

AD

TECHNICAL REPORT NO. S 1006

PLANNING AND SCHEDULING

2583

JOBS ON A COMPUTER

USING CPM

OPERATIONS RESEARCH BRANCH OPERATIONS IMPROVEMENT DIVISION

May 1969

9N 11560 Irwin F. Goodman **Reproduced From Best Available Copy** MANAGEMENT AND DATA SYSTEMS DIRECTORATE U.S. ARMY TANK AUTOMOTIVE COMMAND Warren, Michigan Distribution of this document is unlimited. 20020730215

The citation of commercial products in this report does not constitute an official indorsement or approval of such products.

Distribution of this document is unlimited.

Citation of equipment in this report does not constitute an official indorsement or approval of the use of such commercial hardware.

> DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT.

TECHNICAL REPORT NO. S 1006

PLANNING AND SCHEDULING

JOBS ON A COMPUTER

USING CPM

Irwin F. Goodman

Distribution of this document is unbimited.

May 1969

OPERATIONS RESEARCH BRANCH OPERATIONS IMPROVEMENT DIVISION MANAGEMENT & DATA SYSTEMS DIRECTORATE US ARMY TANK AUTOMOTIVE COMMAND

ABSTRACT

This report presents by example the application of the critical path method (CPM) for the planning and scheduling of jobs on a computer. It provides a step by step preparation and analysis of a network representation of a computer system application. Also, included is a glossary of relevant terms and a fairly comprehensive bibliography on the subject of CPM/ PERT and scheduling and sequencing.

FOREWORD

The author wishes to acknowledge Mr. Angelo Constance, ADP Computer Operations, for providing preliminary network representations of a few select computer system applications.

PLANNING AND SCHEDULING JOBS ON A COMPUTER USING CPM

TABLE OF CONTENTS

Ab	st:ra	et	j	
Fo	rewc	ord	ii	
I	Int	roduction	1	
II	Ste	ps in the Critical Path Method Procedure	2	
III	Example of the Critical Path Method Procedure			
	a.	Basic Data for CPM Network Representation	3	
	b.	Network Diagram Representation	. 6	
	C.	Tabulation of Analysis Results	17	
	đ.	Establish a Feasible Scheduling Sequence	2]	
	e.	Interpretation and Evaluation	30	
VI	Glo	ssary of Relevant Terms, Concepts, and Techniques	32	
v .	Bib	liography	35	
	a.	CPM/PERT Books	35	
	b.	CPM/PERT Technical Literature	36	
	c.	Scheduling and Sequencing Books	38	
	đ.	Scheduling and Sequencing Technical Literature	39	
AP	PEND	IX A	·	
		orithm - to Minimize the Number of Work tions for a Given Cycle Time	46	

I. Introduction

This study, the planning and scheduling of jobs on computers using the critical path method was prompted by the need of routine file maintenance during the cyclic computer processing of an inventory management system. Concurrently, with the conduct of this study, preliminary network representations are being developed by the computer activity for select systems applications. The purpose of this report is to present by example the application of CPM for the planning and scheduling of jobs on a computer; thereby, providing the computer activity and higher management with an in-advance working example of CPM planning and scheduling. Based upon a preliminary network representation of one of the system applications, the MILSTRIP/MILSTRAP process, a further refined and modified network has been prepared for demonstrating the CPM techniques. It should be emphasized that the network used in this report has been prepared primarily to demonstrate CPM rather than describe a particular system application. Consequently, it has been distorted and somewhat simplified for the sake of demonstration.

II. Steps in the Critical Path Method Procedure

1. Define various computer jobs (activities).

2. Establish precedence relationship for various computer jobs (activities).

3. Prepare network diagram representation.

4. Estimate expected time to perform each activity in network.

5. Analyze network with CPM analysis techniques.

a. Establish critical path(s).

b. Determine earliest and latest start time, earliest and latest finish time, and float (slack) time for all activities, especially file maintenance jobs.

6. Interpret results.

7. Prepare a table showing for each activity the subsequent sequence time and activities that must immediately preceed it.

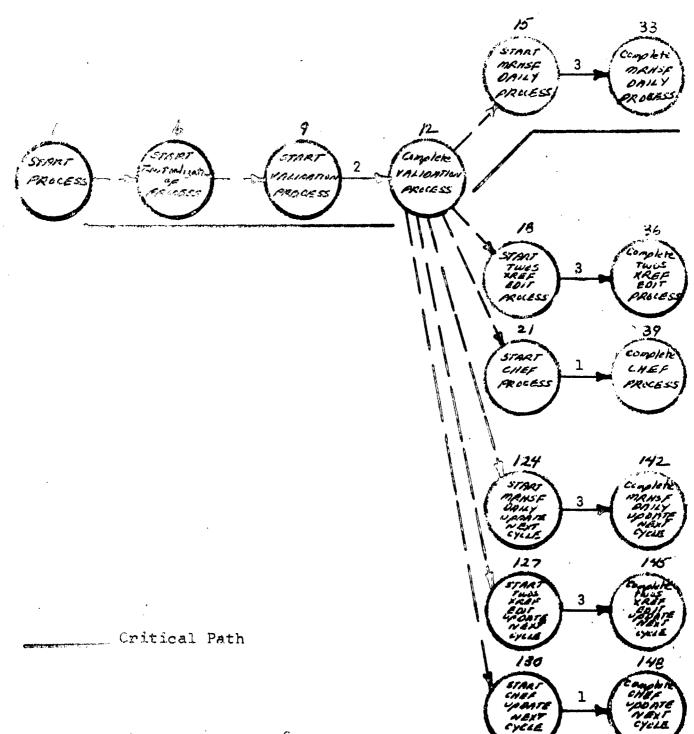
8. Establish several feasible alternative sequences for assigning and scheduling activities.

9. Evaluate alternative sequences.

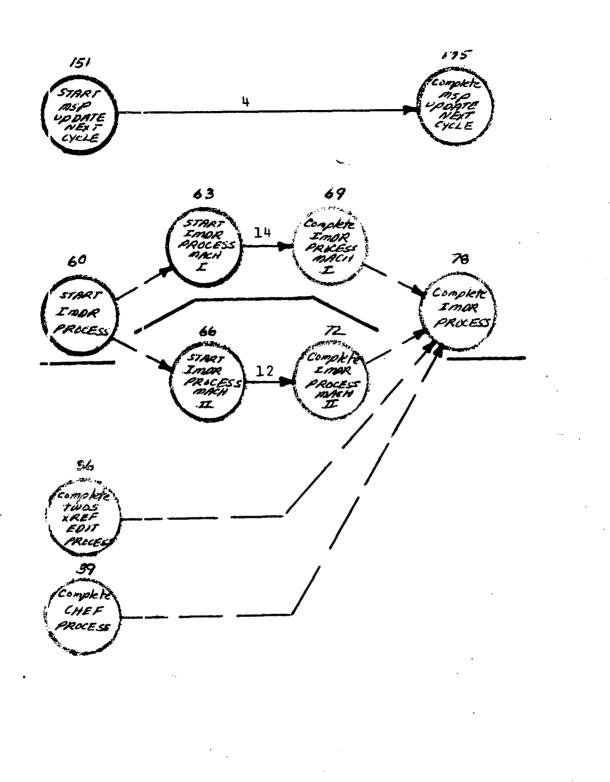
a. Basic Data for CPM Network Representation (steps 1-2)

