0,’ 0,’ n , ,  and n2 constant  are  shown in 
Table 1 .  Again, note  that  the  knot  point F ,  is tracked 
throughout the transition. Further savings are possible if 
F ,  is known  to  be fixed. 

An alternative  transition method [9] is to modify seg- 
ment path function (3) by accelerating  the spin rates 
about  tool z and k while rotating k to a new direction. 

t : =  r + 1, 

p( t )  := p0 + f @ P I ,  AP,, T ,  7, 0 ,  
k := R,  0 k, 

R ( t )  := (Roo   Ro t [k , f (A@, ,   A@, ,   T ,  7, t ) ]  

o Ror[z ,  f (A@,,   A@,,  T ,  T ,  t ) l ,  ( 5 )  

where f (A,,  A,, T ,  T ,  t )  is an  appropriate interpolation 
function. However,  this technique requires  more compu- 
tation  and is rather  more involved  than that given above. 

0 Pursuit  formulation 
Earlier, we pointed out  that  the  path  functions would 
track changes to  the  knot  points, but that  any sudden 
change would produce a  parallel  displacement in the com- 
mand  frame F(t) .  This section describes how these dis- 
continuities  can be  averaged  out  over  the remaining seg- 
ment  time. 

Straight line motion 
As before,  assume  that we are moving along a straight 
line segment which is to reach F ,  at time T.  At  time t, we 
wish to compute the target frame  for  the  next sample in- 
terval t + At,  given F ( t )  and F, ( t ) .  To  do  this,  we compute 
the displacement and  rotation required to  move from F(t)  
to F,(t)  and  then  compute  the  correct fractional step  to 
take,  based on the time remaining: 

P O  + At) = P,( t )  - h(t)[P,( t )  - P(t) l ,  

R ( t  + At) = R, ( t )  0 Rot [n ,  -U . h ( t ) ] ,  (6) 

where 

h( t )  = 

Rot (n ,  U) = R(t)”o  R,( t ) .  

Notice  that any errors introduced into  the calculation of 
F(t)  at one  iteration will tend  to be canceled  out in sub- 
sequent iterations. Thus,  rather  crude  approximations 
may be  used for  the trigonometric functions  without seri- 
ous harm to  the performance of the algorithm. 

T - ( t  + At)  
T - t  

for t < T ,  h(t)  = 0 for t 2 T ,  

Much of the  additional  computational  cost of this  meth- 
od,  as  compared with that  developed  earlier, is incurred 
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in recomputing the  rotation  parameters, n and v. In many 
cases,  therefore, it may be worthwhile to  adopt a mixed 
approach in which the pursuit form is only  used to  chase 
translational changes  to  the  knot  points,  and any  rota- 
tional  changes are  assumed  to be small enough so that the 
other form of tracking will suffice. 

Transition  between  segments 
The transition between  one  segment, F, + F, ,  and  its  suc- 
cessor, F, + F,, may be thought of as consisting of  two 
simultaneous  motions. The first motion chases down  a 
knot point Fk so that  at  the end of the  transition (t’ = T )  

the hand is  at Fk and  at  rest with respect  to  it.  The second 
motion accelerates Fk away from F, toward F,, so that  at 
t‘ = r ,  Fk is at  the  proper place and moving  with the 
proper  speed on the new  segment. 

d t ’ )  = p,(t’)  - h(t’)[p,( t ’ )  - ~ ( t ’ ) ] ,  (7) 

where 

P k ( r ’ )  = P#’ )  + P( t ‘ ) [P2( t ’ )  - P,(t’)I,  

r - (t’ + At) 
h ( t ‘ )  = i 7 - t ’  

. (7 + t’)’ 
p ( t ‘ )  = -. 

47 T, 

Similarly, 

R ( t ’ )  = Rk( t ’ )  0 Rot [a ,  -a . h ( t ‘ ) ] ,  

where 

R,(t’)  = R, ( t ’ )  0 R o t [ b ,  j3 . p(t ’ ) ] ,  

Rot(a,  a)  = R(t ’ ) - ’o   R , ( t ’ ) ,  

Ro t (b ,  j3) = R,(t’)-’  0 R2( t ’ ) .  

