Planning and Moving in Dynamic Environments
A Statistical Machine Learning Approach

Sethu Vijayakumar!, Marc Toussaint?, Giorgios Petkos',
and Matthew Howard!

1 School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
sethu.vijayakumar@ed.ac.uk
2 Technical University of Berlin, 10587 Berlin, Germany
mtoussai@cs.tu-berlin.de

Abstract. In this chapter, we develop a new view on problems of move-
ment control and planning from a Machine Learning perspective. In this
view, decision making, control, and planning are all considered as an
inference or (alternately) an information processing problem, i.e., a prob-
lem of computing a posterior distribution over unknown variables condi-
tioned on the available information (targets, goals, constraints). Further,
problems of adaptation and learning are formulated as statistical learning
problems to model the dependencies between variables. This approach
naturally extends to cases when information is missing, e.g., when the
context or load needs to be inferred from interaction; or to the case of
apprentice learning where, crucially, latent properties of the observed
behavior are learnt rather than the motion copied directly.

With this account, we hope to address the long-standing problem of
designing adaptive control and planning systems that can flexibly be cou-
pled to multiple sources of information (be they of purely sensory nature
or higher-level modulations such as task and constraint information) and
equally formulated on any level of abstraction (motor control variables or
symbolic representations). Recent advances in Machine Learning provide
a coherent framework for these problems.

1 Introduction

It is sometimes asked why one should apply statistical or probabilistic methods in
robotics when the environment is to a large degree deterministic. Are not classi-
cal deterministic methods perfectly suited? A first reply might point out that any
realistic mechanical system also includes noise and that statistical approaches
will increase robustness. While this is certainly true, we would emphasize an-
other motivation for statistical or probabilistic approaches: the computational
or information processing perspective.

The control and preparation of movement, the planning of behavior, and the
interaction with natural environment — all, to a large extent, incorporate and
exploit many pieces of information about the current state. This information
either stems from direct observation (sensors), from internal estimations (like

B. Sendhoff et al. (Eds.): Creating Brain-Like Intelligence, LNAI 5436, pp. 151 , 20009.
© Springer-Verlag Berlin Heidelberg 2009

152 S. Vijayakumar et al.

the position of a tracked but occluded object, or the self-location in an internal
map), or from internally induced constraints (such as goals or costs). In most
general terms, decision making or planning involves combining all this infor-
mation optimally in order to gain some perspective about the consequences of
possible decisions.

In fact, a most significant characteristic of the central nervous systems (CNS)
is that many pieces of information are represented in parallel on many different
levels of representations. It seems that much “evolutionary effort” was put in
developing such representations including properties such as their topographic
organization. Without going into details about how all these pieces of informa-
tion are processed to get a unified percept, it generally seems clear that they are
coupled in the sense of sustaining some consistency and enabling transforma-
tions between each other. The discussion whether neural processes can faithfully
be abstracted to implement basic information processing mechanisms such as
inference is beyond the scope and aim of this paper.

Machine Learning (a field that in large parts has developed from the early
“Neural Information Processing” approaches) has developed methods that ex-
actly abstract this general kind of information processing. Thus, another answer
to the introductory question is that the probabilistic and statistical framework
allow us to grasp how to represent information, to fuse and process informa-
tion, to cope with missing information, or to learn statistical dependencies that
provide the basis for processing information and performing inference.

Machine Learning approaches explicitly distinguish between separate repre-
sentations of information (e.g., random variables) and processes of inference. A
most crucial question here is what are the representations of information that we
should be concerned with that are relevant for a given task; i.e., which (latent)
random variables should we introduce. This can be seen in close analogy to the
question which representations are inherent in the brain, i.e., what information
is represented by different areas. Within this view, we may distinguish four levels
of problems:

— What are the variables (or representations) that are useful for the current
situation, tasks or environment?

— How do these depend upon each other?

— What are the current goals, targets or constraints?

— What are their implications on the free variables — such as the immediate
actions or motor commands?

Each of these levels requires some methods for:

1. Development/extraction of suitable representations (for e.g., expert knowl-
edge or some algorithmic procedure).

2. Regression/modelling techniques to learn local contingencies (models) be-
tween coupled variables.

3. Conditioning and biasing of the random variables

4. Inference.

Planning and Moving in Dynamic Environments 153

The outline of this chapter follows these different levels. In Sec. [2, we first
reformulate classical control schemes in terms of Bayesian inference — as an
example for steps Bland @l This approach can nicely be extended to movement
planning problems going beyond classical solutions.

In Sec. Bl we first review efficient approaches for statistical learning (step [2I)
in the context of control. Extending this to the development of ‘internal’ repre-
sentations under multiple contexts (in Machine Learning terms, the learning of
latent variable models) is tackled next. We will demonstrate a basic exemplar
for the extraction of a latent context variable from data; indeed, this can be
thought of as tackling the scenario of missing information, for e.g., the explicit
mass information of a load to be manipulated.

Finally, in Sec.dl we consider the application of statistical learning in the con-
text of imitation or apprentice learning. From demonstrated movement data, we
can learn parameters of the movement prior (the so-called null-space potential).
By learning this objective function that is implicit in the observed behavior, we
can potentially reproduce the behavior on a functional level as opposed to merely
copying a motor trajectory and exploit this in order to generalize to novel tasks
and previously unseen constraints.

2 Planning and Control

In this section, we will contrast the optimization perspective of movement control
and planning to the inference or information processing perspective — technically
by relating an objective function to a corresponding probabilistic model. The
reader might object that there is no difference anyway because any cost function
can surely be translated to a likelihood function somehow such that the optimal
solution in the first case is the maximum a posteriori (MAP) solution in the
second. However, the optimization and the inference views differ conceptually
and technically, as we shall see next.

First, the information processing view always computes distributions (poste-
riors) over the desired variables whereas the optimization view computes only
a single solution at every stage. If only the MAP solution is of interest, this
makes no difference. However, when some more information becomes accessible
after the optimization or computation, then the information processing view can
perfectly integrate this new information in the previous calculations whereas the
optimization view would have to recompute the solution. In natural environ-
ments, the incremental and stochastic nature of information over time can be
exploited better in the latter framework. In more general terms, the inference
procedure generates a distribution which is open to be coupled to further infor-
mation or modulated otherwise from a “higher level”; whereas the optimization
view generates a single solution for which it is unclear how to couple it to new
information, adapt or modulate it.

Second, the technical tools used for optimization versus inference differ sig-
nificantly, for e.g., this might be quadratic programming versus belief propaga-
tion. In practice, either paradigms have associated pros and cons with respect

154 S. Vijayakumar et al.

to computational cost, robustness and ease of implementation — as we will ex-
plore next.

2.1 Redundant Control as Optimization Problem

It turns out that a very general class of kinematic and dynamic control schemes
(e.g., those described in [I]) can be understood as special case solutions to a
simple optimization problem. Consider the cost function

L= ||z~ Jallg— + llalliy +2h"q (1)

where ||g||%, = ¢ Wq describes the Mahalanobis norm. The minimum of this
function can easily be found by taking the derivative,

g_s = 2z —JTC T2 W 2T =0 = (2)
g=JTC Y T+w) Y JTC e — h) (3)

=w T Iw T+ Oy e —[1-wJTUw T Oyt wlh
The last equation uses the Woodbury identity:

Jrety+wy " tet =wgTaw T o)1, (4)

which generally holds for any positive definite C' and W.

In Machine Learning this minimization is well-known as ridge regression. In
the more typical notation rewritten as “|ly — X 3||2,_, + A[|8][*”, we are given a
input data matrix X, an output data vector y with an aim to find the regressor 3.
The first term of L corresponds to the squared error (under noise covariance C')
while the second term is a regulariser (or stabiliser) as introduced by Tikhonov
and takes the form of a ridge A||3]|?. For uniform output covariance C' = I and
h = 0, @) tells us that the solution to ridge regression is f* = XT(XXT +
)71y,

In the case of redundant kinematic control (resolved motion rate control),
one would like to compute joint velocities ¢ which fulfill a lower-dimensional
task constraint & = J¢ while minimizing the absolute joint velocity ||¢||% and
following the negative gradient h = —V H(gq). The solution is easily found from
@) for the limit C' — 0 (i.e., imposing zero variance in the task constraint):

G=Jbi+ - J YW 'VH(q) (5)

where J5, = W1JT(JW=1JT)~1 is called the pseudo-inverse of J under the
metric W.

In hierarchical motion rate control, one has a number of task variables z1, .., .,
with fixed priority. That is, the first constraint &; = J14 needs to be fulfilled ex-
actly, the second constraint o = Jo¢ only within the nullspace of the first con-
straint, etc. The classical solution is given in [2/3]. It turns out that this scheme

Planning and Moving in Dynamic Environments 155

can also be derived from the general solution of (@) when taking the cascaded limit
C' — 0, where C'is in block form and each block approaches zero with a different
rate.

Finally, in dynamic control one would like to compute a control signal u which
generates an acceleration ¢ = M ~!(u + F) such that a general task constraint
b = A{ remains fulfilled while also minimizing the absolute norm ||u||%, of the
control. Reformulating the constraint as b — AM~*(u + F) = 0 and taking
the limit C' — 0 (zero variance in the constraint), we can consult) and get the
solution:

uw=Jb(b—JF)—(1—JL)W h, with J =AM~ (6)

which, for h = 0, is identical to Theorem 1 in [I]. Peters et al. discuss in detail
important versions of this control scheme.

2.2 Redundant Control as an Inference Problem

There exists a straight-forward reinterpretation of the above control schemes in
a Bayesian setting. At first sight, it might seem that nothing is gained from this
reformulation. However, as we mentioned earlier, the information processing view
can have significant practical and theoretical difference to the optimization view.
For instance, the next section will derive an extension of the Bayesian control
scheme to trajectory planning problem which departs from classical trajectory
optimization algorithms.

Exploiting the fact that all terms in the loss function L = ||z —Jql|%,_, +||q|3y
are quadratic, we can formulate an equivalent likelihood based on Gaussian
random variables as follows.

Let ¢; be the n-dimensional robot configuration at time ¢ and x; some d-
dimensional task variable. When discretizing time, we are interested in comput-
ing an actuator motion é¢ = q;+1 — g of the robot given a desired task step
0x = x44+1 — x¢. Instead of considering the deterministic 1st order approximation
dr=Jdq, we assume that, at the particular current state, we have

P(6z]dq) = N (6, Jdq,C) (7)

where N (z,a,C) is the Gaussian density function over x with mean a and co-
variance matrix C'. In the limit C' — 0, this corresponds to the deterministic 1st
order approximation; non-zero C' allow us to have a tolerance w.r.t. fulfilling the
task constraint. We compute the posterior over dq conditioned on the desired
step dx;,

P(6q[0x) o< P(dx|5q) P(dq) - (8)

For this we need to specify a prior that we choose as P(6q) = N (dq,0, W=1).
Note that here we identify the precision matrix W directly with the regularizer
metric W in (). Using

156 S. Vijayakumar et al.

P(5z|6q) = N(6x,J8q,C) = N (Jéq,6x,C) oc N (6q, J 162, J-1CT1T) (9)

we derive the posterior over dq as

P(dq|dx) = N(dg, A" a, A7) (10)
with a=J7C Y%z, A=W+JTC"1J

Clearly, the MAP motion

sg=A"ta=W+JTC) JTC s (11)

coincides with standard redundant control for C' — 0 using the Woodbury iden-
tity. From this rather trivial result we may conclude the following

— The classical regularizer matrix W, which appears in the pseudo-inverse Jg[,,
plays the role of the transition prior P(g;+1|q:) = N(q41,q, W™1) in the
Bayesian view, with covariance matrix W1,

— The task constraints in classical motor planning can be interpreted as the
conditioning of a task variable in the Bayesian view, which happens to be
coupled (via the kinematics) to the actuator motions.

