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Abstract

We describe two interim results from an ongoing effort to automate the
acquisition, analysis, archiving, and distribution of satellite earth science data.
Both results are applications of Artificial Intelligence planning research to the
automatic generation of processing steps for image analysis tasks. First, we
have constructed a linear conditional planner (CPed), used to generate condi-
tional processing plans. Second, we have extended an existing hierarchical plan-
ning system to make use of durations, resources, and deadlines, thus supporting
the automatic generation of processing steps in time and resource-constrained
environments.

1 Introduction

The collection, analysis and distribution of data resulting from NASA science mis-

sions is an increasingly daunting task. The National Space Science Data Center

(NSSDC) responds to more than 2500 data requests from remote users in a single

year [8]. As of 1990, NSSDC's archives included more than 6000 Gigabytes of digital

data and 91 million feet of film. By 1995, the NSSDC is expected to contain 40,000

Gigabytes of digital data. Shortly thereafter, the satellites of the Earth Observing

System (EOS) will come online, eventually adding new data at a rate of nearly 2000

Gigabytes per day, over an expected mission duration of 15 years [12, 6].

The EOS Data Information System (EOSDIS) is being designed and built to

support the storage, analysis, and retrieval of data from this immense archive.

Dozier [6] offers the following characterization:

EOSDIS must allow scientists to easily and quickly acquire usable, un-

derstandable, timely data. "Timely" means '% reasonable period fol-

lowing the measurements" - one to two days after the observations, or

up to a week for higher-level products. "Quickly" means minutes, not

hours. "Easily" means that the user should not have to jump through

many hoops to request the data.
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Figure I:The EOSDIS domain

EOS data will be supplied by several different types of sensors and used by scientists

in a variety of disciplines, most with no special knowledge of how EOS data is

obtained or organized. The type of sensor from which the data was gathered will

affect the processing necessary to render the data useful. The use to which the data
is put will determine both the images retrieved (a geologist and an oceanographer

will be interested in very difl'erent sets of data) andthe analysis to which that data

is subjected (e.g., topography vs. phytoplankton levels).
Raw and analyzed data will be stored in a distributed network of database sites,

known as Distributed Active Archive Centers (DAACs). Also connected to the

network will be a variety of special-purpose hardware that can be used for further

analysis of either new or retneve_ data. These analyses may conmst of several steps

(e.g., scan line removal, georegistration, or normalization for the incident angle of

the sun), and will be run on a distributed network of heterogeneous machine types.

Given the enormous amount of data involved, most of it will of necessity be stored

off line. We anticipate hierarchical caches for data storage [2] with high-speed disks

at the top of the hierarchy and tape archives at the bottom. Data will move up and

down in thls's_ierarchy for further anaIysis. _-

A high_ level concept of the -reSuming system is depicted in Figure i. Data
is received by any of several ground stations from any of a set of satellites, and

transmitted to one or more of the archive centers, where it is analyzed as necessary

(and as time permits), and then archived. Scientists interested in using the data

may make requests that data be retrieved from one or more of the archives and

analyzed further ......................

In both joint and separate work at NASA's Goddard Space Flight Center and

the Honeywell Technology Center, we have been working on automating the ac-

quisition, initial processing, indexing, archiving, analysis, and retrieval of satellite

earth science data, with particular attention to the processing taking place at the
DAACs.

In this paper, we present the results of ongoing work on planning for image

process tasks in the EOSDIS Product Generation System (PGS). Section 2 presents

the problem presented by PGS in additional detail. Section 4 describes the extension

of a Nonlin style hierarchical planner to use information about deadlines, durations,
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and resources. Section 3 is a dicussion of the use in image processing of conditional

plans: plans including branching points dependent on the outcome of some earlier

action (e.g., an observation of some type).