(1) Events by Number and Description

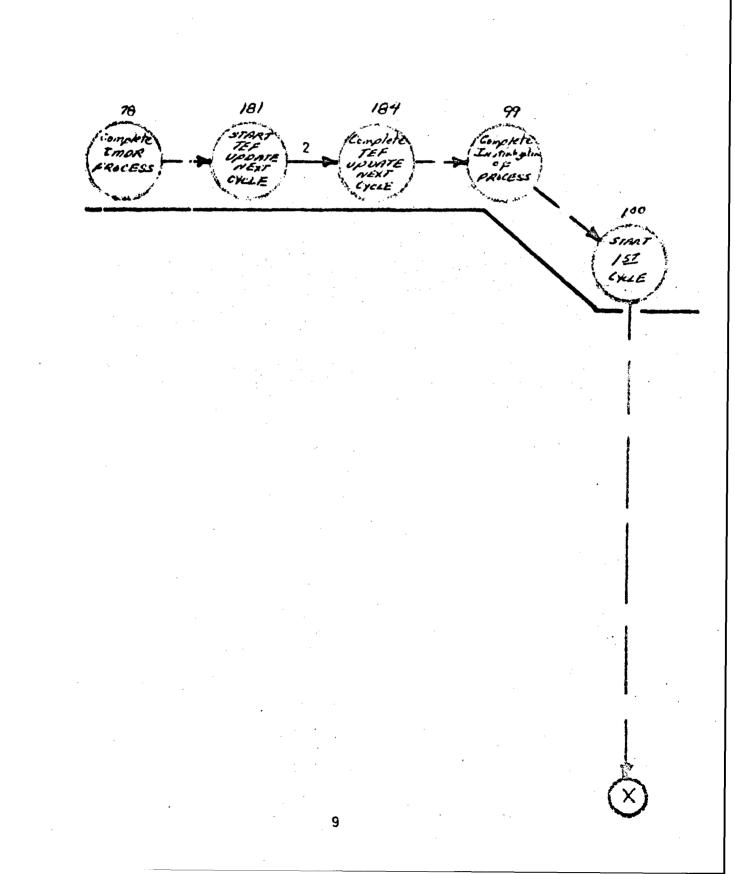
Event No.	Event Description	Immediately Event	Preceding No's
1	Start Process	· · · · ·	، میں دیکھی میں ایک می
6	Start Initialization of Process	1	: -
9; 109; 209	Start Validation Process	6; 100;	200
12; 112; 212	Complete Validation Process	s 9; 109;	209
15; 115; 215	Start MRHSF Daily Process	12; 142,	112; 242, 212
18; 118; 218	Start TWOS XREF Edit Proces	ss 12; 112,	145; 212, 245
21; 121; 221	Start CHEF Process	12; 112,	148; 212, 248
33; 133; 224	Complete MRHSF Daily Proces	ss 15; 115;	215
36; 136; 236	Complete TWOS XREF Edit Process	18; 118;	218
39; 139; 239	Complete CHEF Process	21; 121;	221
54; 154; 254	Start MSP Process	33; 175,	133; 275, 233
57; 157; 257	Complete MSP Process	54; 154;	254
60; 160; 260	Start IMDR Process	57, 33; 1 257, 233	57, 133;
63; 163; 263	Start IMDR Process on Machine I	60; 160;	260
66; 166; 266	Start IMDR Process on Machine II	60; 160; 2	60
69; 169; 269	Complete IMDR Process on Machine I	63; 163; 2	63
72; 172; 272	Complete IMDR Process on Machine II	66; 166; 2	66
78; 178; 278		69, 72, 36 172, 136, 1 272, 236, 2	39; 266,

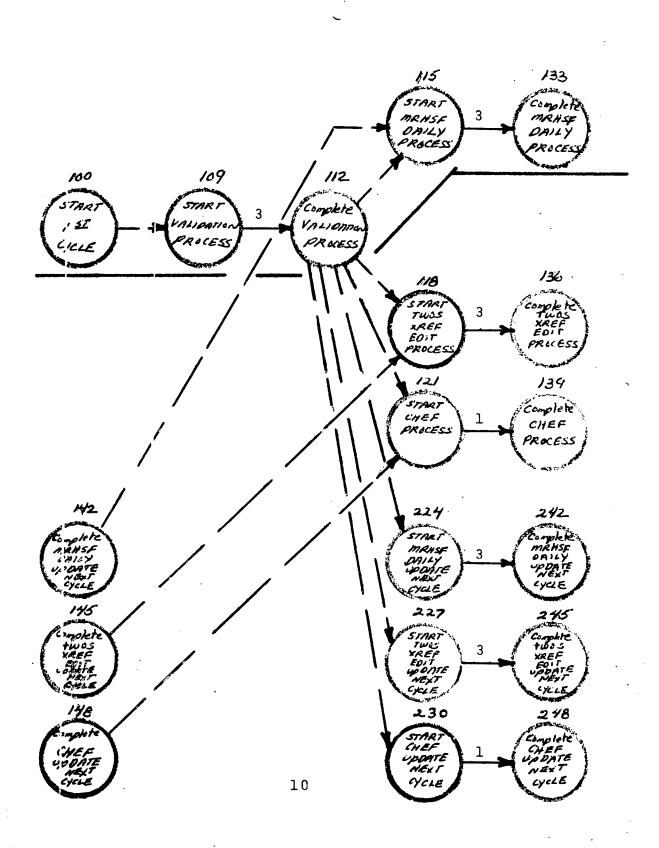

Event No.	I Event Description	Immediately Proceding Event No's
9.9	Complete Initialization of Process	184
100; 200	Start 1st; 2nd Cycle	9; 284, 100
124; 224	Start ARHSF Daily Update Next Cycle	12; 112
127; 227	Start TWOS KREF Edit Update Next Cycle	2 12; 112
130 ; 230	Start CHEF Update Next Cycle	12; 112
142; 242	Complete MPHSF Daily Update Next Cycle	2 124; 224
145; 245	Complete TMOS XREE Edit Update Next Cycle	127; 227
148; 248	Complete CHEF Update Next Cycle	130; 230
151; 251	Start MSP Update Next Cycle	e 33; 133
175; 275	Complete MSP Update Next Cycle	151; 251
181; 281	Start TEF Update Next Cycle	e 78; 199
184; 284	Complete TEF Update Next Cycle	181; 231
199; 239	Complete 1st? 2nd Cvcle	178; 278
338	End Process	299

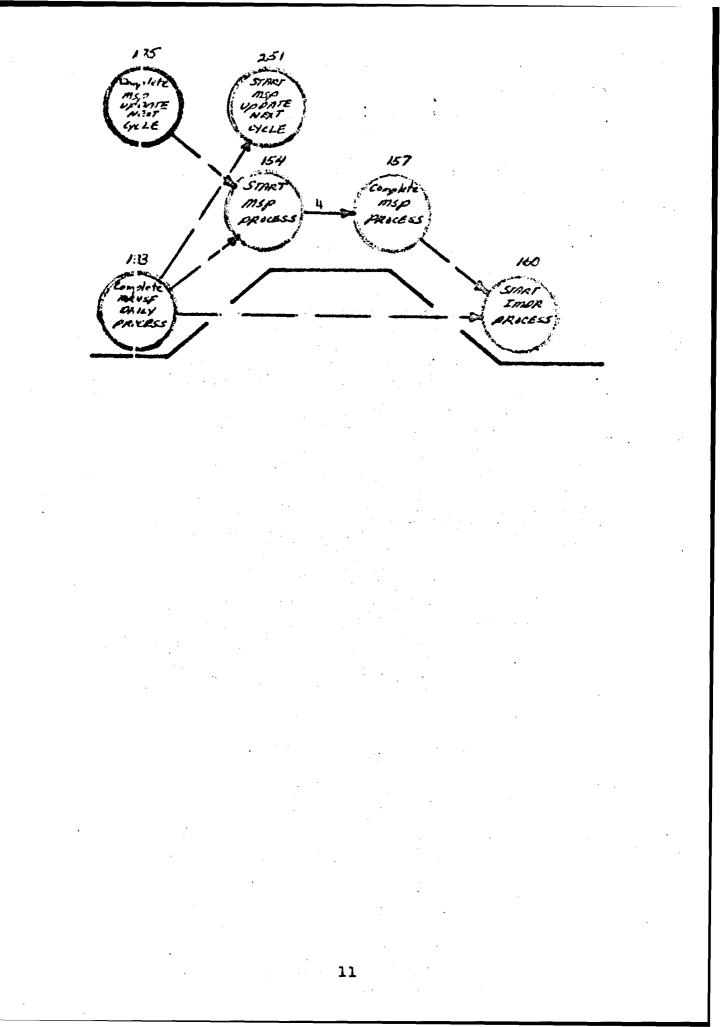
(2) Activity by Number, Description Duration and Immediately Preceding Activities (Steps 1, 2 and 7)