— Computing an optimal actuator motion in classical motor control corre-
sponds to Bayesian inference of the posterior actuator motion conditioned
on the task variables in the latter interpretation.

The example of redundant control is perhaps too minimalistic to appreciate
the difference of the inference and the optimization view since, essentially, we
only have one unconditioned random variable ¢;y1. The Bayesian framework
(which we call Bayesian Motor Control or BMC) produces a distribution over
0q rather than only a single MAP solution — which is admittedly not crucial
when looking only one step ahead. However, the full impact of this formulation
becomes evident when considering whole motion trajectories, as we will see in
the next section.

2.3 Planning as an Inference Problem

The previous sections considered the classical problem of inverse kinematics
within a single time slice. Given the instantaneous desired motions in the task
variables dx, we computed the instantaneous posterior motion in actuator space
6q. However, in many circumstances, a preparatory movement in nullspace is
advantageous to achieve future task constraints. One may call this a nullspace
planning problem, where planning is used to determine the current nullspace
movement that best allows to fulfill future task constraints.

It is straight-forward to extend the Bayesian control scheme to yield Bayes-
optimal solutions to this trajectory planning problem: We now have a desired
trajectory x(t), rather than only instantaneous desired movement. Then, we
compute the posterior over the full actuator trajectory ¢(t), rather than only

Planning and Moving in Dynamic Environments 157

1 /T 2 3

=t
0 /

Fig. 1. Illustration of extended BMC: On m = 3 low-dimensional control variables
z; we have desired trajectories and associated tolerances. Here, x3 is constrained to
be kept in a constant range, x1 needs to converge to a target. Extended BMC com-
putes the posterior distribution over movements in posture space conditioned on these
constraints.

fwd-bwd iterations k [|g] dt E= [>",ei: dt
% (reactive controller) 13.0124 0.0873
7.73616 0.1366
7.70018 0.0071
7.68302 0.0027
7.65795 0.0013
7.62888 0.0012

— —
o ot [\DMIHD—‘

Fig. 2. (Fig) Dynamic Bayesian Network for extended BMC. (Table) Trajectory length
and control errors after different number of forward-backward iterations of extended
BMC. k = % means a single forward pass and corresponds to the reactive forward
controller using the single time slice BMC. k£ = 1 additionally includes a single backward

smoothing.

over the instantaneous movement dq (refer Fig. [I). We formalize this in terms
of a Dynamic Bayesian Network (DBN) where the computation of the posterior
over ¢(t) leads to a forward-backward inference procedure. Figure 2] shows the
DBN for BMC under trajectory constraints. As for the single time slice case, we
assume that

Plg|qi—1) = N(qt: -1, W), Plaig | q) = N(@i, dilqr), 2i) - (12)

We use Belief Propagation (BP) to describe the inference procedure (which
could more classically be described as an iterative extended Kalman smoother).
This simplifies the description of an iterative forward-backward, which yields
more optimal results since the local linearizations of ¢; makes a single forward-
backward only approximate. We represent the current belief over ¢; as a Gaussian
ve(q:) = N(qi,ci,Cy). This belief is factored in three messages: the forward
message oy (from q;—1 — q¢)

158 S. Vijayakumar et al.

at(qt):fqt—l P(Qt |Qt—1) ’Yt(Qt—l):N(ataAt)) At:W_1+Ct—l) At =C¢—1,
(13)
the backward message §; (from q141 — q1)

Belar)=J,,,, Plar11@) ve(a+1) =N (b, B) , Bi=W ™'+ Cry1, bi=cii,
(14)
and the observation message ¢¢ (from Z1.mt — 1)
oe(g) = [[P(il @) = N(R ', Ry (15)
i=1

re=Rg+Yy IS @i —0i@) . Re=) JIET

Here, we used a linearization of each ¢; at ¢ (see below). We first initialize all
7’s to be the uniform density (we use precision matrices), and y; = N(qo, -10719).
The inference procedure then iterates, updating

’Yt‘_atQtﬂt , i.e. , Ct_l <—A;1+B;1+Rt s ct<—C’t[At_1at+Bt_1bt+rt]

(16)
where s, 8’s, and g’s are always recomputed using the above expressions, and
linearizing at the mean § = ¢¢'¢ to compute the observation message (or § = a;_1
in the first forward iteration). The iterations are repeated alternating between
forward for t = 2,..,T and backward for t = T—1, .., 2. Next, we summarize some
key properties of this framework:

1. The single time slice BMC is a special case of the extended BMC for T' = 2
and if not iterating the belief propagation for y;—o. Iterating BP makes a
difference since the point ¢ of linearization of kinematics moves towards the
final mean x5 and thus, the result of BP converges to an exact step rather
than the usual 1st order approximation.

2. Extended BMC allows us to continuously adjust the tightness X L of the
control variables depending on time. For instance, we can impose that a
desired control trajectory z;(t) is to be followed tightly in the early stage of
the movement while only loosely in a later stage or vice versa.

3. Extended BMC solves a generalization of redundant movement planning:
Redundant planning implies that a future goal is only determined by an
endeffector constraint xr = a7 rather than a state space goal gr = ¢7.
By adjusting the tightness (precision X ~!) of a control variable to be 0 for
t = 1,..,7 — 1 but tight in the last time step ¢ = T, we can reproduce
the classical redundant planning problem. Our approach generalizes this in
that we can have an arbitrary number of control variables, and can adjust
the control tightness e.g. to introduce intermediate goals or intermediate
boundary conditions.

4. Even when we require tightness in the controls over the full trajectory, the
extended BMC resolves the planning problem in the remaining nullspace.

Planning and Moving in Dynamic Environments 159

Fig. 3. Solution to a complex reaching movement under balance and collision con-
straints. The target for the right finger is illustrated as a black dot. Views from 3
different perspectives.

2.4 Examples for Extended BMC

We now consider the problem illustrated in Fig. Bl of reaching under an obstacle
while keeping balance. This time the desired motion is not defined by reactive
dynamical systems but rather by trajectories x; 1.7 for each control variable x;.
We defined these to be linear interpolations from the start state to the target
with 7' = 100, while keeping the precisions v;.3 = (-103,-103,-105) constant over
time. Figure2(Table) displays the trajectory length and control errors after some
forward-backward iterations. Note that the first line k& = % (only one forward
pass) corresponds to the reactive application of the single time-slice BMC and
thereby represents a classical forward controller. For instance, if we fix the total
computational cost to 3 times that of a simple forward controller (k = 1% itera-
tions) we find an improvement of 40.8% w.r.t. the trajectory length and 91.9%
w.r.t. control errors of extended BMC versus the forward controller. The reason
for these improvements are that the forward controller chooses a non-efficient
path which first moves straight towards the obstacle and later need longer mo-
tions to circumvent the obstacle. In contrast, the probabilistic smoothing of
extended BMC leads to early nullspace movements (leaning to the right) which
make the later circumvention of the obstacle more efficient.

2.5 Conclusion

Bayesian methods are often used for sensor processing and fusion. We investi-
gated how Bayesian methods can also be applied on the motor level by abstract-
ing the planning and constraint satisfaction as an optimal information processing
paradigm. We proposed BMC to infer a single posterior body motion from mul-
tiple concurrent primitive controllers. Single time-slice BMC includes the stan-
dard and the prioritized inverse kinematics as a limit. However, we showed that
BMC can lead to significant improvements in terms of trajectory length when com-
pared to a strictly prioritized IK and can cope with singularity constraints (where
rank(J;) < n;) and conflicting or infeasible constraints (where the nullspace pro-
jection NN; and thereby, the nullspace projected Jacobian .J; become singular). Fur-
ther, BMC allows us to gradually change the required tightness of a constraint over
time and to generate compromises between constraints. Extended BMC uses be-
lief propagation to compute the posterior body trajectory conditioned on desired

160 S. Vijayakumar et al.

control trajectories, and can be related to optimal control theory via Todorov’s
duality [4]. The total computational cost of a single backward sweep is equal to
that of a single forward control sweep. We have demonstrated that this type of
probabilistic smoothing can yield significant improvement in terms of the trajec-
tory length and control errors over a forward controller. In effect, extended BMC
generates early nullspace movements which make later motions more efficient. In
this paper, we constrained ourselves to Gaussian belief representations, which also
implies that there exists a dual quadratic cost minimization formulation. However,
using existing inference techniques for other belief representations (e.g., particles,
exponential families, or mixture of Gaussians), BMC can be extended to allow for
a much wider range of constraint shapes.

BMUC is one piece in a larger endeavor to apply Machine Learning techniques
in the realm of robotics. Robotic control and behavior generation crucially de-
pend on integrating information from as many sources as possible (sensors, prior
knowledge, knowledge about constraints and future goals) to decide on current
actions. The Bayesian framework is an ideal candidate for this. Our goal is to
understand the problem of behavior and motion generation as a single coherent
inference process in a structured model containing many sources of information
and constraints. By integrating BMC in a larger framework such as Grupen’s
control paradigm [5] and combining it with more complex models of motor prim-
itives [6I7)8], we will advance towards a complete, coherent Bayesian framework
for behavior and motion generation.

3 Learning Dynamics under Multiple Contexts

In the previous section, we argued that principle problems of movement gen-
eration or planning can be framed as information processing problems, given
information about goals, targets or constraints, and assuming knowledge about
the dependency of random wvariables. This relationship between variables of in-
terest is often the dynamics of the plant or the robot; a relation that defines the
state transitions for various actuation torques.

In many situations, exact analytical derivation of the robot dynamics is not
feasible. This can be either due to the complexity of the system or due to lack
of or inaccurate knowledge of the physical properties of the robot. Moreover,
the dynamics of the robot often depend on a varying unobserved external con-
text and exhibit non-stationarity. An example of unobserved external context
that results in non-stationary dynamics is the work load of a manipulator: the
resultant dynamics of the robot arm change as it manipulates objects with dif-
ferent physical properties, e.g. mass or mass distribution. Adaptive control and
learning methods can be used in cases of non-stationary dynamics. However,
if the dynamics switch back and forth, e.g. if manipulating a set of tools for
executing various tasks, classic adaptive control methods are inadequate since
they unlearn the dynamics of the previously experienced contexts and relearn
them when they reoccur. Furthermore, there may be large errors and instability
during the period of readaptation.

Planning and Moving in Dynamic Environments 161

(b)

Fig. 4. Graphical model representing the (a) forward and (b) inverse model

In the next section, we will look at methods from the domain of statistical
machine learning to efficiently acquire dynamics from movement data, which are
then extended to representing, learning and switching between multiple models,
each of which is appropriate for a different context.

