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Abstract

Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the

oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning

is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms

that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive

ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the

model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim-

inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic,

mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of

the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional

locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions

to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data

desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data

from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.

Keywords

Algal bloom, autonomous glider, autonomous underwater vehicles, feature tracking, ocean model predictions, path

planning

1. Introduction

Coastal ocean regions are dynamic and complex environ-

ments that are driven by an intricate interaction between

atmospheric, oceanographic, estuarine/riverine and land–

sea processes. Effective observation and quantification of

these processes requires the simultaneous measurement of

diverse water properties to capture the spatial and temporal

variability. The implementation of multiple and adaptable

sensors can facilitate simultaneous and rapid measure-

ments that capture the appropriate scale of spatiotemporal

variability for many of the phenomena that we seek to

understand occurring in the coastal ocean. Autonomous

underwater vehicles (AUVs) are a key tool in this effective,

efficient and adaptive data collection procedure to improve

our overall understanding of coastal processes and our

world’s oceans. Through development of these intelligent

systems, scientists can implement continuous monitoring

and sampling programs that provide fine-scale resolution

far surpassing previous sampling methods, such as infre-

quent measurements from ships, buoys and drifters. One

example of intelligent ocean sampling is the coordinated

control of autonomous and Lagrangian platforms and sen-

sors (ALPS), developed in the series of articles Fiorelli et al.

(2006), Leonard et al. (2007), and Paley et al. (2007, 2008).

Such research efforts have opened the door for the design

and implementation of adaptive, mobile sensor platforms

and networks to aid in the study of complex phenomena

such as ocean currents, tidal mixing and other dynamic

ocean processes.
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To this end, three laboratories at the University of South-

ern California (USC) have formed CINAPS (pronounced

[sin-aps]); the Center for Integrated Networked Aquatic

Platforms. The mission of this collaborative research group

is to bridge the gap between technology, communication

and the scientific exploration of local and regional aquatic

ecosystems through the implementation of an embedded

sensor network along the Southern California coast (Smith

et al. 2010a). This infrastructure is designed for facilita-

tion of long-term, in-depth, multi-faceted investigation of

physical, chemical and biological processes resulting from

coastal urbanization and climate change. One component

of this network, and the focus of this paper, are mobile

sensor platforms in the form of autonomous Slocum gliders

(gliders) (Webb Research Corporation 2008). Based on

their deployment longevity, and the use of multiple gliders

(see e.g. Davis et al. (2008)), these vehicles can provide an

extended spatiotemporal series of observations (see details

in Section 4). This study investigates a path planning

method for a multi-vehicle application for gliders in the

Southern California coastal ocean.

The path planning method presented here is based upon

predictions from a regional ocean model. As complex and

understudied as the ocean may be, we are able to model

and predict certain behaviors moderately well over short

time periods. Consistently comparing model predictions

with collected data, and adjusting for discrepancies, will

increase the range of validity of existing ocean models, both

temporally and spatially.

Utilizing available technology and infrastructure, we

consider the problem of integrating ocean model predic-

tions into the path planning and trajectory design procedure

for AUVs, with the goal of tracking and sampling within an

interesting and evolving ocean feature. Collecting data for

ocean science can be extremely hit-or-miss, both temporally

and spatially, especially when one is interested in a spe-

cific biogeochemical event. In addition, areas of scientific

interest within the ocean dynamically move and evolve.

Thus, continuously operating a sensor platform (static or

mobile) in a predesignated and confined sampling area is

not the most effective technique to gather data for analysis

and assessment of ocean processes which may occur spo-

radically, and dynamically propagate throughout the ocean.

Here we aim to increase the likelihood of gathering data

of high scientific merit, i.e. data of great importance to

understanding the feature of interest, by deriving the sam-

pling locations from a prediction of the evolution of a given

feature of interest. We build upon the three-dimensional

(two spatial dimensions plus time), single-vehicle algorithm

presented in Smith et al. (2009a), with the intention of

generating a mission plan that accurately steers multiple

gliders to locations of high value within an evolving ocean

feature. The primary contributions of this paper are the

development of an innovative toolchain, and the waypoint-

generation algorithms for the practical application of AUV

path planning and trajectory design.

The goal of this study is to present an innovative ocean

sampling method that utilizes model predictions and gliders

to collect scientifically interesting oceanographic data that

can also increase the predictive skill of a model. Our

motivation is to track and collect daily information about

an ocean process or feature which has a lifespan on the

order of weeks. Based on the interesting biogeochemical

ocean dynamics presented in Section 2, in addition to its

proximity to our laboratories at USC, we choose to focus

our research on an oceanographic region referred to as the

Southern California Bight (SCB)1. The regional location

of the SCB is denoted by the box in Figure 1(a), with an

enlarged view of the SCB presented in Figure 1(b).

The mission plan to track and monitor dynamically

evolving ocean processes or features is iteratively generated

as follows. First, we identify a feature of interest in the SCB

via direct observation or through remotely sensed data (e.g.

satellite imagery). We then use a regional ocean model to

predict the behavior of this feature, e.g. outfall from a waste

water treatment plant, over a short time period, such as one

day. This prediction is used to generate a sampling plan

for deployed glider(s) that steer the vehicle(s) to regions

of scientific interest, based upon the given feature and its

predicted evolution. Throughout execution of the sampling

plan, collected data are transmitted via an embedded

wireless network (Pereira et al. 2009; Smith et al. 2009b),

and assimilated into the ocean model. Incorporating this

in situ ground truth, a new prediction is generated by the

model. This entire process is repeated until the feature

dissipates or is no longer of interest.

We begin our discussion with a description of the

primary research focus related to this study, a harmful

algal bloom (HAB). An algal bloom, and in particular a

HAB, is a rapid increase of biomass of phytoplankton or

cyanobacteria (potentially toxin producing species) caused

by the addition of nutrients to and/or an alteration in

the chemical properties of the ocean. Nutrients can be

added to the coastal ocean via river runoff or waste water

outfalls. Ocean chemistry can be altered by the addition of

freshwater from these events, as well as by ocean processes

such as an eddy or upwelling.

We continue our discussion with definitions of the

sensor platform and ocean model considered, and a review

of previous work related to similar problems. Section

5 contains an in-depth discussion and statement of the

path planning problem, and describes the two main

algorithms designed to obtain the waypoints that define our

path. Here we present a waypoint-selection algorithm for

both a boundary-tracking and a centroid-tracking mission

scenario. We design sampling plans and present simulated

and implemented experimental results for AUV retasking

in Southern California coastal waters. We conclude with

an analysis of the experimental results and present areas

of ongoing and future investigation. A crucial component

to this study is the validation of this toolchain via at-sea

trials. Extensive deployment time (>1, 500 km traversed
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Fig. 1. (a) Google Earth image of the state of California. The oceanic region contained in the rectangle denotes the Southern California

Bight. An enlarged image of the Southern California Bight is presented in (b). The Southern California Bight is the oceanic region

contained within 32◦ N to 34.5◦ N and −117◦ E to −121◦ E. This region is the primary area of interest, investigation and deployment

for the USC CINAPS team. The labeled orange arcs are the locations of the base stations that compose the wireless sensor network

presented in Smith et al. (2010a).

during more than 100 days at sea from January 2009 to

September 2009) has provided several successful validation

results. Here we present two examples of feature-tracking

missions implemented on deployed gliders.
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2. Background and Motivation

2.1. Southern California Ocean Dynamics

The motivation for using predictive capabilities to design

trajectories with the intent of tracking an evolving ocean

feature is derived from a practical problem that exists

in many coastal communities around the world, and, in

particular, Southern California. As the rate of urbanization

in coastal communities continues to increase, land use and

land cover (i.e. significant increase in impervious surfaces)

in these areas are permanently altered. This alteration

affects both the quantity of freshwater runoff, and its

particulate and solute loadings, which has an unknown

impact (physically, biogeochemically, biologically and

ecologically) on the coastal ocean (Warrick and Fong 2004).

One documented result of these impacts is an increase in

the occurrence of algal and phytoplankton blooms. Such

biological phenomena are a primary research interest of the

authors. In particular, we are interested in the assessment,

evolution and potential prediction of algal blooms that have

the potential to include harmful algal species (i.e. harmful

algal blooms (HABs)). The environmental triggers leading

to the onset, evolution and dissemination of HAB events are

widely unknown and are under active investigation.

Given the ecological and socio-economic importance of

coastal regions, like Southern California (U.S. Commission

on Ocean Policy 2004), it is important to be able to

accurately assess, and ultimately predict, how changes

driven by urbanization and climate impact these areas.

In addition to regional anthropogenic disturbances,

Southern California experiences significant decadal and

interannual variability associated with the Pacific decadal

oscillation (PDO) and the El Niño southern oscillation

(ENSO) (Dailey et al. 1993; Kennedy et al. 2002). These

climatic phenomena impact the frequency and intensity

of the regional episodic storm events, as well as the

physical and biogeochemical dynamics of the coastal

marine ecosystem. The increased rainfall in an urban,

coastal region results in freshening of sea-surface waters

through direct rainfall into the ocean and from freshwater

inflow at the coastal boundary from streams and rivers.

