
Russell H. Taylor

Planning and Execution of Straight Line Manipulator
Trajectories

Recently developed manipulator control languages typically specify motions as sequences ofpoints through which a tool
afixed to the end of the manipulator is to pass. The effectiveness of such motion specijication formalisms is greatly
increased if the tool moves in a straight line between the user-specijied points. This paper describes two methods for
achieving such straight line motions. The first method is a refinement of one developed in 1974 by R . Paul. Intermediate
points are interpolated along the Cartesian straight line path at regular intervals during the motion, and the manipula-
tor’s kinematic equations are solved to produce the corresponding intermediate joint parameter values. The path inter-
polation functions developed here offer several advantages, including less computational cost and improved motion
characteristics. The second method uses a motion planning phase to precompute enough intermediate points so that the
manipulator may be driven by interpolation of joint parameter values while keeping the tool on an approximately straight
line path. This technique allows a substantial reduction in real time computation and permits problems arising from
degenerate joint alignments to be handled more easily. The planning is done by an eficient recursive algorithm which
generates only enough intermediate points to guarantee that the tool’s deviation from a straight line path stays within
prespecijied error bounds.

Introduction
Over the past ten years, general purpose automation ma-
chines consisting of a sequence of motor driven links, or
“joints,” operating under control of a computer have be-
gun to appear in industry. These “manipulators” gener-
ally terminate in a gripper-like hand or other tool and can
be used for assembly, parts handling, welding, and many
other applications.

The development of these devices requires both provi-
sion of suitable formalisms for describing the motions to
be made and implementation of suitable control strategies
for carrying them out. The simplest approach is to record
the values of the joint parameters which place the hand at
particular desired points and then to move the joints inde-
pendently from one set of parameters to the next. More
sophisticated motion execution schemes (e.g . , [1-31) fre-
quently include an open loop trajectory component that
generates intermediate target values for the joints. These

schemes are often accompanied by more sophisticated
means of describing the desired motion to be made.

Of particular interest has been the development of pro-
gramming languages [4-71 in which manipulator target
points are described by transformations relating the
coordinate system of the hand or tool to the coordinate
system of the work station. Motions in these languages
are specified as sequences of “knot” points through
which the controlled frame is to pass. The joint vectors
corresponding to each Cartesian knot point are computed
by solving the link equations for the manipulator, which
are then used by the motion execution programs. One
drawback to this scheme is that it leaves undefined the
precise path taken by the manipulator between knot
points. This makes programming more difficult, since it is
hard to predict just how many intermediate points should
be added to a motion statement and complicates the de-

Copyright 1979 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.

424
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

RUSSELL n. TAYLOR IBM J . RES. DEVELOP. VOL. 23 NO. 4 JULY 1919

velopment of model-based program automation tools
[5 , 71.

One obvious motion strategy is to cause the hand or
tool to move along a straight line path between knot
points. Whitney [8] achieved differential straight line mo-
tions in 1968 by multiplying the inverse Jacobean of the
manipulator’s joint to Cartesian space transformation by
a desired motion increment vector. By repeated evalua-
tion of the inverse Jacobean, this technique can be used
to produce long straight line motions. In 1974, Paul [9]
implemented a rather more straightforward technique, in
which intermediate Cartesian space goals are evaluated
every 100 ms during motion execution. The manipulator
link equations are then solved to produce intermediate
joint goals.

This paper discusses two approaches to the problem of
straight line motion between knot points. The first ap-
proach is similar to Paul’s. However, a number of refine-
ments are presented which permit the path functions to be
evaluated somewhat more efficiently, provide more uni-
form rotational motions, and allow “tracking” of real
time changes in the knot points. Although the method is
flexible and conceptually straightforward, it requires con-
siderable real time computation and is vulnerable to de-
generate configurations of the manipulator’s joints. In the
second approach, a motion planning phase adds enough
intermediate points so that the manipulator may be con-
trolled by linear interpolation of joint values without al-
lowing the hand to deviate more than a prespecified
amount from a straight line Cartesian path. This sub-
stantially reduces the amount of real time computation
required to drive the machine and permits problems aris-
ing from degenerate joint alignments to be handled more
easily.

Notational conventions
We assume that the manipulator’s motion is specified by a
sequence of “frame” transformations giving the location
and orientation of the hand with respect to the coordinate
system of the work station. Each such frame Fi consists
of a rotation Ri followed by translation by a displacement
vector p i . Frames may be composed by “multiplication”
on the left, where

rotation part (F , o F,) = R1o R,,

translation part (F1 0 F,) = R , 0 p , + p ,

For instance, if FA gives the location and orientation of an
object A with respect to the work station and p , is the
location of a point with respect to the origin of A, then the
location of the point with respect to the work station is

given by

P , = R,OP, + P A .

Similarly, if R, gives the orientation of a feature with re-
spect to A, then its orientation with respect to the work
station is

R , = R,o R, .

We frequently express a rotation R as a “right-handed”
twist by an angle 0 about an axis n:

R = Rot(n, 0).

From this definition, it follows that

R” = Rot(n, -0) = Rot(-n , 0).