3.1 Statistical Learning of Forward and Inverse Dynamic Models

Anthropomorphic robotic systems have complex kinematic and dynamic struc-
ture, significant non-linearities and hard to model non-rigid body dynamics;
hence, deriving reliable analytical models of their dynamics can be cumbersome
and/or inaccurate. We take the approach of learning dynamics for control from
movement data.

At time step ¢, let O, = (g, Gr) be the state of the system (which includes
the position and velocity components) and 7 the control signal. A deterministic
forward model f describes the discrete-time system dynamics as

Orr1 = (O, 1) . (17)

Learning a forward model f of the dynamics is useful for predicting the behavior
of the system. However, for control purposes, an inverse model is needed. The
inverse model g maps from transitions between states to the control signal that
is needed to achieve this transition:

7y = 9(Ot, O 41) (18)

A probabilistic graphical model representation of the forward and inverse model
is shown in Fig. H(left) and Fig. @(right), respectively.

The inverse model shown in Fig. @(right) can be used in many control settings;
one of the most common being to use it as part of a composite controller. Given
a desired trajectory, ©7.p, the composite control law computes the command as

7 =9(0;,0111) + Kp (¢ —q0) + Ku (¢ — 1) (19)

where K, and K, are gain matrices. This is a combination of a feedforward
command that uses the inverse model and a feedback command that takes into
account the actual state of the system. The more accurate the inverse model is,

162 S. Vijayakumar et al.

Fig. 5. Robotic platforms: (a) SARCOS dextrous arm (b) DLR LWR III arm

the lower the feedback component of the command will be, i.e., the magnitude of
the feedback command can be used as a measure of the accuracy of the inverse
model. Furthermore, good predictive models allow us to use low feedback gains,
resulting in a highly compliant system without sacrificing the speed and accuracy
of the movements.

Typically, in robotic systems with proprioceptive and torque sensing, at each
time step t we “observe” a state transition and an applied torque signal summa-
rized in the triplet (6;, G471, 7t), i.e., we have access to the true applied control
command (which was generated via composite control). To learn the inverse
dynamics, we need a mon-linear, online regression technique. We use Locally
Weighted Projection Regression (LWPR) [9] — an algorithm which is extremely
robust and efficient for incremental learning of non-linear models in high dimen-
sions. An LWPR model uses a set of linear models, each of which is accompanied
by a locality kernel (usually a gaussian) that defines the area of validity of the
linear model. For an input @, if the output of the k** local model is written as
yr(x) and the locality kernel activation is wy (), the combined prediction of the
LWPR model, g, is

i) = o Y wn@)), W= wyle). (20)
k k

The parameters of the local linear models and locality kernels are adapted online
and also local models are added on an as needed basis. Furthermore, LWPR
provides statistically sound input dependent confidence bounds on its predictions
and employs Partial Least Squares (PLS) to deal with high dimensional inputs.
For more details about LWPR, see [9] and for an efficient implementation, refer
to [10].

The role of LWPR in the probabilistic inverse model of Fig. @] can be summa-
rized in the equation:

Planning and Moving in Dynamic Environments 163

P(1]60¢41,0:) = N(9(O141,6), 0(O141,6%)), (21)

whose ¢(O;41,6;) is a learned LWPR regression mapping state transitions to
torques. Here, we have two options for choosing the variance: (1) we can assume
a fixed noise level independent of the context and the input, e.g. a maximum
likelihood estimate; (2) we can use the confidence bounds provided by each
LWPR model which also depends on the current input (611, 0;), this will give
higher noise levels in areas where not much data has been seen. We will test
both cases in our experiments. Please see [9] for more details on LWPR and the
input dependent variance estimate.

100 — T T 1 1 T 250
Joints 1-3 Joints 1-3 ‘;JAOimS 1—(;3
— Averaged J— ——Auverage
9 09l Averaged -\ - Deriv.Gains
1 Prop.Gains
\
0.8 4 o8k | 1200
\
e
5 N
E 0.7f 1 AN
=} Y
o \
2 N
% 0.6 1 _06F s~ 1150
o o ~
-1 |1 2 = N
; : :
2 Sos5f 1 £ T
c = S 0]
E £
© 041 1 04f +100
8
k)
00.3F B
T
o
0.2f 1 0.2 150
107 4 o1 1
L 0 . ’ 0 y . 0
0 10 20 0 10 20 0 10 20
Iteration Iteration Iteration

Fig. 6. Results on learning stationary dynamics on a 3 DOF simulated robot arm. Left:
test error. Middle: contribution of error-correcting feedback command. Right: Tracking
error.

Experiments in Learning Dynamics for Single Context. We verify the
ability to learn the inverse model online with LWPR and show that the model
can successfully be used for control. We demonstrated this for a simulated 3
DOF robot arni] as well as on the 7 DOF anthropomorphic SARCOS robot arm
(Fig. Bl(a))and recently, on the DLR LWR arm (Fig. Bl(b)). Here, the statistics
are accumulated and shown briefly for the simulated arm. The task of the arm
was to follow a simple trajectory planned in joint angle space, consisting of a
superposition of sinusoids with different phase shifts for each joint:

! Simulations performed using ODE and OpenGL.

164 S. Vijayakumar et al.

2 2
0; = a; cos(a; % t) + b; cos(p; % t), (22)

where T' = 4000 is the total length of the target trajectory, a;,b; € [—1,1] are
different amplitudes and «;, 8; € {1,..,15} parameterize different frequencies.
20 iterations of the trajectory were repeated: during the first four iterations,
pure feedback (PD) control was used to control the arm, while at the next 16
iterations, a composite controller using the inverse model being learned was used.
The gains were lowered as training proceeded. The procedure was executed ten
times, for ten different contexts, for accumulating statistics. Different contexts
are simulated by attaching an object with different mass at the last link of the
arm.

Figure [Blleft) plots the normalized mean squared error between the torques
predicted by the LWPR model and the true torques experienced on the test data
(i.e., the data that was held out from the training), which shows a quick drop
as training proceeds and settles at a very low value averaged over all trials. The
contribution of the error-correcting feedback command to the feedforward com-
mand (see Fig. [6(middle)) is low, vouching for the accuracy of the learnt model
while being used for control. Furthermore, the tracking error (Fig. [(right)) is
very low and improves significantly when we switch to composite control. For the
detailed statistics on the online dynamics learning of the 7 DOF SARCOS robot
arm and tracking results on a pattern eight task, readers are referred to [9].

3.2 Inference of a Discrete Latent Context Variable

The multiple model paradigm copes with the issue of non-stationary dynamics
by using a set of models, each of which is specialized to a different context. A
schematic of a generic multiple model paradigm is shown in Fig.[ll The observed
dynamics of the system are compared to the prediction of each learned model

Control Dynamics models Learning

Context 1
Context 2

Commands Context S
. tate
Context n Estimates

Context Dynamics
Estimates Predictions
Switch / Mix Context estimator 48— System
tate

! !

Applied Command

Fig. 7. Schematic of a multiple model paradigm

Planning and Moving in Dynamic Environments 165

to identify the current context. The context estimates are used for selecting the
model to use for control and for training. All existing multiple model paradigms
roughly follow the same plot. The main issues that have to be tackled for using
multiple discrete models for control are:

1. Infer the current context for selecting the appropriate model to use for con-
trol.

2. Infer the current context for selecting the appropriate model to train with
the experienced data.

3. Estimate the appropriate number of models (possibly using a novelty detec-
tion mechanism).

Context Estimation. It is appropriate to formulate context estimation in a
probabilistic setting to account for inaccuracies of the learnt models as well as
handle transitions. Apart from dealing with uncertainty and context estimation
in a principled way, the probabilistic formulation can be useful for novelty de-
tection. That is, if experienced data is not likely for any of the learned models,
it can be classified as novel and used to train a new model.

While in most multiple model approaches, context estimation is performed
by comparing the predictions of a forward model to the dynamic behaviour
of the system, in the absence of redundant actuators, one can use the inverse
model as well — an approach we will follow here. The graphical model in Fig.B(a)
represents a set of inverse models corresponding to a specific number of contexts.
The hidden contextual variable ¢; is discrete and indexes the different models.

The inverse model in this formulation can be written as:

P(T | @H_l,@t,ct:i) = N(Qi)(l) (@t+17@t)7 O-(Z) (@t+178t))) (23)

where ¢() is the command predicted by the LWPR model corresponding to the
ith context and 0¥ is some estimate of the variance, which again can be either
set to a predetermined constant or based upon the input dependent confidence
bounds provided by LWPR. Also, we can either assume knowledge of the prior
probability of contexts or we can assume that different contexts have equal prior
probabilities P(c;). Under this probabilistic formulation, context estimation is
just inferring the posterior of ¢; given a state transition and the command that
resulted in this transition:

P(Ct=i|@t,@t+177't) X P(Tt|@t7@t+1act:i) P(ct:i). (24)

Context estimates are very sensitive to the accuracy of the inverse models. They
can be improved by acknowledging that contexts do not change too frequently.
We can introduce a temporal dependency between contexts P(cit1 | ¢r) with an
appropriate transition probability between contexts that reflects our prior belief
of the switching frequency to achieve much more robust context estimation. The
graphical model can be reformulated as the Dynamic Bayesian Network shown in
Fig.[B(b) to achieve this. Application of standard Hidden Markov Model (HMM)
techniques is straightforward by using (24)) as the observation likelihood in the
HMM, given the hidden state ¢; =i. A low transition probability penalizes too
frequent transitions and using filtering, smoothing or Viterbi alignment produces
more stable context estimates.

166 S. Vijayakumar et al.

S

(a) (b)

Fig. 8. Multiple models and hidden contexts: (a) Graphical representation of hidden
latent context within the dynamics (b) DBN to capture the temporal dependencies
between the latent contexts

Data Separation for Learning. The problem of bootstrapping the context
separation from context-unlabeled data is very similar to clustering problems
using a mixture of Gaussians. In fact, the context variable can be interpreted
as a latent mixture indicator and each inverse model contributes a mixture
component to give rise to the mixture model of the form P(1 |y, Oi41) =
> P(1¢] 6,041, = i) P(cy =1). Clustering with mixtures of Gaussians is
usually trained using Expectation-Maximization (EM), where initially the data
are labeled with random responsibilities (are assigned randomly to the different
mixture components). Then every mixture component is trained on its assigned
(weighted) data (M-step) and afterwards the responsibilities for each data point
is recomputed by setting them proportional to the likelihoods for each mixture
component (E-step). Iterating this procedure, each mixture component special-
izes on different parts of the data and the responsibilities encode the learned
cluster assignments.

We apply the EM algorithm for separating the data and learning the models.
In our case, the likelihood of a data triplet (O, ©;11,7;) under the i*" inverse
model is P(1; | ©¢, ©¢11, ¢t =1), which is a Gaussian that could have either fixed
variance or variance given by LWPR’s confidence bounds. Learning the transi-
tion probabilities from a sequence of observations is straightforward using EM.
In particular, the probabilities p(ct, ¢i+1 | ©1..7) for t = 1...T — 1 need to be cal-
culated (E-step), a straightforward problem in HMM inference and from these,
the relative frequencies p(c;+1 | ¢;) for any t can be easily estimated (M-step). As
usual, the procedure is iterated a few times: i.e. p(ct, ci4+1 | Or) is computed using
some values for the transition probabilities (one could initially set all transitions
to be equally probable), then p(ci41 | ¢;) is estimated, then p(ct, ci41|O1..7) is
computed again using the estimated transition probabilities and so on until ei-
ther a maximum number of iterations is reached or some other criterion is met,
e.g. the likelihood of the observed data stops increasing. We will see examples
of this procedure in the next section.