The river runoff supplies nutrient-rich waters to the ocean

surface, which may lead to a bloom of photosynthetic

organisms (i.e. algal bloom).

An open question in coastal ocean science is to dissem-

inate whether or not we can distinguish anthropogenically

affected processes from natural variations and effects. The

ability to track and monitor evolving features resulting from

anthropogenic inputs can help answer this question and oth-

ers related to the increased urbanization of coastal regions.

2.2. Harmful Algal Blooms

Microscopic organisms are the base of the food chain

and are what all aquatic life ultimately depends upon for

food. There are a few dozen species of phytoplankton and

cyanobacteria that can create potent toxins when provided

with the right conditions. These harmful algae can cause

harm via toxin production, or by their accumulated biomass

which may affect levels of dissolved oxygen in the water.

Impacts to humans from HABs include, but are not limited

to, severe illness and potential death following consumption

of, or indirect exposure to, HAB toxins. In addition, coastal

communities and commercial fisheries can suffer severe

economic losses due to fish, bird and mammal mortalities,

and decrease in tourism due to beach closures. For these

reasons, it is of interest to predict when and where HABs

may form and which coastal areas they may affect. For

general information on HABs, we refer the interested reader

to Anderson (2008). Harmful algal blooms are an active

area of research on all coasts of the United States, and

are of large concern for coastal communities in Southern

California (Schnetzer et al. 2007).

A related threat of HABs deals with the sinking

of Pseudonitzschia, i.e. transfer of toxicity to the sea

floor, as discussed in Wood et al. (2009). Autonomous

gliders have been used recently during the North Atlantic

Bloom experiment to track the sinking of primary

production from the surface to 800–1,000 m (Gray et al.

2008). It is of interest to document the sinking of

the Pseudonitzschia biomass to determine the harmful

effects away from the surface. Vertical movement or

aggregation at specific depths can also be important factors

affecting the abundance of some harmful algae such as

dinoflagellates and their associated toxins (Kudela et al.

2008). Marine biologists are interested in defining the

vertical zonation and migratory patterns of a dinoflagellate,

and the interactions of the organism with physical processes

of the ocean (e.g. currents, shear, density gradients, light)

and the chemical structure (e.g. nutrients). Hence, with

their unique sawtooth-shaped trajectories, gliders are a good

candidate platform to study surface blooms as well as their

vertical migration.

Motivated by the number of problems linked to HABs,

and algal blooms in general, it is of interest to study

ocean features that can potentially promote a bloom event.

In particular, blooms are likely to occur when nutrient-

rich waters are brought to the surface. Ocean processes

and features of interest promoting these conditions are

cold-core eddys, upwelling, river runoff and waste water

outfalls. These events alter the biochemical composition

of the surrounding water, and provide the excess

nutrients to support higher productivity and a bloom of

microorganisms.

From the coastal dynamics and rapid urbanization in

Southern California coastal communities discussed earlier,

we choose plumes from river runoff and waste water outfalls

as features to track and monitor. Both of these events can

be discretely quantified; river runoff happens after a storm

event and most waste water outfalls are human controlled.

Hence, we have a good idea of when and where a plume will

be present in the SCB, and can employ the proper means

to detect its onset and evolution. Henceforth, we will refer

to a feature of interest to be tracked as a plume, which is
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understood to encompass freshwater plumes, waste water

outfalls and algal blooms.

The density of the considered plumes is less than the

surrounding sea water, and forms a lens on the surface.

The movements of these plumes are dominated by surface

currents and local winds. The focus of this paper is on

tracking the movement of plumes through the ocean by

use of predictive tools and gliders to study the factors and

conditions leading to the onset and lifespan of a HAB event.

We remark that similar techniques to those presented here

can be applied to study eddys and upwelling; however,

with the choice taken here, we increase the likelihood

of catching an actual event upon which to implement

this innovative technology toolchain and trajectory design

method.

3. Regional Ocean Modeling System

The predictive tool utilized in this study is the regional

ocean model system (ROMS) – a split-explicit, free-

surface, topography-following-coordinate oceanic model.

ROMS is an open-source, ocean model that is widely

accepted and supported throughout the oceanographic and

modeling communities. Additionally, the model was devel-

oped to study ocean processes along the western U.S. coast,

which is our primary area of study. The model solves

the primitive equations using the Boussinesq and hydro-

static approximations in vertical sigma (i.e. topography-

following) and horizontal orthogonal curvilinear coordi-

nates. ROMS uses innovative algorithms for advection,

mixing, pressure gradient, vertical-mode coupling, time

stepping and parallel efficiency. Detailed information on

ROMS can be found in Shchepetkin and McWilliams

(1998, 2005).

The version of ROMS used in this study is compiled

and run by the Jet Propulsion Laboratory (JPL), California

Institute of Technology, and provides hindcasts, nowcasts

and hourly forecasts (up to 36 h) for the SCB via a web

interface (Vu 2008) or via access to their THREDDS

data server (Jet Propulsion Laboratory 2009). The JPL

version of ROMS (see e.g. Chao et al. (2008) and Li

et al. (2008a,b)) assimilates HF radar surface current

measurements, data from moorings, satellite data and any

data available from sensor platforms located or operating

within the model boundary.

This model utilizes a nested configuration, with

increasing resolution covering the U.S. western coastal

ocean at 15 km, the Southern California coastal ocean

at 5 km and the SCB at 1 km. In addition to the 1 km

output, a resampled 2.2 km resolution output, correlated

to the assimilated HF radar grid resolution, is produced.

The computations and predictions presented here use this

2.2 km resolution product.

The interaction with JPL related to this research and

ROMS improvement is a two-way street. We need the

predictions to design efficient, effective and innovative

Fig. 2. One of the two Slocum gliders owned and operated by

CINAPS. The glider has just been deployed and is preparing

to start a mission. This picture was taken directly north of the

entrance to Isthmus Cove off the northeast coast of Santa Catalina

Island.

AUV trajectories. The JPL updates their ROMS by utilizing

the feedback from field deployments to assess the validity

of each prediction, and to increase the skill of future

predictions.

4. Mobile Sensor Platform: AUV

The mobile sensor platforms used in this study are Webb

Slocum autonomous underwater gliders (Webb Research

Corporation 2008); see Figure 2. A glider is a type of AUV

designed for long-term ocean sampling and monitoring

(Schofield et al. 2007). These gliders fly through the water

by altering the position of their center of mass and changing

their buoyancy. Due to this method of locomotion, gliders

are not fast-moving AUVs, have operational velocities

on the same order of magnitude as oceanic currents

(∽ 1 km h−1) and follow a sawtooth-shaped trajectory.

The endurance (∽ 1 month per deployment) and velocity

characteristics of a glider make it a good candidate vehicle

to track plumes that move with ocean currents, and that

have a residence time on the order of weeks. We have

upgraded the communication capabilities of our gliders to

take advantage of, and become, a node in our local wireless

network; details can be found in Pereira et al. (2009) and

Smith et al. (2009b).

Considerable work has been done on the kinematic and

dynamic modeling and control of underwater gliders, and

we refer the interested reader to Leonard and Graver (2001),

Graver (2005) and the references therein for a detailed

treatment of these topics. Here we assume that the glider
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can successfully navigate from one location to another.

This is a non-trivial assumption due to the complexity of

the underwater environment and the forces experienced

by an AUV while underway. An entire body of research

exists that is dedicated to accurate and precise execution

of prescribed missions by AUVs, and is outside the scope

of the work presented here. In relation to this work,

research is active to improve the navigational accuracy

of our gliders by use of ROMS predictions in the SCB;

see Smith et al. (2010b,c).

Briefly, an example mission for a standard glider consists

of a set maximum depth along with an ordered list of

geographical waypoints (W1, . . . , Wn). An exact path or

trajectory connecting these locations is not prescribed by

the operator, nor are the controls to realize the final

destination. When navigating to a new waypoint, the

present location L of the vehicle is compared with the

next prescribed waypoint in the mission file (Wi), and the

on-board computer computes a bearing and a range for

execution of the next segment of the mission. We will refer

to the geographical location at the extent of the computed

bearing and range from L to be the aiming point Ai.

The vehicle then dead reckons with the computed bearing

and range towards Ai with the intent of surfacing at Wi.

The glider operates under closed-loop heading and pitch

control only. Thus, the computed bearing is not altered,

and the glider must surface to make any corrections or

modifications to its trajectory. When the glider completes

the computed segment (i.e. determines that it has traveled

the requested range at the specified bearing), it surfaces

and acquires a GPS fix. Regardless of where the vehicle

surfaces, waypoint Wi is determined to be achieved. The

geographical positional error between the actual surfacing

location and Wi is computed, and any error between

these two is fully attributed to environmental disturbances

(i.e. ocean currents). A depth-averaged current vector is

computed, and this is considered when computing the range

and bearing to Wi+1, the next waypoint in the mission list.

Hence, Ai is in general not in the same physical location

as Wi. The offset between Ai and Wi is determined by

the average velocity and the perceived current experienced

during the previous segment.