2 Data Management for Earth Science

NASA's rolein the Mission to PlanetEarth isthe Earth Observing System (EOS)

program and severalsmallerEarth sciencemissions.These missionsrepresentefforts

to study the Earth'sgeosphere,biosphere,atmosphere,and cryosphere,as a system

of interrelatedprocessesby modelling surfacetemperature, ozone depletionand

greenhouse effects,land vegetationand ocean productivity,and desert/vegetation

patternsto name a few. With participationfrom the European Space Agency,

Japan, Canada, and NASA, severalplatformscontaininga multitudeofsensorswill

be launched in the late1990's,producing data thatwillbe storedin geographically-

orienteddata systems such as the EOS Data and InformationSystem (EOSDIS).

In genera],EOSDIS willmanage the missioninformation,the data acquisitionand

distribution,the generationofscientificdata products,and the interfaceto external

systems.

Ensuring accessto thisinformationisa challengingtaskbecause ofthe daunting

sizeof EOSDIS and the potentiallimitationsof currenttechnologies.Over its15

yearlife,the Data Archivaland DistributionSystem (DADS), a component of the

EOSDIS, willeventuallymaintain around 11 petabytes[12].I While mass storage

technologywillsolvesome archivlngproblems [2],findingdata willrequirenew and

innovativemethods for usersto effectivelysearchthe archives.The archiveswill

includea varietydata types includingrastersatelliteimages,ancillaryvector/raster

maps, derived spatialproducts from model simulations(e.g.,output from global

temperature models), and associatedengineeringand management textualdata,

suggestingthat the archiveand meta database willbe both diverseand complex.

In currentNASA scientificdata systems,data are found by userswho already

know informationrelatedtothe contextofthe satelliteprocessingenvironment,such

as the time ofthe sateUite'sobservation,the satelliteand sensortype,and location.

This context-basedmetadata searchforcesthe userto translatescientificneeds into

projectspecificationsthat often contain esotericNASA nomenclature. A better

solution,often calledcontent-basedmetadata search,isto allow scientiststo find

data based upon theirscientificinterestswithin the imagery. Providingfeatures

based upon scientificinterestsfor searchingthrough a database assumes that a

system can be createdtointerpretimagery with the skillofa scientist,yet with the

speed of the computer. This automation has been the goalof many researchersin

remote sensing,image processing,and computer visionforyears;thereisno known

generalsolutionto the problem.

IOne petabyte is 1015 bytes.

19



2.1 Opportunities for Automation

In this section, we describe the necessary functions for an automated planning sys-

tem for image classification and indexing according to browse products. The entire

range of functions described here are actively under development or investigation

at this time. In the rest of the paper, we restrict ourselves to a discussion of the

generation of plans for image analysis.

Despite the the lack of a general theory, computer-based photo interpretation

operations for satellite/aerial imagery can be partia_y defined as file manipulation,

calibration, reduction of the number of channels, image enhancement and correc-

tion, segmentation, and pattern classification (see figure 3). These operations often

require an expert to "mix and match" the steps depending on the quality of the

sensor, the format of the data, the properties of the sensing environment (e.g., atmo-

spheric conditions, direction of sun illumination, etc.), availability of ancillary data

such as topographic maps and groun d truth observations, and the set of possible

features within an image. Typically, the end result of this process is a map labelling

pixels to classification categories from proven recognizable schemes for which the

sensors were designed. Example Schemesindude: land use/land Cover cloud cover

type, vegetat!0n cover, and soil type. While these examples refer to physical ob-

jects, properties such as temperature and a_er0soi content also constitute legitimate

labels, only each label represents a range of continuous values. In EOS, much of
the work of the PGS will be to recognize these features for processing at level 2 and

above.
In the realm of automatic feature recognition, the planner is the component

that optimizesaccuracy as a function of the resource constraints, if there is a

lot of available processing time due to a low incoming data rate, then the planner

chooses the image processing sequence with the highest expected accuracy. If the

data rate is high, then the planner constructs a sequence that e!thersubstitutes

computationally cheaper, yet less accurate image processing steps for expensive

operations, eliminates steps that can be deleted without a major loss, or uses a

fixed-time default planthat implies an upper hound-on th-e highest allowable data

rate (e.g., ingest only file header information that comes with the raw data)- _I