Experiments With Multiple Discrete Models. The context estimation,
transition probability learning and separation of experience methods suggested

Planning and Moving in Dynamic Environments 167

in the previous sections were tested on the simulated arm. Here different contexts
are simulated by varying the mass on the last link of the manipulator.

Random switches between six contexts were performed in the simulation,
where at every time step we switch to a random context with probability .001
and stay in the current context otherwise.

We have two classes of experiments, one is where we are not using HMM
filtering of the contextual variable and the other is where we use it. Also, we
have two choices for the variance of the observation model, one is where we use a
constant (set at the MSE on the test data) and the other is where we use the more
principled confidence bounds provided by LWPR. For the moment we assume
that for the temporal model, we know the correct transition probabilities. The
simulation was run for 10 iterations. We run 5 different runs of the simulation,
switching between six different contexts each time and we start by examining
the accuracy of our probabilistic context estimation methods while not using
the context estimates for control (a PD controller was used). The percentage of
accurate online context estimates for the four cases, averaged over the five trials,
can be seen in Fig. [@(a)(error bars are obtained from the five different trials).

Figure[Q(b) gives an example of how the best context estimation method that
we have, the HMM filtering using LWPR’s confidence bounds, performs when
used for online context estimation and control. Sometimes the context estimation
lags behind a few time steps when there are context switches, which is a natural
effect of online filtering (as opposed to retrospect smoothing).

The context estimates were then used online for selecting the model that will
provide the feed-forward commands. Figure[(c) shows the percentage of accurate
online context estimates for the four case. Results are again averaged over the five
trials. The performance of online context estimation and control is close to the
control performance we achieved for the single context displayed in Fig. G

Furthermore, we investigate the bootstrapping of data separation / model
learning. We will use the temporal model as it has been shown to give far superior
results for context estimation and control and thus we also investigate learning of
transition probabilities. Again, when generating the data, we switched between
two different contexts with probability .001 at each time step, however we now
do not use the correct transition probabilities in either inference (E-step) or
learning (M-step). We first collected a batch of context-unlabeled data from
5 cycles through the target trajectory where the arm was controlled by pure
feedback PD control. The EM procedure for data separation and learning of
transition probabilities (Sec. B.2) was applied. As mentioned before, using the
confidence bounds for the noise estimates of the observation (inverse) model from
the beginning of the EM procedure does not usually work and makes all models
collapse into the same model. Using the maximum likelihood estimates works
much better, however, this still does not give very good results. The problem
lies in the fact that a local learning method is used: data seem to be separated
correctly locally but not globally, across the input space. This is demonstrated in
Fig.[[0(a). A possibility would be to try to regroup the local models to maximize
the smoothness of the learned model, however, we show here that it is possible to

168 S. Vijayakumar et al.

[___INo HMM constant variance [__INo HMM constant variance

[No HMM with conf. bounds Correct [No HMM with conf. bounds
[_HMM constant variance Estimated [_HMM constant variance
[CT1HMM with conf. bounds E [CT1HMM with conf. bounds

——

L W

o
©
o
©
T
L

+ ++] 5

o
©
L
o
©
T

4
o
L
o
o
T
L

Accuracy (%) of context estimates
(=]
N
I
Accuracy (%) of context estimates
)
N
T

o
o
L
I
o
T
L

04 1 — 0.4 B
0.3 b L L L L J 0.31 b
0 1000 2000 3000 4000 5000
Datapoint

02 0.2

Fig. 9. Online context estimation without using the context estimates for control.
(a) Context estimation accuracy using different estimation methods. (b) Example of
random context switches and its estimate using HMM filtering over time. (c) Online
context estimation using the context estimates for control.

achieve perfect data separation by modifying the EM algorithm slightly. First,
we note that if we manage to increase the noise only on the areas where there
is mixing between local models that actually belong in different contexts, the
posterior of the datapoints in that area will switch slower and less frequently
in that region. This increase of noise can be achieved using LWPR’s confidence
bounds: the confidence bounds increase when there is a sudden change in the
model’s prediction. Thus, we run the EM procedure using a maximum likelihood
estimate for the inverse model noise until the data is well separated locally and
then switch to using the confidence bounds. This trick has been sufficient to
solve the problem in some cases but not always. If at the point that we start
to use the confidence bounds, there are very large or too many areas that need
to be swapped between LWPR models, then the procedure may still get stuck.
The way to solve this problem is to also switch from using smoothed estimates
in the E-step, to using filtered estimates. This effectively, together with the
increased noise levels on edges of the areas that need to be swapped, makes the
areas that are not grouped correctly narrower and narrower in each iteration of
EM. This modified EM procedure was tried with perfect data separation always
being achieved. Figure [[0(b) displays a typical evolution of the data separation.
Switching to using the confidence bounds and the filtered instead of the smoothed
estimates happens at iteration 20.

The transition probabilities are also estimated during the EM procedure: the
estimated probability are very close to the actual ones, i.e. 0.999 staying in the
same context and 0.001 switching.

Planning and Moving in Dynamic Environments 169

— Actual models
ook +++ Leamed models

Datapoints

0 500 1000 1500 2000 2500 3000 3500 4000
Datapoint

Initial random 1 30 4 Correct
Iteration

(a) (b)

Fig. 10. (a) The solid lines show the predictions of the inverse models for the first joint
on the training data if the models had been trained with perfectly separated data. The
dotted lines show the predictions of the models generated by the automated separation
procedure. Data separation seems to work locally but not globally. (b) The evolution
of the data separation from unlabeled data over some iterations of the EM-procedure.
The first column displays the initial random assignment of datapoints to contexts. The
last column displays the correct context for each datapoint. The columns in between
display the most likely context for each datapoint according to the currently learned
models for some iterations of the EM. procedure.

3.3 Augmented Model for Continuous Contexts

The multiple model paradigm has several limitations. First of all, the right num-
ber of models needs to be known or estimated. Estimating the number of contexts
only from data (using some model selection procedure) is a non-trivial problem.
Realistically, novel contexts appear quite often and to cope with this, a novelty
detection mechanism is needed. However, even with a very robust novelty de-
tection mechanism, we may end up with a very large number of models, since
for most scenarios, possible contexts are infinite. Moreover, we would like to
generalize between contexts and most multiple model paradigms do not cope
well with this.

All these issues can be circumvented if the set of models is replaced with a
single model that takes as additional input appropriate continuous hidden con-
textual variables, i.e., instead of a set of g;s corresponding to different contexts,
a single inverse model G is used:

Tt = G(@t,@t+17ct) . (25)

Here, ¢; is not a discrete variable that indexes different models but a set of con-
tinuous variables that provides information about the context. The probabilistic
model of the inverse dynamics would then be:

170 S. Vijayakumar et al.

P(7|64,Opy1,¢t) = N(G(Or, Opy1,¢t), 0(Or, Opy1,ct)) - (26)

A possibility for learning the augmented model is to follow the same procedure
as in the discrete case for learning the models, i.e., apply an EM like procedure.
Using the same temporal dependency formalization, this results in a state space
model. Learning in nonlinear state space models is discussed in [II], [12] and
[13]. However, the relationship of the contextual variables to the output of the
augmented model could be arbitrary, making learning in such a setting a very
difficult task.

It is imperative to exploit any prior knowledge about the relationship of the
inverse model to appropriate contextual variables. For the case of manipulation
of objects with a robot arm (see schematic of the robot arm link with load in
Fig. [[]), we can take advantage of the fact that the dynamics of a robot arm
have a linear relationship to the inertial properties of the links. In other words,
the inverse dynamics can be written in the form:

T=Y(q,¢, 4w (27)

where ¢, ¢ and § denote joint angles, velocities and accelerations respectively.
This relationship can be derived based on fundamentals of robot dynamics [T4J15)
as shown in Table [l This equation splits the dynamics in two terms. Say the
manipulator has n joints, then Y (g, ¢,) is a n x 10n matrix that depends on
kinematics properties of the arm such as link lengths, direction of axis of rotation
of joints and so on. This is a complicated and non-linear function of joint angles,
velocities and accelerations. The term 7 is a 10n-dimensional vector containing
the inertial parameters of all links of the arm (see Table [T).

Now, let’s examine how this can be used to acquire the augmented model for
the scenario of changing loads. The important thing to note is that the kinematics
dependent term Y does not change as different objects are manipulated. Only
the inertial parameters of the last link of the arm change, i.e. the last 10 elements
of the vector 7.

In-1
Mn-1

Fig.11. Schematic of the load and inertial parameters involved in manipulator
dynamics

Planning and Moving in Dynamic Environments 171

Table 1. Linearity of the dynamics model in the inertial parameters

If 7 is the kinetic energy, U is the potential energy of the system and we define a
Lagrangian £ =7 — U, the dynamics of the system is given by

doc oL _
dtaqz aqz‘ -

(28)

where q1,¢2...gn is a set of generalized coordinates (here, the joint angles) and
T1,T2...Tn, denote the so called generalized forces associated with the corresponding
joint angles ¢;. The generalized force 7; is the sum of joint actuator torques, joint
friction torques and other forces acting on the joint (e.g. forces induced by contact
with the environment). The total kinetic energy 7 and the total potential energy
U is just the sum of the kinetic energy and potential energies of all the links of the
manipulator respectively, i.e., 7 =327 | 7; , U =3 7_, U; The kinetic and potential
energy of the j** link is given by:

1 T . . 1
T = §ijijj +m;lip; S(wj) + §wffjwj , Uy, = —mjgopj —m;go b (29)

where m; is the total mass of link j, p; is the position vector of the origin of frame
j expressed in the base frame, w; is the rotational velocity of link j, S(w;) is a 3 x 3
skew-symmetric matrix that depends on wj, l; is the position vector of the center of
mass of the link from the origin of the frame of the link, go is the gravity acceleration
vector, I; is the inertia tensor of link j measured at the origin of the reference frame
of the link. Substituting (29) in the Lagrangian and with some rearrangement, we can
see that the Lagrangian has a linear relationship to the set of inertial parameters:

™ = [m17 mlhz; mllly7 m1l127 11117 Ilzy7 cery My mnlnzq mnlny7 mnln27 Inzz; ceey Inzz]
(30)
In short, the Lagrangian can be written in the form:

L=g(q,qm (31)

Since the inertial parameters in m do not depend on time or ¢ then the dynamics
equation for joint 4 is:
- 299(¢:4) 99(a.4)

=T 32
dt aqz aqz‘ T ()

Thus, the dynamics can be written in the form
i = 4i(q, ¢,)™ (33)

It is worth noting that we didn’t take into account the dynamics of the motor attached
to each link. In that case, another element per link is added to the vector =, giving a
total of 11 inertial parameters per joint. For more details see [14]. We will ignore the
motor dynamics, however, our general arguments can easily be extended in order to
include the dynamics of the motor.

172 S. Vijayakumar et al.

Torque

State transitions

Context
(Inertial parameters)

Fig. 12. Learning the augmented model. The dots are training data for the different
contexts. The solid lines are the learned models for each context, the red dotted lines
show the interpolation of the augmented model predictions from a set of learned models
and the dashed lines show the global augmented model for some new context.

