
Planning and Interaction Levels for TV Storytelling

Angelo E. M. Ciarlini1, Marcelo M. Camanho1, Thiago R. Dória1 ,
Antonio L. Furtado2, Cesar T. Pozzer3 ,Bruno Feijó2

1UniRio – Departamento de Informática Aplicada
Av Pasteur, 458 – Térreo – Rio de Janeiro, Brazil

{angelo.ciarlini,marcelo.camanho,thiago.doria}@uniriotec.br

2PUC-Rio – Departamento de Informática
Rua Marquês de São Vicente, 225 – Rio de Janeiro, Brazil

{furtado,bfeijo}@inf.puc-rio.br

3Universidade Federal de Santa Maria - Dep. de Eletrônica e Computação
Campus Universitário – pr. 07, 3º and. Santa Maria, RS, Brazil

pozzer@inf.ufsm.br

Abstract. Interactivity, coherence and diversity of the stories are key issues for
the development of interactive storytelling systems. When stories are to be told
via interactive TV, special interaction methods are also necessary in order to
cope with high responsiveness requirements. In this paper, we describe the ex-
tension of the interactive storytelling system Logtell we have developed to run
in an interactive TV environment. Planning algorithms have been applied to
provide coherence and diversity for the stories at levels of both plot composi-
tion and dramatization. A new architecture was designed to combine these algo-
rithms with special interaction methods incorporated to achieve high respon-
siveness.

Keywords: Storytelling, Planning, Interactive TV, Logics

1. Introduction

Different approaches have been proposed for interactive storytelling, some of them
closer to games and others to filmmaking and Literature. In character-based storytel-
ling systems [5], the story emerges from the real time interaction between autono-
mous agents, each one with its own objectives. The main advantage is to facilitate
user intervention, since any actions of any character in the story can be influenced, so
that the plot may take different directions. In these systems, stories are usually told
with a first-person viewpoint and users play the role of characters, as in games. The
main challenge for this approach is keeping the coherence of the stories, since user
intervention might create inconsistencies. Some other systems have a plot-based ap-
proach [12,17], wherein a series of rigid rules, built into the plot, guide the narrative,
making user intervention far more limited. In such approach, there is a stronger con-
trol over the story being presented, preventing the user to stray from the context de-

fined by the author. The general given structure usually includes beginning, middle
and ending points previously fixed by the author, and user interaction affects only the
way the story will reach these predefined points. One of the main inspirations for this
kind of model has been the seminal literary work of Vladimir Propp [19], at the be-
ginning of the twentieth century. Propp examined a large number of Russian fairy
tales, and showed that they could all be described by specializations of 31 typical
functions, such as villainy, hero’s departure, reward, etc. In purely plot-based models,
the intervention of the user is more limited, but it is much easier to guarantee coher-
ence together with a measure of dramatic power. There are also alternatives that inte-
grate characteristics of both plot-based and character-based approaches. The interac-
tive system Façade [15], for instance, has a drama manager that keeps the characters
largely autonomous most of the time, but changes their behaviour to move the plot
forward, conciliating higher-level goals, which are essential to the story, with lower-
level goals, specific to the autonomous behaviour of the characters. Erasmatron [8], in
contrast, starts from the notion of verbs and sentences. Actions are represented by
verbs with roles assigned to characters to form sentences.

Automated planning algorithms are important parts of some storytelling systems,
because they can be used to create a logical chaining of events. In [5], for instance,
hierarchical task network (HTN) planning is used to control the way characters
achieve their goals in accordance with user intervention. HTN planning tends to be
efficient but less general, demanding the previous construction of a task hierarchy and
methods to perform each task. More flexible planning algorithms have also being
adopted, as in [20] for example. Such algorithms do not limit solutions to previously
defined alternatives; instead of that, they combine events conciliating different objec-
tives with pre-conditions and effects of each event. The computational effort, how-
ever, becomes even greater, due to the complex nature of automated planning.