5. Problem Outline and Path Planning

In this section, we formally pose the path planning problem

and present the algorithms that generate the locations

(waypoints) for the AUV to visit, which steer it to follow

the general movements of a plume. Depending upon the

feature considered, and the instrumentation suite available

on the vehicle, different locations within a feature may be of

interest, e.g. its boundary or extent, subsurface chlorophyll

maximum, salinity minimum, its centroid, O2 or CO2

threshold, etc. Since the focus of this research is on asset

allocation to the right place at the right time, and is only

motivated by the study of HABs in the SCB, we choose

to track proxy areas of interest within a given feature. In

particular, we extend the work presented in Smith et al.

(2009a) to include the use of multiple vehicles to track the

centroid and the boundary of the extent of a plume. Similar

algorithms to those presented here are under development,

and will consider alternate sampling locations, such as the

aforementioned areas of interest.

Considerable study has been reported on adaptive control

of single gliders and coordinated multi-glider systems;

see e.g. Paley et al. (2007, 2008) and the references

therein. In these papers, the trajectories given to the

gliders were fixed patterns (rounded polygons) that were

predetermined by a human operator. The adaptive control

component was implemented to keep the gliders in an

optimal position, relative to the other gliders following

the same trajectory. The difference between the method

used in Paley et al. (2008) and the approach described

here is that our sampling trajectory is determined from the

output of ROMS, and, thus, at first glance, may appear

as a seemingly random and irregular sampling pattern.

Such an approach is a benefit to the ocean modelers and

scientist alike. Scientists can identify sampling locations

based upon ocean measurements they are interested in

following, rather than setting a predetermined trajectory

and hoping the feature enters the transect while the AUV is

sampling. When deploying multiple vehicles, this method

allows the operator to generate trajectories that survey an

appropriate spatial extent of the feature of interest. And,

model skill is increased by the continuous assimilation

of the in situ collected data; which, by choice, is not a

continuous measurement at the same location.

A plume may dissipate rapidly, but can stay cohesive

and detectable for up to weeks. It is of interest to track

these plumes based on the discussion in Section 2 as

well as in Cetinic et al. (2010). In addition to tracking a

plume, it is also important to accurately predict where a

plume will travel on a daily basis. Such knowledge can

aid in proper assessment for beach and fishery closures to

protect humans from potential toxins of HABs occurring in

the area. The ROMS prediction capabilities are good, but

model skill can significantly increase from assimilation of

in situ measurements. Since ROMS assimilates HF radar

data for sea surface current measurements, we can make

the general assumption that predicted surface velocities

are fairly accurate. Also, assuming a no-slip boundary

condition, the model is assumed accurate within a few

meters of the sea floor. For the region between the top few

meters and the bottom few meters, the ability to accurately

predict ocean current velocity is highly debated, especially

in near-shelf regions. Open-ocean, autonomous navigation

is a challenging task, primarily due to the complexity

of unknown environmental disturbances, such as ocean

currents. For most of the ocean, we only have a general

notion of the variability of current velocity as a function

of both depth and time. ROMS provides a prediction of

this variability that can be leveraged for AUV navigation.

A long-term effort of this research is to address the open

question of how beneficial ocean model predictions are for

 at UNIV OF SOUTHERN CALIFORNIA on November 17, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Smith et al. 1481

increasing the accuracy and effectiveness of path planning

and trajectory design for AUVs.

Currently, commercially available, remote-sensing tech-

nologies for ocean observation only allow us to extract

information from the first few meters of the upper water

column. Large-scale detection of ocean features, e.g. algal

blooms, existing more than a few meters below the surface

is not possible at this time. Only through ship-side sampling

or driving a mobile sensor through the feature can we

extract any information regarding its 3-D structure. Since

ship sampling is time consuming, expensive and infrequent,

and steering a mobile asset to a precise location for sam-

pling is very difficult, we have a great deal to learn about the

3-D structure and evolution of algal blooms. In addition to

the the physical structure and composition, the drivers and

mechanistic processes behind bloom conception, evolution

and collapse are not well understood due to complex inter-

actions between the members of the microbial communities

and the surrounding environment. As a result, our capacity

to assess the range of potential future scenarios for a plume

that might result is highly limited. To this end, and as an ini-

tialization point for this area of research, we choose to track

features that are observable via commercial remote-sensing

techniques, or direct observation. This choice presents us

with a 2-D representation of the feature extent, although it

is known that this observed feature has some 3-D structure

that we would like to investigate. Since the feature will

propagate and evolve with ocean currents and internal

microbial interactions, it is of interest to utilize a mobile

sensor, e.g. glider, to track the feature to gather time-series

data from within and around the feature. In this paper, we

assume that ocean currents dominate the propagation of the

given feature. Since our initial representation of the feature

is 2-D and on the ocean surface, we assume that the plume

is propagated primarily by ocean surface currents, which,

as previously mentioned, have fairly accurate predictions

from ROMS. The waypoint-selection algorithms presented

in Section 5.2 that determine the path for the glider are

based on the 2-D propagation predictions. By implementing

these paths on gliders, which traverse the ocean following

a sawtooth trajectory, we hope to gain more information

about the 3-D structure and evolution as the glider samples

vertically through the water column.

With the development of a new technology or innovation,

it is important to assess the associated strengths and

weaknesses. For implementation of AUVs to conduct

ocean observation, there are a few established methods for

path planning and trajectory generation, e.g. lawnmower

pattern, transect lines or a regular grid, with which to

compare new approaches. However, these techniques are

not known to be optimal or even efficient for a given

ocean sampling mission. Additionally, the metric of success

for the paths executed by these vehicles may not be

linked to optimization of some cost, but is primarily

dependent upon the data collected during the deployment.

A regular grid pattern placed in the appropriate location

may be an excellent option (see e.g. Das et al. (2010)),

but may also entirely miss an evolving algal bloom hot

spot. In our method, we choose to try to keep the vehicle

moving with the feature, to increase information gain, and

decrease the potential for the feature to outrun the vehicle.

Accurately assessing and comparing the effectiveness

of the path planning techniques presented here is a

task for a multi-year, multi-deployment study, in which

sampling techniques are implemented simultaneously to

study the same feature of interest. We are working towards

implementing a system to determine the environmental

triggers for onset, development and ultimate mortality of an

algal bloom. Thus, we are motivated to track algal blooms

or features that have the potential to become algal blooms,

and develop efficient strategies to keep the sensor within the

feature for as long as possible to gather data that will help

us understand more about these complex phenomena.

5.1. Problem Statement

Given a plume, we are interested in designing trajectories

to guide autonomous gliders to track and sample along

the path of the centroid, as well as the boundary or

extent. We will assume that we have at least two vehicles

to perform the missions, e.g. one centroid tracker and

one boundary tracker. Due to the large amounts of

chromophoric dissolved organic matter, a plume resulting

from river runoff or waste water outfall can easily be

identified from satellite imagery with visible coloring on

the ocean surface. Additionally, these directly follow a rain

event, and the discharge location (i.e. river mouth) is well

known or, in the case of waste water outfalls, is determined

by the local sanitation district. Thus, we may assume that

we are aware of the occurrence and can delineate the

boundary or extent of a plume at an initial point in time. As

previously mentioned, the plume boundary is a 2-D feature

defined by the outline presented in remotely sensed satellite

imagery using proxies, such as fluorescence line height

(FLH) and chlorophyll. On-board the glider, chlorophyll

and optical sensors, among others, collect data regarding

specific properties of the water. The paths presented here

are not adaptive during implementation, as restricted by

the glider’s operation, so we do not intend the vehicles to

detect or sense the boundary of a plume during a mission.

Data is collected and post-processed to examine dissipation,

dispersion, chemical changes, etc. of the plume. These

data are analyzed to further understand plume ecology

and evolution, as well as to assess model predictions.

Additionally, for the planning results presented here, we

assume that the plume we are tracking is a single connected

region. In all likelihood, a plume or algal bloom that we

are interested in may evolve into multiple disconnected

regions. In this case, we select a single region to track

based on parameters of scientific interest. The choice of a

particular region to track is ongoing work done by other

members of our research team. For example, a region

or hot spot can be chosen using the detection algorithm

presented in Section IIB of Das et al. (2010), which is
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based on thresholding FLH values from satellite imagery.

Other proxies that may be used for selecting a region to

track include chlorophyll-a and normalized water-leaving

radiance at 551 nm (LwN( 551)), both detected via satellite

imagery.

Since we assume that the propagation of the plume

is determined primarily by surface currents, we forecast

its hourly movement by use of ROMS surface current

predictions; see Smith et al. (2009a). The prediction begins

with the initial delineation of the plume and is the basis for

determining the waypoints that define the computed paths.

