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ABSTRACT 

This paper studies approximations to the average length of Vehicle Routing Problems (VRP). 

The approximations are valuable for strategic and planning analysis of transportation and 

logistics problems. The research focus is on VRP with varying number of customers, demands, 

and locations. This modeling environment can be used in transport and logistics models that deal 

with a distribution center serving an area with daily variations in the demand. The routes are 

calculated daily based on what freight is available. New approximations and experimental 

settings are introduced. Average distance travelled is estimated as a function of the number of 

customers served and the number of routes needed. Approximations are tested in instances with 

different customer spatial distributions, demand levels, number of customers, and time windows, 

Regression results indicate that the proposed approximations can reasonably predict the average 

length of VRP problems in randomly generated problems and real urban networks.  

 

KEYWORDS:  Vehicle Routing Problem, Distance Estimation, Simulated Experiments, Case 

Study 
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1. Introduction 

In many logistics problems it is necessary to estimate the distance that a fleet of vehicles 

travel to meet a set of customer demands. Traveled distance is not only an important element of 

carriers’ variable costs but it is also a key input in tactical and strategic models to solve problems 

such as facility location, fleet sizing, and network design.  s (VRP) changes with the number of 

customers served and the number of routes required. In particular, this research focuses on the 

ubiquitous case of a depot or distribution center (DC) serving up to N potential customers in the 

DC’s delivery region. In many practical situations, not all potential customers request a visit on 

the same day. The number of customers served per day, n, may be significantly smaller than N.  

There may also be a significant variation in the number of customers visited per day of the week, 

e.g. early weekdays vs. weekends. The amount to be delivered or picked up may also vary on a 

daily basis, e.g. from one to several pallets, as might additional requirements such as time 

window constraints. The daily customer demand is known a night in advance, hence, each daily 

route and sequence of customers depends on what freight is available on a particular day for 

delivery or pick-up.  Although, there is variability in the amount and characteristics of the day to 

day demand, the VRP problem analyzed in this paper is neither dynamic nor stochastic since all 

the information related to the customers’ demands is known before the vehicles leave the depot 

or distribution center. The routes are designed daily and the number of routes/distance needed 

depends on the available freight.  

Despite the growing implementation of customer-responsive and made-to-order supply 

chains, the impact of variations on the number of customer requests and demands on average 

VRP distance traveled has not yet been studied in the literature. All experimental studies have 

focused on the approximation of the length of specific traveling salesman problem (TSP) or VRP 

instances; i.e. given an a-priory known set of customer demands, how well a given formula 

approximates the real distance of one specific instance. This research has a different objective: 

given N potential customers and a variable customer demand (locations, demands, time-

windows, etc.) in a service area, how well a given formula approximates the average distance of 

VRP solutions for different levels of n and routing constraints.   
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The paper is organized as follows: Section 2 provides a literature review. Section 3 

presents and justifies the approximation formulas to be tested. Section 4 describes the 

experimental design. The experimental results are analyzed and discussed in Section 5. The 

description and analysis of a real world application is presented in Section 6, followed by 

concluding comments in the final section.  

 

2. Literature Review 

There exists an extensive body of TSP and VRP related literature in operations research 

and transportation journals. The goal of this section is not to present a review of TSP and VRP 

solution methods but to focus on the literature that deals with the estimation of distances in TSP 

and VRP problems.  Comprehensive reviews of solution methods for TSP and VRP problems are 

found in Gutin and Punnen (2002) and Toth and Vigo (2001) respectively. 

A seminal contribution to estimate the length of a shortest closed path or tour through a 

set of points was established by Beardwood et al. (1959) . These authors demonstrated that for a 

set  with  points distributed in an area n A  the length of the TSP tour through the set V  

asymptotically converges to:  

n

)n nATSP( k=V            (1) 

The value of  is a constant. The asymptotic validity of this formula for TSP problems was 

experimentally tested by Ong and Huang (1989) using a nearest neighbor and exchange 

improvement heuristics. With an Euclidian metric and a uniform distribution of customers the 

constant term has been estimated at 

k

0.765k =  (Stein, 1978). For reasonably compact and convex 

areas, the limit provided by expression (1) converges rapidly (Larson and Odoni, 1981). In 

compact and convex areas, the following approximation formula can be used:  