Logtell [6] is an interactive storytelling system we have developed to create plots
in accordance with a formal description of the genre and the initial situation of the
story. Logtell is based on modelling and simulation. Its basic idea is to capture the
logics of a genre and then verify what kind of stories can be generated and told by
simulation combined with user intervention. Specifically, we try to conciliate both
plot-based and character-based modelling. On the one hand, we borrowed from
Propp's ideas, but tried to extend his rather informal notion of function. Typical
events are described by parameterized operations with pre-conditions and post-
conditions, so that planning algorithms can be used for simulation. On the other hand,
character-based modelling is added under the form of goal-inference rules for each
kind of character, specifying how situations can bring about new goals for the charac-
ters. In the first version of Logtell, our concern on diversity of stories was focused on
plot composition. When plots were totally or partially generated, they could be
dramatized via an animation of virtual actors in a 3D scenario, but diversity and inter-
action in the dramatization phase was limited.

The second version of Logtell has been implemented to run in an interactive TV
environment, complying with requirements of high responsiveness, diversity in the
dramatization of stories (not only in their composition) and new interactivity options.
A new architecture was proposed, in which Logtell resorts to automated planning at
various levels to create plots, to control the dramatization of scenes and to animate
virtual actors in a 3D scenario. By using plans based on formal specifications, we try

to guarantee coherence and diversity for plot composition and dramatization. At the
same time, we try to offer the users the opportunity to interact at various levels in both
active and passive fashions, which might be needed when the user just wants to watch
the story unfold by itself.

In this paper, we present the levels of automated planning and their relation with
interactivity in the new version of Logtell. Section 2 presents new Logtell's overall
architecture. Section 3 describes our use of automated planning for plot composition.
Section 4 describes the interaction methods for plot composition in the new architec-
ture. Section 5 shows how dramatization has been structured to provide more diver-
sity for stories and additional opportunities for user interaction. Section 6 contains our
concluding remarks.

2. New Logtell’s Architecture

Logtell adopts a client-server model as shown in Figure 1. The client-side is responsi-
ble for user interaction and dramatization of stories. The application server side is
responsible for simulation. All processes run in parallel and are coordinated with each
other. For each story being told there is an application running in the server, while one
or many applications are kept running in different clients. This takes care of the case
wherein multiple users are simultaneously sharing the same story. If clients are set-top
boxes for interactive TV, their computational resources are limited, making it hard to
perform CPU-intensive tasks such as automated planning. By concentrating simula-
tion tasks in application servers, it is easier to achieve higher scalability. In addition, it
is also easier to exert control when a single story is shared by many users.

Fig. 1. Logtell’s Architecture

The access of all modules to the context of the stories, specified in the Context Da-
tabase, is always performed via the Context Control Module (CCM), which runs in
the server. The context contains the description of the genre, according to which sto-
ries are to be generated, and the initial state, specifying characters and the environ-
ment at the beginning of the story. The genre is basically described by: (a) a set of
parameterized basic operations, with pre- and post-conditions, logically specifying the

events that might occur; (b) a set of goal-inference rules, specified with a temporal
modal logic, which define situations that lead characters to pursue the achievement of
goals; (c) a library of typical plans, corresponding to typical combinations of opera-
tions for the achievement of specific goals, which is organized according to “part-of”
and “is-a” hierarchies; (d) logical descriptions of initial situations for the stories, in-
troducing characters and their initial state; (e) a nondeterminisc automaton for each
operation specifying alternative ways events based on it can be dramatized; and (f)
graphical models of 3D virtual actors.

Plot generation is performed by the Interactive Plot Generator (IPG). IPG generates
plots as a sequence of chapters. Each chapter corresponds to a cycle in which user
interference is incorporated, goals are inferred and planning is used to achieve the
goals. IPG is controlled by the Simulation controller. Multiple stages, each one corre-
sponding to a chapter, usually occur in order to generate a plot.

