
reprinted from the Proc. of the Second International Conference on Principles

of Knowledge Representation and Reasoning, Cambridge, MA April, 1991

Planning as Temporal Reasoning

James F Allen
Department of Computer Science

University of Rochester
Rochester, NY 14627

Abstract

This paper describes a reasoning system based
on a temporal logic that can solve planning
problems along the lines of traditional
planning systems. Because it is cast as
inference in a general representation, however,
the ranges of problems that can be described is
considerably greater than in traditional
planning systems. In addition, other modes of
plan reasoning, such as plan recognition or
plan monitoring, can be formalized within the
same framework.

1 INTRODUCTION
There is strong interest currently in designing planning
systems that can reason about realistic worlds. In
moving from the toy-world domains that characterized
early work, researchers are looking at a wide range of
issues, including reasoning in uncertain worlds,
interacting with processes and events beyond the
agent's direct control, and controlling mechanisms in
real-time (i.e. robotics). One of the problems faced in
extending existing frameworks is the weak
expressiveness of the representation of the actions,
events and the external world. This paper describes a
reasoning system based on a temporal logic that can
solve planning problems along the lines of traditional
planning systems. Because it is cast as inference in a
general representation, however, the ranges of problems
that can be described is considerably greater than in
traditional planning systems.

The key observations motivating this development are
the following: 1) Actions take time - very few actions
are instantaneous, 2) More than one action may occur at
the same time, 3) Complex plans of activity may
involve complex ordering constraints, and 4) Actions

may interact with external events beyond the agent's
direct control.

Of these problems, the most central one is that of
dealing with simultaneous action. Without simultaneous
action, the range of problems that can be addressed is
very limited, mainly restricted to specialized situations
such as computer programming and game playing. It
makes little sense to study planning in a dynamic
changing world if the planner cannot act while some
other natural event is occurring. The problems that arise
when an action and a external event occur
simultaneously exactly parallel the problems of
simultaneous action. To understand why this problem is
so difficult, it is important to look at the assumptions
underlying the world representation in most current
planning systems. This is examined in detail in the next
section.

2 BACKGROUND: ACTIONS AS STATE
CHANGE
The predominant approach to modeling action in
artificial intelligence and computer science has been to
view action as state change. This view underlies all the
state-based planning systems (e.g. STRIPS and its
successors), formal models of planning (e.g. the
situation calculus [McCarthy & Hayes 1969], and work
in dynamic logic for the semantics of programs (e.g.
[Harel 1974] and [Rosenschein 1981]. In this view, the
world is modelled by a succession of states, each state
representing an instantaneous "snapshot" of the world.
Actions are defined as functions from one state to
another. Propositions in such models are relative to
states. The notion of a proposition independent of a
state is modelled as a function from states to truth
values. In the situation calculus [McCarthy & Hayes
1969], such functions are called fluents. For example,
On(A,B) is a fluent that when applied to a state S is a
proposition that is true if A is on B in state S.

-2-

2

In state-change models such as STRIPS, actions are
instantaneous and there is no provision for asserting
what is true while an action is in execution. Also, since
the state descriptions do not include information about
action occurrences, such systems cannot represent the
situation where one action occurs while some other
event or action is occurring. Finally, there is no
reasoning about the future in these models except by
searching through different possible action sequences.

Many non-linear planners suffer from the same
deficiencies, although some (e.g. [Tate 1977, Vere
1983, & Wilkins 1988]) allow simultaneous actions if
the two actions are independent of each other. In such
cases, the effect of the two acts performed together is
the simple union of the individual effects of the acts
done in isolation. The problem with this solution is that
it excludes common situations of interest in realistic
domains. In particular, interesting cases of interaction
occur when the effect of two actions done together is
different from the sum of their individual effects. In
particular, two actions may have additional effects
when performed together, or they may partially
interfere with each other's effects.

Here's one example concerning the door to the
Computer Science Building at Rochester. The door is
designed so that it requires both hands to open it, very
annoying since you have to put down whatever you are
carrying! There is a spring lock that must be held open
with one hand, while the door is pulled open with the
other hand. If we try to formalize this in a STRIPS-like
system, we find there is no way to assert that unless the
lock is held open it will snap shut.