Again, it may be worthwhile to  consider a mixed strategy, 
in which translations are handled as  shown  here  and rota- 
tions  are handled in the old way. 

Discussion 
Figure 2 illustrates  straight line motion for a typical ma- 
nipulator similar to  the Stanford arm [ l] used in a  number 
of research  laboratories. 

One of the principal advantages of the  method is that 
the trajectory  followed by the  manipulator between seg- 
ment  endpoints is readily  predictable.  This  predictability 
greatly simplifies programming and  is especially  impor- 
tant  for  the  development of good program  automation 
tools,  such  as model driven “collision avoidance” pack- 
ages. Similarly, since straight line paths  frequently  corre- 
spond  to  the desired  motion of the  manipulator,  the num- 
ber of intermediate points which a user  must specify in 

C 

k 

Figure 2 Straight  line motion. 

order  to achieve a desired result may be significantly re- 
duced. Since the motion is uniform, there will be  no iner- 
tial forces on objects in the hand  during segment  traver- 
sal, and  they will be constant or nearly constant during 
segment  transitions. 

On the  other  hand,  there  are a number of disadvan- 
tages. First,  the calculations  involved may be rather time 
consuming,  especially if the  “pursuit”  form is used. For 
instance,  the  estimated time requirements using an IBM 
Series11 with floating point hardware range  from 3 to 8 
milliseconds per  segment  traversal  step  and 5 to 10 mil- 
liseconds per  transition  step, depending on the particular 
form of path equations used.  Paul [ 9 ]  attacks this diffi- 
culty by slowing down  the generation of Cartesian  path 
points to a rate his computer can handle,  and then  inter- 
polating additional joint  space  targets. This approach 
solves  the problem of limited computer  power  at  the ex- 
pense of additional  program complexity.  However, it 
does not  avoid the  other difficulties associated with Carte- 
sian paths. 

A number of other difficulties arise from the  fact  that 
the hand  position can only  be  controlled  indirectly, 
through the  joints of the manipulator. With many manipu- 
lators,  there may be “degenerate” hand  positions which 
are nearby in Cartesian  space,  but which are widely sepa- 
rated in joint  parameter  space. If the  path  passes through 
such  points,  then  the  joints of the manipulator may be 
unable to  keep up  with their  targets  unless  the motion is 
very  slow. 429 
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This  problem  may  be  solved at  the  expense of addition- 
al computation and programming complexity by using the 
current  joint velocities to  recompute  at  each sample  inter- 
val how large a fraction, h( t  + At)  - h ( t ) ,  of the segment is 
to  be covered in the next  sample  interval [9]. The path 
followed will still be a  straight line,  but  the hand will not 
move at uniform speed, so that objects in the hand will 
experience various  inertial forces, which will be difficult 
to predict without “simulating” the motion in advance. 
Also, coordinated motions involving several manipula- 
tors  are more difficult to  plan,  since it is difficult to predict 
just where  each manipulator will be at a given time. 

Physical stops or limits on individual joints of the ma- 
nipulator introduce complications  similar to  those in- 
troduced by degenerate axis  alignments. In  order to move 
the hand to a nearby  point, it may be necessary  to  “un- 
wind”  a joint  through 359” rather than advance it through 
1”. Such  discontinuities cannot be  handled well unless 
they have been anticipated. Simple schemes which 
merely adjust  speeds based on  joint velocities cannot  do 
this. 

Finally, the  fact  that  there  are generally several pos- 
sible sets of joint  parameters which can place the hand at 
a desired  target frame F( t )  introduces still further compli- 
cations.  Unless a certain  amount of care is taken in the 
joint solution procedure, discontinuities in the  joint target 
values may be introduced  at  awkward  moments.  Indeed, 
it may frequently be very  important to  select  the solution 
which minimizes the total motion required through  a 
many segment motion, or to avoid a joint  stop during a 
critical segment. It is unclear just how  this  can  be done 
without  a certain  amount of preplanning which pays  at- 
tention to  joint  space  trajectories. 