On the client side, the user interacts with the system via the User Interface, which
informs the desired interactions to the Interface Controller placed at the server side.
The Drama Manager requests the next event to be dramatized from the Simulation
Controller, and controls actor instances for each character in a 3D environment run-
ning on our Graphical Engine. On the server side, the Interface Controller centralizes
suggestions made by the various clients. When multiple users share the same story,
interactions are selected according to the number of clients that requested them. When
there is only one client, suggestions are automatically sent to the Simulation Control-
ler. The Simulation Controller is responsible for: (a) informing the Drama Manager,
at the client side, the next events to be dramatized; (b) receiving interaction requests
and incorporating them in the story; (b) selecting viable and hopefully interesting
strong interactions to be suggested to the users; (c) controlling a number of instances
of the Interactive Plot Generator, in order to obtain the next events to be dramatized;
and (d) controlling the time spent during simulation.

In the new architecture, there can be various instances of IPG running on the
server. Besides the instance corresponding to the current flow of the story, others are
used to avoid interruption in the dramatization. The simulation has to be some cycles
ahead of the dramatization to keep responsiveness. When there is no user interven-
tion, goals are inferred and events are planned continuously. When users interact with
the system, however, they interact in accordance with the events that are currently
being dramatized. The Simulation Controller keeps snapshots of the state of the simu-
lation after each cycle, so that simulation can be resumed from the correct point after
an intervention. Logical coherence of a requested intervention is always checked
before being incorporated, or either discarded if inconsistent. When an intervention is
incorporated, simulation has to discard simulation cycles that were previously planned
without taking the intervention into account. In order to be prepared for interventions,
the system creates other instances of IPG, simulating the incorporation of strong in-
terventions to be suggested to the users. But the suggestions are only communicated if
the IPG instance confirms that they are consistent. And if they are accepted, the next
events are already planned and there is little risk of interruption.

The time spent for simulation is constantly monitored by the Simulation Controller.
When there is risk of interruption in the dramatization because there are not enough
events planned, a message is sent to the Drama Manager, so that strategies are used to
extend the dramatization of the current events until the situation is normalized.

3. Planning for Plot Composition

IPG semi-automatically generates plots of narratives of a certain genre as a simulation
process. The initial situation chosen in the context database is the starting point for the
simulation. Facts from the initial configuration might be modified by events (denoted
by instances of operations). The library of operations specifies the kinds of events that
may occur in the narratives, designed in anticipation of the character’s goals. For each
class of characters, there are goal-inference rules, specifying, in a temporal modal
logic formalism [7], the goals that the characters of the class will have when certain
situations occur during a narrative. It is important to notice that the rules do not de-
termine the specific reaction of a character. They only indicate goals to be pursued
somehow. The events that will eventually achieve the goals are determined by the
planning algorithm.

The generation of a plot starts by inferring goals of characters from the initial situa-
tion. Given this initial input, the system uses a planner that inserts events in the plot in
order to allow the characters to try to fulfill their goals. When the planner detects that
all goals have been either achieved or abandoned, the first chapter of the story is al-
most finished. During the generation phase, plots are represented by partially-ordered
sets of events. Before dramatizing, however, the total order of the events has to be
determined, as explained in Section 4. If the user does not like the story, IPG can be
asked to generate another alternative for a chapter and to develop the story from this
point on. If the user does not interfere in the process, chapters are continuously gener-
ated by inferring new goals from the situations generated in the previous chapter. If
new goals are inferred, the planner is activated again to fulfill them. The process al-
ternates goal-inference and planning until the moment the user decides to stop or no
new goal is inferred. Users can also interfere in the process by choosing alternatives
and forcing the occurrence of events and situations as described in Section 4. Notice
that, in this process, we mix forward and backward reasoning. In the goal-inference
phase, we adopt forward reasoning: situations in the past generate goals to be fulfilled
in the future. In the planning phase, an event inserted in the plot for the achievement
of a goal might have unsatisfied pre-conditions, handled through backward reasoning.
To establish them, the planner might insert previous events with further unfulfilled
pre-conditions, and so on.