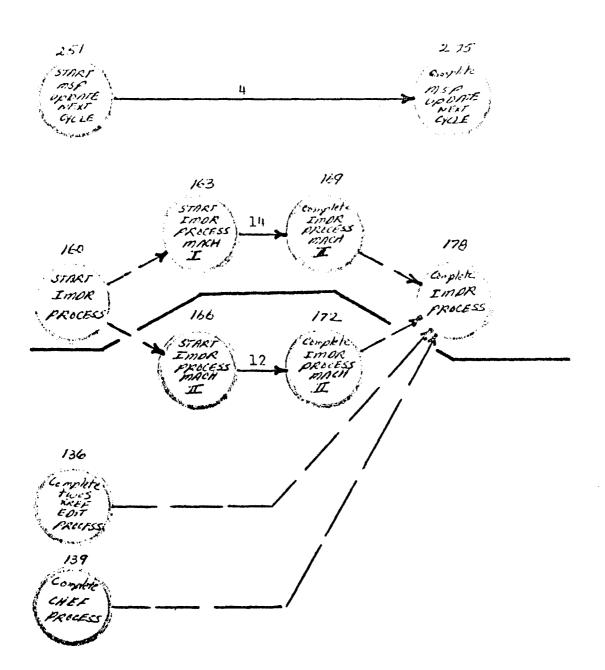

Activity No.	Activity Du	tivity ration Hours)	Immediately Preceding Activities
9-12; 109-112; ?09-212	Validation Process	2	-; 191-184; 231-284, 100-200
15-33; 115-133; 215-233	MRHSF Daily Process	3	9-12; 124-142, 109-112; 224-242, 209-212
18-36; 118-136; 218-236	TWOS XREF Edit Process	3	9-12; 109-112, 127-145; 209-212, 227-245
21-39; 121-139; 221-239	CHEF Process	1	9-12; 109-112; 130-143; 209-212, 230-243
54-57; 15+-157; 254-257	MSP Process	4	15-33; 115-133, 151-175; 215-233, 251-275
63-69; 163-169; 263-269	IMDR Process Machine I	14	54-57; 154-157; 254-257
66-72; 166-172; 266-272	IMDR Process Machine I	I 12	54-57; 154-157; 254-257
100-200	Time Restraint Between Cycle Starts	24	181-184
124-142; 224-242	MRHSF Daily Update Next Cycle	£ 3	9-12; 109-112
127-145; 227-245	TWOS XREF Edit Update Next Cycle	.3	9-12; 109-112
130-148; :30-248	CHEF Update Next Cycle	1	9-12; 109-112
151-175; :51-275	HSP Update Next Cycle	łt – s	15-33; 115-133
181-184; 281-284	TEF Update Next Cycle	2	63-69, 66-72, 18-36, 21-39; 163-169, 166-172, 119-136.

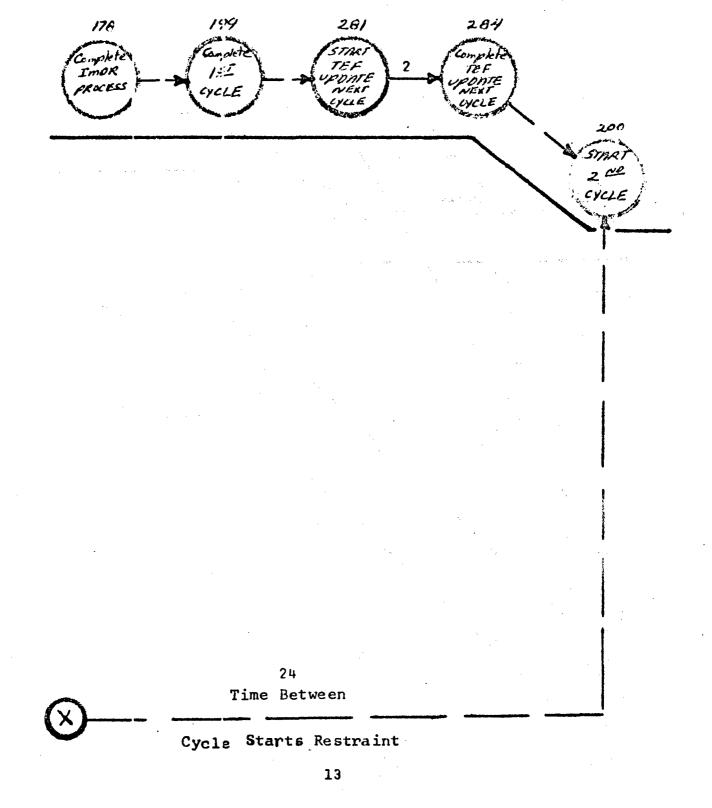
166-172, 118-136, 121-139

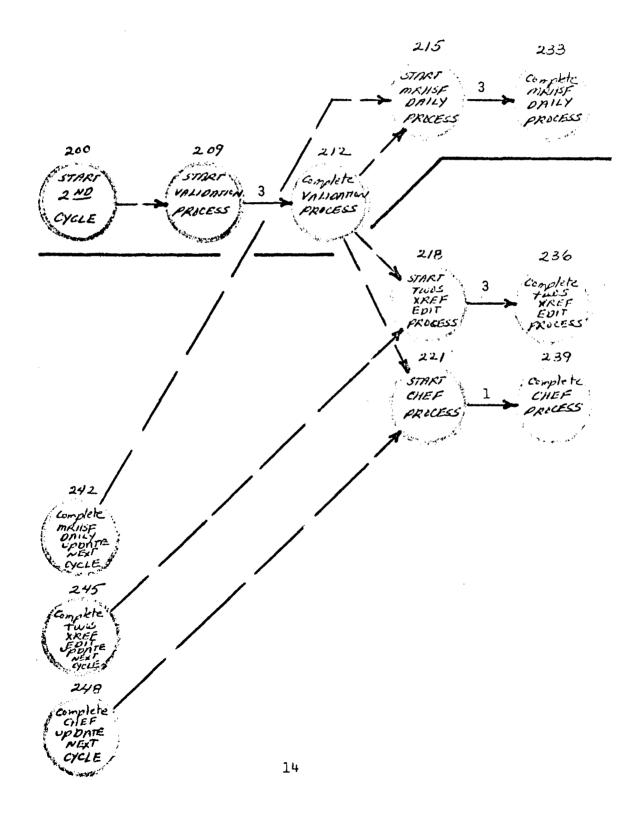

b. Network Diagram Representation (Steps 3-5)