0.765)n nATSP( ≈V          (2) 
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Formula (2) requires a Euclidean travel metric or L2 metric. Jaillet (1988) estimated the constant 

 for Manhattan travel metric or  L1 metric.  0.97k ≈

Approximations to the length of capacitated vehicle routing problems were first 

published in the late 1960’s and early 1970’s (Webb, 1968, Christofides and Eilon, 1969, Eilon 

et al., 1971). Webb studied the correlation between route distance and customer-depot distances. 

Eilon et al. (1971) proposed several approximations to the length of the capacitated VRP or 

capacitated vehicle routing problem (CVRP) based on the shape  and area of delivery, the 

average distance between customers and the depot, the capacity of the vehicle in terms of the 

number of customers that can be served per vehicle, and the area of a rectangular delivery region.  

Daganzo (1984) proposed a simple and intuitive formula for the CVRP when the depot is 

not necessarily located in the area that contains the customers.  

2 / 0.57 2 0.57))n rn C rmnA nACVRP( ≈ + +=V )      (3) 

)nCVRP(V  is the total distance of the CVRP problem serving  customers, the average 

distance between the customers and the depot is

n

r , and the maximum number of customers that 

can be served per vehicle is . Hence, the number of routes  is a priori known and can be 

calculated as .  Expression 

C m

/n C (3) can be interpreted as having: (a) a term related to the distance 

between the depot and customers and (b) a term related to the distance between customers. The 

coefficients of expression (3) were derived assuming C  and6> 4 2N C> . Daganzo’s 

approximation works better in elongated areas as the routes were formed following the “strip” 

strategy. Robuste et al. (2004) use simulations to analyze elliptical areas and propose 

adjustments based on area shape, vehicle capacity, and number of customers. Erera’s dissertation  

(2000) proposes continuous approximations to estimate expected detour and distances in 

stochastic version of the capacitated vehicle routing problem.  

Chien (1992) carried out simulations and linear regressions to test the accuracy of 

different models to estimate the length of TSP.  Chien tested rectangular areas with 8 different 

length/width ratios ranging from 1 to 8 and circular sectors with 8 different central angles 

ranging from 45 to 360 degrees. Exact solutions to solve the TSP problems were used and the 



M. A. FIGLIOZZI            6  

    

 
size of the problems is 5 to 30 customers. The depot was always located at the origin, the left-

lower corner of the rectangular areas. Chien randomly generated test problems and using liner 

regressions found the best fitting parameters. The mean absolute percentage error (MAPE) was 

the benchmark to compare specifications. Chien finds that the lowest MAPE for the best model is 

equal to 6.9%.   

22.1 0.67 0.99 6.9))n r RnRTSP( MAPE≈ + = =V      (4) 

Chien used the area of the smallest rectangle that covers the customers; this area is denoted R .  

Expression (4) is not convenient for planning purposes when there may be many possible subsets 

of customers that are not known a priori. The previous models were also estimated for each of 

the 16 different regions; 2R  and MAPE  are reported for each type of region and model. The 

estimated parameters change according to the shape of the region.  

Kwon et al. (1995) also carried out simulations and linear regressions but in addition they 

also used neural networks to find better approximations. To test the accuracy of different models 

they tested TSP problems in rectangular areas with 8 length/width ratios ranging from 1 to 8.  

Models were estimated with the depot being located at the origin and at the middle of the 

rectangle. The sizes of the problems range from 10 to 80 customers.  Kwon et al. (1995) 

compared equation (4) with two additional approximations that make use of the geometric 

information proportioned by the ratio length/width of the rectangle (length and width defined in 

such a way that the ratio is always larger or equal to 1). The results obtained for the depot 

located at the origin are as follows: 

2[0.83 0.0011( 1) 1.11 /( 1)] 0.99 3.71)n n S n RnATSP( MAPE≈ − + + + = =V    (5) 

20.41 [0.77 0.0008( 1) 0.90 /( 1)] 0.99 3.61)n r n S n RnATSP( MAPE≈ + − + + + = =V