An approach to this problem has been used in several
systems (e.g. [Vere 1983]). The interaction of two
actions is encoded in a special state. We'll call this
technique state encoding. In particular, in the above
example, we might introduce a fluent that is true only if
the agent is holding the lock open. The action of
holding the lock would be transformed into two actions,
one to start holding the lock, and another to release it.
Pulling the door simply has a precondition that the
agent is holding the lock open. The fluent "holding lock
open", once asserted by the TURN-LOCK action,
remains true until a RELEASE-LOCK action deletes it.
While this might solve this particular problem, there are
many potential disadvantages with this approach. The
first objection is that it is ad-hoc. While it may be the
case that one can invent predicates to cover every
specific example someone proposes, each must be done
after the fact on an individual case by case basis. It is
also not clear how the technique could be generalized to
additional complexities involving simultaneous actions.
More importantly, holding the lock open is intuitively
an action - it may take effort on the part of the agent to
maintain and must explicitly be part of the plan. This is
not reflected in a representation where holding the lock

open is simply a fluent that will remain true until the
agent does something to stop it.

In certain applications, where a detailed causal theory is
known, state encoding approaches can be very
powerful. If we cannot specify such a complete causal
theory, however, or if we simply don't know enough
about a situation to be able to use a causal theory, then
other reasoning techniques must be explored. We would
claim that both these problems arise in everyday
planning situations: first, we have no detailed causal
theory of the world, and second, we would not know
the values for the parameters to the theory if such a
theory was known.

2 TIMES, EVENTS AND ACTIONS
We do not have the space for an extensive discussion of
time here. I will use interval temporal logic as
developed in Allen [1983] and Allen and Hayes [1985].
In this logic, time is constructed out of one primitive
object, the time period, and one primitive relation
called Meets. Two periods meets if one precedes the
other but there is no time between them. From the
Meets primitive, many different temporal relations can
be defined. In this paper uses the following:

In(i,j) - period i is contained in period j;
Disjoint(i,j) - i and j do not overlap in any way;
Starts(i,j0 - period i is an initial subsegment of j;
Finishes(i,j) i is a final subsegment of j.
SameEnd(i,j) - periods i and j end at the same time.
Overlaps(i,j) - i starts before but overlaps j

Time periods can be divided into the non-decomposable
periods called moments, and decomposable periods,
called intervals.
We attach times to predicates by adding an extra
argument to each predicate as in Bacchus, Tenenberg,
and Koomen [1989]. For example, the proposition
Green(FROG13,T1) is true only if the object named by
FROG13 was green over the time named by T1.

By allowing time intervals as arguments we open the
possibility that a proposition involving some predicate
P might neither be true nor false over some interval t. In
particular, consider a predicate P such that p is true
during some subinterval of t, and also false in some
other subinterval of t. In this case, there are two ways
we might interpret the proposition ~P(t). In the weak
interpretation, ~P(t) is true iff it is not the case that P is
true throughout interval t, and thus ~P(t) is true if P
changes truth values during t. In the strong
interpretation of negation, ~P(t) is true iff ~P is true
throughout t, and thus neither P(t) nor ~P(t) would be
true in the above situation. Thus, a logic with only
strong negation has truth gaps.

We use the weak interpretation of negation, as do
Shoham [1987] and Bacchus, Tenenberg and Koomen

-3-

3

[1989], to preserve a simple two-valued logic. Of
course, we can still make assertions equivalent to the
strong negation. The fact that P is false throughout t can
be expressed as follows, where In is true if its first
temporal argument is contained in its second:

∀ t' . In(t' ,t) ⊃ ~P(t').

This logic is still insufficient to conveniently capture
many of the situations that we need to reason about,
however. In particular, we need to introduce events as
objects into the logic. Davidson [1967] argued that
there are potentially unbounded qualifications that
could be included in an event description. For example,
the event of Jack lifting a particular ball might be
asserted to occur at some time by a predicate Lift, as
follows:

Lift(JACK34,BALL26,T1).
The problem arises in now representing the event "Jack
lifted the ball onto the table". Either we need to add
another argument to the Lift predicate, or we need to
introduce a new predicate that represents a variant of
lifting that includes an extra argument. Either is
unsatisfactory. Davidson suggested the solution of
reifying events, whereby additional modifiers would
simply become additional predications on the event.
Thus, the event of Jack lifting the ball to the table with
the tongs might be represented as

∃ e . Lift(JACK34,BALL26,e,T1) ∧ Dest(e) =
TABLE555 ∧ Instrument(e) = TONGS1.