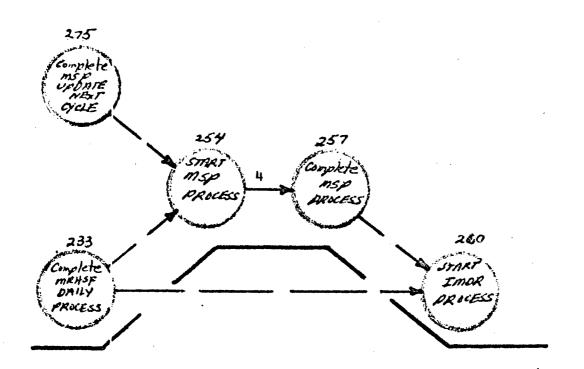


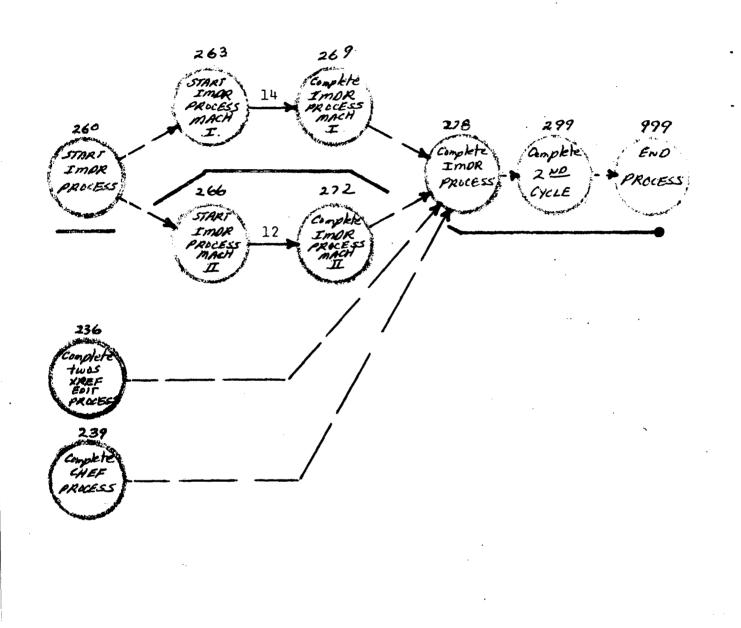

151 START ASP UPANTE NEXT VCLE C. W. S. 54 57 . START Complete MSp PROCESS 4 msp PROCESS 60 33 Complete MRHSF OAILY PROCESS START I MOR PROCESS . 7




È.







c. Tabulation of Analysis Results (Step 5b)

The following input data was subjected to a CPM Analysis by use of a computer time-sharing terminal. The output data from the analysis consisted of the critical path(s), activity (i,j), activity duration (DUR), earliest start time (ES), earliest finish time (EF), latest start time (LS), latest finish time (LF), total float-slack time (TF), Level (LEV), cost when applicable (\$).

(1) Input Data

,00 i С 13 27 27 7 3 , n_00, , 100,0,0 115,0, nó 230 . 0 ,3 **,1**39,**1,00,**224 133 251 1,00 133 154 0 00 133 100 139 178 0 00,242 00,24 215.0 00,157,100,0, ,00,100,17 $\begin{array}{c} 160 & 166 & 0 & 0 & 163 & 169 & 14 & 00 & 157 & 160 & 0 & 00 & 160 & 163 & 0 & 00 \\ 172 & 173 & 0 & 05 & 275 & 254 & 0 & 00 & 170 & 125 & 0 & 00 & 199 & 231 & 0 & 00 \\ 231 & 234 & 2 & 00 & 234 & 200 & 0 & 0 & 209 & 209 & 0 & 0 & 205 & 212 & 2 & 00 \\ 233 & 254 & 0 & 00 & 233 & 260 & 0 & 00 & 236 & 236 & 3 & 00 & 239 & 275 & 0 & 90 \\ 254 & 257 & 4 & 00 & 257 & 260 & 0 & 00 & 260 & 263 & 0 & 0 & 250 & 260 & 0 & 0 \\ 263 & 269 & 14 & 00 & 266 & 272 & 12 & 00 & 268 & 276 & 0 & 00 & 260 & 272 & 277 & 0 & 00 \\ 273 & 298 & 0 & 00 & 299 & 999 & 0 & 00 \\ 1 & 999 & -1 & 0 \end{array}$

(2) Output Results

CPH2 13:08 TUF. 03/04/69.

DAR TRØNTH ALGØL.

WHAT ORL. FOR SZRT AND HOW MANY ACT. 79,0

WHAT COL. FOR SORT AND HOW MANY ACT. 78,94

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

11 and Earth 23. 6112

(2) Output Results (cont...)

$\begin{array}{c} 26\\ 11\\ 12\\ 36\\ 43\\ 61\\ 73\\ 93\\ 92\\ 23\\ 45\\ 43\\ 22\\ 23\\ 47\\ 50\\ 81\\ 55\\ 26\\ 60\\ 4\\ 42\\ 79\\ 95\\ 22\\ 42\\ 57\\ 70\\ 73\\ 66\\ 47\\ 71\\ 72\\ 73\\ 73\\ 66\\ 77\\ 70\\ 73\\ 66\\ 47\\ 71\\ 72\\ 73\\ 73\\ 73\\ 73\\ 73\\ 73\\ 73\\ 73\\ 73\\ 73$	70 70 73 73 46 47 47 71 72	40 40 40 44 44 44 44 44	38 39 6 20 34 4 5 6 18 19 20 4 5 6 18 19 20 21 22 6 7 8 4 5 6 18 19 20 21 22 6 7 8 4 5 6 18 19 20 21 22 4 5 6 18 19 20 20 21 22 4 5 6 18 19 20 20 34 4 5 6 18 19 20 20 34 4 5 6 18 19 20 20 34 5 6 18 19 20 20 34 5 6 18 19 20 20 34 5 6 18 19 20 20 20 34 5 6 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
9 21 24 46 59 71 75 35 2 5 7 30 2 3 2 5 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\begin{array}{c} 11\\ 11\\ 23\\ 36\\ 46\\ 16\\ 73\\ 9\\ 39\\ 20\\ 23\\ 59\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111123223232323636236482434326161261732737329943434459594202013202318232318232318242422202223232320232320242420255520262621262621262621272722272722295252525222494922424240424540676740677040707373404646444647447171727344	11112911232102323211363622336482244343225616123761732387373239994202013420231852323186454518184548181943481820222042223205232323206474720184743201950512020484820204848202048482020515520215555202226262162727226494922184952221952525222204242404454540545454054545405454540545454054545405

STOCK FORM NO. SIIG

(3) Summary of Pertinent Analysis Results Relevant to Routine File Maintenance

Activity	Description	Proces Time	Earliest Start Start (TS)	
124-142 224-242	URHSF Daily Update Next Cycle	3	2 27	24 49
127-145 227-245	TWOS XREF Edit Update Next Cycle	3	2 27	11 2 6 7
130-148 230-248	CHEF Update Next Cycle	. 1	2 2 7	46 71
151-175 251-275	HSP Update Next Cycle	4	5 31	26 51
181-184 281-284	TEF Update Next Cycle	2	23 48	23 48

d. Establish a Feasible Scheduling Sequence (Steps 7-8)

There are many techniques and procedures available for sequencing jobs on machines in the literature. The stateof-the-art is such today that none of them are sufficient for obtaining the optimum sequence for scheduling jobs on a computer nor are they practical for implementation. Therefore, the following technique is presented for the sake of demonstration rather than recommendation. It is a fairly simple technique but will require evaluation before it should be implemented. The technique was developed by Hedgeson and Bernie*.

The technique concerns itself with the balancing of assembly operations in order to keep the unassigned or idle time required to complete an assembly operation to a minimum. Two formulations of the problem are presented in the referenced technical paper:

(1) Minimize the number of work stations for a given cycle time.

(2) Min.mize the cycle time for a given number of work stations.

The technique for the first formulation is the one that is demonstrated in the following. The Algorithm (set of rules) for this technique are included in Appendix A.

*Reference: Hedgeson, W.B. and Bernie, D.P., "Assembly Line Balancing Using the Ranked Positional Weight Technique", The Journal of Industrial Engineering, Volume XII, No. 6, pp 394-398, 1961

(1) Establish a table depicting by activity, the latest finish time (LF), subsequent sequence time (MAX Subsequent Sequence Time - LF), Process Time (DUR), and activities that must immediately precede it (see table 1).