1

   (6) 

Accounting for the shape of the area improves accuracy, although this is at the expense of adding 

one and two extra terms in the last two expressions.  R  is defined as the area of the smallest 

rectangle that covers the customer and the depot. With the depot located at the center of the 

rectangle the results obtained are as follows: 
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21[0.87 0.0016( 1) 1.34 /( 1)] 0.99 3.88)n n S n RnRTSP( MAPE≈ − + + + = =V     (7) 

211.15 [0.79 0.0012( 1) 0.97 /( 1)] 0.99 3.70)n r n S n RnRTSP( MAPE≈ + − + + + = =V    (8) 

It can be observed that MAPE slightly increases when the depot is located at the center of the 

rectangle. Kwon et al. (1995) also used neural networks to find a model that better predicts TSP 

length. They concluded that the capability of neural networks to find “hidden” relationships 

provides a slight edge against regression models. However, the models are less parsimonious and 

the terms harder to interpret in geometric terms.  

 

3. Approximations Proposed and Tested 

The previous section has reviewed approximations and simulation results for TSP. There 

are strong theoretical and intuitive reasons to include both nA and r  terms in the models. 

Increased accuracy can be obtained if additional terms related to the shape of the region and 

customers are added, as in Kwon et al. The third term within the brackets in the approximations 

(5) and (6) proposed by Kwon et al. (1995) has the form: 

/( 1) /nnA A n+ ≈  

Although Daganzo (1984) and Robuste et al. (2004) propose distance formulas for the 

CVRP, the number of necessary routes or vehicles, m, is known a priori.  Daganzo (1984) and 

Robuste et al. (2004) assume demands that are factors of the vehicles’ capacities, with this 

assumption the number of vehicles can be accurately determined by using . In this 

research it is also assumed that the number of routes needed is known a-priori.  

/m n C=

Given n customers and m routes, there is a relationship between the number of links that 

connect the depot and the first/last customer of each route and the number of local inter-

customer links. Any solution to a TSP with customers uses n 1n +  links, where  links are 

local and 2 links are connecting.  If capacity and/or window constraints are added, the resulting 

VRP has  routes.  In general, for  routes and  customers any solution to a VRP uses 

1n−

1m ≥ m n
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n m+  links.  In general, for any given n and m the number of connecting links is  and the 

number of local links is .  

2m

n m−

Six approximations or models to estimate the length of VRP instances are proposed: 

Model 1: ( ) 2lVRP k An rm≈ +V         (9) 

Model 2: ( ) 2n mVRP k An rm−
≈V l n

+        (10) 

Model 3: ( ) l mVRP k An k m≈ +V          (11) 

Model 4: ( ) n mVRP k An k m−
≈V l mn

+         (12) 

Model 5: ( ) /l b mVRP k An k A n k m≈ + +V        (13) 

Model 6: ( ) /n mVRP k An k A n k m−
≈ +V l b mn

+        (14) 

 The parameters , , and  are estimated by linear regression. The term (  is 

proposed in this research to modify the local tour distance in models 2, 4, and 6. This term has 

some desirable properties: (a) when

lk bk mk ) / nn m−

n m=  the estimated local distance is zero, whereas (b) 

when  or  the local tour distance tends to the expression suggested by Beardwood 

et al. (1959). This research proposes the use of these ideas to reflect the trade-offs between n and 

m and improve the accuracy of the average VRP distance estimation as a function of n and m.  

n m>> 1m =

The term /bk A n may be significant to estimate distances for the TSP when  is small 

and  as suggested by the results of Kwon et al. (1995). The term  estimates the 

connecting distance and captures increases in connecting distance as  increases or as the depot 

moves away from the customers.  

n

mk mm 1=

m

The proposed models, expressions (9) to (14), are evaluated using numerical experiments 

in Section 5. The next section describes the experimental setting.  
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4. Experimental Setting 

This research utilizes the classical instances of the VRP with time windows proposed by 

Solomon (1987) to test the approximations. The Solomon instances include distinct spatial 

customer distributions, vehicles’ capacities, customer demands, and customer time windows. 