We will represent knowledge about action in several
ways. The first is by defining the necessary conditions
for the event consisting of the action occurring (as in
[Allen(1983]) For example, consider the action
stack(a,b), which involves stacking block a on block b.
For this action, we define a predication Stack(a,b,e,t),
that is true if e is an event consisting stack(a,b)
occurring over time period t.

The event variable plays a central role - all the other
parameters can be defined in terms of the event
variable. For example, every instance of a stacking
event uniquely defines the blocks that it involves, and
the times relevant to the properties that define it. As a
convention, we will denote the times for properties
corresponding to preconditions by functions pre1, pre2
and so on, those corresponding to effects by eff1, eff2,
and so on, and those corresponding to conditions that
hold while the event is occurring by con1, con2, and so
on.

The stacking action in a typical STRIPS-style system is
defined by its preconditions: (both blocks must be
clear), and its transition function: (delete the formula
Clear(y) and add the formula On(x,y)). We can use the
STRIPS definition to motivate the conditions of the
world that necessarily must be true whenever such a
stacking event occurs.

In particular, each event type defines a set of temporal
functions that define the structure of the temporal
intervals involved in the event. For example, the class
of stacking events uses functions to produce times
corresponding to the properties involved in the action's
preconditions and effects. We can define the structure
of the stacking event as follows (see Figure 1):

Stacking Axiom 0: Temporal Structure
∀ e , ∃ a, b, i . Stack(a, b, e, i) ⊃
 Overlaps(pre1(e), i) ∧ Finishes(con1(e), i)

∧ Meets(pre1(e), con1(e)) ∧ Meets(i, eff1(e))
∧ SameEnd(i, pre2(e)) ∧ Meets(i, eff2(e)).

With this temporal structure defined for every stacking
event, the axiom defining the necessary conditions for
the event's occurrence now can be expressed as:

Stacking Axiom 1: Necessary Conditions
∀ i, a, b, e . Stack(a, b, e, i) ⊃
 Clear(a,pre1(e)) ∧ Holding(a, con1(e))

∧ Clear(a,eff1(e)) ∧ Clear(b, pre2(e)) ∧
 On(a, b, eff2(e)).

The above axiom asserts what is true whenever a
stacking event occurs, independent of the situation.
Other knowledge about action is relevant only in certain
situations. For instance, if the block being moved in a
stacking action was initially on another block, then this
other block becomes clear (at least momentarily). This
is easily expressed in the logic by the following axiom,
which states that if block a was initially on another
block c, then c becomes clear when a is moved:

Stacking Axiom 2: Conditional Effects
∀ i,a,b,c,t,e . Stack(a,b,e,i) ∧ On(a,c,t) ∧ Overlaps(t,i)

⊃ Clear(c,eff3(e)) ∧ Meets(t,eff3(e)) ∧
 Meets(t,con1(e)).

This axiom applies in a situation with three blocks, say
A, B and C where A is originally on block C. The
conditions for the action Stack(A, B, E1, T1) are shown
graphically in Figure 1. Note that this definition does
not assert that the block C will be clear at the end of the
stacking event. In particular, if two stacking events
overlap in time (say Stack(A,B,E1,T1) and
Stack(D,C,E2,T2)) then this may not be the case, for D
may be placed onto C before A is placed on B. Such
subtleties cannot be represented easily in a STRIPS-
style representation.

The development so far has not captured any sense of
causality. In particular, the axioms above do not state
what properties are caused by the stacking action, or
what properties simply must be true whenever the
action succeeds. This is the distinction that STRIPS
makes between preconditions and effects. Intuitively, it
is clear that the stacking action causes block a to be on
block b in situations where both blocks are clear at the
start of the action. Furthermore, the stacking action

-4-

4

causes block b to become not clear while it doesn't
affect the condition that block a is clear.