For safety concerns, we restrict a glider to surface no more

than once every four hours. In Smith et al. (2009a), we

considered surface intervals as short as one hour. However,

surfacing that frequently kept the vehicle close to the

surface and in danger of collision with other vessels2. In

addition, upon surfacing the glider acquires a GPS fix,

and communicates its position and collected data over the

network. This communication time is significant (∽ 15

min) when considering the temporal aspect of tracking a

moving plume. This gives further support for the restriction

to a 4-h interval between surfacings because the more time

the glider is on the surface, the less time it is collecting data

and keeping up with the moving plume. The 4-h interval

was chosen to reduce surfacings during a mission, but also

to allow for frequent contact with the vehicle. Hence, in an

instance of a severe modeling error, computational error or

gross misguidance, we have the ability to abort, replan the

mission and potentially get back on track. Since the basic

idea is to track the plume for many days while assimilating

collected data into the model, the accuracy of the model

prediction degrades with time and we need time to run the

model each day, we choose to plan a T = 16 h tracking

and sampling mission for each day as early in the ROMS

prediction as possible.

To begin, we assume that the starting location L of

each vehicle is known, and the prediction of the plume

evolution is accurate. The initial delineation of the plume

is done by selecting a set of geographical locations (D) that

encompass the plume’s extent. The discrete locations in D

are forecasted as if they were Lagrangian drifters in the

ROMS surface current prediction. Additionally, we assume

that the glider travels at a constant speed v km h−1, and

define dh km to be the distance (in kilometers) traveled in

h h. For the waypoint selection and path generation, we

do not consider vehicle separation except for guaranteeing

that two vehicles are not sent to the exact same location at

the exact same time. The gliders do not have the sensory

capabilities to actively assess vehicle separation while

underwater; thus, there is no way to enforce a separation

constraint on a deployed glider, even if we imposed one dur-

ing the path planning stage. There is no adaptive behavior

incorporated during the execution of the planned trajectory.

In particular, we do not provide an adaptive approach in our

algorithm to overcome model or navigational error when

tracking a plume. It is well known that an autonomous

glider is a slow-moving vehicle with limited control capa-

bilities. With this in mind, if the vehicle surfaces in a loca-

tion that is extremely off course, or conditions have changed

dramatically, our remediation approach is to generate a new

plan. The idea is to improve the collection of scientific data

by predicting the best locations to send a glider to, while

also providing feedback to JPL on the accuracy of ROMS.

In the long run, both communities will benefit.

5.2. Waypoint-selection Algorithms

In this section, we present the centroid and boundary-

tracking, waypoint-generation algorithms. These algo-

rithms utilize the ROMS hourly predictions of a delineated

plume to generate a sampling mission that guides the AUV

to predicted locations of the selected areas of interest within

the given feature. As previously mentioned, the areas of

interest for a given feature may be different based upon

the sensor suite available on the vehicle and/or the science

return desired. The use of path planning to collect data

of high scientific merit, with respect to a selected area of

interest, translates to navigating the vehicle to a location

that contains the quantity to be measured or area to be

surveyed. Note that for both the implemented and simulated

experiments presented in Sections 6 and 7, we neither

consider vehicle dynamics nor the effect of the ocean

currents upon the vehicle in the determination of the paths.

The reasoning behind this omission is based in the initial

study upon which this paper is based (Smith et al. 2009a).

Our motivation was to develop high-level path planning

techniques, and we made the assumption that a low-level

controller was in place and was sufficient to steer the vehi-

cle between two prescribed waypoints. Given that Slocum

gliders are used widely in oceanographic applications, and

are proven to be very robust platforms, this assumption

seemed reasonable, and we were willing to initially accept

navigational errors based on the standard operation of the

chosen test-bed platform during the preliminary stages of

this research. Over the last year, we have conducted several

field trials with multiple gliders, traversing > 1500 km

over > 100 days at sea. From these deployments, we have

compiled a database to analyze the navigational accuracy

of the gliders and their ability to realize a prescribed path.

Considering more than 200 trajectories, with an average

distance traveled of 2 km, the median error between the

actual location where a glider surfaced and the prescribed

surfacing location was 1.1 km. Details of this analysis are

presented in Smith et al. (2010c). Based on this analysis,

it was determined that we needed to increase the accuracy

of the gliders to effectively execute the paths computed by

use of the algorithms presented here. This is especially the

case when attempting to design a strategy to steer a vehicle

to a specific location within an evolving feature. To this

end, we have developed extensions to the waypoint-

selection algorithms presented here that incorporate
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4-D (three spatial plus time) velocity predictions into the

trajectory design of the glider (Smith et al. 2010c). Here we

present preliminary results that show a 50% reduction in

navigational error by using ROMS predictions, rather than

the depth-averaged current estimations utilized for standard

glider operations. Additionally, research is ongoing to

couple vehicle kinematics and dynamics with ocean current

predictions to generate trajectories to follow the paths that

track evolving ocean features; see Smith et al. (2010b) for

preliminary results.

5.2.1. Centroid-tracking Algorithm We begin with the

centroid-tracking, waypoint-generation algorithm. Let T ∈

Z
+ be the duration, in hours, of the planned mission. The

input to the trajectory design algorithm is a set of points,

D (referred to as drifters) that determine the initial extent

of the plume (D0), and hourly predictions (Di, i ∈ T)

of the location of each point in D. For the points in Di,

we compute the convex hull as the minimum bounding

ellipsoid, Ei, for i ∈ T . We consider the predicted locations

of D0 after 4 h, D4. We let Ci be the centroid of Ei, and, with

a slight abuse of notation, also refer to Ci as the centroid

of Di. The algorithm computes dg( L, C4), where dg( x, y)

is the geographical distance from x to y. Given upper and

lower bounds du and dl, respectively, we have three possible

cases for choosing a location to send the glider to. Case 1:

if dl < dg( L, C4) ≤ du, the generated waypoint is C4, and

the path is simply defined as the line LC4; see Figure 3(a).

Case 2: if dg( L, C4) ≤ dl, the algorithm first checks to see if

there exists a point p ∈ E4 ∪ D4 such that

dl ≤ dg( L, p) +dg( C4, p) ≤ du. (1)

If such a point exists, the algorithm generates two waypoints

(p and C4) and the path is defined as the line Lp followed

by the line pC4. In general, this will not be the case,

since the distance from the centroid of the plume to

its boundary can be many kilometers. Thus, if {p ∈

E4 ∪ D4|dl ≤ dg( L, p) +dg( C4, p) ≤ du} = ∅, then the

algorithm computes the locus of points, L = {p∗ ∈

L|dg(L, p) +dg( p, C4) = d4}, and selects a point at random,

p∗ ∈ L, as another waypoint. Here the path is the line Lp∗

followed by the line p∗C4; see Figure 3(b). This additional

waypoint computation was inserted into the algorithm when

considering a single-vehicle deployment. In this scenario,

one would like to acquire as much data as possible. In

the case of a multiple-vehicle mission, it is less useful to

include the additional waypoint in the trajectory design,

as the other vehicles are gathering supplemental data.

During deployment, p∗ is visited if and only if we feel the

safety of the vehicle will not be compromised by frequent

surfacings (e.g. based on geographical location, day of the

week and time of day). Case 3: if dg( L, C4) > du, the

algorithm generates a waypoint Cw in the direction of C6,

such that dg( L, Cw) = d4; see Figure 3(c). The choice of

Ci+6 over Ci+j, j ∈ {5, 7, 8}, is made here since Ci+6 is

the predicted location of the centroid halfway between the

surface interval times. Here we choose Ci+6 to be fixed for

all scenarios, and, as in Smith et al. (2010c), we incorporate

Ci+j, j ∈ {5, 6, 7, 8}, as an optimization parameter to give

the glider the best chance of executing the prescribed path.

Let AZ( a, b) be the azimuth angle between locations a

and b. The location of the vehicle L is updated to C4 or

Cw and the process is iterated for the duration T . This

waypoint-generation process is presented in Algorithm 1.

Algorithm 1 Centroid-tracking, Waypoint-selection

Algorithm

Require: Hourly forecasts, Di, for a set of points D

defining the initial plume condition and its movement for

a period of time, T .

for 0 ≤ i ≤ T do

Compute Ci, the centroid of the minimum bounding

ellipsoid Ei of the points Di. Compute d4.

end for

while 0 ≤ i ≤ T − 1 do

if dl ≤ dg( L, Ci+4) ≤ du then

The trajectory is LCi+4.

else if dg( L, Ci+4) ≤ dl and ∃p ∈ Ei+4 ∪Di+4 such that

dl ≤ dg( L, p) +dg( p, Ci+4) ≤ du then

The trajectory is Lp followed by pCi+4.

else if dg( L, Ci+4) ≤ dl and {p ∈ Ei+4 ∪ Di+4|dl ≤

dg( L, p) +dg( p, Ci+4) ≤ du} = ∅ then

Compute L = {p∗ ∈ L|dg( L, p) +dg( p, C4) = d4},

select a random p∗ ∈ L and define the trajectory as

Lp∗ followed by p∗Ci+4.

else if dg( Ci, Ci+1) ≥ du then

Compute Cw such that dg( l, Cw) = d4 and

AZ( L, Cw) = AZ( L, C6).

end if

end while

5.2.2. Boundary-tracking Algorithm Similarly to the pre-

sentation in Section 5.2.1, we define the boundary-tracking,

waypoint-generation algorithm, presented in Algorithm 2.

We begin with the same predictions as above, and define

Pi to be the polygon formed by connecting the points Di

for i ∈ T . Let B( a, r) be the disc of radius r, about a.