The planner must make choices regarding preprocessing steps and image clas -

sifters as a function of the input image's header information, called ephemeris

data. For example, suppose that an image from the Moderate-Resolution Imag-

ing Spectrometer-Nadir (MODIS-N) sensor of EOS arrives with its areal extent

over Washington D.C. Further suppose that after launch, MODIS-N produced scan
lines such as LANDSAT MSS's "sixth-llne striping," evidenced by horizontal band-

ing within the images. Modis-N was designed to characterize surface temperature
at 1-kin resolution, ocean color, vegetation/land surface cover (e.g., leaf area index

and land cover type, vegetation indices), cloud cover and properties, aerosol prop-

erties, and fire occurrence. Based upon this information, the planner constructs

the sequence of steps by first stripping off the header file from the raw data, which

indicates the time of observation, the sensor, sun angle and azimuth, location, and
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file format. The planner then queries an online database to insert the new header

information annotated with a unique image id and waits for known information

to be returned related to the header, for a set of neural network weight files that

have been created by training over-similar conditions, and for any ancillary data

files such as digital elevation data, ground truth, and hydrology maps. In this case,

because the location of the image is over land, the set of recognizable features will

include vegetation, cloud, and temperature classes, while it will exclude ocean re-

lated classes. Once the planner has the combined dynamic information of the header

with the static knowledge about the sensor, it begins constructing the sequence or

image processing plan.

Once the pixel labelling is completed, the planner must choose the form of

browse product as a function of the amount of storage available and the importance

of the image, as defined by priority. Ranging from low to high available storage,

the browse product can be an image classification vector ICV, a "postage stamp"

rendition of the classification map, a low resolution version of the classification

map, or a classification map that is the size of the original image. Finally, the

planner must ingest the browse product into the appropriate database with the

associated header information and the sequence of processing steps used. If it is

found later that a particular processing step was inadequate, then the meta database

can be searched for all browse products containing that step in order to initiate

reprocessing. Likewise, if a scientist, through his own analysis, determines that the

classification accuracy was incorrect, then he can submit his changes, as well as

methods, to the meta database administrators for update.

3 Conditional Analysis Plans

The automatic generation of plans for image analysis is a challenging problem.

Preliminary processing (e.g., removal of sensor artifacts) and analysis (e.g., feature

detection) involve a complex set of alternative strategies, depending in some cases

on the results of previous processing. For example, detailed location of roads and

rivers is only worth doing if there is evidence that those features are present in the

image. Plans for image processing need to be conditional, in the sense that the

course of action to be followed is dependent on the outcome of previous actions.

We have developed a conditional planner that advances the state of the art in

several respects, including the use of regression in the generation of conditional

plans and a careful treatment of the modelling of observations by permitting the

specification of a proposition as true, false, or unknown. We have successfully

applied our planner to the generation of conditional plans for image analysis in "EOS

world" (named by analogy to the "blocks world"), a planning domain based on data

analysis problems related to the Earth Observing System's Data and Information

System (EOSDIS).
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3.1 Motivation and Background

Classical planning has been criticized for its reliance on a complete model of ac-

tions [4]. Constructing an elaborate plan to achieve some set of goals makes little
sense if the environment is sufficiently unpredictable that the plan is likely to fail

at an early stage. There are several approaches to the problem of generating plans

for use in a changing and uncertain world. These fall generally into three classes:

making plans more robust in the face of changes in the environment [7], modifying

plans as new information becomes available, 2 and conditional planning (more pre-

cisely, planning with conditional actions): planning which takes into account the

uncertain outcomes of actions.

Conditional action planning is suitable for-domains in which there is llmited

uncertainty and in which plans are constructed at a fairly high level of granularity.

Preliminary indications are that planning for image analYsisis eminently su!tabIe.

Robot planning is probably not such an application, unless itcan be carriedout at

a level Of abstraction sufficiently high t-llat much of the uncertainty ca_ be ignored.