Frame transformations are commonly represented as 4 X

4 matrices:

Rl, R, , R, , P I

R,,

This representation is easy to understand and use, since
frames may be composed using the ordinary rules for ma-
trix multiplication. Also, since rotation matrices have the
property that their inverse is the same as their transpose,

the inverse transformation for a frame is easily computed.

On the other hand, there are several disadvantages to
the use of matrix representations. The matrices are mod-
erately expensive to store, and computations on them re-
quire more operations than for some other representa-
tions. Also, since the representation of rotations is highly
redundant, numerical inconsistencies can be a problem,
so that occasional renormalization may be necessary.

Quaternions [lo , 1 1 1 offer another convenient repre-
sentation for rotations and have been applied extensively
to the analysis of kinematic linkages [12]. The quaternion
corresponding to a rotation by angle 0 about axis n is

Rot(n, 0) = [cos (3 + sin (3 . n] .

For our purposes, this representation is rather more ef-
ficient than the matrix representation. Storage require-
ments are reduced, and calculations involving rotations
can be done with fewer primitive operations (adds and
multiplies) than are required if matrices are used. Appen-
dix A provides a brief review of quaternions and includes
a table comparing the computational requirements of qua-
ternion and matrix representations for rotations. 425

RUSSELL n. TAYLOR IBM J. RES. DEVELOP, VOL. 23 NO. 4 JULY 1979

Table 1 Computational costs.

Operation Quaternion
representation

Matrix
representation

Segment traversal,
Eq. (2)

Segment traversal,
Eq. (2), with R, fixed

Segment traversal,
Eq. (3), with R,fixed
(Ref. [61)

Eq. (4)
Segment transition,

Segment transition,
Eq. (4), with R, fixed

Segment transition,
Eq. (3 , with R , R , ,
R, fixed (Ref. f6])

Pursuit solution,
Eq. (6)

Pursuit traversal,
Eq. (7)

Joint solution for
manipulation in Fig. 1

13 adds, 24 multiplies,
1 sine-cosine pair

12 adds, 12 multiplies,
1 sine-cosine pair

26 adds, 52 multiplies,
2 sine-cosine pairs

25 adds, 40 multiplies,
2 sine-cosine pairs

27 adds, 44 multiplies,
1 arctangent, 1 sine-cosine
pair, 1 square root

52 adds, 92 multiplies, 2
sine-cosine pairs, 2 arc-
tangents, 2 square roots

23 adds, 35 multiplies, 5
inverse trigonometric
functions, 3 square roots,
2 sine-cosine pairs

29 adds, 44 multiplies,
1 sine-cosine pair

17 adds, 19 multiplies,
1 sine-cosine pair

35 adds, 57 multiplies,
2 sine-cosine pairs

58 adds, 90 multiplies,
2 sine-cosine pairs

49 adds, 66 multiplies,
2 sine-cosine pairs

53 adds, 79 multiplies,
2 sine-cosine pairs

57 adds, 78 multiplies,
2 square roots, 1 arc-
tangent, 1 sine-cosine pair

112 adds, 156 multiplies,
2 square roots, 3 sine-
cosine pairs, 2 arctangents

*19 adds, 35 multiplies
5 inverse trigonometric
functions, 3 square roots

*See Ref. [I41

Cartesian path control cussion, since they depend quite strongly on manipulator
The basic algorithm of Cartesian path control is quite geometry and represent fixed overhead to the various
simple: path algorithms.

loop: wait for next control interval

t := t + At,

F(t) := where hand should be at time t ,

j (t) :=joint solution corresponding to F (t)

[j (t) is now the new “open loop” goal],

go to loop.

The computation thus consists of a “path function,” F(t) ,
followed by a “joint solution,” j (F (t)) . The path functions
developed in this paper resemble those developed in 1974
by R. Paul [2 , 9, 131. However, they handle rotations
more efficiently and uniformly, provide a cleaner
mechanism for transition between segments, and permit
the manipulator to chase down changes to knot points
during execution of the path. Table 1 summarizes the
computational costs associated with the different path
functions. The computational requirements of joint solu-

0 Single segment motion
We wish to move the manipulator’s tool frame along a
“straight” path from frame F, to frame F, in time T . We
envision this path as consisting of translation of the tool
frame’s origin from p o to p l , coupled with rotation of the
tool frame orientation part from R, to R , . Let h(t) be the
fraction of the motion segment still to be traversed at time
t . For uniform motion we pick

A(t) = -. T - t
T

The displacement and rotation parts of the tool frame at
time t are given by

R(t) = R,o Rot[n, -0 . A (t)] ,

P (t) = P 1 - W (P , - P o) . (1)

Here, Rot(n, 0) is a rotation by 0 about axis n required to
reorient R, into R,:

i 426 tion algorithms are ignored throughout most of this dis- Rot(n, 0) = R;’ 0 R , .