These problems have not only been widely studied in the operations research literature but the 

datasets are readily available1.  

In the Solomon problems there are 100 customers per instance. The distances and travel 

times are Euclidean. There are six different classes of problems depending on the geographic 

location of customers (R: random; C: clustered; RC: mixed random and clustered) and time 

windows length (1: short time windows; 2: long time windows).  The customer coordinates are 

identical for all problems within one type (i.e., R, C and RC).  The sets R1, C1 and RC1 have 

vehicle capacity of 200 units, allowing fewer customers per route than the remaining sets. In 

contrast, problem sets R2, C2, and RC2 have vehicle capacity equal to 1000, 700 and 1000 units, 

respectively, allowing a larger number of customers per route. Due to the short time windows, 

problem sets R1, C1 and RC1 allow only a few customers per route (approximately 5 to 10). 

Problem sets R2, C2 and RC2 have longer time windows and route sizes are in the order of 30 

customers per route. The first instance of each problem class is used in this research.  

Random samples of the Solomon problems are used to examine the accuracy of 

approximations (9) to (14). Out of =  possible customers in a service area A , a problem or 

instance is formed by a subset of n randomly selected customers. Using the first instance of the 

six problem types proposed by Solomon, 15 subsets of customers of size 70, 60, 50, 40, 30, 20, 

and 10 were randomly selected from the original 100 customers. To incorporate different levels 

of customer demand, new instances were created applying the demand factors presented in Table 

1 to each subset of customers. Applying the factors in the second row of demand factors in Table 

1, the customers have similar demands as in the original Solomon problems. The resulting 

                                                           
1 Several websites maintain downloadable datasets of the instances including Solomon’s own website: 
http://web.cba.neu.edu/~msolomon/problems.htm 

http://web.cba.neu.edu/%7Emsolomon/problems.htm
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problems using the highest demand multipliers (last row of Table 2) are such that some 

customers are truckload (TL) or almost TL customers.  Increasing some customer demands to or 

close to the TL level was done test the approximations when problems are highly constrained 

and have a large number of routes and a small number of customers per route. On the other hand, 

the situation of having a large number of customers per route is obtained when the demand factor 

is zero (first row Table 1). In all cases the routes’ durations were limited by the depot time 

window. Lastly, in all Solomon problems, customers’ time windows are different in width and 

start time. This adds an additional layer of variability. Hence, for each problem class or set, 

variability is introduced in three distinct ways: a) different subsets of customer locations, b) 

different levels of customer demands, and c) non-uniform time windows.  

Most studies have focused on the derivation or testing of asymptotic estimators of the 

length TSP problems (Bearwood et al., 1959, Ong and Huang, 1989). Hence, experimental tests 

have mostly included a large number of customers per route. However, real-live routes have a 

relatively small number of customers per route due to capacity or tour length constraints. For 

example, in Denver over 50% of single and combination truck routes include less than 6 stops 

(Holguin-Veras and Patil, 2005); 95% of the truck routes include less than 20 stops. This 

research work tests the approximations using instances that range from 1 customer per route to 

over 35 customers per route.  

In the Solomon problems the depot has a central location with respect to the customers. 

To test the approximation when the depot is located in the periphery, all the created instances 

were also solved with the depot located at the origin, i.e. coordinates (0,0). To study the 

approximation quality and parameter values without time windows, all the problem instances 

were also solved without time windows. To the best of the author’s knowledge there is no 

published research that reports MAPE and simulation results for CVRP or VRP with time 

windows.  

All problem instances in this research were solved with a VRP improvements heuristic 

that has obtained the best published solution in terms of number of vehicles (Figliozzi, 2007).  

The solution quality of this heuristic is clearly superior than the performance of savings or 

construction heuristics used in previous research efforts such as Ong and Huang (1989) or 
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Robuste et al (2004). The overall solution quality of the heuristic used, i.e. total number of 

vehicles needed to solve the 56 Solomon problems, is  approximately 4%  over the best known 

solutions (Braysy and Gendreau, 2005a, Braysy and Gendreau, 2005b). 