Peer and Smith [11] have developed a non-linear planner for conditional plan-

ning. In conventional, "classical" planning applications, non-linear planning is
usuallyan improvvement over linearplanning because-fewer-_commitments ylelds

a smallersearchspace,at a relativelyminimal addeclcostto exploreeach dement

of that search_space [10].However, it"is not clearthat thistradeofl"operatesin

the same way forconditionalplanners.Furt_hermore_,-theoperationwllicl_]s_eeded

to properlyconstructbranching plans resolvingclobberersthrough conditioning
t

apart -- isa very difficultoperatlonto direct.Accordingly,a linearconditional

plannermay be a reasonablealternative.

We have developeda linearconditionalplanner,based on McDermott's regres-

sionplanner PEDESTAL [9].This plannerhas been implemented in Quintus Prolog,

runmng on Sun SPARCstatlons. Ithas been testedon Peot and Snuth s _k_rld _

sample problem and on the simplifiedmodel of the EOSDIS image processingdo-

main describedabove.

3.2 Action representation '°

Following McDermott, we represent actions in the plan library in terms of three

predicates: preconditions, add lists and clelete lists. 3 A precondition entry in the

database looks as follows: -

pr econcl(action, preconditions)

This database entry specifies the facts which must hold in order that action be

performable. These preconditions are necessary, but may not be sufficient for the
action to achieve the ends we desire.

2"Re_tive systems" [3, 1] axe yet another approach to this issue, in which it is argued that we

axe better off not planning at all.

Sin practice, we axe free to use a more convenient notation in composing the plan library than

the one the planner will use.
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Entriesdescribingthe effectsof actionslook likethis:

add(formula, action, effect-preconditions)

or

delet • (formula, action, effect-preconditions)

These entries specify that if action is performed in a world in which both effect-

preconditions and the preconditions for action hold, then formula will hold (not

hold) at the end of action.

Here is a simple action from Peot and Smith's ski world example:

procond(go(?x, ?y), [at(?x), clear(?x, ?y)])

add(at(?z), go(?_,?z), ['I)

delel;s(at(?z), go(?z,?_.), [])

We have used the underlineas inProlog,asan "anonymous" or don't-carevariable.

We expand thisrepresentationto allow for conditionalactions,likethose of

Peot and Smith [11].Such conditionalactionsmay have severaldifferent,mutually

exclusive,setsofoutcomes. We capturethisby associatingwith everysuch outcome

an integer.Integerscan be added tothe effect-preconditionsofa postconditionentry

to specifythat one particularoutcome must happen inorder forthe postcondition

to hold. For example, in the Ski World, Peot and Smith have an operator for

observingroad conditionsbetween two points.There are two possibleoutcomes to

thisoperator: eitherthe road willbe found to be dear, or itwillbe seen to be

dosed. Here ishow we representthisoperator:

precond (obssrvs (road(?x,?y) ),[unknown (clear(?x,?y)),at (?x)])

add (clear (?x,?y),observe (road(?x, ?y)), [bead(?act, 1)])

post cond (no_c(clear (?x,?y)),observe (road (?x,?y)), [bsad(?act, 2)] )

The variable?act isa specialone,which willbe bound to thename ofthe step-- the

actualinstanceof the operator-- so that we may have more than one conditional

actionof the same type in our plan.

3.3 Pedestal

McDermott's PEDESTAL planner is a regression planner which represents its plan

as a dense line segment, beginning at the initial conditions and ending at the goal.

Steps are incrementally added to the plan by associating them with points on the

line segment. In order to control this process, the planner will always have a set

of active (not yet solved) goals and a set of protections which must be respected.

PEDESTAL'S goals are pairs Ig, vi: the first component, g being a proposition to

be established, and the second being a step for whose benefit the proposition is

to be established. The top-level goals are goals of the form (g, finish / for the

distinguished final step.

At each point in the planning process, PEDESTAL will pick a goal out of its active

set, and resolve it. PEDESTAL resolves its goals (g, v) in one of three ways, chosen

nondeterministically:
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1. g holds in initial conditions: In this case, the goal may be achieved without

performing any action. PEDESTAL adds a protection which guards the goal

from the beginning of the plan until step v and continues.

2. g is established by existing step: Call this step s. PEDESTAL does the

following:

(a) adds a protection of g from s until v.

(b) PEDESTAL must ensure that 8 has the desired effect of establishing g.