Denoting the 10 inertial parameters of the union of the last link and manip-
ulated object as 7, and using these as the contextual variables, the augmented
model G(Oy,O¢11,¢;) can be written as:

7t = G(O4, Or1,¢t) = Alq, 4, 4) + Blq, 4, §)mo (34)

Here, the matrix B(q, ¢, §) consists of the last 10 columns of the matrix Y (q, ¢, §)
and A(q,q, §) is the n—dimensional vector given by multiplying the array con-
sisting of the first (n — 1) x 10 columns of Y (g, ¢, §) with the vector consisting of
the inertial parameters of the first n — 1 links. Note that state transitions have
been appropriately replaced by joint angles, velocities and accelerations. This is
more compactly written as:

G(@u Ot41, Ct) = Y(q, qu)ﬁo =T (35)

where 7, denotes the vector [I 71]7 and f/(q, q,q) denotes the n x 11 matrix
[A(g:4:4) B(a: 4, d)]-

Planning and Moving in Dynamic Environments 173

To acquire the model, essentially means to estimate Y (g, ¢, §). If we have an
appropriate number of learned models (that is, at least as many as the cardi-
nality of 77,) and the corresponding 7, labels, we can simply estimate Y (g, ¢, §)
using least squares due to the linearity property. Say, we have learned a set of ref-
erence models g'(q, 4, §), 9%(q, ¢, d)-..g' (¢, ¢, §) corresponding to manipulation of
objects which result in the last link of the arm having known inertial parameters

1 2 1 . <7 o« e ..
e, To... Ty, one can just evaluate Y(q, ¢, §) as:

Y(q,4.4) = T(q, ¢,)" (I I7) ™ (36)

Where, T'(q, ¢, §) is a matrix with the reference models’ predictions as its columns
and IT is a matrix with the reference models’ inertial parameters.

The augmented model can be used both for control and context estimation
purposes. For control purposes, say we have an estimate of 7, at time ¢, given
the desired transition for the next time step, we can easily compute Y (¢*, ¢*, ¢*)
and hence, the feedforward command. For robust context estimation, we can
use temporal dependencies, similar to the principles used in the multiple model
scenario. However, since we now have a set of continuous hidden variables as op-
posed to a single discrete context variable, the inference is slightly more involved
(refer to Table ().

A schematic for acquisition of the augmented model is displayed in Fig.
The dots are data belonging to different contexts. A model is fit to the data
belonging to each of the contexts (the solid lines) and then, we can use the pre-
dictions of the learned models together with the known corresponding inertial
parameters to do a least squares estimate and acquire the augmented inverse
model for any point of the input space (the dotted lines). Computing the aug-
mented model for any point of the input space gives the dynamics model of any
other context (dashed lines).

It is important to note that to acquire the augmented inverse model, the
regression coefficient matrix f/(q7 qd,q) has to be evaluated at all relevant points
in the input space. However, this is not as computationally expensive as it might
seem at first. All that is needed is to reevaluate the predictions of the reference
inverse models at each point in input space and multiply by the pseudoinverse
of the reference inertial parameters matrix I7 T(fY b1} Ty=1. This pseudoinverse
needs to be evaluated once and no further matrix inversion is needed to solve
the inverse problem at all points in the input space.

The previous discussion implies that, ideally, if we have the prerequisite num-
ber of "labeled’ context models (at least eleven independent models), then, one
can deal with manipulation of any object. In practice, however, since learned
dynamic models will not be perfect and due to the presence of noise in the sen-
sor measurements, a larger number of ‘context models’ may be necessary to give
accurate estimates and control.

Experiments with the Augmented Model. The augmented model proposed
for extracting the continuous context/latent variable was empirically evaluated.

In our experiments, both the center of mass of the last link [,, and the load
l, are constrained to lie on the y axis of the last link’s reference frame, so that

174 S. Vijayakumar et al.

Table 2. Inferring the hidden continuous context in the temporal model

In our probabilistic setting, the augmented inverse model is
Tt = G(O4,O141,¢t) = A(Or, O141) + B(O1, Or1)ce + 1 (37)

where A(O¢, Or+1) and B(Oy, Os41) are estimated from the models used for forming the
augmented model and n = N(O, Yobs). Zobs is estimated from the confidence bounds
of the inverse models that form the augmented model. Also, the transition model for
the context needs to be defined. Since we believe that the context does not change too
often, this is set to:

Ct41 = Ct + C (38)

where ¢ = N(0, X4) with Xy, set to a very small value.

Based on the defined model, we can write down the inference for the temporal Bayesian
network using the augmented inverse model. For control, only filtered estimates (a la
Kalman filtering) can be used.

We want to compute p(ct|Ti:¢441,O1:t4+1) using the estimate at the previous time
step p(ce—1 | T1:¢,01:¢) and the new evidence 7¢+1 and O:y1. The previous estimate
plce—1 | T1:¢, O1:¢) is defined as:

p(Ct—l |Tl:t,91:t) :N(Mtfl\tyztfl\t) (39)

Estimates for the next time step p(ct | T1:441, ©1:¢+1) are obtained in a recursive way
in two steps. The first is the prediction step where, p(c: | T1:¢, ©1.¢) is computed using
the filtered estimate on the previous time step and the transition model p(ciy1|ct),
without taking into account evidence at time t + 1:

p(Ct|T1:t,91:t) :N(Mz|u2t|t) (40)

where 114 = pe—1)¢ and Dt |t = Xy, + Y. Then, the filtered estimate modifies
the predicted estimates using the observation at the time ¢ + 1 as (dependency of A
and B on the state transition is omitted for compactness):

plee | Tret1, Oriat1) = N (e e41, Deje41) (41)

where,
e er1 = et + T BT (B e BT 4 Zops) (41 — A — Bpg 1) (42)
Ziier1 =10 — 20 BT (BE BT + Zops) ' By (43)

the center of mass of their union [, also lies on the y axis (refer Fig. [IT)). The
problem was constrained in a way that, for the three degrees of freedom robot
arm of our experiments, only three out of the ten inertial parameters of the
last link could be estimated and thus, three contextual variables were needed to
describe the augmented model. These inertial parameters are the mass, the mass
X the y — position of the center of mass and the moment of inertia around the z
axis . This was achieved by choosing the coordinate system attached to the last
link such that the center of mass both of the link and the object lie on the y axis

Planning and Moving in Dynamic Environments 175

(see Fig. [[)). Thus, mass X the x — position and mass x the z — position are
zero. Furthermore, the off-diagonal elements of the inertia tensor are zero and
only the moment of inertia around the z axis has significant contribution to the
dynamics.

Unlike before, now both the mass and shape of the manipulated object change
randomly and can take any value in a specific range. Again, we start by not
using the context estimates for control, i.e. we apply PD control. We then re-
peated the same experiments but using the context estimates for control to see if
the accuracy of our continuous context estimates is sufficient for motor control.
Experiments were executed for both cases, five times, using different reference
models for each of the runs. Figure [[3(a) shows the estimation accuracy of the
three context variables for the no control / control cases. The error measure
used is the nMSE on the target variable. We can see that the relative accuracy
is not significantly dfferent. Figure [[3(b-d) show a snapshot of the actual and
estimated contextual variables. The mass and y-position of the center of mass x
the mass were more accurately estimated than the moment of inertia around the
y axis. For the case that the context estimates were used for control, the average
ratio of feedback to composite command was 0.1428 with standard deviation
between the runs 0.0141.

3.4 Discussion

We have described a method of using a learned set of models for control of a sys-
tem with non-linear dynamics under continuously varying contexts. In addition
, we have refined the multiple model paradigm to be able to simultaneously deal
with learning dynamic models, use them for online switching control and also
efficiently bootstrap data separation for context unlabeled data. An important
component of this work is the ability to infer the continuous hidden context
that contains dynamic properties of the manipulated object, e.g. the mass of the
object as illustrated in the experiments.

4 Imitation Learning of Transition Priors

Recall the basic steps we discussed in the introduction: (1) What are the vari-
ables? (2) How do these depend upon each other? (3) What are the current goals
and constraints? (4) What posterior does this imply on actions?

While Sec.] addressed the fourth point of inference, the previous section
addressed the second point of learning dependencies between variables from data.
Extending this, we have also seen how statistical learning techniques can be used
to extract latent or hidden context variables of the problem - which addresses
the first point.

In this section, we address a problem which is related to the third point -
that of specifying the goals and constraints of the problem. Usually one would
consider this to be completely specified externally, e.g., by the engineer. However,
often we only have a certain desired behavior vaguely in mind and it becomes

176 S. Vijayakumar et al.

0.8 7
== Corect
] No control MOMENT — Estimated
Bl covo OF INERTIA 6.5f |-+ Rererence
06 AROUND
. THE X AXIS

o)

% 0.4 MASS
X

CENTER

OF MASS

0.2
0 4 - - - - g
Context variables 0 2000 4000 6000 8000 10000
Datapoint
(a) (b)
5.5 g 7
m— Correct © m— Correct
Esfimated = —— Estimated
w O |+ Rererence ® 6} | Reerence
4 £
€45 °
5 §] S B
g 4 5,
< ®©
835 T
x g T L
® =3
g 3 5
= €
2
25 g
o
2 =
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Datapoint Datapoint
(©) (d)

Fig.13. (a) nMSE of the three contextual variables while using and not using the
context estimates for control (b-d) Actual and estimated context variables, along with
the values of the context variables of the reference models that were used for deriving
the augmented model

rather cumbersome to rigorously define an objective function which will lead to
this desired behavior.

Recently there has been rising interest in an alternative to human designed
objective functions (alternately, goals and constraints). The idea is to extract,
from observed (teacher’s) behavior, appropriate qualities that can be utilized as
goals or constraint definitions. In our investigations, we focus on what is classi-
cally called the nullspace potential. As we have seen in the section on redundant
control, a given task constraint does not completely constrain the state trajec-
tory but leaves some unresolved degrees of freedom. This redundancy is most
easily resolved by regularization: either by using the W-pseudo inverse in clas-
sical control or, in the Bayesian view, by putting a prior P(¢) o exp{—3¢" Wq}
on the joint motion. However, more complex motions require better priors acting
on joint motion, e.g., to avoid joint limits. As we have seen, classically this often
realized by adding a nullspace movement h = —aW ~'V H(q) along the negative
gradient of the potential H(gq) — which has the Bayesian equivalent in putting a
prior P(¢) « exp{—3¢”Wq+ H(q)} on the joint motion (and linearizing H(q)

Planning and Moving in Dynamic Environments 177

around ¢). In this section, we discuss learning this potential-aka the transition
prior—from observed behavior and hence, being able to extract control policies
that generalize over multiple constraints.

4.1 Policies and Potential Functions

A common paradigm for the control of multibody systems such as high DOF
manipulators and humanoid robots is to frame the problem as a constrained
optimal control problem [T6/T7IT8|. In this paradigm control tasks are formulated
as constraints on the system such that some desired behaviour is achieved. In
simple systems such as anthropomorphic arms, these constraints often take the
form of constraints on the end-effector. For example, the constraints may require
that the effector follows a certain trajectory or applies some given force to an
object [19].