The conclusion is that, although Cartesian path  inter- 
polation offers a number of significant advantages,  the 
joint space behavior of the manipulator itself cannot be 
ignored. The  joint  space strategy described in the  next 
section preserves many of the  advantages of Cartesian 
path control, while  requiring somewhat  lower  computa- 
tional effort and allowing joint  space  considerations  to be 
handled  more easily. 

Bounded deviation joint  paths 
The principal disadvantages of Cartesian  path  control  are 
the  amount of real time  computation  required and  the dif- 
ficulty of dealing in real  time with constraints  on  the  joint 
space  behavior of the manipulator. These problems may 
be  avoided or at  least greatly  reduced by preplanning the 
motion before it is executed.  Sometimes this  preplanning 

430 can be  performed well in advance.  Often,  however,  the 

values of the  knot  points  are not known until just before 
the motion is executed. In such  cases,  it  is  important  that 
the time  the manipulator  spends waiting for planning to be 
completed be  kept  as  short  as possible. 

As an  extreme  case,  the real  time  algorithm  could  be 
simulated and used to  precompute  the  joint  parameters 
for  every  sample  interval. Motion execution would then 
be trivial: the  joint  parameter values would simply be 
read from memory and used as local  goals for  the  servo- 
ing algorithm. Such a policy, however,  is  rather wasteful, 
since the  amount of data  that would have  to be stored is 
quite large and  since  the computation  time  needed may 
approach  that  required by the motion itself. 

One  possible  way out would be to  precompute  the  joint 
solutions for  every  nth sample  interval and  then  to  per- 
form  interpolation on  the  joint  parameters  to  generate real 
time  goals. The difficulty with this  method is that  the 
number of intermediate points needed  to  keep  the manip- 
ulator  acceptably close  to a straight  Cartesian  path de- 
pends on the  particular motion being made. Any “stan- 
dard” interval  small  enough to  guarantee low deviations 
everywhere will require a  wasteful amount of pre- 
computation for many motions. 

This  section presents a simple algorithm which gener- 
ates only enough intermediate points to  guarantee  that  the 
manipulator’s  deviation  from a straight path  on  each mo- 
tion segment stays within prespecified error  bounds. 

Joint spuce motion  strategy 
Suppose we compute  joint  parameter  vectors j ,  corre- 
sponding to  the  knot points F, of our desired motion. We 
can then use these j ,  as  the  knot  points  for a joint  space 
interpolation strategy analogous to  that used for  the posi- 
tion part of our Cartesian  space  paths.  For motion from j ,  
to j,, we have 

j ( t )  = j ,  - ~ 

T ,  - t 
T .  A j , ,  

I 

and  for transition between j ,  -+ j ,  and j ,  + j , ,  

(7 - t ’ ) ,  (7 + t y  
j ( t ‘ )  = j ,  - ___ 47 T ,  A j ,  + 47 T, Aj , ,  

where Aj ,  = j ,  - j , , ,  A j ,  = j ,  - j , ,  and T, ,  T,,  T ,  and t’ have 
the  same meanings as  for  the  Cartesian  path motion. 
Here,  the joints of the manipulator  move at uniform ve- 
locity between the  knot points and  make smooth  transi- 
tions with constant acceleration between segments [15]. 

The hand frame,  however,  deviates  from a straight line 
Cartesian path,  as  shown in Fig. 3 .  Let Fj( t )  be the manip- 
ulator hand frame  corresponding  to  the  joint target j ( t ) ,  
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segment, with 

and let F,(t) be the  frame target for  the corresponding 
Cartesian space  path.  Then,  the displacement  deviation 
S,(t) and  the rotation  deviation 8 J t )  are defined as 

a p ( f )  = IP,(t) - P,(t)l, 

8,(r) = [angle part of R,(r)-' 0 R,(t)l. 