To evaluate the prediction accuracy, the MAPE  and the MPE   (Mean Percentage Error) 

are used which are calculated as follows: 

1i ip D=

1 *100%
p

i iD EMPE −
= ∑     

1i ip D=

i iD iE

| |1 *100%
p

i iD EMAPE −
= ∑     

Where the actual distance for instance  is denoted  and the estimated distance is denoted .  

For a given set of instances it is always the case that MPE MAPE≤ . The MPE  indicates 

whether the estimation, on average, overestimates or underestimates the actual distance. The 

MAPE

( ) /n m n−

 provides the average deviation between actual and estimated distance as a percentage of 

the actual distance.  

 

5. Analysis and Discussion of Experimental Results 

Results for CRVP instances, i.e. no time windows, and the depot located at the center are 

shown in Table 2. Herein, all the regression results were obtained forcing the intercept or 

constant term to be zero; this is consistent with previous studies by Chien (1992) and Kwon et al. 

(1995).  In the regression models, the average distance per sample size is the dependent variable. 

Model fit R2, MAPE, and MPE are displayed for models 1 to 6.  The average, maximum, and 

minimum correspond to the first Solomon problem in each of the six problem types (R1, C1, 

RC1, R2, C2 and RC2). For the sake of clarity, only 3 decimals are displayed. 

 In Table 2, all six approximations have very good R2 values. However, models with more 

terms such as 5 and 6 have a superior MAPE performance. The approximations that adjust the 

tour distances using the term  (models 2, 4, and 6) have a superior MAPE performance 
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than their counterparts with the same number of estimated coefficients (models 1, 3, and 5 

respectively) 

Table 3 reveals the impact of time windows on the accuracy of average distance 

estimation. These results are obtained using the same instances used previously to obtain Table 2 

but considering all the customer time windows as originally intended in the Solomon problems. 

A slight decrease in the R2 values is observed. Imposing time windows decreases the predicting 

ability of all six models. The increases in MAPE range from 50% to 175% for Model 3. As 

observed in Table 2, the approximations that adjust the tour distances using the term ( ) /n m n−  

still have a superior MAPE performance than their counterparts. Further, the performance of 

approximations 2, 4, and 6 is relatively better with time windows when compared to 

approximations 1, 3, and 5.  This can be explained by the higher number of routes needed when 

time windows are introduced, when m is higher the term ( ) /n m n−  plays a more significant role. 

Time windows also affect the value of the estimated local tour parameters . Table 4 

shows the value of the parameter for approximation 2 and customers without time window 

constraints. The value of changes with the spatial distribution of the customers; the value of 

 is highest for randomly distributed instances and lowest for clustered instances. This is 

intuitively correct as the value of  is a proxy for the average distance between customers in a 

local tour between the first and last customer of a route. Table 5 shows the value of the 

parameter for approximation 2 and customers with time window constraints. Comparing with 

the values in Table 4, all parameters  show an increase that is highly statistically significant. 

This is intuitively correct since time window constraints do not allow the formation of compact 

routes, hence, the average distance between customers in the local tours almost doubles on 

average.   

bk

bk

bk

bk

bk

bk

lk

The same models were also estimated with the depot located at the corner, i.e., 

coordinates (0,0). Moving the depot to the corner increases the average distance between the 

depot and the customers considerably. Tables 6 and 7 show the results with and without time 

windows and the depot at a corner. Despite the change in the depot location, the same trends are 
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still observed: a) the models adjusted by ( ) /n m n−  do perform better in terms of MAPE than 

their counterparts, b) time windows decrease the predictive accuracy of the models, and c) with 

time windows the parameter  increases. With the corner depot, all three models perform better 

in terms of MPE and MAPE than with a centrally located depot. The same phenomenon can be 

observed in the experimental results of Kwon et al. (1995) for TSP distances.  