In a more generic setting, constraints may take a much wider variety of forms.
For example in walking or reaching, the constraint may be on the center of
mass or tilt of the torso of the walker to prevent over-balancing. Alternately,
in contact control problems such as manipulation or grasping, the constraint
may require that effectors (such as fingers) maintain a given position on the
surface of an object [20]. Also in systems designed to be highly competent and
adaptive, such as humanoid robots, behaviour may be subject to a wide variety
of constraints [2I], usually non-linear in actuator space, and often discontinuous.
Consider pouring a cup of water from a bottle; initially constraints will apply
to the orientation of the two hands as the water is poured. However once the
bottle is empty, the constraint on the orientation of the bottle can be released,
representing a discontinuous switch in the constraints on the policy.

The focus of this section is on modelling control policies subject to generic
constraints on motion, with the aim of finding policies that can generalise be-
tween different constraints. In general, learning (unconstrained) policies from
constrained motion data is a formidable task. This is due to (i) the non-convexity
of observations under different constraints, and; (ii) under any given set of con-
straints there is degeneracy in the set of possible policies that could have pro-
duced the constrained movements under observation [22]. However we will show
that despite these hard analytical limits, for a certain class of policies, it is
possible to find a good approximation of the unconstrained policy given obser-
vations under the right conditions. We take advantage of recent work in local
dimensionality reduction [23] to show that it is possible to devise a method that
(i) given observations under a sufficiently rich set of constraints, reconstructs
the fully unconstrained policy; (ii) given observations under an impoverished set
of constraints, learns a policy that generalizes well to constraints of a similar
class, and; (iii) given ‘pathological’ constraints will learn a policy that at worst
reproduces behaviour subject to the same constraints.

Constrained Policies. Following [24], we consider the learning of autonomous
kinematic policies
q=m(q(t), @) (44)

178 S. Vijayakumar et al.

fLame N1
N g
Lo . <

Ve BTN

AN

Fig. 14. Tllustration of two apparently different behaviours from the same policy: (a)
unconstrained movement (b) movement constrained such that the fingertip maintains
contact with a surface (black box) (c) the unconstrained (red) and constrained (black)
policy over two of the joints of the finger

where q is some appropriately chosen state-space, ¢ is the desired change in state
and « is a vector of parameters determining the behaviour of the policy. The goal
of direct policy learning is to approximate the policy (#4) as closely as possible
[24]. It is usually formulated as a supervised learning problem where it is assumed
that we have observations of ¢(t), q(t) (often in the form of trajectories), and
from these we wish to learn the mapping 7. In previous work this has been
done by fitting parameterised models in the form of dynamical systems [25]26],
non-parametric modelling [I8], and probabilistic Bayesian approaches [27128].

An implicit assumption found in direct policy learning approaches to date
is that the data used for training comes from behavioural observations of some
unconstrained or consistently constrained policy. By this it is meant that policy is
observed either with no constraints on motion, or where constraints exist, these
are static and consistent over observations. For example, consider the learning of
a simple policy to extend a jointed finger. In Fig.[I4h) the finger is unconstrained
and the policy simply moves the joints towards the zero (outstretched) position.
On the other hand, in Fig.[[db), an obstacle lies in the path of the finger, so that
the finger is constrained to move along the surface of this obstacle. The vector
field representation of the two behaviours is shown in Fig. [4k).

In standard approaches to direct policy learning [24I25]26], these two appar-
ently different behaviours would lead to the learning of two separate policies
for extending the finger in the two settings. However, the fact that the goals of
the two policies are similar (‘extend the finger’) suggests that in fact the move-
ment stems from the same policy under different constraints. Viewed like this,
instead of learning two separate policies we would rather learn a single policy
that generalizes over observations under different constraints.

Planning and Moving in Dynamic Environments 179

A constrained policy is one for which there are hard restrictions on the move-
ments available to the policy. Mathematically, we say given a set of constraints

A(q,t)qg=0 (45)
the policy is projected into the nullspace of those constraints

q(t) = N(q, t)muc(a(t)) (46)

where N(q,t) = (I-A(q,t)A(q,t)") is in general a non-linear, time-varying pro-
jection operator, A(q,t) is some matrix describing the constraint, AT is the pseu-
doinverse and I is the identity matrix. Constrained policies (#0]) are commonly
used for control of redundant degrees of freedom (DOFs) in high-dimensional
manipulators [TO/T7/I8], however the formalism is generic and extends to a wide
variety of systems, such as team coordination in mobile robots [29].

In this view, the best policy representation of the movements in Fig. [[4is the
unconstrained policy 7., since this is the policy that gives maximal information
about the behaviour. Given m,. we can reproduce behaviours such as in Fig. [[4]
(b) simply by applying the same constraints. Furthermore, if we can find a good
approximation of m,. we can even predict behaviour in situations where novel
constraints, unseen in the training data, apply.

However, learning the unconstrained policy from observations of constrained
movement is a non-trivial task. For example we may not know exactly what
constraints were in force at the time of observation. Furthermore there are sev-
eral analytical restrictions on what information we can hope to recover from
constrained motion data [22]. Despite this, we can efficiently uncover the un-
constrained policy for the important class of conservative policies. In the next
section, we characterise these analytical restrictions and show how these can be
side-stepped in the case of conservative policies.

Conservative Policies. Learning nullspace policies from constrained motion
data is in general a hard problem due to non-converity of observations and
degeneracy [22].

The non-convexity problem comes from the fact that between observations,
or even during the course of a single observation, the constraints may change,
resulting in inconsistencies in the training data. For example consider the policy
shown in Fig.[T4k). In any observation, the observed motion vector q(¢) may come
from the set of constrained (black) or unconstrained (red) set of vectors. At any
given point in the state space we may have multiple observations under different
constraints resulting in a set of q(t) at that point. In standard supervised learning
algorithms this causes problems since directly training on these observations
may result in models that average over the observations. The non-convexity
problem then is how to reconcile these multiple conflicting observations to give
a consistent policy.

The second problem is degeneracy in the data. This is the problem that for
any given set of observations projected into the nullspace of the constraints,

180 S. Vijayakumar et al.

there may be multiple candidate policies that could have produced that move-
ment. This is due to the fact that the projection matrix projects the policy onto
a lower dimensional manifold so that motion orthogonal to that manifold is ef-
fectively ‘zeroed out’. This means that the component of 7, in this direction is
undetermined by the observation. In effect the problem is ill-posed in the sense
that we are not given sufficient information about the unconstrained policy to
guarantee the true policy is learnt.

However, in recent work it was shown [1922] that for the important special
case of conservative policies it is possible to use data efficiently to uncover the
underlying policy. A conservative policy is a policy that can be described by
taking the gradient of a potential function H(q)

m(q) = —VqH(q). (47)

Conservative policies can be thought of as policies that greedily optimise the po-
tential function at every time step [30]. Such policies encode attractor landscapes
where their minima correspond to stable attractors; in the finger example, the
q = 0 point would correspond to such a minimum. Conservative policies are
commonly used in control of redundant DOF's in manipulators [T6IT7IIS].

4.2 Learning Nullspace Policies through Local Model Alignment

If the policy under observation is conservative, an elegant solution to solving
the non-convexity and degeneracy problems is to model the policy through its
potential function [T9)22] rather than modelling it directly. The advantage of this
is twofold. Firstly, due to the local linearity of the projection operator N(q,t)
the conservative policy (@) remains locally conservative in the lower dimensional
nullspace. We can use numerical line integration to estimate the form of the po-
tential along the trajectories [1922]. Secondly, the potential function is a scalar
function and thus gives a compact representation of the policy. Crucially, this
means that the problem of reconciling conflicting n-dimensional vector observa-
tions is reduced to finding a function H(q) where the (1-dimensional) prediction
is consistent at any given point q. Next, we propose a method for modelling the
potential on a trajectory-wise basis and for consolidating models from multiple
trajectories.

Estimating the Potential along Single Trajectories. A method to model
the potential along trajectory is to use an integration scheme such as the Euler
integration, which involves the first order approximation

H(qu1) ~ H(qe) + (a1 — ar)" N(ae)m(qe) (48)

Please note that for steps q; — q;+1 that follow the projected policy, (qi+1 —
qa:) = N(q:)7(q), so we can actually write

H(qes1) ~ H(qr) — |Qes1 —ae |2 (49)

Planning and Moving in Dynamic Environments 181

We use this approximation to generate estimates H (q;) of the potential along
any given trajectory qi,qs...qy in the following way: We set Hy = H(qy) to
an arbitrary value and then iteratively assign fliH = H,— | qir1—q; |2 for the
remaining points in the trajectory.

Note that an arbitrary constant can be added to the potential function without
changing the policy. Therefore, ‘local’ potentials that we estimate along different
trajectories need to be aligned in a way that their function value matches in
intersecting regions. We'll turn to this problem next.

Constructing the Global Potential Function. Let us assume we are given
K trajectories Qi = (qr1,qk2 - - - dkn,,) and corresponding point-wise estimates
H, = (Hkl, His ... ﬁka) of the potential, as provided from the Euler integra-
tion just described. In a first step, we fit a function model fi(q) of the potential
to each tuple (Qy, Hy), such that fi(q;) ~ Hy,. To keep things simple, we choose
a nearest-neighbour regression model, i.e.,

fe(a) = Hyi» i*:argmiin lq—awi | 2. (50)

Since we wish to combine the models to a global potential function, we need to
define some function for weighting the outputs of the different models. For the
nearest-neighbour algorithm, we choose to use a Gaussian kernel

1
wy(q) = exp —Fmiln\q—qkﬁz . (51)

From these weights we can calculate responsibilities

re(q) = ;{Uk(Q)

> im1 wi(q)

and a (naive) global prediction f(q) = Zszl r(q) fr(q) of the potential at q.

However, as already stated, the potential is only defined up to an additive
constant, and most importantly this constant can vary from one local model
to another. This means that we first have to shift the models by adding some
offset to their estimates of the potential, such that all local models are in good
agreement about the global potential at any number of states q.

We follow the methodology of non-linear dimensionality reduction [23] as used
to align multiple local PCA models into a common low-dimensional space. In
analogy to the PCA-alignment method [23], we augment our local potential mod-
els fi(+) by a scalar offset by, and solve for the corresponding objective function:

(52)

M K K
m=1k=1 j=1
] (53)
or, in a slightly shorter form,
B(b) = 5 3 rimtin (i + bk~ Fim — b3)°. (54)

m,k,j

182 S. Vijayakumar et al.

Here,), denotes a summation over the complete dataset, that is, over all points

from all trajectories (M = Zszl Ny). Solving the above objective function for
the optimal shift b,,; yields the alignment necessary for global learning. For
details of the solution for detecting the optimal alignment offset, readers are
referred to [31].

Since we restrict ourselves to using simple nearest neighbor (NN) regression for
the local potential models in this paper, the only open parameter of our algorithm
is 02, i.e., the kernel parameter used for calculating the responsibilities (GIl). A
too large choice of this parameter will over-smooth the potential, because the
NN regression model basically predicts a locally constant potential, but at the
same time trajectories will have relatively high responsibilities for even far apart
points x in state space. On the other hand, a too small value of 02 might lead to
weakly connected trajectories: If a particular trajectory does not make any close
approach to other trajectories in the set, the quick drop-off of its responsibility
implies that it will not contribute to the alignment error (based on pairs of
significant responsibility), which in turn implies that its own alignment — the
value of its offset — does not matter much. We again refer the reader to [31] for
details of the detecting and eliminating such outlier trajectories.