(2) Reorder preceding data table in order of decreasing "subsequent-sequence time" (see table 2).

(3) Determine a desirable cycle time. Since in the current example, there are 143 computer hours required to complete two cycles and assuming four computers available, an optimum cycle time would be 143/(4)(2)=143/8=18 Hours. A review of table 1 reveals that the activity with the longest duration has a duration of 14 hours, so a cycle time of 14 hours is the minimum that can currently be achieved with this data set. Since the optimum cycle time of 18 hours is greater than 14 hours, the maximum activity duration time, the 18 hours can be used when assigning the activities to the computer.

If the maximum activity duration time had been larger than the optimal cycle time, then the maximum activity duration time of 14 hours would have to be used as the lower limit for cycle time values when assigning activities to the computer.

In the following, a possible assignment and sequence of operations was determined assuming a 22 hour and 18 hour cycle time. The solutions have been presented both in a tabular form and also a Gantt Chart.

TABLE 1

Latest Finish Time, Subsequent Sequence Time, Process Time,

and Preceding Activities.

Activity	Activity Number	Latest Finish Time (HR)	Subsequent Sequence Time	Process Time (HR)	Activities that Aust Immediately Precede
9-12	9	2	71	2	
15-33	15	5	68	3	9
18-36	18	23	50	3	9
21-39	21	23	50	1	<u>9</u>
54-57	54	29	64	<u>т</u> ц	15
63-69	63	23	50	14	54
66-72	66	23	50	12	54
109-112	109	27	46	2	131
115-133	115	30	43	3	124, 109
118-136	118	48	2.5	3	109, 127
121-139	121	48	25	1	109, 130
124-142	124	27	46	3	<u></u> <u> </u>
127-145	127	45	28	3	9
130-148	130	47	26	1	Ĵ
151-175	151	30	43	4	15
154-157	154	34	3,9	14	115, 151
163 - 169	163	48	25	14	154
166-172	166	48	25	12	154
181-184	181	25	48	2	63, 66, 18, 21
209-212	209	52	21	2	231
215-233	215	5 5	18	3	224, 209
218 - 236	218	73	0	3.	209, 227
221-239	221	73	0	1	209, 230
224-242	224	52	21	3	109
227 <u>-</u> 245	227	70	3	3	109
230-248	230	72	1	1 '	109
251-275	251	55	18	4	115
254-257	2 5 4	- 59	14	4	215, 251
263-269	263	73	0	14	254
266-272	266	73	0	12	254
281-284	281	50	23	2	163, 166, 118, 121

TOTAL:

143 HR

(4) Following the rules outlined in the Algorithm, reference Appendix A, and referring to Table 2, the activities are assigned to the computers. Essentially, attention is given to the operations that must precede and activities having the greatest subsequent processing time are assigned first. The solutions, possible assignment and sequence of operations, are presented on Tables 3 and 4 for the 18 hour cycle time and on Tables 5 and 6 for the 22 hour cycle time.

Activity Number	Subsequent Sequence Time (HR)	Process Time (HR)	Activities That Must Immediately Precede
9	71	2	_
15	68	3	9
54	64	4	1.5
· 18	50	3	<u>9</u>
21	50	1	g .
63	50	14	54
66	50	12	54
181	48	2	63, 66, 18, 21
109	46	2	181 -
124	46	3	9
115	43	3	124, 109
151	43	4	15
154	39	14	115, 151
127	28	3	9
130	26	1	9
118	25	3	109, 127
121	25	1	109, 130
163	25	14	154
166	25	12	154
281	23	2	163, 166, 118, 121
209	21	2	281
224	21	3	109
215	18	3	224, 209
251	18	4	115
254	14	4	215, 251
227	3	3	109
230	1	1	109
218	0	3	209, 227
221	0	1	209, 230
263	0 0	14 12	254 254

TABLE 2

Subsequent Sequence Times and Preceding Activities in Order of Decreasing Subsequent Sequence Time.

ТA	BT	Æ	3

Possible Assignment and Sequence of Activities

(18 Hours Cycle Time)

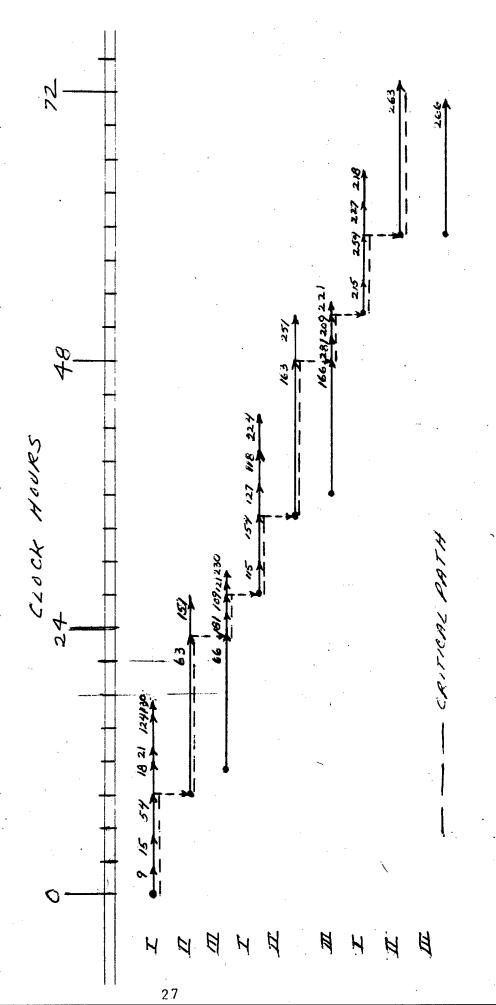

Station Number/ Computer (Numler)	Activities Assigned	Time (Hours) Assigned - Remaining (-)
(I)	9, 15, 54, 18, 21, 124, 130	2, 3, 4, 3, 1, 3 (16), (13), (9), (6), (5), (2) 1 (1)
II (II)	63, 151	14, 4 (4), (0)
III (III)	66, 181, 109, 121, 230	12, 2, 2, 1, 1 (6), (4), (2), (1), (0)
VI (I)	115, 154, 127, 118, 224	3, 4, 3, 3, 3, 3 (15), (11), (8), (5), (2)
(II)	163, 251	14, 4 (4), (0)
VI (III)	166, 281, 209, 221 .	12, 2, 2, 1 (6), (4), (2), (1)
VII (I)	215, 254, 227, 218	3, 4, 3, 3 (15), (11), (8), (5)
VIII (II)	263	14 (4)
IX (111)	266	12 (6)

TABLE 4

Possible Assignment and Sequence of Activities

(18 Hours Cycle Tive)

GANTT CHAPT

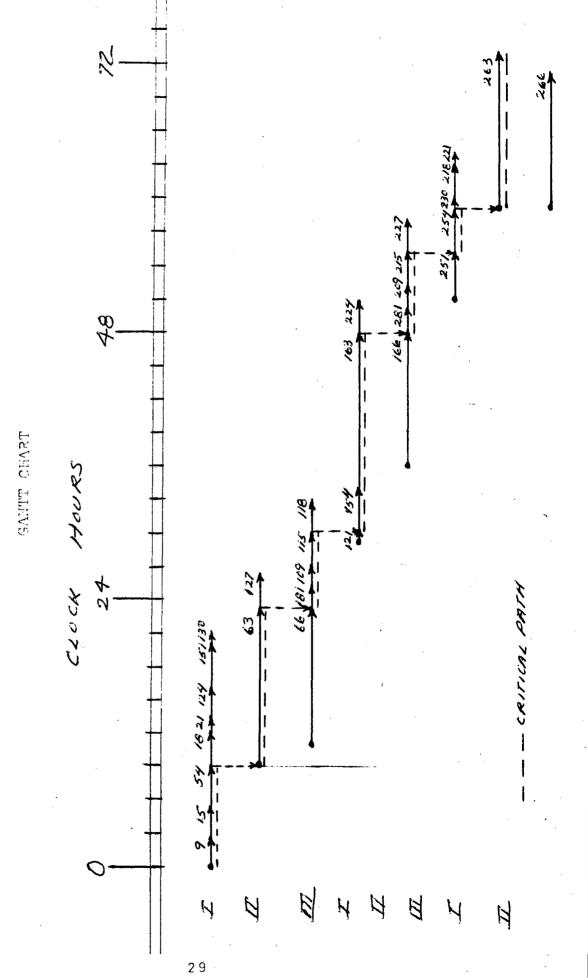


TABLE 5

Possible Assignment and Sequence of Activities

(22 Hours Cycle Time)