lk

Regarding the value of , the value of this coefficient is closer to the corresponding 

value of 

mk

2r  when the depot is not centrally located. With a central depot, the values of the 

parameter in approximations 3 to 6 is approximately within mk 20%±  from the corresponding 

value of 2r ; with a corner depot, the values of the parameter in approximations 3 to 6 is 

approximately within  from the corresponding value of 

mk

10%± 2r .  Hence, the average distance 

from the depot to the customers, 2r ,  still appears in approximations 3 to 6 but under the form of 

the estimated coefficient .  mk

 The comparison of the results in Tables 2, 3, 6, and 7 indicate that Model 6 is clearly 

superior in terms of MPE and MAPE across all experimental settings. However, the higher 

accuracy requires the estimation of a higher number of parameters (three). In addition, the 

interpretation of the term /bk A n  is not straightforward. This is compounded by the change of 

sign in the estimated k  parameter, from positive in all instances with a centrally located depot to 

negative in some instances with a corner located depot. The sign change takes place in both 

models 5 and 6.  

b

( ) /n m n

 Model 2 is clearly superior if parsimony and interpretability in addition to accuracy are 

taken into account. Model 2 is simple and easily interpreted as well as robust when time 

windows are introduced. The coefficient  is in all cases easily interpreted, highly significant, 

and positive. Further, Model 2 outperforms Model 4 which uses two regression coefficients with 

time windows and cornered depot. This can be attributed to the influence of the term 

bk

−  

which plays a larger role when a higher number of routes is required (more routes are required 

when time windows are introduced and when the depot is moved away from the customers).  
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6. Real-life application  

Previous literature has solely tested TSP or CVRP distance approximations on simulated 

environments with Euclidian distances. Although approximation formulas have theoretical 

applications in transport and logistics planning models, they can also be used to estimate 

distance, costs, and times in real-live planning applications.  The original motivation for this 

research came from the study of distribution routes for a freight forwarding company based in 

Sydney, Australia. Distribution tours originated at a depot located close to the port of Sydney; 

the customers were mostly located in different industrial suburbs. The pattern of customer 

distribution resembles the mix of random and clustered customers as in the random-clustered 

Solomon problems.  The company’s customers are in the hundreds but they are not visited every 

day. The freight forwarding company consolidates less than container (LTC) shipments and 

customers are visited only if a consignment has arrived before the distribution cutoff time. 

Further details about the tour characteristics can be found in Figliozzi et al.  (2007).  

Model 4 was tested with customers located in the industrial suburb of Bankstown with 

thirty customers distributed in an irregular area of 39.5 squared kilometers (see map in Figure 1). 

The delivery area is bordered by the Bankstown local airport in the west, a freeway in the south, 

and secondary highways in the east and north. The average distance between the depot and the 

industrial suburb is approximately 22 kilometers on the connecting freeway. To test Model 4, 

five sets of 2, 4, 6, 8, 10, 15, and 20 customers were randomly chosen among the existing 

customers in the suburb to simulate the daily demand.  Selecting random subsets of customers 

from the pool of existing customers in the area is a fair representation of the real demand. The 

number of customers visited per day varies widely; it may be as low as 1 or 2 or, exceptionally, 

close to thirty.  In the results presented hereafter all customers have the same probability of a 

visit. Although this is not the case in reality, it simplifies the exposition and introduces greater 

variation in the customer subsets.  

Due to contract and labor policies, the main distribution cost is associated with the 

number of driver hours needed. Therefore, the objective is to minimize total route durations 
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avoiding expensive overtime (overtime pay rate is 50% higher). An important consideration 

when working with travel times in an urban area is that speeds are strongly influenced by 

congestion, road characteristics, and speed limits. In this application the travel speeds used are: 

65 km/hour in freeways, 35 km/hour in main connecting streets – four lanes or more with traffic 

lights, and 25 km/hour in local streets. With this speed information a matrix of shortest travel 

times between customers and depot was constructed using the urban highway network and 

geographic information system (GIS) software. Figure 2 displays the relationship between the 

Euclidian distance and the distance based on the shortest time path for all customers and the 

depot. The high concentration of short distance points close to the origin correspond to the 

distances between customers in the suburb while the longer distances are mostly depot-customer. 

The R2 of 0.93 indicates that despite the irregular shape of the distribution area and the mix of 

travel speeds the Euclidian distance is a fairly good predictor of the actual distance traveled 

between customer pairs or customer-depot pairs.  From existing customer data, an average 

service time of 45 minutes per customer is used.  