Learning the Global Model. After calculating optimal offsets b,,: and clean-
ing the dataset from outliers, we can learn a global model f(q) of the potential
using any regression algorithm. Here, we choose Locally Weighted Projection
Regression (LWPR) [9] because it has been demonstrated to perform well in
cases where the data lies on low-dimensional manifolds in a high-dimensional
space, which matches our problem of learning the potential from a set of trajec-
tories. As the training data for LWPR, we use all non-outlier trajectories and
their estimated potentials as given by the Euler integration plus their optimal
offset, that is, the input-output tuples

{(@un, i +07") | K€ K€ {1, Ni}], (55)

where K denotes the set of indices of non-outlier trajectories. Once we have
learned the model f(q) of the potential, we can take derivatives to estimate the
unconstrained policy #(q) = —Vqf(q) or use the potential function directly as
described in the beginning of Sec. @l

4.3 Experiments in Direct Policy Learning

To explore the performance of the algorithm, we perform experiments on data
from autonomous kinematic control policies [24] applied to three simulated
plants, including a physically realistic simulation of the 27 DOF humanoid robot
ASIMO [21]. However, to illustrate the key concepts involved, we first discuss
results from two simplified problemsﬁ controlled according to the same generic
framework.

2 In fact even these ‘simplified’ problems are relevant to constrained policy learning

in low dimensional task space representations, for example in end-effector space of
an arm.

Planning and Moving in Dynamic Environments 183

Selection of Smoothing Parameter. For simplicity, in all our experiments
we used the same heuristics for selecting the smoothing parameter o to match
the scale of typical distances in the datasets. In particular, we first calculated the
distances between any two trajectories k, j € {1... K} in the set as the distances
between their closest points

dkj:min{|qkn—qjm|2|n,m6{1...N}}, (56)
and also the distances to the closest trajectory
d" = min {dy; | j # k}. (57)

We then consider three choices for o2, which we refer to as ‘narrow’, ‘wide’ and
‘medium”:

02, = median {d}"" | k€ {1...K}} (58)
Oaig = median {d,;, | j,k € {1...K},j#k} (59)

Ugﬂed = \/ J%aro—iid' (60)

Toy Example. The toy example consists of a two-dimensional system with
a quadratic nullspace potential subject to discontinuously switching task con-
straints. Specifically, the potential function is given by

H(q) =q"Wq (61)

where W is some square weighting matrix which we set to 0.05I. Data was
collected by recording trajectories generated by the policy from a start state
distribution Qg. During the trajectories, the policy was subjected to random
1-D constraints:

A(q,?) = (a1, a2) = (62)

where the oy 2 were drawn from a normal distribution, a; = N(0,1). The con-
straints mean that motion is constrained in the direction orthogonal to the vector
« in state space. To increase the complexity of the problem, the constraints were
randomly switched during trajectories by re-sampling o twice at regular intervals
during the trajectory. This switches the direction in which motion is constrained
as can be seen by the sharp turns in the trajectories.

Figure shows an example of our algorithm at work for a set of K = 40
trajectories of length N = 40 for the toy system. The raw data as a set of tra-
jectories through the two-dimensional state space is shown in panel (a), whereas
panel (b) additionally depicts the local potential models as estimated from the
Euler integration prior to alignment. Each local model has an arbitrary offset
against the true potential so there are inconsistencies between the predictions
from each local model. Figure [[5[c) shows the trajectories after alignment, al-
ready revealing the structure of the parabola. At this point, the outlier detec-
tion scheme has identified three trajectories as being weakly connected to the

184 S. Vijayakumar et al.

SO,
00

(X
S
(6

NS

GEXIANY \ ‘t

s \\“: ‘: “"0 0 . ; N ‘“\\8““

\ N “‘““‘w“ \"l \Q \)

NS AA %77 i s
7 \

N \‘ A
N
R

9079099
\otiacth
) s

Fig. 15. Top: a) Toy data trajectories (2-D) and contour of true potential. Estimated
potential along the trajectories before (b) and after (c) alignment. Trajectories detected
as difficult to align ‘outliers’ are shown by light crosses. Bottom: Learnt (d) and true
(e) potential function after training on the aligned trajectories.

remaining set. In Fig. [[0a), we can see that the outliers are indeed the only
trajectories that do not have any intersection with neighboring trajectories. At
the ‘narrow’ length scale determined by the smoothing parameter (&), they
are hard to align properly, and need to be discarded before learning the global
model. Finally, Fig[TB(d) shows the global model f(q) of the potential that was
trained on the aligned trajectories, which is clearly a good approximation of the
true parabolic potential shown in Fig[IHl(e). For a more thorough evaluation, we
repeated this experiment on 100 datasets and evaluated

— the nMSE of the aligned potential, which measures the difference between
Hy,, + by, and the true potential H,

— the nMSE of the learnt potential, measuring the difference between f(-) and
H(')?

— the normalised unconstrained policy error (UPE), depending on the differ-
ence between 7=V f and r=VH,

Planning and Moving in Dynamic Environments 185

Table 3. Error and outlier statistics (nMSE over 100 data sets) for the experiment on
2-D toy data

Setup o [Alignment|Potential] UPE | CPE Outliers
(nMSE) | (nMSE) |(nMSE)|(nMSE)|discarded (%)
Parabola | narrow | 0.0039 0.0044 | 0.0452 | 0.0211 19.15
K=40 |medium| 0.0178 0.0168 | 0.0798 | 0.0186 0.25
N=40 wide 0.3494 0.3091 | 0.5177 | 0.0930 0
Sinusoidal| narrow | 0.0012 0.0022 | 0.1132 | 0.0482 52.67
K=40 |medium| 0.0634 0.0623 | 0.1359 | 0.0343 0.77
N=40 wide 0.6231 0.5653 | 0.8397 | 0.2538 0
Sinusoidal| narrow | 0.0006 0.0014 | 0.0550 | 0.0270 27.80
K=100 |medium| 0.0100 0.0097 | 0.0678 | 0.0255 0.15
N=100 | wide 0.6228 0.5367 | 0.6972 | 0.2304 0

— the normalised constrained policy error (CPE), which is the difference be-
tween N7 and N7, and finally
— the percentage of trajectories discarded as outliers.

We did so for our three different choices of 0 given in (G8HG0). We also repeated
the experiment using a sinusoidal potential function

H(q) = 0.1sin(q1) cos(gz) (63)

with the same amount of data, and using K = 100 trajectories of length N = 100
for each dataset.

Table [3] summarises the results. Firstly, we can see that the ‘wide’ choice
for o2 leads to large error values which are due to over-smoothing. Using the
narrow o2, we retrieve very small errors at the cost of discarding quite a lot
of trajectorie&ﬁ, and the medium choice seems to strike a reasonable balance
especially with respect to the UPE and CPE statistics.

Secondly, when comparing the results for the parabolic and sinusoidal poten-
tials, we can see that the latter, more complex potential (with multiple sinks)
requires much more data. With only 40 trajectories and 40 points each, most of
the datasets are too disrupted to learn a reasonable potential model. While at
the narrow length scale (4th row), on average more than half of the dataset is
discarded, even the medium length scale (5th row) over-smooths the subtleties
of the underlying potential.

Finally, the constrained policy error (CPE) is always much lower than the
UPE, which follows naturally when training on data containing those very move-
ment constraints. Still, with a reasonable amount of data, even the unconstrained
policy can be modelled with remarkable accuracy.

3 Please note that we also discard the outliers for evaluating the error statistics — we
can hardly expect to observe good performance in regions where the learnt model
f(q) has seen no data.

186 S. Vijayakumar et al.

Table 4. Error and outlier statistics for the three link arm (TLA) and whole body
motion (WBM) controller

Plant, o° Alignment|Potential] UPE | CPE Outliers
(nMSE) | (nMSE) |(nMSE)|(nMSE)|discarded (%)
TLA, narrow 0.2149 0.2104 | 0.3908 | 0.0526 18.07

TLA, medium | 0.6029 0.6012 | 0.6526 | 0.0386 0
WBM, narrow | 0.0007 0.0007 | 0.0896 | 0.0816 31.15
WBM, medium| 0.0016 0.0016 | 0.1424 | 0.0778 0

Three Link Arm. The two goals of our second set of experiments were (i) to
characterise how well the algorithm scaled to more complex, realistic constraints
and (ii) to characterise how well the learnt policies generalised over different
constraints. For this we used a planar three-link arm (TLA) with revolute joints
and unit link lengths. Using the TLA allowed us to set up a much richer variety
of constraints, such as constraints on kinematic variables for example the end-
effector (hand) position and orientation. Here we report results for a set of
intuitively appealing constraints, that is a set of planar constraints on the hand.
This kind of constraint occurs in contact-based behaviour [20], for example in
writing, where the hand must maintain contact with a planar surfacd] such as a
table top.

Data was collected by recording K =100 trajectories of length N =100 from a
random distribution of start states. For ease of comparison with the 2-D system,
the nullspace policy was chosen to optimise the same quadratic potential (GII).
The policy was constrained through the matrix

A(qv t) = ﬁTJhand(q) (64)

where i is a unit vector normal to the hand-space plane and J,4,4(q) is the hand
Jacobian. The constraints (64]) are highly nonlinear in the joint space where the
policy is operating. Finally, to simulate observations under different constraints,
the orientation of the hand-space plane was changed for each trajectory by draw-
ing i from a uniform random distribution of two-dimensional unit vectors Dy.
We then used our algorithm to learn the nullspace potential. The results of
learning are shown in Table [l

Generalising over Unseen Constraints

Our first test was to look at the performance of the algorithm in finding a
policy that generalises over unseen constraints. To do this we defined two new
‘test’ constraints and evaluated the CPE using these constraints in place of the
training data constraints. The test constraints chosen were (i) an unseen planar
constraint on the hand (i.e. we set i = figes; Where fyesy is drawn from Dy, and;
(ii) constraining the hand orientation during motion. This latter constraint is

4 Such constraints also need not be linear, and can be generalised to any shaped
surface.

Planning and Moving in Dynamic Environments 187

Table 5. Constrained policy nMSE for unseen constraints on the three-link arm. Values
are meants.d. over 100 data sets.

Constraint CPE
Training 0.0526 + 0.0192
Unseen hand-space plane|0.0736 4 0.0492
Hand Orientation 0.1053 + 0.0524
Unconstrained 0.3908 + 0.2277

qualitatively similar to the training data constraints (i.e., a 1-D constraint on
the hand) but produces visibly different behaviour, in terms of hand- and joint-
space trajectories.

Table[H gives a comparison of the normalised policy error evaluated on the un-
constrained policy, the constrained policy, and the policy subject to the two test
constraints over 100 data sets. The first thing to note is that the algorithm shows
good performance for the CPE evaluated on the training data constraints, indi-
cating a minimum guarantee on performance, namely that the learnt potential
will at worst be consistent with the training data. Secondly, the progression of
error over the two unseen constraints coincides with the extent to which they are
similar to the constraints in the training data. This confirms our intuition that
though we can generalise over different constraints, this becomes increasingly
difficult as these depart from those observed. Finally, the unconstrained policy
error indicates that for some reason the algorithm is having problems finding the
fully unconstrained policy in this case. We investigate this issue more closely in
the next section.