Let _(g, s) be the causation preconditions for g with respect to s. Post

new goal(s) 4 (E(g, s), s).

(c) PEDESTAL must also ensure that no already-existing step between s and

v negates g. This is done by posting additional goals:

For all steps z such that s <: z < v, let the preservation preconditions of

g with respect to z be II(g, z). Post (II(g, z), x) as a new goal.

i

ILl
|

3. g is established by a new step: Choose some point in the plan at which

to insert a new step, s. Now proceed as per a preexisting step to achieve the

goal_ _= _ddition, howeverl PE-DESTAL-must 'pos_ _= go_s _t_e _precondltions

for act s. Let those preconditions be _(8). Post goal(s) (_(s), s/,

3.4 Conditional Pedestal

PEDESTAL admits of a fairly straightforward adaptation to conditional planning.
Essentially, one adapts the PEDESTAL algorithm by mapping steps onto a chronicle

tree, instead of a line segment. When one adds conditional actions to the plan, one
adds new brancl_es to t-h-etree; run_ng from _he cOndition_ action t_onewly'created

goal nodes. One then plans for each new goal node as well as the pre-existing goal
node. :: = ...........

At each point in the planning process, pick a goal out of the active set, and

resolve it. As before, goals are resolved either by finding that the g0al holds in the

initial conditions , is established by a pre-existing step, or by inserting a hew step. ::

There is one (substantial) complication: handling th e addition of conditional

actions to the plan. Recall that conditional actions have multiple outcomes. When
we _d_t-he c_cl]_on_ actionto _ p]a.n,(we- _ doso _ecause oneoft_he Ou._come_

willachievea goal.Howeve_ there willbe 0ther0utconaeswhich willnot,ingeneral,

achieVet-he_same goall One may think of theseas "bad outcomes" forthe:acti0n.

For eachb_d£utc0me Iwe introducea new goal node:following_theb_d outcome.

Informally,one might thinkof thisgoalnode as causingus to plan a recoveryfrom

theb_ 0-U-tcSm-e. ......

Considera problem from the SkiWorld. One wants to get to a resort(Snowbird

or Park City).One's plan so far might be as shown in Figure2. One has planned

_Because we axe assuming ground actions, we can bluz the distinction between posting a single

goal which is a conjunction and posting a conjunction of goals each of which is a lite[al.
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observe(road(B,S)) clear

start go(home,B) go(B,Snowbird) finish
(at resort)

clear

finish
(at resort)

Figure 2: Initial plan to get to the resort.

observe(road(B,S)) clear

(tint_hsort)

\

t clear

finish
(at resort)

Figure 3: Plan to go to resort after the addition of the conditional action.

to go from home to position B and then from B to Snowbird. However, one has a

remaining subgoai, which is to determine that the road from B to Snowbird is clear.

Unfortunately, this is not a sure thing. The observation operator has two possible

outcomes: either the road will be seen to be clear, or seen to be blocked. In the

latter case, one will have to plan a new way to get to the resort. The planner's state

after the addition of the observation action is shown in Figure 3. The planner will

now have as goals whatever it had before and the goal to get to a resort when the

road from B to S is not clear, represented by the new goal on the second branch of

the plan. Notice that the two plans will share any actions which take place up until

the time the status of the road is observed. Notice also that additional actions may

be inserted into this shared prefix of the plan: for example, we might as the first

step of the plan take some money, if there was a toll on the road from C to Park

City. This would only be necessary in the event that the road from B to Snowbird

is blocked, but would be done before the agent knows whether or not the road is
blocked.
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3.5 Future work

We axe in the processof extending conditionalplanning to an approach we call

epsilon-safeplanning,in which probabilitiesaxe associatedwith the variousout-

comes ofconditionalactions(e.g.,with the successorfailureofa givenclassification

routine).For any givenbranch ofa conditionalplan,we can determinea probability

of success.The totalprobabilityof successisthe sum ofthe branches which lead

to the goalstate.