1 RUSSELL H. TAYLOR IBM J. RES. DEVELOP. VOL. 23 NO. 4 JULY 1979

The computational requirements of this algorithm vary
somewhat, depending on the representation chosen for
rotations, what elements are kept constant, and details of
coding. A typical implementation is shown below:

(T - 1) X : = -
T ’

p(t) := p1 - X . Ap,

Here, Ap = (p, - p,), n, and 8 are assumed to remain con-
stant throughout the motion, and rotations are assumed
to be represented by quaternions. If R , is known to be
fixed throughout the segment execution, it is possible to
precompute many of the intermediate expressions re-
quired to produce R(t) , with a corresponding reduction
in the real time calculation.

In contrast, Paul [9] defined a “straight line” motion
from F, to F, as consisting of a uniform translation of the
tool frame’s origin from p,, to p, coupled with a nonuni-
form rotation from R, to R, :

t := t + 1,

7 := t /T ,

~ (4 := P, + ~ A P ,

R(t) := [R , 0 Rot(k, 1701 0 Rot(z, 7@). (3)

The rotation consists of a uniform twist by an amount Q,
about the tool frame z axis, coupled with another rotation
of amount 0 about an axis k reorienting the tool’s z axis
from its initial to its final orientation. Since the composi-
tion of these two rotations will usually produce some an-
gular acceleration, this method may be less desirable than
that of (2) for applications where uniform motion on seg-
ment traversal is important. The computational cost, as-
suming that R,, k , Ap, 0, and Q, are held constant, is
roughly twice that of (2) under comparable assumptions,
since rotations about two axes must be computed.

In return for the nonuniform rotation and the higher
computation costs involved, a “decomposed” rotation
technique such as that of (3) may offer compensating ad-
vantages in some cases. Paul describes his rotation strat-
egy as easy to visualize and relatively insensitive to
changes in the final orientation of the tool’s z axis. It may
well be worthwhile to consider such factors when design-
ing a motion strategy.

Note that the method of (2) subtracts a shrinking in-
crement from the destination point, F,. Thus, if the value
of F, changes during the motion, then the path function

Joint 2 (1

W
Figure 1 Typical manipulator geometry.

c

0

Joint 5

Joint 1

“tracks” the change. So long as the change is sufficiently
gradual, the discontinuity introduced whenever F , is
changed should cause little difficulty. Later we describe a
form of the path algorithm which may be applied when
such discontinuities may be significant. Important uses of
this tracking ability include tasks in which television im-
ages or other sensor data are used to locate objects in real
time, in which the motion destination is modified with
forces encountered along the way, or in which the objects
being manipulated are being transported on a conveyor
belt.

Paul used an alternative technique to achieve tracking
of conveyor belts. Essentially, his approach is to define
each knot point by its transformation with respect to a
base coordinate system (the conveyor). Intermediate Car-
tesian goals are generated with respect to this coordinate
system. The intermediate goals are then transformed into
the manipulator’s base coordinate system before joint
goals are computed. This method, which is compatible
with any of the path functions described above, is prob-
ably better suited than target point tracking for cases
where a program developed for stationary objects must
be executed with the objects on a conveyor, but it seems
less well adapted for cases where individual object posi-
tions are updated sporadically or are computed from real
time sensory information.

Transition between path segments
Assume we are moving along a segment from F, to F, , as
discussed in the previous section. On the next segment
we wish to go with uniform velocity from F , to F,. If ac-
celeration is to be limited, then the transition must start
before the knot point F , is reached. The cornering method
described here starts turning at a precomputed time T be- 427

IBM J. RES. DEVELOP. VOL. 23 NO. 4 JULY 1979 RUSSELL H. TAYLOR

fore the scheduled arrival at F , and completes the transi-
tion to the new segment at time 7 after the scheduled de-
parture through F,. When the transition is completed, the
manipulator will be at the same point and moving at the
same velocity as if it had gone all the way to F , and then
made an instantaneous transition to the next segment.

For the moment, consider only the position part of the
motion. The “boundary conditions” for the segment tran-
sition are

where Ap, = p 1 - p2 , Ap , = p2 - p , , and T, and T, are the
“constant rate” traversal times for the two segments.

During the transition, we apply a constant acceleration:

Integrating this twice and applying the boundary condi-
tions gives

where t’ = T, - t is the time from the knot point.

The path equation for rotation transitions is similar:

where

Rot(n, , 0,) = R ; ’ o R , ,

Rot(n,, 0,) = R;’o R,.

This formula produces a smooth transition between the
two segments, although the angular acceleration will not
be quite constant unless the axes n , and n2 are parallel or
unless one of the spin rates

428 is zero.

The computational costs for an implementation which
keeps Ap,, Ap, , 0,’ 0,’ n , , and n2 constant are shown in
Table 1 . Again, note that the knot point F , is tracked
throughout the transition. Further savings are possible if
F , is known to be fixed.

An alternative transition method [9] is to modify seg-
ment path function (3) by accelerating the spin rates
about tool z and k while rotating k to a new direction.

t : = r + 1,

p(t) := p0 + f @ P I , AP,, T , 7, 0 ,
k := R, 0 k,

R (t) := (Roo Ro t [k , f (A@, , A@, , T , 7, t)]

o Ror[z , f (A@,, A@,, T , T , t) l , (5)

where f (A,, A,, T , T , t) is an appropriate interpolation
function. However, this technique requires more compu-
tation and is rather more involved than that given above.