Point  interpolation  method 
Consider an  arbitrary motion segment, F, + F , ,  for which 
we  have specified the maximum acceptable deviations: 

IBM J. RES. DEVELOP. VOL. 23 NO. 4 JULY 1 

Rccurslon limit = I 
I I I I I I I I 

- 
- 

Recursion limit = 3 
I I I I I I I I I 

0.0 

midpoint 

0.2 

interpolation 

0.4 0.6 0.8 

limited to 0, 1 ,  2, and 3 levels of 

1.0 

' recursion 

We must  specify  enough  intermediate  points along the 
Cartesian  path so that  the path deviations introduced by 
straight line interpolation between the  corresponding 
joint solutions stay within these  bounds.  The generation 
of an "optimal" set of intermediate points  requires a good 
characterization of the path  deviation functions 8:" and 
8yX. These  functions depend on  the  particular manipu- 
lator being used and can be quite complicated. For many 431 
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Figure 4 Displacement error for joint space execution of typi- 
cal segment with 8 r  = 0.5 cm, ,Fax = 5", and  point inter- 
polation recursion limited to 0, 1 ,  2 ,  and 3 levels. 

common manipulator  geometries,  however,  the maxi- 
mum deviations occur  at or near  the segment  midpoint. 
This property provides  the basis for  the following simple 
interpolation algorithm, which converges rapidly to pro- 
duce a good, though  not  necessarily  minimal, set of inter- 
mediate  points. 

Step 1 Compute  the  joint  parameters j, and j, corre- 

Srep 2 Compute  the  joint  space midpoint, 
sponding to F,, and F,,  respectively. 

I 
jm = j, - ; A j l .  

i 

Use j, to  compute 

F, = frame corresponding to  joint values j,. 

Also, compute  the Cartesian path midpoint F,, 

P, = + 2 '  Rx = R,o  Ruijn,  $1, 
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where 

Rot(n, 6 )  = Ri'o  R,.  

Step 3 Compute  the deviation between F, and Fx, 

fjD = IP, - PXL 

6, = langle part of R,' 0 R,I. 

I Normalized time 

Figure 5 Rotation  error for joint space execution of typical seg- 
ment with 8 r  = 0.5 cm, 8;'' = So, and  point interpolation 
recursion limited to 0, 1 ,  2 ,  and 3 levels. 

Step 4 If 6, 5 and 8, 6rx, then we are  done. 
Otherwise,  compute  the  joint solution jx corre- 
sponding to the Cartesian space midpoint F,, 
and  apply  steps 2-4 recursively for the  two seg- 
ments F, + F, and F, -+ F,. 

The application of this algorithm to  the motion segment 
shown in Fig. 2 is illustrated in Figs. 3 through 5, which 
show the effects of limiting the  recursion  to  zero,  one, 
two,  and  three  levels. Similar results ,were obtained for 
other motions of this  test manipulator and  for a number of 
other manipulator geometries, including those  shown in 
Fig. 6. 

Convergence of the method is quite rapid, with the 
maximum deviation  usually being reduced by approxi- 
mately  a factor of four  for each  level of midpoint  inter- 
polation. The  reason  for this may be understood, infor- 
mally, by considering the motion of the simple manipula- 
tor shown  schematically in Fig. 7, which has  one revolute 
and  two translational joints.  Suppose  that  we move  this 
manipulator from position A to position B, as  shown in 
the figure. The  displacement deviation at  the midpoint of 
this motion is given  by 

6, = r . [I - cos (8 ) ] .  

IBM I. RES. DEVELOP. VOL. 23 a NO. 4 JULY 1979 



If we invent an  intermediate target  point here,  then  the 
deviation at  the midpoint of each of the new segments  is 

For I9 = ISO”, i . e . ,  for a complete 360” turn,  the deviation 
is reduced by a factor of two.  For  the more common  cases 
where I9 5 90°, the  reduction ratio is at  worst  about 1 : 3.4 
and rapidly approaches 1 : 4 as I9 gets small. 

Where  there  are  several revolute joints,  the situation is 
considerably  more complicated.  However, so long as de- 
generate  joint configurations are  avoided,  the algorithm 
will behave much the  same  for most common manipulator 
geometries. 