4 Hierarchical Planning with Deadlines

Automated image processing within the Product Generation ,q_lstem (PGS) of the

Earth Observing System's Data and Information System (EOSDIS) requires the

automatic generation of complex analysis plans, detailing the processing steps to

be taken to clean up, register, classify, and extract features from a given image.

These plans will be executed in a resource-limited environment, competing for such

resources as processing time, disk space, and the use of archive servers to retrieve

data from long-term mass storage. To complicate matters, it is important that the

results of these plans (the completed analysis products) be delivered in a timely

fashionto the scientistsrequestingthem.

Injointwork at the Honeywell Technology Center(HTC) and NASA's Goddard

Space FlightCenter,we have developed a plannerthatgenerateshierarchicalplans

for PGS image processing.The schemas used by thisplanner (based on Nonlin's

Task Formalism (TF))[13]have been extended to recordinformationabout the esti-

mated andworst-case durationofa giventask,and about the tasks'resourceusage.

This informationisused duringplan construction,forexample inthe rejectionofan

otherwisepromising expansion fora given sub-taskbecause itrequiresmore time

than isavailable,and inthe constructionof detailedschedulesforimage processing

tasks.

Accurate estimates of the time required for 'image processing tasks are hard to

come by, particularly for more abstract tasks (e.g., identify features, ratl_er than a

detailed set of file manipulations). We have constructed a routine that traverses the

set- ot--t a_s-k_-de_n ed for t_he_-_i_G_ne=r, _a-efi_ng_---w_rs:_-c_s_ ie__m ate_ilfor _-_s_r _c_.
tasi[sbasal on thetimereq_|_ _their_subtasks.:_se ofthi-sroutine,couple_[

with a facilityallowingpr[mitivet-as=_e_imatestobe updated elther_manuallyor

i_ed on_stat_t'icsgathered _.stl_e_s);st_runsovertimel_oWs us(ocontlnuMly

refinethe initiallysomewhat undependable time estimates,resultingin increasingly

effectivemanagement of scarcecomputational resourcesfor the image processing

task.

The choiceofNonlinasa startingplacewas drivenby thefactthatthe TF can be

used effectivelytodescribeimage l_rocesslngtasks.Iiuman users_tendtobreak these

tasksdown intohierarchiesof subtasks(e.g.,"remove noise"may involvescan-line

remo_f'd.l, smoothing, and-desi)ecl[hng, usua_y in-tha_t order)in a way Very na_tur_lly

expressible in TF. Nonlin's main drawbacks included the lack of any facilities for
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reasoning about duration, deadlines, and resources. Deviser [14] adds durations,

but is not sufficiently flexible and scales poorly. Eventually, the planning function

will be integrated with scheduling and dispatch functions that will use the same

representations.

Durations and deadlines were added to the TF through the addition of a :du-

ration slot in task schemas. These specifications may be numbers, ranges, or a
function of the schema variables evaluated when the schema is instantiated. The

underlying representation of time is the TMM [5], in an implementation developed

at the HoneyweLl Technology Center. Calculation of duration bounds during task

expansion provides an additional constraint on search: if at any time the time

needed for a given task expansion exceeds the time available, the system will back-

track, trying an alternative expansion at the current level or higher planning levels

until a time-feasible schedule is found (or the system gives up).

5 Summary and Conclusions

Automating the processing of satellite earth science data is both timely and with

a high potential for significant improvement of the current environment. Timely,

because the current tools for managing and processing this data are beginning to

be overwhelmed. This trend will only worsen as new satellite systems come on line

over the next few years, most notably (but not exclusively) EOS. As we have also

argued, automation of these tasks shows great potential benefit. Existing research

in AI, Operations Research, databases, and distributed systems can be adapted

to alleviate the looming data overload, in some cases by freeing humans from the

process entirely (e.g., generating browse products on ingest), and in other cases

by providing better tools for interactive use (e.g., helping scientists to retrieve and

process archived data).

In this paper, we have presented results on the appllcation to image processing

of two bodies of work drawn from current research in AI planning: conditional

planning and planning with duration and deadlines. These results are promising,

but the work is by no means complete. Moving these systems into operational use

will require further refinement and development, which we expect to accomplish

over the next twelve to eighteen months.
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