Three different routing scenarios were constructed: (a) no constraints or TSP case, (b) 

with a tour duration constraint of 8 hours, and (c) adding 4 hour time windows per customer. The 

number of routes varied from 1 route in the TSP instances to 5 routes in the instances with time 

windows. The regression was estimated using the consolidated data from all three scenarios. The 

results are shown in Table 8. The network distance traveled is well approximated with a MAPE 

of 4.2%. The prediction of travel time or driving time in hours has a MAPE of 11.7%. The good 

MAPE percentage is not surprising given the good correlation between distance traveled and 

time driven (see Figure 3). Model 4 was used to approximate times and distances due to the 

different travel speeds; the connecting distance between depot and customers does not always 

follow the same type of highway. These results are encouraging and show that the proposed 

approximations may have useful applications in urban networks. While these results are 

promising, from this example it is impossible to generalize the results. Further research efforts 

are necessary to study the accuracy of VRP distance approximation in cities with different 

layouts and highway networks.   
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7. CONCLUSIONS 

This research studies approximations to the average length of vehicle routing problems 

when there is variability in the number, level and locations of customer demands. These 

approximations are intended for strategic and planning analysis of transportation and logistics 

problems, when the number and location of customers vary daily and are not known a priori.  

A new parsimonious, intuitive, and effective approximation is proposed and successfully 

tested using instances with different patterns of customer spatial distribution, time windows, 

customer demands, and depot locations. It was found that time windows negatively affect the 

accuracy of the approximations. Time windows not only increase travel distance because the 

number of routes is increased but also because the separation between customers per route is 

increased. As the distance between the depot and delivery region increases the accuracy of the 

approximation increases. The approximation was also tested in a real-life urban network with 

encouraging results.  
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Instance C1 R1 CR1 C2 R2 CR2 

Vehicle 
Capacity 

200 200 200 700 1000 1000 

Max. 
Demand  

50 41 40 41 41 40 

Demand 
Factors 

0 0 0 0 0 0 

1 1 1 1 1 1 

1.6 1.78 1.8 3.6 5.68 5.8 

2.2 2.56 2.6 6.2 10.36 10.6 

2.8 3.34 3.4 8.8 15.04 15.4 

3.4 4.12 4.2 11.4 19.72 20.2 

4 4.9 5 14 24.4 25 

Table 1 – Truck capacity and customer demand data by problem type 
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MODEL Statistic R2 MAP MAPE

Model 1 

Average 0.966 1.4% 6.0% 

Min 0.933 -0.8% 4.2% 

Max 0.986 3.5% 7.3% 

Model 2 

Average 0.991 1.5% 4.7% 

Min 0.986 -1.2% 3.1% 

Max 0.994 4.2% 6.5% 

Model 3 

Average 0.999 1.0% 4.0% 

Min 0.998 -0.9% 2.2% 

Max 1.000 3.5% 6.4% 

Model 4 

Average 0.999 -0.7% 3.2% 

Min 0.999 -2.6% 1.7% 

Max 1.000 1.6% 4.5% 

Model 5 

Average 0.999 -0.4% 3.1% 

Min 0.999 -0.7% 2.0% 

Max 1.000 -0.1% 4.3% 

Model 6 

Average 1.000 -0.1% 2.4% 

Min 0.999 -0.3% 1.5% 

Max 1.000 0.1% 3.4% 

Table 2 – Model fit comparison with a central depot and no time windows 
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MODEL Statistic R2 MAP MAPE

Model 1 

Average 0.968 6.2% 12.0% 

Min 0.954 3.2% 6.2% 

Max 0.982 10.2% 17.9% 

Model 2 

Average 0.984 4.9% 7.9% 

Min 0.977 2.5% 5.2% 

Max 0.990 9.2% 12.7% 

Model 3 

Average 0.994 6.8% 11.0% 

Min 0.987 3.5% 5.8% 

Max 0.998 12.3% 17.8% 

Model 4 

Average 0.997 4.3% 6.9% 

Min 0.994 1.6% 2.8% 

Max 0.999 8.8% 12.1% 

Model 5 

Average 0.998 -0.3% 4.8% 

Min 0.997 -0.8% 2.8% 

Max 0.999 0.2% 7.1% 

Model 6 

Average 0.999 -0.1% 3.7% 

Min 0.998 -0.5% 2.1% 

Max 1.000 0.3% 5.7% 

Table 3 – Model fit comparison with a central depot and time windows 
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Instance Coeff. t-stat. 
St. 