To encode such knowledge, we need to be able to
reason about action attempts (cf. [McDermott 1986]).
The logic developed so far can express the fact that a
certain event occurred, but not that an agent attempted
to do some action. The predicate Try is defined such
that Try(a,e,t) is true whenever the action a is attempted
by the agent at time t in order that event e occurs. Of
course, if the conditions are not right then the action
will not succeed and the event does not occur. For
example, Try(stack(a,b),e,t) does not necessarily imply
Stack(a,b,e,t). The relationship between the two is
defined by axioms corresponding to precondition
assertions: In particular, we can assert that wherever the
agent tries to stack a on b starting from an initial
situation where a and b are clear, then a stacking event
occurs:

Stacking Axiom 3: Prerequisites
∀ i,j,k, a,b,e . Try(stack(a,b),e,i) ∧ Clear(a,j) ∧

Overlaps(j,i) ∧ Clear(b,k) ∧ SameEnd(i,k)
⊃ Stack(a,b,e,i) ∧ pre1(e)=j ∧ pre2(e)=k.

3 THE PLANNING FORMALISM
A planning system can now be specified using the
temporal logic developed above. This system can
reason about certain classes of interacting simultaneous
events and it has a limited capability for reasoning
about the future. In particular, while it cannot plan to
change any external events predicted to occur in the
future, it can construct plans that take future events into
account and reason about interactions with such events.
Pelavin [1988] and Allen et al [1991] present an
extended logic that can represent future possibilities as
well.

In order to construct plans, an agent needs to predict
future states of the world. STRIPS-like problem solvers
do this by using the add and delete lists to transform the
current state into the next state. With a representation
based on an explicit temporal logic, however, it is more
complicated. In particular, if a proposition P is asserted
to hold at a time T1 and then some action A occurs after
T1 that makes P false, it is still true that P held at time
T1. So the representation of the world should still
contain this assertion. What has changed once the new
action is introduced is some prediction about whether P
holds in the future. For example, before A is known
about, the agent might have predicted that P still holds
in the future. Once the action A is expected, however,
this prediction might change.

Thus it is the predictions (or expectations) about the
future that change as an agent plans. Since an agent
may change its mind about what future actions it might
do, most conclusions about the future must be
retractable. This suggests that some form of non-
monotonic reasoning is necessary in order to maintain
the world model and some models such as deKleer's
ATMS [deKleer 1986] might be useful. But there is a
simpler route: a model can be outlined that views all
predictions about the future as conditional statements
based on what the agent assumes about the future
including its own actions. Given an initial world
description W and a goal statement G, the plan is a set
of assumptions A1,...,An such that

W ¯ (A1 ∧ A2 ∧...∧ An ⊃ G.)

Of course, if the Ai’s are inconsistent then this
statement is vacuously true, so we must also add the
condition that

A1 ∧ A2 ∧...∧ An is consistent.

Stack(A,B,E1,T1)

 Clear(C,eff3(E1))

 Clear(B,pre2(E1)) On(A,B,eff2(E1))

Holding(A,con1(E1)) Clear(A,eff1(E1))

 On(A,C, Oac)

Clear(A,pre1(E1))

Figure 1: The necessary conditions for Stack(A,B,E1,T1) in a situation

where A is originally on C (using stacking axioms 1 and 2)

-5-

5

Finally, we want to avoid assuming the problem away.
For instance, if A1 is simply equivalent to the goal
statement G, the above conditions are true but we can’t
say we’ve solved the problem! This is handled by
restricting the form of assumptions that the planner can
make, as described below.

With this analysis, we can view the planning problem
as consisting of two types of reasoning:

- prediction - what is the world like (based
on a given set of assumptions)

- planning - what assumptions should the
agent make about its future behavior,
and the future world.

These two types of reasoning are explored in detail in
the remainder of this section.

3.1 Predicting the Future
If an agent had full knowledge about a world, then
predicting the future would be a relatively well-defined
task. The agent would simply simulate the future course
of events starting from the present state. In practice,
however, the agent never has such detailed knowledge
about the world - the agent's knowledge of the present
state is partial, and the world is not well-understood
enough to make precise predictions. Even qualitative
models, such as those discussed in Bobrow [1985],
assume a level of knowledge about the state of the
world and the processes that change it that are not
realizable in most situations.

Here we develop a very conservative model of
prediction based on maintaining limited consistency of
the agent's beliefs about the world. Essentially, given
some set of beliefs about the future, the predictions are
simply what is inferable from those beliefs using the
agent’s knowledge of the structure of the world and the
definitions of actions. The particular system we will
specify uses a forward chaining strategy on Horn
clauses coupled with constraint propagation techniques
for time (Allen, 1983, Koomen, 1989) to make the
predictions.