This algorithm first computes N = B( L, d4) ∩P4. Again

we have three possible cases to investigate to define the

path for the boundary-tracking vehicle. Case 1: if N ≥ 2,

the generated waypoint B4 is a random selection of one of

the intersection points; see Figure 4(a). Case 2: if N = 1,

the generated waypoint B4 is that precise intersection point;

see Figure 4(b). Case 3: if N = ∅, B4 is computed such

that dg( L, B4) = d4 and AZ( L, B4) is the average azimuth

of Di for the considered 4-h time period; see Figure 4(c).

We reassign L = B4, and the algorithm is repeated. For

the boundary-tracking scenario, it would be of interest to

traverse the entire predicted extent of the given plume over

the duration of the survey. However, the test-bed vehicles

considered move too slowly to entertain this sampling
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Fig. 3. The three possible cases for the waypoint generation that defines the path for the centroid-tracking vehicle. (a) Case 1: the

distance from L to the predicted centroid C4 is within the defined bounds, dl < dg( L, C4) ≤ du, and thus it is reachable. The generated

waypoint is C4, and the path is defined as the line LC4. (b) Case 2: the distance from L to the predicted centroid C4 is less that the

defined lower bound, dg( L, C4) ≤ dl, so the algorithm computes an additional waypoint, p or p∗, to be visited. The path is the line Lk

followed by the line kC4, for k ∈ {p, p∗}. (c) Case 3: the distance from L to the predicted centroid C4 is greater than the defined upper

bound, dg( L, C4) > du; thus, it is determined to be unreachable. Here the algorithm defines a waypoint Cw, such that dg( L, Cw) = d4

and AZ( L, Cw) = AZ( L, C6). The path is defined as the line LCw.

method. Thus, we choose to select a random point on the

boundary when posed with multiple options. Also, since we

are interested in assessing the dispersion, and potentially the

subsurface mixing of the plume waters with the surrounding

ocean waters, navigating near or crisscrossing the actual

plume boundary can gather interesting data.

5.2.3. Ocean Plume Tracking Algorithm Based on Ocean

Model Predictions After we have generated the waypoints

that define the trajectory for the vehicle to follow, we

implement an iterative procedure to track the feature of

interest over multiple days. This involves assimilating

gathered data into ROMS and updating the projections

for generating the trajectories for subsequent days. This

overall iterative process to design an implementable plume

tracking strategy based on ocean model predictions is given

in Algorithm 3. With the inclusion of the optimization

parameter mentioned in Section 5.2.1 and the incorporation

of the 4-D ROMS current predictions in determining the

path between the selected waypoints, Algorithm 3 has been

 at UNIV OF SOUTHERN CALIFORNIA on November 17, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Smith et al. 1485

Fig. 4. The three possible cases for the waypoint generation that defines the path for the boundary-tracking vehicle. (a) Case 1: a circle

of radius d4 about L intersects the predicted polygon that defines the boundary of the plume, P4, at least twice, N ≥ 2. The generated

waypoint B4 is a random selection of one of these intersection points, and the path is defined as LB4. (b) Case 2: a circle of radius d4

about L intersects the predicted polygon that defines the boundary of the plume, P4, exactly once, N = 1. The generated waypoint B4 is

the intersection point, and the path is defined as LB4. (c) Case 3: a circle of radius d4 about L does not intersect the predicted polygon

that defines the boundary of the plume, P4, N = ∅. The generated waypoint B4 is computed such that dg( L, B4) = d4 and AZ( L, B4) is

the average azimuth of Di for the considered 4-h time period, and the path is defined as LB4.

extended in Smith et al. (2010c), and is renamed the ocean

plume tracking algorithm built on ocean model predictions

(OPTA-BLOOM-Pred).

In the following sections, we proceed to present

simulation and field experiments that implement paths

generated by use of Algorithm 3. By construction, these

paths are generated to track a plume that propagates on

the ocean surface (0–30 m), while the vehicle used to

track them, i.e. a Slocum glider, operates from the surface

down to depths of ∼ 80 m. It is not valid to assume that

both of these are subjected to the same current regime,

in both velocity and direction. In particular, a vertical

velocity profile of ocean current for a given location within

the SCB is, in general, not constant. This observation is

illustrated in Figure 5 with an example plot of current

velocity versus depth. Figure 5 displays a ROMS prediction

for the meridional component of a vertical current profile

located at 33.58◦ N, −118.38◦ E for 8 July 2009. From

this example, we see that it may be possible for a plume

to outrun a slow-moving vehicle (i.e. dg( Ci, Ci+1) ≥ du or
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Algorithm 2 Boundary-tracking, Waypoint-selection

Algorithm

Require: Hourly forecasts, Di, for a set of points D

defining the initial plume condition and its movement for

a period of time, T .

for 0 ≤ i ≤ T do

Compute Pi, the polygon formed by connecting the

points Di. Compute d4.

end for

while i ∈ {4, 8, 12, 16} do

j = i/4

if B( L, d4) ∩ Pi ≥ 2 then

Bj is one of the intersection points chosen at

random. L = Bj.

else if B( L, d4) ∩ Pi = 1 then

Bj is the precise intersection point. L = Bj.

else if B( L, d4) ∩ Pi = ∅ then

Bj = {p|d( L, Bj) = d4, AZ( L, Bj) is the average

azimuth of Di for i = j − 4, . . . , j}. L = Bj.

end if

end while

Algorithm 3 Ocean Plume Tracking Algorithm Based on

Ocean Model Predictions
Require: A significant freshwater plume is detected via

direct observation or remotely sensed data such as

satellite imagery.

repeat

A set of points (D) is chosen which determine the

current extent of the plume.

Input D to ROMS.

ROMS produces an hourly forecast for all points in D.

Input hourly forecast for D into the trajectory design

algorithms.

Execute the trajectory design algorithms (Algorithms

1 and 2).

Uploaded computed waypoints to the AUV.

AUV executes mission.

The AUV sends collected data to ROMS for

assimilation into the model.

until Plume dissipates, travels out of range or is no longer

of interest.

N = ∅), especially when plumes may be propagated by

surface currents driven by high winds that are typical during

rain events in Southern California. Also, we remark that

for a high-endurance, slow-moving vehicle like a glider,

which generally will not have on-board instrumentation to

measure current velocities in situ , e.g. an Acoustic Doppler

Current Profiler (ADCP), having access to vertical current

profile predictions can assist in areas of path planning,

such as minimizing transit cost by staying in water masses

that are moving in a preferred direction, or determining

unreachable areas due to large-magnitude currents. An

extension of Algorithm 3 presented in Smith et al. (2010c)

takes a step towards addressing the issue of incorporation

of vertical distribution of current velocity into trajectory

generation for AUVs.

6. Simulation

Multiple environmental agencies, local and regional policy

makers, universities and outreach groups in Southern

California collaborate together to assess the status of

streams, estuaries, beaches and marine environments in

Southern California. More than 90 local organizations

contribute to this biannual effort called the Southern

California Bight Regional Marine Monitoring Program,

which includes assessment in areas of coastal ecology,

water quality, rocky subtidal, areas of special biological

significance and shoreline microbiology. Conducting large-

scale, collaborative, regional assessments is a benefit to

all agencies due to the widespread appeal and shared

data products between all contributors. Rather than making

comparisons to a small number of control sites, agencies are

able to compare local results to the entire breadth of natural

variability inherent to the ecosystem. This allows regulators

to target resources where action is most needed. A few

main questions posed for the study are the percentage of the

Southern California mainland shelf area exhibiting signs of

human disturbance, the number of stream miles impacted

by anthropogenic activities, or the long-term effects of rapid

urbanization in Southern California related to the frequency

of occurrence of HAB events.

The next Southern California Bight Regional Marine

Monitoring Program, commonly referred to as Bight 2010,

is occurring from late-January through early-April 2010.

The CINAPS group at USC will be a contributor in the

Bight 2010 survey. One planned aspect of our contribution

will be continuous operation of four Slocum gliders in the

SCB for the entire three-month program. During this time,

we are planning to implement the techniques presented in

this work to retask currently operating gliders in the field to

track and monitor a freshwater plume, waste water outfall

or HAB event. Through careful planning and a bit of luck,

we hope to capture the conditions in the SCB leading up to

and development of a HAB event. To this end, we present

a simulation experiment with four gliders tracking a feature

of interest off the coast of Newport Beach, CA. The general

area for the simulation is shown in Figure 6(a).

In this scenario, we offset the start times of the

four vehicles to emulate asynchronous surfacing and

communication with the vehicles or to simulate deploying

the vehicles at multiple locations for the specific feature of

interest. Deploying vehicles or sensors specifically for an

event has the advantage of being able to place the sensor

assets intelligently, or in a predetermined location, to best

track the evolving feature. However, the disadvantage is

that a vehicle is not collecting data if it is sitting on shore,
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Fig. 5. An example vertical current profile prediction for a location within the SCB. This is a ROMS prediction of ocean depth versus

current velocity for the meridional component located at 33.58◦ N, −118.38◦ E. This is a prediction made for 8 July 2009.

and important aspects of algal bloom development and

evolution may be missed. Additionally, events occurring on

shorter time scales may be entirely missed, as deployments

do not always go as planned. For the features of interest

considered in this study, even intelligent deployment can be

non-trivial. As an example, consider the difference between

a freshwater river runoff plume and a subsurface effluent

algal bloom. Freshwater river outfall plumes are buoyant,

and float high in the water. In general, these plumes have

a stronger leading edge, i.e. sharper gradient, and a more

diluted trailing edge. Thus, deploying gliders at the front

of the plume may provide more information and allow the

vehicle a better chance to remain in contact with the feature.