We use a non-linear planner that works in the space of plans, not assuming a total
order for the events. It was implemented in Prolog, adapted from [21], with exten-
sions. A non-linear planner seems more suitable because it uses a least-commitment
strategy. Constraints (including the order of events) are established only when neces-
sary, making easier the conciliation of various goals. Features to permit the abandon-
ment of goals were included, and also constraint programming techniques for dealing
with numerical pre-conditions. The planner performs a heuristic search for good
plans. It works on many plans in parallel and, at each time, selects the candidate with
minimal estimated cost for achieving a complete solution, i.e. a configuration in
which all goals and all preconditions of all events are satisfied. It then selects a pre-
condition of an event that is not necessarily true and tries to make it true. While doing
that, the planner generates all possible successors of the current plan. It considers the
possibility of using events already in the plan to establish a pre-condition as well as

the insertion of new events. All possibilities for solving conflicts between events in
the establishment of pre-conditions are considered.

To meet the requirement of high responsiveness, efficiency of the planning algo-
rithm becomes essential, and possible enhancements to the planner deserve special
attention. Most of the successful cases in real-world applications of automated plan-
ning are based on algorithms that use hierarchical task networks (HTNs), such as [10,
16]. These algorithms tend to be more efficient because they reduce the search space.
They depend however on the previous definition of a hierarchy of tasks and methods
to perform the tasks. The task network has to be built for each domain, and all gener-
ated solutions are limited to combinations of previously defined ones, giving less
flexibility to the creation of alternatives. Algorithms based on HTNs can work with a
partial order of events, and HTNs are compatible with the way we specify a hierarchy
of typical plans, used for plan-recognition as explained in Section 4. Taking advan-
tage of that, we are enhancing our planner, producing a hybrid planner capable of
working with our type of simulation, mixing non-linear planning with HTN planning.

Typical plans are abstract events usually corresponding to various alternatives of
combining basic events to achieve ordinary goals. They can have pre-conditions and
effects, but these pre-conditions and effects differ from those of basic events because
they are necessary instead of sufficient, that is, additional pre-conditions and effects
can be observed in a specific alternative.

When a goal has to be achieved, the system might choose either a basic event or an
abstract one to achieve it. In this way, abstract events are initially inserted as if they
were basic. When a plan is complete but contains abstract events, HTN planning is
applied to create alternatives specializing each abstract event into a set of compatible
partially-ordered basic events. Heuristics are used to determine whether basic or ab-
stract events should be chosen for the achievement of a goal (or subgoal). Abstract
events tend to be preferred, because a single abstract event is usually necessary to
achieve a specific goal. In this case, the planning process is essentially reduced to
HTN planning. By doing this, performance is enhanced and, at the same time, we
keep the generality and flexibility of our original simulation tool.

In recent years, some neoclassical planners that work in the space of states, with
planning-graph techniques [3,11], have given good results. The use of heuristics and
control strategies to prune the search space, as in [9, 13], are also promising strate-
gies. We are also studying the possible adoption of these techniques.

4. Interaction Methods for Plot Composition

The underlying philosophy of the system consists of providing the user with efficient
means for exploring coherent alternatives that the story may allow, and for guiding
the plot at the level of events and characters’ goals. Interaction can occur in a step-by-
step mode, in which the user can interfere after the generation of each chapter, or in
parallel with dramatization, in continuous mode.