Station Number/ Computer (Number)	• Activities Assigned	Time (Hours) Assigned - Remaining (-)
[(I)	9, 15, 54, 18, 21, 124	2, 3, 4, 3, 1, 3 (20), (17), (13), (10), (2), (6)
(1)	151, 130	¹⁴ , 1 (2), (1)
II (II)	63, 127	14, 3 (8), (5)
III (III)	66, 181, 109, 115, 118	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
IV (I)	121, 154, 163, 224	1, 4, 14, 3 (21), (17), (3), (0)
(II)	166, 281, 209, 215, 227	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
VI (III)	251, 254, 230, 218, 221	4, 4, 1, 3, 1 (18), (14), (13), (10), (9)
VII (I)	263	14 (8)
VIII (II)	266	12 (10)

TAPLE 6

Possible Assignment and Secuence of Activities

(22 Hours Cycle Tine)

c. Interpretation and Evaluation (Steps 6 and 9)

The interpretation and evaluation has been deferred at this time until the above technique has been applied to a real network with real data. Some of the performance parameters under consideration for such an evaluation are as follows:

(1) Performance Parameters

Ouantity of late jobs Total late time Total early time (slack time) Total process time Total maintenance time Maximum late time per late job Minimum late time per late job Quantity of on-time jobs Total quantity jobs

(2) Optimization Criteria

Many criteria are possible for optimization.

The performance, of course, will vary according to which criteria is optimized. A few examples of possible criteria are as follows:

(a) Minimize quantity of late jobs.

- (b) Minimize quantity of high priority jobs that are late.
- (c) Minimize total late time for jobs.

(d) Minimize quantity of jobs on a computer. (Essentially will minimize scheduled idle time between job change-overs).

III. Example of the Critical Path Method Procedure (cont...)

(e) Minimize quantity of late jobs first and minimize total late time for jobs second.

(f) Minimize "make-span": Determine a schedule that causes the latest-finishing job to be completed at the earliest possible time.

(g) Given n jobs, m machines, for each machine there is a maximum available time. What jobs should be assigned to which machine in order to minimize the idle time on each of the machines. Assume certain jobs can be processed only on certain (not all) machines.

CRITICAL PATH METHOD CPM (Project Planning and Scheduling)

IV. Glossary of Relevant Terms, Concepts, and Techniques Gantt Chart: Planning and scheduling are presented simultaneously and are inseparable.

<u>CPM</u>: Planning and scheduling can be done independently. <u>Planning</u>: The act of stating what activities must occur in a project and in what order these activities must take place.

<u>Scheduling</u>: The act of producing project time tables in consideration of the plan and costs.

<u>Planning</u>: Concerns itself with the structual characteristics of a project. It describes the precedence among project jobs, operations, or activities and is represented and facilitated by the use of a graphic technique, the arrow diagram or network representation.

<u>Network</u>: Is a graphical representation of a project plan, showing the interrelationships of the various activities. <u>Cyclical Network</u>: Is a network which has a number of cycles or group of activities. Such a network can be composed of several condensed networks.

Detailed Network: Is a network in which activities are defined on a level of considerable detail thereby resulting in a relatively large network.

Condensed Network: Is a summarized version of a detailed network.

Glossary of Relevant Terms, Concepts, and Techniques (cont...) <u>Activity</u>: Is a task or job within a project that cannot begin until certain other activities are completed. They involve a time - or other resource consuming element of the project. <u>Event</u>: Is the beginning or ending of an activity. <u>Activity on Node Network</u>: Is a network in which the activities are graphically represented by the nodes. The arrows are used to represent only the dependency relationships among the nodes. <u>Event Oriented Network</u>: Is a network in which the activities are graphically represented by arrows. The nodes represent either start or complete events. At merge and burst points, dummy activities are introduced in the network to avoid ambiguities.

<u>Critical Activity</u>: Is an activity that if delayed will affect all other activities following it and will thus affect the completion of the overall project. If they are not completed at given points in time an overall project delay is incurred. (They have no float).

<u>Critical Path(s)</u>: One or more contiguous path(s) of critical activities through any project arrow diagram.

Float: A certain amount of leeway or float is associated with all the non-critical activities.

<u>Timely Control</u>: Of a project requires awareness of both the critical path(s) and the amount of leeway or float available for each activity.

Types of Float: Three types can be identified: total float, free float, and independent float.

Blossary of Relevant Terms, Concepts, and Techniques (cont...) <u>Total Activity Stock (or Float)</u>: It is the amount of time that the activity completion time can be delayed without affecting the earliest start or occurrence time of any activity or event on the network critical path. It is computed by taking the latest allowable time of the activity's successor event minus the earliest finish time of the activity in question. (The largest of the three floats).

Free activity Slack (or Float): It is the amount of time that the activity completion time can be delayed without affecting the earliest start or occurrence time of any other activity or event in the network. Computed by taking the earliest expected time of the activity's successor event minus the earliest finish time of the activity in guestion.

Independent Float: Is the leeway available no matter where preceeding or succeeding activities are placed within their intervals of float.

<u>Ready-Time</u>: The earliest time at which processing can begin. <u>Processing-Time</u>: The amouth of time required on the machine. <u>Due-Time</u>: The time by which completion is desired.

V. Bibliography

A. CPM/PERT Books

- Biegel, John E., <u>Production Control, A Quantitative</u> <u>Approach</u>, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.
- Entelek, Inc., Programmed Instruction in PERT/CPM, Entelek, Inc., Newburyport, Mass., 1962.
- Horowitz, Joseph, <u>Critical Path Scheduling, Manage-</u> <u>ment Control Through CPM and PERT</u>, The Ronald Press Co., New York, N.Y., 1967.
- Martino, R.L., <u>Project Management and Control</u>, <u>Finding the Critical Path, Volume 1</u>, American Management Association, New York, N.Y., 1964.
- Moder, Joseph J. and Phillips, Cecil R., <u>Project</u> <u>Management with CPM and PERT</u>, Reinhold Publishing Corp., New York, N.Y., 1964.
- Robertson, D.C., <u>Project Planning and Control</u>, <u>Simplified Critical Path Analysis</u>, CRC Press, Cleveland, Ohio, 1967.
- Schaffer, L.R., Ritter, J.B., and Meyer, W.L., <u>The</u> <u>Critical-Path Method</u>, McGraw-Hill Book Co., New York, N.Y., 1965.