For an algal bloom, it is a bit more complicated, as the

boundary of the bloom is dependent on the kind of system

that it is embedded in. In particular, subsurface effluent

plumes are submerged, and become density equilibrated,

making the boundary of the bloom more difficult to discern.

Also, contrary to a freshwater plume, an algal bloom is

composed of living organisms, whose life-cycle dynamics

affect the movement and structure of the bloom in addition

to the ocean currents. These chemical and biological

dynamics, along with the 3-D composition and evolution of

an algal bloom, are poorly understood, and are a primary

motivation for developing techniques to place mobile

sensors in the right place at the right time to gather data that

will increase our understanding of these complex systems.

For the simulation, at T = 0 h, we deploy two vehicles,

one centroid tracker and one boundary tracker, at the

southern extent of the plume (predicted plume front). At

T = 2 h we deploy a boundary-tracking vehicle on

the predicted western boundary of the plume. Finally, at

T = 4h, we start a boundary-tracking vehicle at the

predicted northern boundary of the plume (predicted

trailing edge of the plume). The initial delineation and

location of the first two gliders are presented in Figure 6(a).

The evolution of the plume with vehicle trajectories is

presented in Figures 6(a)–7(f). The trajectories of the

vehicles are the expected trajectories of the gliders,

projected to the ocean surface. Note that in Figures 6(a)–

7(f), we only display a trajectory for a vehicle at the

hour when it surfaces due to the offset in start times. The

predicted extent of the plume is delineated by the closed

polygon. The centroid of the predicted plume is depicted

by the dot inside the delineated plume extent; the centroid-

tracking vehicle follows the path given by the solid line and

the boundary-tracking vehicles follow the paths given by

the dashed lines.

The trajectory design is based upon model predictions,

and we are familiar with the deployment area; we do have an

a priori understanding of the general direction the feature

should travel in. This knowledge can be used to select the

initial locations of the vehicles based upon the information

to be gathered and areas of interest within the feature. In this
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Fig. 6. Simulation results for four vehicles tracking a propagating plume. The plume extent is delineated by the closed polygon. Three

vehicles (dashed line paths) follow the boundary, while one vehicle (solid line path) tracks the centroid of the plume. The centroid is

depicted by the dot inside the delineated plume extent. Panel (a) provides the initial delineation of the plume in the coastal region near

Los Angeles, CA. Panel (b) presents an enlarged image of panel (a). Panels (b)–(f) present snapshots every 2 h of the tracking simulation

from initialization to T = 8 h. The scale given in panel (b) is the same for panels (c)–(f). Images created by use of Google Earth.

example, since we see a rather fast-moving feature in the

southeast direction, we choose to start the centroid tracker

on the southern extent, or leading edge, of the feature.

Thus, we do not try and chase the area we are interested

in sampling, and have a higher probability of collecting

data within the plume. Based on the movement of the

feature, the centroid-tracking vehicle (solid line) actually

completes a U-shape trajectory, and from T = 12 to 16h

cannot keep up with the feature, based on our constant-

speed assumption. We also see the speed of the feature since

the boundary-tracking vehicles (dashed lines) traverse more

of a straight-line path than the zig-zag seen with a slower-

moving feature as in Figures 11(f) and 12(e). Overall, the

trajectories presented here, and in the previous deployment

sections, do not resemble those that a human operator would

design. However, the trajectories do guide the vehicles

through a large portion of the plume during its predicted

evolution, thus increasing the probability of collecting high-

valued data for both the marine biology community and the

modeling community alike.
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Fig. 7. Continuation of the simulation results for four vehicles tracking a propagating plume presented in Figure 6. The plume extent is

delineated by the closed polygon. Three vehicles (dashed line paths) follow the boundary, while one vehicle (solid line path) tracks the

centroid of the plume. The centroid is depicted by the dot inside the delineated plume extent. Panels (a)–(f) present snapshots every two

hours of the tracking simulation from T = 10 h to completion (T = 20 h). The scale for all images is given in panel (a). Images created

by use of Google Earth.

7. Implementation and Field Experiments in

the SCB

We present the results of two field deployments, during

which we implemented trajectories designed by Algorithm

3. In Section 7.1 we present the results of a single-

vehicle, centroid-tracking mission initially presented in

Smith et al. (2009a). We follow this in Section 7.2 with

a two-vehicle mission, tracking both the centroid and the

boundary of a plume. We remark to the reader that the

implementation of the path plans generated here would

ideally be implemented and executed in an opportunistic

fashion onto a currently deployed vehicle. In this case,

the ability to select the initial location of the vehicle

with respect to the feature of interest is not practical. In

the following field trials, the vehicles were on a routine

deployment and the presented experiments are meant to

simulate an opportunistic retasking event. Note that the

plume we wish to track is delineated close to near-future
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surfacing locations of the gliders so that missions can

be uploaded and executed in a timely fashion, and the

vehicles can continue with the previous routine survey.

Initial locations of the vehicles with respect to the plume

delineation are purposefully chosen to be suboptimal

to present a real-life situation. An alternate scenario to

opportunistic retasking is to consider that the vehicles are

deployed specifically for a detected algal bloom or river

plume. This situation has been addressed in the simulation

experiment presented in Section 6.

As noted in Smith et al. (2009a), the rainy season in

Southern California is generally between November and

March. During this time, storm events cause large runoff

into local-area rivers and streams, all of which empty into

the Pacific Ocean. Two major rivers in the Los Angeles

area, the Santa Ana and the Los Angeles River, input

large freshwater plumes to the SCB. Such plumes have a

high likelihood of producing HABs. Unfortunately, during

both deployments, weather and/or remote-sensing devices

did not cooperate to produce a rain event along with

a detectable plume. For both cases presented here, we

defined a pseudo-plume in two separate areas of the SCB

to demonstrate a proof-of-concept of the technology chain

and trajectory design method developed here.

For the centroid-tracking mission, we deployed a glider

into the SCB on 17 February 2009 to conduct a month-long

observation and sampling mission. For this deployment, the

glider was programmed to execute a zig-zag pattern mission

along the coastline, as depicted in Figure 8, by navigating

to each of the six waypoints depicted by the bullseyes.

During execution of this mission, we retasked the glider

mid-mission and uploaded the centroid-tracking trajectory

described in Section 7.1.

For the boundary-tracking mission, we deployed two

gliders off the northeast tip of Santa Catalina Island on

29 April 2009 to conduct a month-long experiment to

test the communication infrastructure described in Smith

et al. (2010a). For this mission, there was not a single,

predetermined path for the glider to traverse as before, but

we had the ability to retask the vehicles as needed. The

details of this mission, with regard to the communication

data collected, can be found in Pereira et al. (2009) and

Smith et al. (2009b). The 2-day mission presented below

was conducted during 11–13 May 2009.

7.1. Centroid Tracking

The mission presented in this section is reproduced from

Smith et al. (2009a). Since Algorithm 1 has been modified

based on the lessons learned during the execution of

this deployment, there are slight discrepancies in planning

between the following description and the method presented

in Algorithm 1. However, the general idea and methodology

is the same.

For this mission, we defined a pseudo-plume D with 15

initial drifter locations off the coast of Newport Beach, CA.

The pseudo-plume is given by the dashed line in Figure 9.

Fig. 8. The intended glider path of the month-long, zig-zag

pattern mission started on 17 February 2009 is given by the solid

line. The preset waypoints that define this path and were uploaded

to the glider are depicted by the bullseyes. This path represents a

routine deployment mission carried out regularly by USC CINAPS

gliders. Image created by use of Google Earth.

Fig. 9. An overview of the delineated plume to track and the

computed path to track the centroid of the plume. The solid

line connecting bullseyes represents the routine zig-zag mission

presented in Figure 8. The initial delineation of the plume to track

is given by the dashed line. The waypoints generated by Algorithm

1 are represented by the numbered diamonds. The intended glider

path (projected to the ocean surface) is the solid line connecting

the consecutively numbered waypoints. Image created by use of

Google Earth.

By use of ROMS, the locations of the points in D were

predicted for T = 15 h. The initial time and location for

the beginning of this retasking experiment coincided with

predicted coordinates of a future glider communication.

The pseudo-plume was chosen such that C0 was near this

predicted glider surfacing location.