0 Pursuit formulation
Earlier, we pointed out that the path functions would
track changes to the knot points, but that any sudden
change would produce a parallel displacement in the com-
mand frame F(t) . This section describes how these dis-
continuities can be averaged out over the remaining seg-
ment time.

Straight line motion
As before, assume that we are moving along a straight
line segment which is to reach F , at time T. At time t, we
wish to compute the target frame for the next sample in-
terval t + At, given F (t) and F, (t) . To do this, we compute
the displacement and rotation required to move from F(t)
to F,(t) and then compute the correct fractional step to
take, based on the time remaining:

P O + At) = P,(t) - h(t)[P,(t) - P(t) l ,

R (t + At) = R, (t) 0 Rot [n , -U . h (t)] , (6)

where

h(t) =

Rot (n , U) = R(t)”o R,(t) .

Notice that any errors introduced into the calculation of
F(t) at one iteration will tend to be canceled out in sub-
sequent iterations. Thus, rather crude approximations
may be used for the trigonometric functions without seri-
ous harm to the performance of the algorithm.

T - (t + At)
T - t

for t < T , h(t) = 0 for t 2 T ,

Much of the additional computational cost of this meth-
od, as compared with that developed earlier, is incurred

RUSSELL H. TAYLOR IBM J. RES. DEVELOP. VOL. 23 NO. 4 JULY 1979

in recomputing the rotation parameters, n and v. In many
cases, therefore, it may be worthwhile to adopt a mixed
approach in which the pursuit form is only used to chase
translational changes to the knot points, and any rota-
tional changes are assumed to be small enough so that the
other form of tracking will suffice.

Transition between segments
The transition between one segment, F, + F, , and its suc-
cessor, F, + F,, may be thought of as consisting of two
simultaneous motions. The first motion chases down a
knot point Fk so that at the end of the transition (t’ = T)

the hand is at Fk and at rest with respect to it. The second
motion accelerates Fk away from F, toward F,, so that at
t‘ = r , Fk is at the proper place and moving with the
proper speed on the new segment.

d t ’) = p,(t’) - h(t’)[p,(t ’) - ~ (t ’)] , (7)

where

P k (r ’) = P#’) + P(t ‘) [P2(t ’) - P,(t’)I,

r - (t’ + At)
h (t ‘) = i 7 - t ’

. (7 + t’)’
p (t ‘) = -.

47 T,

Similarly,

R (t ’) = Rk(t ’) 0 Rot [a , -a . h (t ‘)] ,

where

R,(t’) = R, (t ’) 0 R o t [b , j3 . p(t ’)] ,

Rot(a, a) = R(t ’) - ’o R , (t ’) ,

Ro t (b , j3) = R,(t’)-’ 0 R2(t ’) .

Again, it may be worthwhile to consider a mixed strategy,
in which translations are handled as shown here and rota-
tions are handled in the old way.

Discussion
Figure 2 illustrates straight line motion for a typical ma-
nipulator similar to the Stanford arm [l] used in a number
of research laboratories.

One of the principal advantages of the method is that
the trajectory followed by the manipulator between seg-
ment endpoints is readily predictable. This predictability
greatly simplifies programming and is especially impor-
tant for the development of good program automation
tools, such as model driven “collision avoidance” pack-
ages. Similarly, since straight line paths frequently corre-
spond to the desired motion of the manipulator, the num-
ber of intermediate points which a user must specify in

C

k

Figure 2 Straight line motion.

order to achieve a desired result may be significantly re-
duced. Since the motion is uniform, there will be no iner-
tial forces on objects in the hand during segment traver-
sal, and they will be constant or nearly constant during
segment transitions.

On the other hand, there are a number of disadvan-
tages. First, the calculations involved may be rather time
consuming, especially if the “pursuit” form is used. For
instance, the estimated time requirements using an IBM
Series11 with floating point hardware range from 3 to 8
milliseconds per segment traversal step and 5 to 10 mil-
liseconds per transition step, depending on the particular
form of path equations used. Paul [9] attacks this diffi-
culty by slowing down the generation of Cartesian path
points to a rate his computer can handle, and then inter-
polating additional joint space targets. This approach
solves the problem of limited computer power at the ex-
pense of additional program complexity. However, it
does not avoid the other difficulties associated with Carte-
sian paths.

A number of other difficulties arise from the fact that
the hand position can only be controlled indirectly,
through the joints of the manipulator. With many manipu-
lators, there may be “degenerate” hand positions which
are nearby in Cartesian space, but which are widely sepa-
rated in joint parameter space. If the path passes through
such points, then the joints of the manipulator may be
unable to keep up with their targets unless the motion is
very slow. 429

RUSSELL H. TAYLOR IBM J. RES. DEVELOP. VOL. 23 NO. 4 JULY 1979

This problem may be solved at the expense of addition-
al computation and programming complexity by using the
current joint velocities to recompute at each sample inter-
val how large a fraction, h(t + At) - h (t) , of the segment is
to be covered in the next sample interval [9]. The path
followed will still be a straight line, but the hand will not
move at uniform speed, so that objects in the hand will
experience various inertial forces, which will be difficult
to predict without “simulating” the motion in advance.
Also, coordinated motions involving several manipula-
tors are more difficult to plan, since it is difficult to predict
just where each manipulator will be at a given time.