Step-by-step interaction is analogous to debugging a program. When it is activated,
the graphical interface presents a graph with the plot generated after each chapter.
Figure 2.(a) shows the graphical interface for this kind of interaction. Each event is

represented by a rectangular box that may assume a specific color according to its
current status.As explained in the previous section, plots result from goals that the
characters aim to achieve. At each simulation step (i.e. a chapter), new goals may be
inferred and automatically added to the plot, which causes the insertion of a new set
of events. In step-by-step mode, the events inserted in the plot so far are sent to the
graphical interface for user intervention, which offers two commands for automatic
plot generation: another and continue. Command another requests from IPG an alter-
native solution to achieve the same goals of the chapter just finished. Command con-
tinue asks IPG to try to infer new goals and continue the simulation process. This
weak form of intervention usually leads the plot to situations that the author of the
context has devised beforehand. The Plot Manager also offers two complementary
means for strong intervention in the creation of more personalized stories. Commands
insert situation and insert event allow users to specify situations (specified as goals to
be achived) and events that should occur at specific times. The specific details of how
the goal will be accomplished or the event is inserted are left to IPG, which might
insert further events to obtain a consistent plot. Insertions are rejected when they are
inconsistent or search limits currently configured in IPG are exceeded. In step-by-
step mode, the user has to convert the partially-ordered generated plan into a strict
sequence, that can be dramatized. To determine the sequence, the user connects the
events in a sequential order of his/her choice, respecting the temporal constraints
supplied by IPG. Once the current plot (or part of it) is thus connected into a linear
sequence, it can be dramatized by invoking the Drama Manager with the render com-
mand.

 (a) (b)

Fig. 2. Interfaces for interaction: step-by-step mode (a) and continuous mode (b)

Considering that our storytelling system is designed to run on an environment such

as interactive television, viable alternatives of interaction should not hinder the ex-
perience of watching the dramatization. Interaction cannot demand a high level of
attention, as in step-by-step mode, unless the user opts to halt the dramatization in
order to interact. The interruption of dramatization to allow the user to interact, which
was mandatory in the first version of Logtell, is still allowed, but it is expected to be

an exceptional case, being replaced by other more expedient kinds of interaction in
continuous mode.The Simulation Controller plays an important role in the implemen-
tation of the new forms of weak and strong interactions.

Weak interactions work basically around the “normal” flow of the story, as one
would have with continue and another commands in the first version of Logtell. The
Simulation Controller directs the flow of the story by automatically selecting alterna-
tives and total order of the events to be dramatized. Such selections can be done either
in a random way or based on user satisfaction models. The idea is that stories are
worth of telling even if the user only watches the dramatization, with no intervention.
Even in this case, we keep the possibility of watching different but still coherent sto-
ries based on the same initial configuration.

Other kind of weak interaction is to return to a previous chapter in the narrative, so
that alternative directions for the plot can be chosen. In step-by-step mode, at the end
of a simulation phase, the user could examine the new events not yet incorporated,
and decide whether or not to consider them interesting; if not, the user would ask for
the generation of an alternative. In continuous mode, with parallel dramatization, it
becomes highly desirable to extend the backtracking range, to allow the user to undo
the narrative up to any previous stage, and have a chance to find how it would de-
velop if different alternatives were chosen at such point. For this objective, different
snapshots of the simulation process are kept in memory by the Simulation Controller,
corresponding to the end of each chapter.

Suggestions of strong interactions correspond either to the insertion of specific
events in the plot or to the directive that a certain situation should occur at a specific
time. These suggestions can be made based on the events already inserted in the story
and on an analysis of the context of the genre. We shall describe two methods for
their creation. Independently of the method utilized, the Simulation Controller checks
the consistency of the suggestion with the current narrative, before sending it to the
user. The first method to obtain a suggestion of strong interaction uses our library of
typical plans. Typical plans usually consist of certain combinations of events whereby
the various characters pursue their goals, but they can also correspond to motifs, i.e.
recurring structures compiled in the course of critical studies on the genre [1]. IPG
contains a procedure for the recognition of plans, based on an algorithm specified by
Kautz [14]. The procedure is able to discover that some given events are compatible
with a motif for which we have a typical plan, enabling the Simulation Controller to
suggest the inclusion of additional events contained in the plan. The second method to
obtain a suggestion of strong interaction is based on the application of the goal-
inference rules against the current plot. A suggestion, in this case, is triggered by
observing that the insertion of a fact at a specific time might lead to the inference of a
new goal.