Based on observed behavior for our vehicle during this

deployment, we take v = 0.75 km h−1, and initially defined
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Table 1. A Complete Listing of the Waypoints Generated by Algorithm 1. Waypoint Numbers 1, 3, 5 and 7 are the Predicted Centroids

of the Pseudo-plume at Hours 0, 5, 10 and 15, Respectively. Waypoint Numbers 2, 4 and 6 are the Additional Locations (p∗ ∈ L) to be

Visited as Computed in Case 2 (dg( L, C4) ≤ dl) of Algorithm 1

Number Latitude (◦ N) Longitude (◦ E) Number Latitude (◦ N) Longitude (◦ E)

1 33.6062 –118.0137 5 33.6189 –118.0349

2 33.6054 –118.0356 6 33.6321 –118.0257

3 33.6180 –118.0306 7 33.6175 –118.0361

4 33.6092 –118.0487

dl = 0.5 km and du = 0.8 km. The hourly predictions

were input to the trajectory design algorithm and a tracking

strategy was generated. Due to slow projected surface

currents in the area of study, the relative movement of the

plume was quite small. To keep the glider from surfacing

too often and to generate a more implementable trajectory,

we opted to omit visiting consecutive centroids. Instead,

we chose to begin at the initial centroid, then visit the

predicted centroid of the plume after 5, 10 and 15 h, C5,

C10 and C15, respectively. Between visiting these sites, the

algorithm computed an additional waypoint for the glider to

visit. These intermediate waypoints were chosen similarly

to the p∗ defined earlier, with d = 3.75 km; the distance

the glider should travel in five hours. This design strategy

produced seven waypoints for the AUV to visit during the

15 h mission. The waypoints are presented in Table 1. Note

that we include the initial centroid as a waypoint, since the

glider may not surface exactly at the predicted location.

Upon visiting all of the waypoints in Table 1, the

glider was instructed to continue the sampling mission

shown in Figure 8. Figure 9 presents a broad overview of

the waypoints in Table 1, along with a path connecting

consecutive waypoints. The plume is delineated by the

dashed line and the waypoints are numbered and depicted

by numbered diamonds. Note that the glider did not travel

on the ocean surface during this experiment. As previously

mentioned, between waypoints the glider submerges and

performs consecutive dives and ascents creating a sawtooth-

shaped trajectory as its glide path.

7.1.1. Analysis of Results Next, we present the imple-

mentation results of the aforementioned sampling mission

onto a glider operating in the SCB. The waypoints given

in Table 1 were computed under the assumption that the

mission would be loaded onto the glider at a specific

time and approximate geographical location. The glider

arrived and communicated at the correct time and location;

however, communication was aborted before the plume

tracking mission could be uploaded. We were able to

establish a connection two hours later at a different location,

and successfully upload the mission file; this location is

the droplet labeled 1 in Figure 10. We opted to not visit

waypoint 1 based on the location of the glider and to get

the glider back on schedule to track the plume. Figure 10

presents a magnified image of Figure 9, where computed

Fig. 10. Execution of the computed path for tracking the centroid

of an evolving plume. The initial delineation of the plume to track

is given by the dashed line. The waypoints generated by Algorithm

1 are represented by the numbered diamonds. The actual locations

where the glider surfaced are given by the numbered droplets. The

intended path of the glider (projected to the ocean surface) is the

solid line path connecting the numbered diamonds. Image created

by use of Google Earth.

waypoints are the numbered diamonds and the numbered

droplets are the actual locations visited by the glider.

We were able to successfully generate a plan and retask

a deployed glider to follow an ocean feature for 15 h. It is

clear from the data that consideration has to be made for

glider dynamics and external forcing from ocean currents

in the path planning process. This is an area of ongoing

research; see Smith et al. (2010b,c).

One element that we have neglected to discuss up to

this point is that we have no metric for comparison. In

particular, when we reach a predicted centroid, we do not

have a method to check whether or not the plume centroid

was actually at that location. We are planning experiments

to deploy actual Lagrangian drifters to simulate a plume, as

well as hoping for an actual event to present itself. This will

give a concrete comparison between the ROMS prediction

and the actual movement of the drifters or the plume.

Another component omitted from earlier discussion is time.

When tracking a moving feature, a predicted waypoint

contains temporal information as well as location. For this

implementation, the glider began the mission at 0302Z and

 at UNIV OF SOUTHERN CALIFORNIA on November 17, 2010ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


1492 The International Journal of Robotics Research 29(12)

Table 2. A Complete Listing of the Waypoints Generated by Algorithm 1 for Both Days of the Multi-vehicle Plume Tracking Mission

Presented in Section 7.2. The Left-hand Columns give the Selected Waypoints for Day One and the Right-hand Columns give the

Waypoints for Day Two of the Mission. These Waypoints Define the Implemented Paths for the Centroid-tracking Vehicle. For the First

Day, Waypoint Numbers 1, 2, 3, 4 and 6 are the Computed Surfacings for the Glider at Hours 0, 4, 8, 12 and 16, Respectively. Waypoint

Number 5 is an Additional Location (p∗ ∈ L) to be Visited as Computed in Case 2 (dg( L, C4) ≤ dl) of Algorithm 1. For the Second

Day, Waypoint Numbers 1, 3, 5, 6 and 7 are the Computed Surfacings for the Glider at Hours 0, 4, 8, 12 and 16, Respectively. Waypoint

Numbers 2 and 4 are Additional Locations (p∗ ∈ L) to be Visited as Computed in Case 2 (dg( L, C4) ≤ dl) of Algorithm 1

Day 1 Latitude (◦ N) Longitude (◦ E) Day 2 Latitude (◦ N) Longitude (◦ E)

1 33.5180 –118.3930 1 33.5060 –118.4970

2 33.5281 –118.4230 2 33.5236 –118.4810

3 33.5266 –118.4553 3 33.5241 –118.4901

4 33.5177 –118.4859 4 33.5060 –118.4781

5 33.5232 –118.4826 5 33.5118 –118.4809

6 33.5061 –118.4968 6 33.4867 –118.4688

7 33.4608 –118.4523

Table 3. A Complete Listing of the Waypoints Generated by Algorithm 2 for Both Days of the Multi-vehicle Plume Tracking Mission

Presented in Section 7.2. The Left-hand Columns give the Selected Waypoints for Day One and the Right-hand Columns give the

Waypoints for Day Two of the Mission. These Waypoints define the Implemented Paths for the Boundary-tracking vehicle

Day 1 Latitude (◦ N) Longitude (◦ E) Day 2 Latitude (◦ N) Longitude (◦ E)

1 33.5350 –118.5600 1 33.5350 –118.5600

2 33.5612 –118.5526 2 33.5081 –118.5584

3 33.5759 –118.5254 3 33.5332 –118.5466

4 33.5530 –118.5424 4 33.5201 –118.5183

5 33.5693 –118.5167 5 33.4974 –118.5357

ended at 1835Z; a total time of 15.55 h. Owing to external

disturbances, arrival at a few waypoints was not at the

predicted times. The primary external disturbance affecting

temporal, and spatial, accuracy is ocean currents. As

previously mentioned, extensions to Algorithm 3 have been

made in Smith et al. (2010c) to design more temporally

feasible paths for the glider while tracking the centroid of a

plume.

7.2. Centroid and Boundary Tracking

For this mission, we defined a pseudo-plume D with 12

initial drifter locations off the northeast coast of Santa

Catalina Island. Again, based on observed behavior, we take

v = 0.75 km h−1, and define dl = 2.7 km and du = 3.3 km.

An overview of the general testing area for this deployment

is presented in Figure 11(a). By use of ROMS, the locations

of the points in D were predicted for T = 16 h. Owing to

the predicted currents and proximity to Catalina Island, two

of the initially defined drifters exited the model boundary.

Thus, the plume was propagated and computations were

made by use of 10 drifters.

7.2.1. Analysis of Results This retasking mission further

validated the proof-of-concept of generating and imple-

menting trajectories by use of predictive ocean models.

In this case, we demonstrated further functionality by

incorporating multiple vehicles and testing the iterative

capabilities of the proposed technique by closing the loop

with data assimilation into ROMS to update the next

prediction. Since we used a pseudo-plume as a tracking

proxy, we again do not have a metric in this experiment

to assess any change in skill of ROMS predictions due

to the data assimilation conducted. However, it is worth

noting that collected data were successfully transmitted and

assimilated from the robot in the field to ROMS for use in

the next prediction. Using the methods described here to

generate trajectories for multiple vehicles is not difficult.

The complexity arises in synchronizing surfacings or com-

pensating for asynchronous communication with the fleet

of gliders. This synchronization problem was addressed in

Paley et al. (2008) for their specific application, and it is

of interest to us to implement a similar, high-level control

system to aid in the facilitation and management of multi-

vehicle deployments incorporating autonomous retasking.

Preliminary infrastructure and research towards this goal

is presented in Smith et al. (2010a) and Pereira et al.

(2009).