B. CP4/PERT Technical Literature

- Aerospace Corporation, <u>Program Management Information</u> <u>Systems</u>, the Operational PERT System, DDC# AD-272-951, 100pp, August 1961.
- Christensen, Borge M., <u>GE 225 and CPM For Precise Project</u> <u>Planning</u>, CPB 184, General Electric Computer Dept., Phoenix, Arizona, 15pp, July 1961.
- Control Data Huston Data Center, <u>Critical Path Method</u> (CPM) Program for Control Data Computers, Applications Program #9, Control Data Corp., Minneapolis, Minnesota, 54pp, November 1964.
- Control Data, <u>Control Data 6000 Series Computer Systems</u>, <u>PERT General Information Manual</u>, Pub. No. 60133300, Control Data Corp., Palo Alto, California, 9pp, August 1965.
- Control Data, <u>Control Data 6000, Series Computer Systems</u>, <u>PERT/TIME Reference Manual</u>, Pub. No. 60133600, Control Data Corp., Palo Alto, California, 50pp, May 1966.
- Hall, Elizabethe H., <u>PERT (Program Evaluation and Review</u> <u>Technique), A Report Bibliography prepared by DDC</u>, DDC #AD-297-800, 45pp, March 1963.

- RCA Management Science, RCA 501 PERT Program Evaluation Review Technique, 95-03-007, Radio Corporation of America Electronic Data Processing, Camden, N.J., 48pp March 1962.
- RCA Management Science, <u>Network Scheduling Concepts</u> for PERT Applications, 95-03-010, Radio Corporation of America Electronic Data Processing, Camden, N.J., 28pp, August 1962.
- Roper, Don E., Critical-Path Scheduling, <u>The Journal of</u> <u>Industrial Engineering</u>, Volume 15, No. 2, pp 51-59, March 1964.
- U.S. Airforce, <u>PERT-Cost System Description Manual</u>, Volume III, DDC #AD-436-255, 100pp, December 1963.

C. Scheduling and Sequencing Books

Conway, R.W., 'axwell, W.L., and Miller, L.W., Theory

of Scheduling, Addison-Wesley Co., Reading, Mass., 1967.

D. Scheduling and Sequencing Technical Literature Azpeitia, A.C., <u>A Linear Programming Scheduling Model</u>, DDC #AD-447-536, 9pp, August 1964.

- Balas, Egon, <u>Machine Sequencing via Disjunctive Graphs</u>: <u>An Implicit Enumeration Algorithm</u>, DDC #AD-666-810, 16pp, February 1968.
- Brooks, George H. and White, Charles R., An Algorithm for Finding Optimal or Near Optimal Solutions to the Production Scheduling Problem, <u>The Journal of</u> <u>Industrial Engineering</u>, Volume 16, No. 1, pp34-40, January 1965.
- Burgess, A.R. and Hillabrew, Variation in Activity Level on a Cyclical Arrow Diagram, <u>The Journal of Industrial</u> Engineering, Volume 13, No. 2, pp 76-83, March 1962.
- Campbell, Herbert George, <u>A Heuristic Solution Technique</u> for Near Optimal Production Schedules, DDC #AD-633-205, 102pp, May 1966.
- Charnes, A. and Cooper, W.W., A Network Interpretation and a Directed Subdual Algorithm for Critical Path Scheduling, <u>The Journal of Industrial Engineering</u>, Volume 13, No. 4, pp 213-219, July 1962.

- Clark, Charles E., The Optimum Allocation of Resources Among the Activities of a Network, <u>The Journal of</u> <u>Industrial Engineering</u>, Volume 12, No. 1, pp 11-17, January 1961.
- Conway, Richard W., Johnson, Bruce M., and Maxwell, William L., An Experimental Investigation of Priority Dispatching, <u>The Journal of Industrial</u> Engineering, Volume 11, No. 3, pp 221-229, May 1960.
- Conway, Richard W., Priority Dispatching and Work-in-Process Inventory in a Job Shop, <u>The Journal of</u> <u>Industrial Engineering</u>, Volume 16, No. 2, pp 123-130, March 1965.
- Conway, Richard W., Priority Dispatching and Job Lateness in a Job Shop, <u>The Journal of Industrial Engineering</u>, Volume 16, No. 4, pp 228-237, July 1965.
- Denaro, E.V. and Mitten, L.G., <u>Elements of Sequential</u> <u>Decision Processes</u>, DDC #AD-642-055, 35pp, October 1966.
- Dudek, Richard A. and Teuton Jr., Ottis Foy, Development of M-Stage Decision Rule for Scheduling n Jobs through M-Machines, <u>The Journal of Industrial</u> Engineering, Volume 12, No. 3, pp 471-497, May 1964

- Dudek, Richard A. and Ghare, P.M., Make-Span Sequencing on M-Machines, <u>The Journal of Industrial Engineering</u>, Volume 18, pp 131-134, January 1967.
- Elmaghraby, S.E., Generalized Activity Networks, <u>The</u> Journal of Industrial Engineering, Volume 17, No. 11, pp 621-631, November 1966.
- Fabrycky, W.J. and Shamblin, J.E., A Probability Based Sequencing Algorithm, <u>The Journal of Industrial</u> Engineering, Volume 17, No. 6, pp 308-312, June 1966.
- Fisher, Carolyn and Nemhauser, George L., Multicycle Project Planning, <u>The Journal of Industrial Engineering</u>, Volume 18, No. 4, pp 278-284, April 1967.
- Glassey, C.R., <u>Scheduling Several Products on one Machine</u> to Minimize Change-Overs, DDC #AD-642-278, 15 pp, October 1966.
- Greenberger, Martin, <u>The Priority Problem</u>, DDC #AD-625-728, 28 pp, November 1965.
- Hart, Louis W., Activity Sequencing A Bibliography, <u>The</u> <u>Journal of Industrial Engineering</u>, Volume 14, No. 4, pp 220-222, July 1963.

- Helgeson, W.B. and Bernie, D.P., Assembly Line Balancing Using The Ranked Positional Weight Technicue, <u>The</u> <u>Journal of Industrial Engineering</u>, Volume 12, No. 6, pp 394-398, November 1961.
- Ignall, Edward and Schrage, Linus, Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems, <u>The Journal of the Operations</u> <u>Research Society of America</u>, Volume 13, No. 3, pp 400-412, May 1965.
- Ignall, Edward J., A Review of Assembly Line Balancing, <u>The Journal of Industrial Engineering</u>, Volume 16, No. 4, pp 244-254, July 1965.
- Jackson, James R., <u>Two One-Machine Scheduling Problems</u>, DDC #AD-147-551, December 1954.
- Ligtenberg, Eugene, Minimal Cost Sequencing on n Grouped and Ordered Jobs on m Machines, <u>The Journal of</u> <u>Industrial Engineering</u>, Volume 17, No. 4, pp 217-223, April 1966.
- Manne, Alan S., <u>On the Job Shop Scheduling Froblem</u>, DDC #AD-225-472, 7pp, May 1959.
- Mansoor, E.M., Assembly Line Balancing An Improvement on the Ranked Positional Weight Technique, <u>The Journal</u> <u>of Industrial Engineering</u>, Volume 15, No. 2, pp 73-77, March 1964.

- McDermott, George J., Controlling and Evaluating Data Processing Operations, <u>The Journal of Industrial</u> <u>Engineering</u>, Volume 17, No. 1, pp 22-24, January 1966.
- Mellor, P., A Review of Job Shop Scheduling, <u>Operational</u> <u>Research Quarterly</u>, Volume 17, No. 2, pp 161-171, Juen 1966.
- Miller, Louis W., <u>Selection Disciplines in a Single-Server</u> <u>Queueing System</u>, DDC #AD-641-357, 143pp, October 1966.
- Mitten, L.G., A Scheduling Problem, An Analytical Solution Based Upon Two Machines, n Jobs, Arbitrary Start and Stop Logs, and Common Sequence, <u>The Journal of</u> <u>Industrial Engineering</u>, Volume 10, No. 2, pp 131-135, March 1959.
- Moodie, C.L. and Mandeville, D.E., Project Resource Balancing by Assembly Line Balancing Techniques, <u>The</u> <u>Journal of Industrial Engineering</u>, Volume 17, No. 7, pp 337-383, July 1966.
- Nelson, Ross T., Job Shop Scheduling: An Application of Linear Programming, DDC #AD-147-549, 15pp, March 1954.