Figure 2 (b) shows the interface used for user interaction in continuous mode.
Events and situations to be incorporated in the next chapter are continuously sug-
gested to the user. By selecting a suggestion, the user asks the system to try to force a
certain event or situation in the next chapter. If it is logically possible, the new sug-
gestion is likely to be incorporated as a strong interaction; if not, it is discarded. By
selecting a chapter and pressing button rewind, the story backtracks up to the desired
point. By pressing another, the story also backtracks up to the desired point but an
alternative for the selected chapter is adopted and story continues from this point on.

Notice that there is also a window listing the events corresponding to the selected
chapter.

Besides the strategies for incorporating weak and strong interactions that we had in
the first version of Logtell, further kinds of interactions are under consideration, such
as letting users to: insert abstract events and situations in the story, which are auto-
matically specialized by the simulation process; tune narrative tensions by means of
numeric scales referring to levels of violence, romantic turns, etc.; share stories with
other users, so that more than one user influence the same story; and suggest the in-
sertion of events and situations using natural language.

5. Planning and Interaction at the Dramatization Level

The Drama Manager converts all events into actions, which are delegated to specific
virtual actors, at specific times. In the first version of Logtell, for each event there was
a single combination of actions for its representation. There was little diversity in the
dramatization and the time for each event almost did not vary. In the second version,
we introduced nondeterminism for the specification of each event. Each event is
assigned to a nondeterminisc automaton, created by authors and stored in the context
database. By doing this, we try to increase the number of possible dramatizations, to
enable the users to interfere in the story at this level, and to vary the time for the
dramatization of an event, according to the convenience of the overall narration of the
story. In each automaton, states are described by invariants, that is, logical formulae
relating dramatization attribute variables. An automaton is said to be in a certain state
if and only if its invariant is satisfied. Transitions correspond to actions delegated to
actors. These actions are nondeterministic and can lead the automaton to alternative
states. The new state may depend on the interference of the user or can be achieved
according to the autonomy of the actors. Figure 4 shows an automaton created to
represent possibilities for the dramatization of an event, in which a villain kidnaps a
victim.

Fig. 2. Example of automaton for the representation of an event.

The Drama Manager has now an abstract control layer that controls the automaton
corresponding to the current event. The control layer checks the values of the attribute
variables and detects the current state. Since the current state is known, an action is
chosen to be performed by the actors. The choice of the action depends on alternative
plans for leading the automaton from the initial state to a final state. These plans are
called policies and they map states into actions to be performed.

 Initial → search
 Victim Found → get closer
 Close to Victim → try to seize
 Seized → try to take away

 (a)

 Initial → search
 Facing Guards → try to get away
 Victim Found → get closer
 Close to Victim → seize
 Seized → take away
 (b)

 Initial → find
 Victim Found → get closer
 Close to Victim → seize
 Seized → take away

 (c)

Fig. 3. Examples of policies: weak (a), strong with cycles (b) and strong (c).

In order to create policies, we adopt planning as model checking [2,18], which is
an approach for planning under uncertainty. Model checking [4] is a formal method to
check whether a certain logical formula is a model for a structure. Reachability of a
certain state in an automaton is a typical application of model checking. In planning
as model checking, the planning algorithm examines the automaton in order to create
policies that take the automaton from one state to another state. Generated policies
can be weak, strong with cycles or strong. In weak policies, there is at least one path
from the initial state to the goal state, but states from which it is not possible to reach
the goal according to the policy can be reached. When a policy is strong with cycles,
the goal state is always reachable but cycles can occur, so that the time to reach the
goal might be virtually infinite. Strong policies guarantee that, from any state in the
policy, the goal state is reached at some moment. A state is said to be safe if it has at
least one strong policy leading the automaton from this state up to the final state. In
our automata, only safe states are allowed. Figure 6 shows weak, strong with cycles
and strong policies for our example.