To begin, the plume was delineated in an area of current

operation of two deployed gliders. The initial location is

presented in Figure 11(b). The waypoints computed by

Algorithm 3 to follow this plume are presented for the
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Fig. 11. Deployment results for the first day of the mission for two vehicles to track an evolving plume. The plume extent is delineated

by the closed polygon. One vehicle (dashed line path) follows the boundary, while one vehicle (solid line path) tracks the centroid of the

plume. The centroid is depicted by the dot inside the delineated plume extent. Panel (a) provides an overview of the deployment area off

the coast of Los Angeles, CA. Panel (b) presents an enlarged image of the deployment area just off the northeast coast of Santa Catalina

Island, CA with the initial delineation of the plume. Panels (b)–(f) present snapshots every four hours of the tracking experiment from

initialization to completion (T = 16 h) for the first day. The scale given in panel (b) is the same for panels (c)–(f). Images created by

use of Google Earth.

centroid- and boundary-tracking vehicles in the left-hand

columns of Tables 2 and 3, respectively. The initial time

and location for the beginning of this retasking experiment

coincided with predicted coordinates of glider surfacings.

Since the assigned mission was to collect communication

data, the vehicles were surfacing frequently (∽ 2 h

intervals). This made coordinating surfacing time much

more manageable than in the scenario presented in Section

7.1, where the glider was surfacing approximately every

8 h. In addition, communication via our implemented

Freewave™ network (Pereira et al. 2009) facilitated more

robust communication, as well as more rapid file exchange

than during previous deployments. Once both gliders were

on the surface together (approximately 1800Z, 11 May
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2009), we ran Algorithm 3 with the location of each glider

initially being on the boundary of the plume. Figure 11(b)(f)

display the delineation of the plume with the locations of

both gliders at 4-h increments from T = 0 h (Figure 11(b))

to T = 16 h (Figure 11(f)). In these figures, the boundary-

tracking glider follows the dashed line and the centroid-

tracking glider follows the solid line. The respective icons

along the paths denote the locations where the glider

surfaced while executing the mission. When visible, the

dot inside the polygonal delineation of the plume extent

represents the predicted centroid of the plume; when not

seen, the centroid-tracking glider surfaced within 500 m of

the location of the predicted centroid. The solid and dashed

lines depict the path of the glider (projected to the surface)

between surfacings. Note that in the initial four hours of the

mission, the plume moved northward, and the boundary-

tracking vehicle was on the leading edge. However, after

the initial few hours, the plume migrated southward and the

boundary-tracking glider ended up following the trailing

edge of the plume. Day one of this mission ended shortly

after 1000Z on 12 May 2009.

Upon completion of the day-one mission, the gliders

resumed their previous missions of gathering communica-

tion data while we awaited the following day’s ROMS pre-

diction. The entire process mentioned above was repeated

beginning at approximately 2200Z on 12 May 2009. The

initial plume delineation, glider surfacing locations and

projected trajectories are given in Figure 12(a-e). The com-

puted waypoints for the centroid- and boundary-tracking

vehicles are given in the right-hand columns of Tables

2 and 3, respectively. Day two of the mission completed

shortly after 1400Z on 13 May 2009. Note that at the

start of day two, we redelineated the plume differently

from the final predicted configuration of day one. This is

applicable in practice because we cannot assume ROMS

to be 100% accurate, and we have a time gap between

the start of the sampling missions where we expect the

plume to further evolve. Additionally, we are forecasting

the evolution of a plume based on the predicted paths of

multiple, unconnected, Lagrangian drifters, which may not

behave exactly like a contiguous ocean feature.

Overall, this 2-day mission validated both the multi-

vehicle applicability as well as the ability to close the loop

on the technology toolchain from ROMS to path planning

to field AUV and back to ROMS. This further motivates

our efforts to prepare for a large-scale deployment, such as

Bight 2010 presented in Section 6, with hopes of locating

and tracking a plume from a significant rain event runoff, or

a HAB.

8. Conclusions and Future Work

In the study of path planning for field robots, designing

the trajectory is usually less than half the battle; the real

challenge comes in the implementation. This is exaggerated

when dealing with underwater robots due to the complex,

and often unknown, environment. Poorly understood ocean

dynamics, difficulty in localization and extreme conditions

all contribute to the struggle of successful implementation

of a planned mission for an AUV. In this paper, we examined

the use of ocean model predictions to help reduce some of

this uncertainty for the application of path planning to track

an evolving ocean feature.

Generating effective sampling strategies to study ocean

phenomena is a challenging task that can be approached

from many different angles. Here we presented a method to

exploit multiple facets of technology to achieve our goal.

Utilizing an ocean model, an embedded sensor network

and an AUV, we were able to construct a technology chain

which plans a path to track areas of scientific interest

within a chosen feature of interest for a chosen period of

time. This toolchain was used to design a single-vehicle

mission to track a plume’s centroid, and generate the paths

for a multi-vehicle mission for simultaneous sampling at

the centroid as well as along the boundary of a given

feature. We presented iterated field trials to demonstrate

closing the loop of the technology chain developed as

well as to demonstrate a proof-of-concept of the planning

method presented. This paper has demonstrated that we

have implemented the collaboration and technology chain

required to perform complex field experiments to track

dynamically evolving ocean features. Research is ongoing

to extend and improve upon the presented waypoint-

generation and path planning algorithms to incorporate

ROMS 4-D velocity predictions to improve the accuracy

of the implementation (Smith et al. 2010c). Additionally,

we are interested in assessing the accuracy of ROMS

velocity predictions, and the performance and reliability

of our gliders to more effectively utilize them to further

our understanding of the life cycle of an algal bloom

(Smith et al. 2010b). We remark that the implementation

and realization of the paths generated in this paper

were perfectly feasible, given that there was no temporal

constraint. Improving the temporal feasibility along with

the spatial accuracy is a primary focus of ongoing

and future work in this area. Based on the operational

constraints of the gliders, these are not the optimal

vehicles to chase fast-moving events or adaptively react to

dynamically changing conditions. The CINAPS team is in

the process of acquiring a different type of AUV that is

more agile and can more effectively carry out the strategies

designed here, with specific regard to fast-moving features.

The main implementation issue is the assumed ability of

the glider to accurately navigate to a given waypoint. In

general, this is a widely studied, and currently unsolved,

problem in underwater robotics. For the results presented

here, this artifact is a result of the waypoint-selection

algorithms only utilizing a 2-D propagation of the plume,

and ignoring the dynamics of the glider and predicted

vertical velocity profiles when generating the final path

plan. Research is active to extend these results to

incorporate the kinematic and dynamic aspects of the
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Fig. 12. Deployment results for the second day of the mission for two vehicles to track an evolving plume. The plume extent is

delineated by the closed polygon. One vehicle (dashed line path) follows the boundary, while one vehicle (solid line path) tracks the

centroid of the plume. The centroid is depicted by the dot inside the delineated plume extent. Panel (a) presents an enlarged image of

the deployment area just off the northeast coast of Santa Catalina Island, CA with an updated delineation of the plume for the start of

day two. Panels (a)–(e) present snapshots every four hours of the tracking experiment from initialization to completion (T = 16 h) for

the second day. The scale given in panel (a) is the same for panels (b)–(e). Images created by use of Google Earth.

glider, see Smith et al. (2010b), and extend this method

of path planning from a planar to a 3-D path planning

algorithm and trajectory generation toolchain, see Smith

et al. (2010c). As mentioned previously, we are making

progress to increase the performance of the AUV through

the use of ocean model predictions, but at this time we

are still not equipped to utilize ROMS predictions to

propagate a feature of interest in 4-D. The primary reason

for this is based on the lack of understanding and detection

capabilities of the initial 3-D structure and extent of a

given plume. Algal blooms, in particular, are too poorly

understood to hypothesize about their 3-D spatial extent; we

currently have difficulties determining and predicting their

2-D extent.

A long-term goal of this effort is to utilize the embedded

sensor network presented in Smith et al. (2010a) and
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Pereira et al. (2009) to enable real-time, optimal trajectory

design, based on ocean model predictions, to gather

in situ measurements of interesting and evolving ocean

features and phenomena while additionally increasing the

skill of regional ocean models. Through this effort, we aim

to quantitatively assess the effectiveness of ocean model

predictions in the design and accurate implementation of

trajectories for AUVs. As previously mentioned, this will

come with deployment of actual drifters simulating the

propagation of a feature, or the occurrence of an actual

HAB event during Bight 2010.

As discussed in Section 6, a more immediate implemen-

tation of the methods developed here will be used during

our participation in Bight 2010. Currently, we are expe-

riencing weak El Niño conditions, as equatorial Pacific,

sea-surface temperatures remained above average through

August 2009. These conditions are expected to strengthen

through winter 2009–2010 in the Northern Hemisphere

(Climate Prediction Center 2009), and have impacted

Southern California with more frequent and intense storm

events in early 2010. From the discussion in Sections 2.1

and 2.2, we can infer that the potential for the formation of

conditions that may promote an algal bloom is increased

over the next year. Such information presents a greater

opportunity to retest and validate our methods and algo-

rithms in a real scenario. Thus, we are motivated to further

develop our algorithms to steer AUVs into locations of

high scientific merit with regard to HAB research and help

ocean scientists better understand these complex phenom-

ena, while additionally assessing the prediction capabilities

of regional ocean models.
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Notes

1. The SCB is the oceanic region contained within 32◦ N to

34.5◦ N and −117◦ E to −121◦ E.

2. The SCB is a very high traffic region, and the glider has a low

visual profile when on the surface. Although the probability

of a collision is low, we choose to err on the side of caution.
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