error 

C101 0.62 41.58 0.01 

R101 0.87 37.40 0.02 

RC101 0.79 25.82 0.03 

C201 0.64 57.71 0.01 

R201 0.90 48.85 0.02 

RC201 0.80 33.79 0.02 

Average 0.77 40.86 0.02 

Table 4 – Local tour regression coefficient without time windows (Model 2) 

 

Instance Coeff. t-stat. 
St. 

error 

C101 1.30 56.24 0.02 

R101 1.39 45.80 0.03 

RC101 1.06 45.17 0.02 

C201 1.32 69.79 0.02 

R201 1.89 53.47 0.04 

RC201 1.74 63.38 0.03 

Average 1.45 55.64 0.03 

Table 5 – Local tour regression coefficient with time windows (Model 2)
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MODEL Statistic R2 MAP MAPE

Model 1 

Average 0.985 0.8% 3.3% 

Min 0.970 -1.0% 1.7% 

Max 0.994 2.8% 4.5% 

Model 2 

Average 0.981 1.4% 2.9% 

Min 0.965 -0.2% 1.5% 

Max 0.995 3.0% 4.7% 

Model 3 

Average 1.000 -1.0% 3.1% 

Min 0.999 -2.3% 1.9% 

Max 1.000 0.9% 4.4% 

Model 4 

Average 1.000 0.1% 2.1% 

Min 0.999 -1.0% 1.7% 

Max 1.000 1.2% 2.6% 

Model 5 

Average 1.000 -0.4% 2.1% 

Min 0.999 -0.7% 1.3% 

Max 1.000 -0.1% 2.6% 

Model 6 

Average 1.000 -0.1% 1.7% 

Min 0.999 -0.3% 1.2% 

Max 1.000 0.0% 2.2% 

Table 6 – Model fit comparison with a corner depot and no time windows 
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MODEL Statistic R2 MAP MAPE

Model 1 

Average 0.955 3.4% 8.7% 

Min 0.941 0.0% 5.6% 

Max 0.977 6.2% 13.2% 

Model 2 

Average 0.985 3.2% 5.4% 

Min 0.976 0.9% 3.2% 

Max 0.989 6.6% 9.3% 

Model 3 

Average 0.998 2.7% 5.6% 

Min 0.996 1.0% 2.4% 

Max 0.999 6.2% 10.2% 

Model 4 

Average 0.999 3.0% 5.0% 

Min 0.997 1.0% 3.5% 

Max 0.999 6.1% 9.0% 

Model 5 

Average 0.999 -0.4% 3.9% 

Min 0.999 -0.9% 2.1% 

Max 1.000 -0.1% 5.6% 

Model 6 

Average 0.999 -0.2% 2.9% 

Min 0.999 -0.5% 1.6% 

Max 1.000 0.0% 4.5% 

Table 7 – Model fit comparison with a corner depot and time windows 
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Instance R2 MAPE MAP Coefficient kl km 

Distance 

(kms) 
0.999 -0.5% 4.2% 

Estimated 0.80 49.51 

t-stat 4.158 48.317 

Time 

Driven 

(hrs) 

0.988 5.9% 11.7% 
Estimated 0.028 1.25 

t-stat 2.838 13.088 

 

Table 8 – Real-life network distance and time estimation (Model 4) 
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Figure 1 –Relative Location of the Port of Sydney and Delivery Industrial Areas 

 (freeways in red and main highways in yellow)2 

 
2 Map adapted from Google maps (http://maps.google.com/ ) 
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Figure 2 – Euclidian Distance vs. Shortest Time distance among customers and depot-customers 
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Figure 3 – Distance Traveled and Time Driven 
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