Based on the automaton for an event, various policies of all kinds can be built be-
forehand using planning as model checking. In this way, there is no need to spend
time planning during dramatization. The set of policies correspond to alternatives for
leading the automaton from specific states to the final state. Occasionally, policies to
postpone the end of an event, leading the automaton to intermediate states might be
useful. Policies are chosen and replaced during dramatization in accordance with
some principles: (i) In order to obtain variety during dramatization, the choice should
occur at random up to a certain extent. (ii) At the beginning of the dramatization of an
event, weak policies are accepted (and even preferred) because they tend to be more
realistic, there are usually many weak policies available (which guarantees diversity)
and duration is not yet a problem. When a state not mapped to any action in the cur-
rent policy is reached, the policy has to be replaced. (iii) At a certain point of the
dramatization, there might be time to accept cycles, but it might not be convenient to
postpone termination for a long time. Unnecessary change of policies should be
avoided and policies that are strong with cycles are preferred. (iv) When there is little
time available, strong policies are needed to force termination.

The main difficulty for user interference in the dramatization is the fact that the
scene might be modified in such a way that the story would become inconsistent. By
using planning as model checking, it is possible to introduce opportunities for interac-
tion at this level. If the nondeterminisc automaton considers opportunities for user
intervention and this intervention is restricted to automaton’s transitions, there is no
risk of not reaching the final state of the current event. Forms of interaction at the
dramatization level are still under investigation, but two alternatives seem to be
straightforward. The first one corresponds to interactions in which the user would
choose the result of a nondeterministic action explicitly. In the second one, users
would control actions of avatars, but restricted to possibilities specified by the
automaton.

Besides the use of automated planning for plot composition and for controlling the
dramatization, our virtual actors have a minimum of planning capabilities, at a low
level of detail. Since actors are expected to play the assigned roles, and must plan in
order to achieve an adequate performance, some simple planning resources become
indispensable, so that, in real-time, an actor be able to make decisions and to schedule
the necessary micro-actions. In general, simple path-finding algorithms and direct
inter-agent communication schemes are sufficient. Each actor must also incorporate
behaviours for interacting with the physical environment and with the other actors.
The local planning of each actor must be simplified to ensure short response times.

6. Concluding Remarks

Logtell has been extended to work in an interactive TV environment, conciliating
requirements of coherence and diversity of stories with high responsiveness. In this
paper, we presented the various levels of automated planning and interaction we have
incorporated to perform tasks that, in filmmaking, are typical of authors, directors and
actors. Planning techniques have shown to be important to provide diversity and co-
herence for our stories. In order to cope with high responsiveness, new interaction
methods have been investigated and implemented and, as efficiency became essential,
the planner for plot generation has been enhanced. Planning as model checking has
also been introduced in dramatization, which is important to diversify the ways events
are dramatized, to control dramatization time and to let users interact with the story at
the dramatization level.

Several other research topics are being investigated to achieve realism and good
quality in the narration of stories by Logtell, including models for representing beliefs
and emotions of characters, alternative ways to control the camera, and automatic text
generation for supporting dialogs and the explicit narration of stories.