Physical stops or limits on individual joints of the ma-
nipulator introduce complications similar to those in-
troduced by degenerate axis alignments. In order to move
the hand to a nearby point, it may be necessary to “un-
wind” a joint through 359” rather than advance it through
1”. Such discontinuities cannot be handled well unless
they have been anticipated. Simple schemes which
merely adjust speeds based on joint velocities cannot do
this.

Finally, the fact that there are generally several pos-
sible sets of joint parameters which can place the hand at
a desired target frame F(t) introduces still further compli-
cations. Unless a certain amount of care is taken in the
joint solution procedure, discontinuities in the joint target
values may be introduced at awkward moments. Indeed,
it may frequently be very important to select the solution
which minimizes the total motion required through a
many segment motion, or to avoid a joint stop during a
critical segment. It is unclear just how this can be done
without a certain amount of preplanning which pays at-
tention to joint space trajectories.

The conclusion is that, although Cartesian path inter-
polation offers a number of significant advantages, the
joint space behavior of the manipulator itself cannot be
ignored. The joint space strategy described in the next
section preserves many of the advantages of Cartesian
path control, while requiring somewhat lower computa-
tional effort and allowing joint space considerations to be
handled more easily.

Bounded deviation joint paths
The principal disadvantages of Cartesian path control are
the amount of real time computation required and the dif-
ficulty of dealing in real time with constraints on the joint
space behavior of the manipulator. These problems may
be avoided or at least greatly reduced by preplanning the
motion before it is executed. Sometimes this preplanning

430 can be performed well in advance. Often, however, the

values of the knot points are not known until just before
the motion is executed. In such cases, it is important that
the time the manipulator spends waiting for planning to be
completed be kept as short as possible.

As an extreme case, the real time algorithm could be
simulated and used to precompute the joint parameters
for every sample interval. Motion execution would then
be trivial: the joint parameter values would simply be
read from memory and used as local goals for the servo-
ing algorithm. Such a policy, however, is rather wasteful,
since the amount of data that would have to be stored is
quite large and since the computation time needed may
approach that required by the motion itself.

One possible way out would be to precompute the joint
solutions for every nth sample interval and then to per-
form interpolation on the joint parameters to generate real
time goals. The difficulty with this method is that the
number of intermediate points needed to keep the manip-
ulator acceptably close to a straight Cartesian path de-
pends on the particular motion being made. Any “stan-
dard” interval small enough to guarantee low deviations
everywhere will require a wasteful amount of pre-
computation for many motions.

This section presents a simple algorithm which gener-
ates only enough intermediate points to guarantee that the
manipulator’s deviation from a straight path on each mo-
tion segment stays within prespecified error bounds.

Joint spuce motion strategy
Suppose we compute joint parameter vectors j , corre-
sponding to the knot points F, of our desired motion. We
can then use these j , as the knot points for a joint space
interpolation strategy analogous to that used for the posi-
tion part of our Cartesian space paths. For motion from j ,
to j,, we have

j (t) = j , - ~

T , - t
T . A j , ,

I

and for transition between j , -+ j , and j , + j , ,

(7 - t ’) , (7 + t y
j (t ‘) = j , - ___ 47 T , A j , + 47 T, Aj , ,

where Aj , = j , - j , , , A j , = j , - j , , and T, , T,, T , and t’ have
the same meanings as for the Cartesian path motion.
Here, the joints of the manipulator move at uniform ve-
locity between the knot points and make smooth transi-
tions with constant acceleration between segments [15].

The hand frame, however, deviates from a straight line
Cartesian path, as shown in Fig. 3 . Let Fj(t) be the manip-
ulator hand frame corresponding to the joint target j (t) ,

RUSSELL H. TAYLOR IBM J. RES. DEVELOP. VOL. 23 NO. 4 JULY 1979

70

-

-
50 -

-
40 -

-

30 -
motion

- Recursion h i t = 0
0 I 1 I I I I I I I

-
%
-3 0.4 -
8 Recursion limit = 2

I I I I I I I I I
0.4

Figure 3 X coordinate of hand for
(t3y = 0.5 cm, SEaX = 5").

0.6

typical motion

0.8

segment, with

and let F,(t) be the frame target for the corresponding
Cartesian space path. Then, the displacement deviation
S,(t) and the rotation deviation 8 J t) are defined as

a p (f) = IP,(t) - P,(t)l,

8,(r) = [angle part of R,(r)-' 0 R,(t)l.