Rothkopf, Michael H., Scheduling with Random Service Times, Journal of the Institute of Management Sciences, pp 707-713, May 1966.

Rowe, Alan J., Toward a Theory of Scheduling, <u>The</u> <u>Journal of Industrial Engineering</u>, Volume 11, No. 2, pp 125-136, March 1960.

- Salveson, Melvin E., A Computational Technique for the Scheduling Problem, <u>The Journal of Industrial</u> <u>Engineering</u>, Volume 13, No. 1, pp 30-41, January 1962.
- Trilling, Donald R., Job Shop Simulation of Orders that are Networks, <u>The Journal of Industrial Engineering</u>, Volume 17, No. 2, pp 59-71, February 1966.
- VanHorn, Richard L. and Ginsberg, Allen S., <u>Production</u> <u>Scheduling and Control: Proceedings of a Joint Air</u> <u>Force - Rand Symposium</u>, DDC #AD-619-680, 116pp, July 1965.
- Wester, Leon and Kilbridge, Maurice D., Heuristic Line Balancing: A Case, <u>The Journal of Industrial</u> Engineering, Volume 13, No. 3, pp 139-149, May 1962.
- Wilder, Wallace G., <u>An Investigation of the Scheduling</u> <u>Aspects of Mulitprogramming</u>, DDC #AD-482-241, 87 pp, 1964.

Young, H.H., and Moodie, C.L., A Heuristic Method of Assembly Line Balancing for Assumptions of Constant or Variable Work Element Times, <u>The Journal of</u> <u>Industrial Engineering</u>, Volume 16, No. 1, pp 23-29, January 1965.

APPUNDIK A

ALGORITH'

To Minimize the Number of Work Stations for a Given Cycle Time

(Hedgeson and Bernie)

1. Select the work unit with the highest positional weight and assign it to the first work station. (It is assumed that one would not try to balance the line to a cycle time smaller than the time of the largest work element on the line, therefore the first assignable work unit can always be assigned to an empty work station.)

2. Calculate the unassigned time for the work station by calculating the cumulative time of all work units assigned to the station and subtract this sum from the cycle time.

3. Select the work unit with the next highest positional weight and attempt to assign it to the work station after making the following checks:

a. Check the list of already assigned work units. If the "immediate precedent" work unit has been assigned, precedence will not be violated; preceed to step 3b. If the "immediate precedent" has not been assigned proceed to step 4.

b. Compare the work unit time with the unassigned time. If the work unit time is less than the work station unassigned time, assign the work unit and recalculate unassigned time. If the work unit time is greater than the unassigned time, proceed to step 4.

APPENDIX A (cont...)

4. Continue to select, check, and assign if possible until one of two conditions has been met:

a. All work units have been assigned.

b. No unassigned work unit remains that can satisfy both the precedence requirement and the "less than the unassigned time" requirement.

5. Assign the unassigned work unit with the highest positional weight to the second work station, and proceed through the preceding steps in the same manner.

6. Continue assigning work units to work stations until all work units have been assigned. At that time a solution to the assembly line balancing problem will have been found.

OPERATIONS RESEARCH STUDY

DISTRIBUTION LIST

	ber of pies
Commanding General US Army Tank-Automotive Command Warren, Michigan 48090 ATTN: Chief of Staff (AMSTA-CS)	1
Management and Data Systems Directorate (AMSTA-S) Research Library Branch (AMSTA-BSL)	1 3
Commander Defense Documentation Center Cameron Station Alexandria, Virginia 22314	20
Commanding General US Army Materiel Command ATTN: Dir of Management Systems & Data Auto (AMCMS-R)	1
US Army Logistic Management Center ATTN: Chief of Defense Logistics Studies Informa- tion Exchange	3
AMSTA-LP	
AMSTA-B AMSTA-CL	
HQ AMC ATTN' AMCRD-R, MR. H. Cohen	
WASK. D.C. 20315	

Security Classification				
DOCUMENT (Security classification of tille, body of abstract and i	CONTROL DATA - R		overall report is class	ilied)
ORIGINATING ACTIVITY (Corporate author)	· · · · · · · · · · · · · · · · · · ·	28. REPORT S	ECURITY CLASSIFICA	
USArmy Tank Automotive Command	· ·	2b. GROUP	classified	
Warren, Michigan 48090		ZD. GROUP		
REPORT TITLE Planning and scheduling Jobs of	n n Computor I	Icing OD		
Planning and scheduling bobs of	n a computer (JSING CPI	4	
DESCRIPTIVE NOTES (Type of report and inclusive dates)			·	
Final AUTHOR(S) (First name, middle initial, last name)		<u></u>		
Irwin F. Goodman				•
REPORT DATE	78. TOTAL NO. C	PAGES	75. NO. OF REFS	
May 1969	49		58	
. CONTRACT OR GRANT NO.	SH. ORIGINATOR		BER(S)	
b. PROJECT NO.	S 1006		•	τ.
N/A		PT NO(S) /Ame	ther numbers that may	ha an aldred
c. 27/22	this report)			oo seeranou
d.				· · ·
0. DISTRIBUTION STATEMENT		•		
Sisterilution of this desument.				
Distribution of this document :	12. SPONSORING			
1. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ALT		
	In-hou	se		
ABSTRACT				
This report presents by example				
This report presents by example bath method (CPM) for the plann	ning and sched	luling of	jo bs on a	of
This report presents by example path method (CPM) for the planm computer. It provides a step-b	ning and sched by-step prepar	uling of ation ar	jobs on a d analysis	
This report presents by example bath method (CPM) for the plan computer. It provides a step-k a network representation of a c	ning and sched by-step prepar computer syste	uling of ation ar m applic	jobs on a ad analysis ation. Als	so, ·
This report presents by example bath method (CPM) for the plan computer. It provides a step-k a network representation of a c included is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, isive
This report presents by example bath method (CPM) for the plan computer. It provides a step-k network representation of a c ncluded is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, isive
This report presents by example bath method (CPM) for the plan computer. It provides a step-k network representation of a c ncluded is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, isive
This report presents by example bath method (CPM) for the plan computer. It provides a step-k network representation of a c ncluded is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, isive
This report presents by example bath method (CPM) for the plan computer. It provides a step-k network representation of a c ncluded is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, isive
This report presents by example bath method (CPM) for the plan computer. It provides a step-k a network representation of a c included is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, isive
This report presents by example bath method (CPM) for the plan computer. It provides a step-k network representation of a c ncluded is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, isive
This report presents by example bath method (CPM) for the plan computer. It provides a step-k network representation of a c ncluded is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, isive
This report presents by example bath method (CPM) for the plan computer. It provides a step-k a network representation of a c included is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, isive
This report presents by example path method (CPM) for the plann	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, sive
This report presents by example path method (CPM) for the plan computer. It provides a step-k a network representation of a c included is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, sive
This report presents by example bath method (CPM) for the plan computer. It provides a step-k a network representation of a c included is a glossary of relev	ning and sched by-step prepar computer syste vant terms and	uling of ation ar em applic a fair]	jobs on a d analysis ation. Als y compreher	so, sive

>

C

4.	n		LINKA		LINKB		LINKC		
	KEY WORDS			ROLE.	. ж.т	ROLE	WТ	ROLE	wτ
					: :				
Job scheduling									
, , , , , , , , , , , , , , , , , , , ,			· .						
Scheduling									
CPM									
Computor Cabodulin	_								
Computer Scheduling	3					-			
PERT									
]					
				1					
				1					
								·	
								·· .	
•]					
•									
				Ì					
1	÷.				.				
ν.			:						
				ļ					
				1					
				ĺ					
					[

٩.

∢

.