Unconstrained Policy Error. The reason for the poor performance of the
algorithm in predicting the unconstrained policy (ref. Table [Bl) becomes clear if
we analyse the effect of the constraints on the movement of the arm. Fig [I6](a)
shows the training data trajectories through the three joints of the arm. It is
clear that owing to the constraints on the arm, the policy no longer reaches the
point attractor at q = 0, but instead reaches a line in joint space (shown in
black). This ‘line attractor’ represents the minimum of the potential that can
be reached without breaking the constraints. Furthermore, it seems that away
from this line, there are few points where trajectories come close to one another
or intersect. This means that the algorithm gets little or no information about
how the potential changes in this direction.

This is confirmed by comparing how the UPE and CPE changes as we move
along the attractor, and radially outward from it. To demonstrate this, we eval-
uated the potential nMSE, UPE and CPE on data contained within different
regions of the state space. Firstly, we looked at how the error changed on data
points contained between two planes normal to the line at distance d from the
point attractor g = 0 (Fig[I6l(b), dashed lines), and plotted it with increasing d
(Fig[I6l(d)). We can see that close to q = 0, the potential nMSE and UPE start
low but increase rapidly for large d. On the other hand the CPE stays relatively
constant over the entire set.

188 S. Vijayakumar et al.

0.6

0.5

& 04 T
=
<03 H
0.2
0.2
0.1 Nnt Nrt
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Radius (rad) Radius (rad)
(d) (e)

Fig.16. (a) Trajectories in state-space for the TLA subject to random planar con-
straints on the hand. (b) and (c) show projections onto the first two joints of the arm,
and also indicate the line attractor (solid black line). We sampled the nMSE at in-
creasing distances along the line (b) and radially outward from it (c). Plots (d) and
(e) depict the cumulative nMSE of the potential H, policy 7, and constrained policy
(N7) as a function of the distance measures from (b) and (c), respectively.

Secondly, we looked at how the errors change as we move radially outward. For
this, we evaluated errors on data contained within a cylinder of radius [centred
on the line attractor (Fig[I6lc), dashed lines). Fig[I6l(e) shows the change in error
with increasing radius [. Again the CPE remains constant. This time, however,
the potential nMSE and UPE are high even at small [. This indicates that the
points at the two ends of the line are contributing most of the error.

We can therefore say that the seemingly poor performance of our algorithm
on this problem is due to the adverse constraints in the training data. The
constraints do not permit motion in the direction of the line attractor, so we
cannot hope to recover the potential function along that direction. However, the
good generalisation of the learnt policy over unseen constraints indicates that
the algorithm is performing reasonably well despite these adverse conditions.

ASIMO Data. Using a realistic simulation [21] of the humanoid robot ASIMO
(refer Fig. [[T7), we tested the scalability of our approach for learning in high
dimensions. We collected data from the nullspace policy subject to a mix of
constraints, including random planar constraints (in hand-space) on the two

Planning and Moving in Dynamic Environments 189

(a)

Fig.17. (a) The Humanoid ASIMO, (b) front view and (c) top view of a realistic
VRML simulation of the robot with full kinematics and dynamics

hands of the robot as in ([64]), and constraints that fixed the position of the hands
in hand-space. The latter occurs in a variety of behaviours. For example in co-
operative or bi-manual manipulation tasks, one of the hands may be constrained
to hold the manipulated object in position, while the nullspace policy acts to
move the rest of the system into a comfortable posture [21].

Table [shows the learning performance of the algorithm subject to these
constraints. The potential and the unconstrained policy errors are remarkably
good and even out-perform those of the lower dimensional systems. We attribute
this remarkable performance to the constraints on motion being much lower
dimensional than the 27 DOFs of the policy. This means that there is a high
chance that many of the trajectories reach the point attractor of the policy,
which simplifies the alignment and the learning of the potential.

4.4 Conclusion

In this section, we demonstrated a novel approach to direct learning of conserva-
tive policies from constrained motion data. The method is fast and data-efficient,
and scales to complex constraints in high-dimensional movement systems. The
core ingredient is an algorithm for aligning local models of the potential, which
leads to a convex optimisation problem. Ultimately, the ability to learn the
nullspace potential depends on the constraints. Given a pathological set of con-
straints, one can never hope to recover the potential. However, we suggest a
paradigm whereby motion data under different constraints can be combined to
learn a potential that is consistent with the observations. With a reasonably
rich set of constraints, one can recover the nullspace potential with high ac-
curacy, and then, use this to generalise and predict behaviour under different
constraints.

190 S. Vijayakumar et al.

Acknowledgements. This work was supported by the Microsoft /Royal Acad-
emy of Engineering Senior Research Fellowship to SV, the EU FP6 SENSOPAC
grant to SV, the EPSRC HONDA CASE studentship to MH, the Greek State
PhD scholarship to GP and the DFG Emmy Noether grant to MT.

References

1. Peters, J., Mistry, M., Udwadia, F.E., Cory, R., Nakanishi, J., Schaal, S.: A unifying
framework for the control of robotics systems. In: IEEE Int. Conf. on Intelligent
Robots and Systems (IROS 2005), pp. 1824-1831 (2005)

2. Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robust-
ness for robot manipulator control. Journal of Dynamic Systems, Measurement
and Control 108 (1986)

3. Baerlocher, P., Boulic, R.: An inverse kinematic architecture enforcing an arbitrary
number of strict priority levels. The Visual Computer (2004)

4. Todorov, E.: Optimal control theory. In: Doya, K. (ed.) Bayesian Brain: Proba-
bilistic Approaches to Neural Coding, pp. 269-298. MIT Press, Cambridge (2006)

5. Platt, R., Fagg, A., Grupen, R.: Nullspace composition of control laws for grasping.
In: Proceedings of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems,
Lausanne, Switzerland (2002)

6. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning
motor primitives. In: Advances in Neural Information Processing Systems, vol. 15,
pp. 1523-1530. MIT Press, Cambridge (2003)

7. Schaal, S., Peters, J., Nakanishi, J., Ijspeert, A.: Control, planning, learning, and
imitation with dynamic movement primitives. In: Workshop on Bilateral Paradigms
on Humans and Humanoids, IEEE Int. Conf. on Intelligent Robots and Systems,
Las Vegas, NV (2003)

8. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., S., Schaal, K.M.: Learning
from demonstration and adaptation of biped locomotion with dynamical move-
ment primitives. In: Workshop on Robot Learning by Demonstration, IEEE Int.
Conf. on Intelligent Robots and Systems (2003)

9. Vijayakumar, S., D’Souza, A., Schaal, S.: Incremental online learning in high di-
mensions. Neural Computation 17, 2602-2634 (2005)

10. Klanke, S., Vijayakumar, S., Schaal, S.: A library for locally weighted projection
regression. Journal of Machine Learning Research (2008)

11. Roweis, S., Ghahramani, Z.: 6. In: Haykin, S. (ed.) Learning Nonlinear Dynamical
Systems using the EM Algorithm, pp. 175-220. Wiley, Chichester (2001)

12. Briegel, T., Tresp, V.: Fisher scoring and a mixture of modes approach for approx-
imate inference and learning in nonlinear state space models (1999)

13. de Freitas, J., Niranjan, M., Gee, A.: Nonlinear state space estimation with neural
networks and the em algorithm. Technical report (1999)

14. Sciavicco, L., Siciliano, B.: Modelling and Control of Robot Manipulators. Springer,
Heidelberg (2000)

15. Craig, J.J.: Introduction to Robotics: Mechanics and Control. Pearson Prentice
Hall, London (2005)

16. Liégeois, A.: Automatic supervisory control of the configuration and behavior of
multibody mechanisms. IEEE Trans. Systems, Man, and Cybernetics SMC-7, 245—
250 (1977)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Planning and Moving in Dynamic Environments 191

Khatib, O.: A unified approach for motion and force control of robot manipulators:
The operational space formulation. IEEE Journal of Robotics and Automation RA-
3(1), 43-53 (1987)

Peters, J., Mistry, M., Udwadia, F.E., Nakanishi, J., Schaal, S.: A unifying frame-
work for robot control with redundant DOFs. Autonomous Robots Journal 24,
1-12 (2008)

Howard, M., Gienger, M., Goerick, C., Vijayakumar, S.: Learning utility sur-
faces for movement selection. In: IEEE International Conference on Robotics and
Biomimetics (ROBIO) (2006)

Park, J., Khatib, O.: Contact consistent control framework for humanoid robots.
In: Proc. IEEE Int. Conf. on Robotics and Automation (ICRA) (May 2006)
Gienger, M., Janssen, H., Goerick, C.: Task-oriented whole body motion for hu-
manoid robots. In: 5th IEEE-RAS International Conference on Humanoid Robots,
2005, December 5, 2005, pp. 238-244 (2005)

Howard, M., Vijayakumar, S.: Reconstructing null-space policies subject to dy-
namic task constraints in redundant manipulators. In: Workshop on Robotics and
Mathematics (RoboMat) (September 2007)

Verbeek, J.J., Roweis, S.T., Vlassis, N.: Non-linear CCA and PCA by alignment
of local models. In: Advances in Neural Information Processing Systems, vol. 16.
MIT Press, Cambridge (2004)

Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learn-
ing by imitation. In: The Neuroscience of Social Interaction, pp. 199-218. Oxford
University Press, Oxford (2004)

Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning
motor primitives. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neu-
ral Information Processing Systems, vol. 15, pp. 1523-1530. MIT Press, Cambridge
(2003)

Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dy-
namical systems in humanoid robots. In: Proc. IEEE International Conference on
Robotics and Automation (ICRA), pp. 1398-1403 (2002)

Grimes, D.B., Chalodhorn, R., Rao, R.P.N.: Dynamic imitation in a humanoid
robot through nonparametric probabilistic inference. In: Proceedings of Robotics:
Science and Systems (RSS 2006). MIT Press, Cambridge (2006)

Grimes, D.B., Rashid, D.R., Rao, R.P.N.: Learning nonparametric models for prob-
abilistic imitation. In: Advances in Neural Information Processing Systems (NIPS
2006), vol. 19. MIT Press, Cambridge (2007)

Antonelli, G., Arrichiello, F., Chiaverini, S.: The null-space-based behavioral con-
trol for soccer-playing mobile robots. Proceedings, pp. 1257-1262 (2005)
Nakamura, Y.: Advanced Robotics: Redundancy and Optimization. Addison Wes-
ley, Reading (1991)

Howard, M., Klanke, S., VIjayakumar, S.: Learning nullspace potentials from con-
strained motion. In: Proc. IEEE International Conference on Intelligent Robots
and Systems (IROS) (2008)

	Planning and Moving in Dynamic Environments
	Introduction
	Planning and Control
	Redundant Control as Optimization Problem
	Redundant Control as an Inference Problem
	Planning as an Inference Problem
	Examples for Extended BMC
	Conclusion

	Learning Dynamics under Multiple Contexts
	Statistical Learning of Forward and Inverse Dynamic Models
	Inference of a Discrete Latent Context Variable
	Augmented Model for Continuous Contexts
	Discussion

	Imitation Learning of Transition Priors
	Policies and Potential Functions
	Learning Nullspace Policies through Local Model Alignment
	Experiments in Direct Policy Learning
	Conclusion

	References