Degeneracies,  alternate  solutions,  and  other refine- 
ments 
Convergence of the interpolation algorithm may be  rather 
slow near degenerate  points,  since a small error in the Car- 
tesian space midpoint may lead to large variations in the 
joint angles and,  consequently, in the  manipulator’s be- 
havior  on  the new joint  space  segments. 

Techniques for improving the algorithm’s  behavior 
near  such points depend somewhat on  the kinematics of 
the particular manipulator in question.  However, several 
“geometry  independent” strategies seem generally appli- 
cable.  These  techniques  are discussed below. 

Degenerate joint  solutions  occur when two  (or more) 
axes of the machine are lined up,  thus  destroying a degree 
of freedom  for the  hand.  In  such  cases,  the lined-up joints 
are under-determined. The behavior of the algorithm may 
be improved appreciably if the values of the under-deter- 
mined joints in degenerate midpoint joint  solutions  are ad- 
justed  to  correspond  as closely as possible to  their  joint 
space midpoint values. 

For  instance, if the angle of joint 5 of the manipulator 
shown in Fig. 1 is 0, then  joints 4 and 6 may be modified 
as follows  without  changing the position of the hand: 

j(4)‘ = j(4) + v, 
j(6)’ = j(6) - v. 

More generally, if the value of joint 5 is  some small angle 
p, the  orientation  error introduced  by making the  above 
transformation of joints 4 and 6 is given  by 

p sqrt ( 2  - 2 cos v). 

This result may be  turned  around  to tell us how large a 
correction  to  make  near a “degenerate” midpoint. First, 

Joint 2 

Joint 6 

Joint 6 

Bi 

- I Joint 1 

% 

Figure 6 Other  manipulator  geometries  used  in  tests of the 
point  interpolation  algorithm. 

Figure 7 XYB manipulator. 

we compute the maximum error  that  can  be  tolerated in 
the hand orientation: 

6 = min 6pX , 

Then, given a joint solution jx with a small value  for  joint 
5 ,  

jx(5) = 

( hand  length 1. Y a X  

compute  the maximum correction p which may be  ap- 
plied to jx(4) and jx(6) without violating the  error  bounds 
and  the correction v required  to bring joint 4 to  the mid- 
point value jm(4): 

p = COS-l[nlax (-1, 1 - -j], 62 

2P2 
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Figure 8 Path  deviations  for segment whose  midpoint is near a degeneracy (a) with and (b) without fixup of nearly  degenerate  solutions 
(8y = 0.5 cm, = 5”, recursion limit = 2). 

The smaller of these  two  corrections may now be applied 
to jx: 

jx(4)’ = jx(4) + max [ -p ,  min (p, v)l, 

jx(6)’ = jx(6) - max [ -p ,  min (p, v)]. 

The importance of this  refinement is illustrated in Fig. 8, 
which shows the  displacement  and rotation deviations  for 
a segment  whose  midpoint is near a degeneracy. 

The  joint solution for many  manipulators may be  re- 
dundant, in the  sense  that  there may be  several  sets of 
joint  parameters which will put  the hand at a particular 
point. For instance,  the gimbal of our  example manipu- 
lator has  two solutions,  characterized by 

j(4)‘ = j(4) + 180”, 

j (9’  = -j(5), 

j(6)’ = j(6) - 180”. 

If the  “polarities” of the solutions chosen  at the end 
points of a segment  do not match  properly,  the midpoint 
error may be  substantially increased.  In  general, it is im- 
portant  to  consider all possible joint solutions at  each 
knot point and  select  the  one which provides  the best  be- 
haved trajectory. Figure 9 illustrates  how  a  typical tra- 
jectory may be  degraded by failure to  do  this. 

Conclusions 
This paper  has  discussed  two  somewhat different ap- 
proaches  to straight line motions. Each  has certain 
strengths and weaknesses. 

The first approach,  “Cartesian  path  control,” is con- 
ceptually  straightforward and  lends itself readily to appli- 
cations where the  segment knot  points may change while 
the motion is being made  or  where  perturbations  to the 
motion, such as  those required for force  accommodation, 
are conveniently described in Cartesian space. On the 
other  hand,  the  method is rather  expensive  computation- 
ally and is rather vulnerable to  unexpected difficulties 
where degeneracies or joint limits are  encountered. 