Point interpolation method
Consider an arbitrary motion segment, F, + F , , for which
we have specified the maximum acceptable deviations:

IBM J. RES. DEVELOP. VOL. 23 NO. 4 JULY 1

Rccurslon limit = I
I I I I I I I I

-
-

Recursion limit = 3
I I I I I I I I I

0.0

midpoint

0.2

interpolation

0.4 0.6 0.8

limited to 0, 1 , 2, and 3 levels of

1.0

' recursion

We must specify enough intermediate points along the
Cartesian path so that the path deviations introduced by
straight line interpolation between the corresponding
joint solutions stay within these bounds. The generation
of an "optimal" set of intermediate points requires a good
characterization of the path deviation functions 8:" and
8yX. These functions depend on the particular manipu-
lator being used and can be quite complicated. For many 431

RUSSELL n. TAYLOR 979

0.2 0.4 0.6 0.8 1.0

I Normalized time

Figure 4 Displacement error for joint space execution of typi-
cal segment with 8 r = 0.5 cm, ,Fax = 5", and point inter-
polation recursion limited to 0, 1 , 2 , and 3 levels.

common manipulator geometries, however, the maxi-
mum deviations occur at or near the segment midpoint.
This property provides the basis for the following simple
interpolation algorithm, which converges rapidly to pro-
duce a good, though not necessarily minimal, set of inter-
mediate points.

Step 1 Compute the joint parameters j, and j, corre-

Srep 2 Compute the joint space midpoint,
sponding to F,, and F,, respectively.

I
jm = j, - ; A j l .

i

Use j, to compute

F, = frame corresponding to joint values j,.

Also, compute the Cartesian path midpoint F,,

P, = + 2 ' Rx = R,o Ruijn, $1,

432

RUSSELL H. TAYLOR

where

Rot(n, 6) = Ri'o R,.

Step 3 Compute the deviation between F, and Fx,

fjD = IP, - PXL

6, = langle part of R,' 0 R,I.

I Normalized time

Figure 5 Rotation error for joint space execution of typical seg-
ment with 8 r = 0.5 cm, 8;'' = So, and point interpolation
recursion limited to 0, 1 , 2 , and 3 levels.

Step 4 If 6, 5 and 8, 6rx, then we are done.
Otherwise, compute the joint solution jx corre-
sponding to the Cartesian space midpoint F,,
and apply steps 2-4 recursively for the two seg-
ments F, + F, and F, -+ F,.

The application of this algorithm to the motion segment
shown in Fig. 2 is illustrated in Figs. 3 through 5, which
show the effects of limiting the recursion to zero, one,
two, and three levels. Similar results ,were obtained for
other motions of this test manipulator and for a number of
other manipulator geometries, including those shown in
Fig. 6.

Convergence of the method is quite rapid, with the
maximum deviation usually being reduced by approxi-
mately a factor of four for each level of midpoint inter-
polation. The reason for this may be understood, infor-
mally, by considering the motion of the simple manipula-
tor shown schematically in Fig. 7, which has one revolute
and two translational joints. Suppose that we move this
manipulator from position A to position B, as shown in
the figure. The displacement deviation at the midpoint of
this motion is given by

6, = r . [I - cos (8)] .

IBM I. RES. DEVELOP. VOL. 23 a NO. 4 JULY 1979

If we invent an intermediate target point here, then the
deviation at the midpoint of each of the new segments is

For I9 = ISO”, i . e . , for a complete 360” turn, the deviation
is reduced by a factor of two. For the more common cases
where I9 5 90°, the reduction ratio is at worst about 1 : 3.4
and rapidly approaches 1 : 4 as I9 gets small.

Where there are several revolute joints, the situation is
considerably more complicated. However, so long as de-
generate joint configurations are avoided, the algorithm
will behave much the same for most common manipulator
geometries.

Degeneracies, alternate solutions, and other refine-
ments
Convergence of the interpolation algorithm may be rather
slow near degenerate points, since a small error in the Car-
tesian space midpoint may lead to large variations in the
joint angles and, consequently, in the manipulator’s be-
havior on the new joint space segments.

Techniques for improving the algorithm’s behavior
near such points depend somewhat on the kinematics of
the particular manipulator in question. However, several
“geometry independent” strategies seem generally appli-
cable. These techniques are discussed below.

Degenerate joint solutions occur when two (or more)
axes of the machine are lined up, thus destroying a degree
of freedom for the hand. In such cases, the lined-up joints
are under-determined. The behavior of the algorithm may
be improved appreciably if the values of the under-deter-
mined joints in degenerate midpoint joint solutions are ad-
justed to correspond as closely as possible to their joint
space midpoint values.

For instance, if the angle of joint 5 of the manipulator
shown in Fig. 1 is 0, then joints 4 and 6 may be modified
as follows without changing the position of the hand:

j(4)‘ = j(4) + v,
j(6)’ = j(6) - v.

More generally, if the value of joint 5 is some small angle
p, the orientation error introduced by making the above
transformation of joints 4 and 6 is given by

p sqrt (2 - 2 cos v).

This result may be turned around to tell us how large a
correction to make near a “degenerate” midpoint. First,

Joint 2

Joint 6

Joint 6

Bi

- I Joint 1

%

Figure 6 Other manipulator geometries used in tests of the
point interpolation algorithm.