References

1. Aarne, A. The Types of the Folktale: A Classification and Bibliography. Translated and
enlarged by Stith Thompson, FF Communications, 184. Helsinki: Suomalainen Tiede-
akatemia (1964)

2. Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P.: Planning in Nondeterministic Do-
mains under Partial Observability via Symbolic Model Checking. In: 17th International
Joint Conferences on Artificial Intelligence, pp. 473-478. Washington (2001)

3. Blum, A. L. and Furst, M. L.: Fast Planning through planning graph analysis. Artificial
Intelligence, 90:281-300 (1997)

4. Burch, J.R., Clarke, E.M.; McMillan, K.L., Dill, D.L. and Hwang, L.J.: Symbolic Model
Checking: 1020 states and beyond. Information and Computation, 98(2):142-170 (1992)

5. Cavazza, M., Charles, F. and Mead, S.: Character-based interactive storytelling. IEEE
Intelligent Systems, special issue on AI in Interactive Entertainment, 17(4):17-24 (2002)

6. Ciarlini, A.E.M., Pozzer, C. T., Furtado, A.L. and Feijo, B.: A Logic-Based Tool for Inter-
active Generation and Dramatization of Stories. In: Proc. ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology (ACE 2005), Valencia
(2005)

7. Ciarlini, A., Veloso, P. and Furtado, A.: A Formal Framework for Modelling at the Behav-
ioural Level. In: Proc. The Tenth European-Japanese Conference on Information Model-
ling and Knowledge Bases, Saariselkä, Finland (2000) .

8. Crawford, C.: Assumptions underlying the Erasmatron storytelling system. In: Working
Notes of the 1999 AAAI Spring Symposium on Narrative Intelligence. AAAI Press (1999)

9. Doherty, P. and Kvarnström, J. TALplanner: A temporal logic based planner. AI Magazine,
22(3): 95-102 (2001)

10. Erol, K.; Hendler, J.; Nau, D. S. UMCP: A sound and complete procedure for hierachical
task-network planning. In: Proceedings of the International Conference on AI Planning
Systems (AIPS), pp. 249-254 (1994)

11. Geverini, A. and Serina, I. LPG: A planner based on local search for planning graphs. In
Proceedings of the International Conference on AI Planning Systems (AIPS), pp. 968-973
(2002)

12. Grasbon, D. and Braun, N. A morphological approach to interactive storytelling. In Proc.
CAST01, Living in Mixed Realities. Special issue of Netzspannung.org/journal, the Maga-
zine for Media Production and Inter-media Research, pp. 337-340, Sankt Augustin, Ger-
many (2001)

13. Hoffman, J. FF: The Fast-Forward planning system. AI Magazine, 22(3):57-62 (2001)
14. Kautz, H. A.: A Formal Theory of Plan Recognition and its Implementation. In: Allen, J. F.

et al (eds.): Reasoning about Plans. Morgan Kaufmann, San Mateo (1991)
15. Mateas, M. and Stern, A. Towards integrating plot and character for interactive drama. In:

Dautenhahn, K., editor, Socially Intelligent Agents: The Human in the Loop, AAAI Fall
Symposium, Technical report, p. 113{118, Menlo Park, CA. AAAI Press (2000)

16. Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.; Wu, D. and Yaman, F.:
SHOP2: An HTN planning system. Journal of Artificial Intelligence Research, 20:379-
404 (2003)

17. Paiva, A., Machado, I. and Prada, R. Heroes, villains, magicians, ... Dramatis personae in a
virtual story creation environment. In Proc. Intelligent User Interfaces (2001)

18. Pistore, M., Traverso, P.: Planning as model checking for extended goals in non-
deterministic domains. In: Proc. 17th International Joint Conference on Artificial Intelli-
gence, pp. 479--484. Washington (2001)

19. Propp, V. Morphology of the Folktale, Laurence Scott (trans.), Austin: University of Texas
Press (1968)

20. Riedl, M.and Young, R. M. An intent-driven planner for multi-agent story generation. In:
the Proceedings of the 3rd International Conference on Autonomous Agents and Multi
Agent Systems (2004)

21. Yang, Q., Tenenberg, J. and Woods, S.: On the Implementation and Evaluation of
Abtweak. Computational Intelligence Journal, Vol. 12, Number 2, pp. 295-318, Blackwell
Publishers (1996)