The second method,  “bounded deviation joint  paths,” 
relies on a planning phase  to  interpolate enough  inter- 
mediate  points so that  the manipulator may be driven in 
joint  space without  deviating  more than a prespecified 
amount from the  desired  path. This method greatly re- 
duces  the  amount of computation that must be  done  at 
every sample  interval and permits joint  space  constraints 
to be treated in a natural  manner. If the motion planning 
cannot be done in advance of program execution,  then  the 
latency  between a MOVE command and  the  start of the 
motion may be increased  somewhat.  Convergence of the 
interpolation  algorithm is sufficiently rapid,  however, so 
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Figure 9 Path deviations for segment whose midpoint is near a degeneracy (a) with  and (b) without checking for alternate solutions 
(a? = 0.5 cm, By = 5", recursion limit = 1) .  

that  the  extra time is  small,  at  least  for  the deviation 
bounds required for many applications. In cases where 
shorter latencies are  required, it should  be  possible to 
start moving along the first part of a trajectory while fin- 
ishing planning the  remainder of the motion. 
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Appendix A: Quaternions 
In  general, a quaternion Q consists of a scalar  part s and a 
vector  part v and  here is written 

Q = [s + v]. 

The multiplication rule is 

Q 1 o  Q, = [ s , s ~  - v1 . v2 + S , V ~  + s l V z  + V I  X vz]. 

From this definition, it follows that if 

s = sin 1;) and c = cos ( 3 ,  

then 

[0 + Rot(n, 0) 0 u] = [c + s . n] 

0 [O + u] 0 [ c  + --s . n]. 

In  other  words, we can  represent a  rotation Rot(n, 0) by a 
quaternion 

The "null" rotation would be given by 

Rot(n, 0) = [ I  + 0 . n] = [l + 01. 

Notice that if a rotation R is represented by a quaternion 
Q ,  then  the quaternion corresponding to R" can  be  ob- 
tained trivially by negating the  vector  part of Q. Similarly, 
it is easy to  see  that if rotations R, and R,  are represented 
by quaternions Q,  and Q2,  respectively,  then  the rotation 
R, 0 R, will be represented by the  quaternion Q, 0 Q,. 

The computational requirements of some common  op- 
erations involving rotations, using quaternion and matrix 
representations,  are given in Table 2 .  In addition to re- 
quiring generally fewer  operations,  quaternions  have  the 
advantage of being a less  redundant  representation than 
3 X 3 rotation matrices,  thus simplifying problems associ- 
ated with machine roundoff errors. 435 
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Table 2 Computational requirements of common rotation oper- 6.  R. Paul, “Modelling, Trajectory Calculation, and Servoing 
ations. of a Computer Controlled Arm,” Ph.D. Thesis, Stanford Ar- 

tificial Intelligence Laboratory Memo  AIM-177, Stanford 
Operation  Quaternion  Matrix Computer Science Report STAN-CS-72-3  11, Stanford Uni- 

representation  representation versity, Stanford, CA, November 1972. 
7. L. I .  Lieberman and M. A. Wesley, “AUTOPASS: An  Au- 

tomatic Programming System for Computer Controlled Me- 
chanical Assembly,” ZBM J .  Res.  Develop. 21, No. 4, 321- 
333  (1977). 

R,   R,  9 adds, 15 adds, 24 multiplies 
16 multiplies 

R o  u 12 adds, 6 adds, 9 multiplies 
22 multiplies 

R + (n, 8)  4 multiplies, 8 adds, 10 multiplies, 
1 square root, 2 square  roots, 
1 arctangent 1 arctangent 

(n, 8 )  + R 4 multiplies, 10 adds, 15 multiplies, 
1 sine-cosine pair 1 sine-cosine pair 

Renormalize 3  adds,  7 adds, 18 multiplies 
8 multiplies, 2 square roots 
1 square root 

Convert to other 19 adds, 
representation 

7 adds, 5 multiplies, 
9 multiplies 3 sine-cosine pairs, 

1 arctangent 
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