Figure 7 XYB manipulator.

we compute the maximum error that can be tolerated in
the hand orientation:

6 = min 6pX ,

Then, given a joint solution jx with a small value for joint
5 ,

jx(5) =

(hand length 1. Y a X

compute the maximum correction p which may be ap-
plied to jx(4) and jx(6) without violating the error bounds
and the correction v required to bring joint 4 to the mid-
point value jm(4):

p = COS-l[nlax (-1, 1 - -j], 62

2P2

433

1. TAYLOR IBM J. RES. DEVELOP. 1 IOL. 2 3 NO. 4 JULY 1979 RUSSELL 1

434

2.8

0.0 0.2 0.4 0.6 0.8 1

Figure 8 Path deviations for segment whose midpoint is near a degeneracy (a) with and (b) without fixup of nearly degenerate solutions
(8y = 0.5 cm, = 5”, recursion limit = 2).

The smaller of these two corrections may now be applied
to jx:

jx(4)’ = jx(4) + max [-p , min (p, v)l,

jx(6)’ = jx(6) - max [-p , min (p, v)].

The importance of this refinement is illustrated in Fig. 8,
which shows the displacement and rotation deviations for
a segment whose midpoint is near a degeneracy.

The joint solution for many manipulators may be re-
dundant, in the sense that there may be several sets of
joint parameters which will put the hand at a particular
point. For instance, the gimbal of our example manipu-
lator has two solutions, characterized by

j(4)‘ = j(4) + 180”,

j (9’ = -j(5),

j(6)’ = j(6) - 180”.

If the “polarities” of the solutions chosen at the end
points of a segment do not match properly, the midpoint
error may be substantially increased. In general, it is im-
portant to consider all possible joint solutions at each
knot point and select the one which provides the best be-
haved trajectory. Figure 9 illustrates how a typical tra-
jectory may be degraded by failure to do this.

Conclusions
This paper has discussed two somewhat different ap-
proaches to straight line motions. Each has certain
strengths and weaknesses.

The first approach, “Cartesian path control,” is con-
ceptually straightforward and lends itself readily to appli-
cations where the segment knot points may change while
the motion is being made or where perturbations to the
motion, such as those required for force accommodation,
are conveniently described in Cartesian space. On the
other hand, the method is rather expensive computation-
ally and is rather vulnerable to unexpected difficulties
where degeneracies or joint limits are encountered.

The second method, “bounded deviation joint paths,”
relies on a planning phase to interpolate enough inter-
mediate points so that the manipulator may be driven in
joint space without deviating more than a prespecified
amount from the desired path. This method greatly re-
duces the amount of computation that must be done at
every sample interval and permits joint space constraints
to be treated in a natural manner. If the motion planning
cannot be done in advance of program execution, then the
latency between a MOVE command and the start of the
motion may be increased somewhat. Convergence of the
interpolation algorithm is sufficiently rapid, however, so

RUSSELL H. TAYLOR IBM J. RES. DEVELOP. VOL. 23 NO. 4 JULY 1979

0.0 0.2 0.4 0.6 0.8

I Normalized time

Figure 9 Path deviations for segment whose midpoint is near a degeneracy (a) with and (b) without checking for alternate solutions
(a? = 0.5 cm, By = 5", recursion limit = 1) .

that the extra time is small, at least for the deviation
bounds required for many applications. In cases where
shorter latencies are required, it should be possible to
start moving along the first part of a trajectory while fin-
ishing planning the remainder of the motion.

Acknowledgments
1 would like to thank David Grossman and Larry Lieber-
man for their assistance with the geometric modeling and
graphics facilities used to prepare the figures. Also, I am
grateful to John Griffith and Peter Will for reading the
manuscript and making a number of helpful editorial sug-
gestions.

Appendix A: Quaternions
In general, a quaternion Q consists of a scalar part s and a
vector part v and here is written

Q = [s + v].

The multiplication rule is

Q 1 o Q, = [s , s ~ - v1 . v2 + S , V ~ + s l V z + V I X vz].

From this definition, it follows that if

s = sin 1;) and c = cos (3 ,

then

[0 + Rot(n, 0) 0 u] = [c + s . n]

0 [O + u] 0 [c + --s . n].

In other words, we can represent a rotation Rot(n, 0) by a
quaternion

The "null" rotation would be given by

Rot(n, 0) = [I + 0 . n] = [l + 01.

Notice that if a rotation R is represented by a quaternion
Q , then the quaternion corresponding to R" can be ob-
tained trivially by negating the vector part of Q. Similarly,
it is easy to see that if rotations R, and R, are represented
by quaternions Q, and Q2, respectively, then the rotation
R, 0 R, will be represented by the quaternion Q, 0 Q,.

The computational requirements of some common op-
erations involving rotations, using quaternion and matrix
representations, are given in Table 2 . In addition to re-
quiring generally fewer operations, quaternions have the
advantage of being a less redundant representation than
3 X 3 rotation matrices, thus simplifying problems associ-
ated with machine roundoff errors. 435

RUSSELL H. TAYLOR IBM J . RES, DEVELOP. VOL. 23 NO. 4 JULY 1979

Table 2 Computational requirements of common rotation oper- 6. R. Paul, “Modelling, Trajectory Calculation, and Servoing
ations. of a Computer Controlled Arm,” Ph.D. Thesis, Stanford Ar-

tificial Intelligence Laboratory Memo AIM-177, Stanford
Operation Quaternion Matrix Computer Science Report STAN-CS-72-3 11, Stanford Uni-

representation representation versity, Stanford, CA, November 1972.
7. L. I . Lieberman and M. A. Wesley, “AUTOPASS: An Au-

tomatic Programming System for Computer Controlled Me-
chanical Assembly,” ZBM J . Res. Develop. 21, No. 4, 321-
333 (1977).

R, R, 9 adds, 15 adds, 24 multiplies
16 multiplies

R o u 12 adds, 6 adds, 9 multiplies
22 multiplies

R + (n, 8) 4 multiplies, 8 adds, 10 multiplies,
1 square root, 2 square roots,
1 arctangent 1 arctangent

(n, 8) + R 4 multiplies, 10 adds, 15 multiplies,
1 sine-cosine pair 1 sine-cosine pair

Renormalize 3 adds, 7 adds, 18 multiplies
8 multiplies, 2 square roots
1 square root

Convert to other 19 adds,
representation

7 adds, 5 multiplies,
9 multiplies 3 sine-cosine pairs,

1 arctangent

References and notes
1. T. Binford et al . , Exploratory Studies of Computer In-

tegrated Assembly Systems, NSF Progress Reports, Stan-
ford Artificial Intelligence Laboratory, Stanford University,
Stanford, CA, September 1974, November 1975, July 1976
(AIM 285).

2. C. Rosen et al., Machine Intelligence Research Applied to
Industrial Automation, NSF Report, Grant APR75-13074,
Stanford Research Institute, Stanford, CA, November 1976.

3. P. M. Will and D. D. Grossman, “An Experimental System
for Computer Controlled Mechanical Assembly,” ZEEE
Trans. Computers (2-24, No. 9, 879-888 (1975).

4. R. Finkel, R. Taylor, R. Bolles, R. Paul, and J. Feldman,
AL, A Programming System for Automation, Stanford Arti-
ficial Intelligence Laboratory Memo AIM-177, Stanford
Computer Science Report STAN-(3-74-456, Stanford Uni-
versity, Stanford, CA, November 1974.

5 . R. H. Taylor, “The Synthesis of Manipulator Control Pro-
grams from Task-Level Specifications,” Ph.D. Thesis, Stan-
ford Artificial Intelligence Laboratory Memo AIM-282,
Stanford Computer Science Report STAN-CS-76-560, Stan-
ford University, Stanford, CA, July 1976.

8. D. Whitney, “pesolved Motion Rate Control of Manipula-
tors and Human Prostheses,”ZEEE Trans. Man Mach. Syst.

9. Richard Paul, “Manipulator Path Control,” Proc. 1975 Zn-
ternational Conference on Cybernetics and Society, IEEE,
New York, September 1975.

10. M. Beeler, R. W. Gosper, and R. Schroeppel, Hakmem,
MIT Artificial Intelligence Laboratory Memo No. 239, Mas-
sachusetts Institute of Technology, Cambridge, MA, Febru-
ary 1972.

11. W. R. Hamilton, Elements of Quaternions, Third Edition,
Chelsea Publishing Co., New York, 1969.

12. A. T. Yang and F. Freudenstein, “Application of Dual-
Number Quaternion Algebra to the Analysis of Spatial
Mechanisms,” J . Appl. Mech., Trans. ASME 86, 300-308
(1964).

13. C. Rosen et al., Exploratory Research in Advanced Automa-
tion, NSF Report, Grant GI-38100x1, Stanford Research In-
stitute, Stanford, CA, January 1976.

14. B. Shimano, “Improvements in the AL Runtime System,”
in Exploratory Study of Computer.lntegrated Assembly Sys-
tems, Stanford Artificial Intelligence Laboratory Memo
AIM-285, Stanford University, Stanford, CA, August 1976.

15. Revolute joints introduce a number of minor complications
into the definition of Aj, especially where the joint limits al-
low complete revolutions. In the examples given with this
section, A j was chosen so as to cause each joint to move
through the smallest of two possible placements. For in-
stance, if Bo = 30” and 8, = 330°, then A8 = -60”.

16. R. H. Taylor, “Planning and Execution of Straight-Line Ma-
nipulator Trajectories,” Research Report RC6657, IBM
Thomas J. Watson Research Center, Yorktown Heights,
NY, 1977.

“S-IO, 47-53 (1969).

Received July 10, 1978; revised March 1 , 1979

The author is located at the IBM Information Records
Division laboratory, P.O. Box 1328, Boca Raton, Florida
33432.

436

RUSSELL H. TAYLOR IBM J. RES. DEVELOP. VOL. 23 NO. 4 JULY 1979