To drive the predictor, we need knowledge about the
actions, such as defined in the last section, as well as
general knowledge of the domain. For instance, to
reason about the door latch problem given at the start of
this paper, we would have to know that a door cannot
be open and shut at the same time. This motivates a
forward chaining rule that guarantees that this cannot
occur:

Domain Constraint 1
∀ t1,t2 . DoorOpen(,t1) ∧ DoorClosed(,t2) ⊃

Disjoint(t1,t2).

Similarly, the latch is either open or shut, but not both:

Domain Constraint 2
∀ t1,t2 . LatchShut(t1) ∧ LatchOpen(t2) ⊃

Disjoint(t1,t2).

Allen & Koomen (1983) show that a prediction
algorithm using action definitions and domain
constraints similar to those presented here can capture
many important aspects of non-linear planning systems.

3.2 Making Assumptions
There are two main classes of assumptions that the
planner must make. It must decide what actions it will
attempt to perform, and it must make assumptions
about how the external world will behave. While the
planner may assume it can attempt any action at any
time, the action will only succeed if the appropriate
conditions hold. As we'll see below, this is
implemented by allowing the planner to add an
assertion of the form Try(a,e,t) without proof.

The assumptions about the external world are limited at
present to persistence assumptions [Dean &
McDermott 1987], that once a property is established, it
tends to remain true until explicitly changed. More
precisely, a literal P(i1,...,in,t) can be proven by
persistence if there is a literal in the database of form
P(i1,...,in,t') where it is possible that t=t'. This definition
not only allows persistence into the future, it also
allows persistence into the past. It will be examined
further after the basic planning algorithm is presented..
Note that we have a constant-time method of
heuristically checking whether t=t' is possible given the
network representation of temporal information: the
system simply checks if "=" is one of the disjuncts still
present on the arc connecting the node for t and the
node for t' (see [Allen 1983]).

4 THE PLANNING SYSTEM
To a first approximation, the planning algorithm is
simply a backwards-chaining proof strategy driven by
the goal statement, where assumptions about action
attempts and persistence can be made without further
proof. While very simple, this planner is similar in
power to the regression planners (e.g. Waldinger,
1977).

To distinguish the logic developed so far from the
system, which involves heuristic reasoning on a
restricted formalism, we will use a different notation. A
literal consists of a predicate name and a list of
arguments enclosed in square brackets. Thus the literal
corresponding to the formula On(A,B,G) is:

[On A B G].

Knowledge about actions is captured by a set of
planning rules, which are a modified notation of Horn
clauses using "?" as a prefix to indicate variables. In
general, a planning rule is of the form

-6-

6

C <<< D1 D2 ... Dn such that A1, ..., Ak

and can be interpreted formally as a Horn clause: the
consequent literal C is true (or provable) if the
antecedent literals D1,...,Dn are true and the constraints
A1,...,Ak are true. The system, however, will treat the
antecedents and constraints differently to produce an
efficient inference strategy.

Two planning rules for the action of pulling the door
open are as follows: First, pulling on door when the
latch is open results in the door being open:

(PullOpen.1)
[DoorOpen ?t'] <<<
 [PullOpen ?e ?t] such that [EQ eff1(?e) ?t'].

Second, you may open the door any time you try to, if
it’s closed and the latch is unlocked:

(PullOpen.2)
[PullOpen ?e ?t] <<<
 [DoorClosed pre2(?e)]
 [LatchOpen pre1(?e)]
 [Try [pull] ?e ?t]

The temporal structure for the PullOpen action must
also be defined in the system. Rather than present
details we will summarize such information by an
axiom in the original logic that defines two
precondition intervals (for the latch being open, and the
door being shut), and one effect interval (for the door
being open):

PullOpen Axiom 0: Temporal Structure
∀ e,t . PullOpen(e,t) ⊃ OverlapsDuring(pre1(e), t) ∧

Meets(t,pre2(e)) ∧ Starts(eff1(e),t)

Planning rules will be used by the system in both a
forwards (i.e. from antecedent to consequent) and a
backwards (from consequent to antecedent) chaining
manner. To apply a rule in a backwards chaining
manner, the rule's consequent C is unified with the goal.
Then the constraints A1,..., An are added to the
database and the antecedent literals D1,...,Dn are
introduced as subgoals. To apply the rule in a forward
manner, if a literal is added to the database that unifies
with some antecedent literal Di, and all the other Dj (j ≠
i) and the constraints A1,...,An are in the database, then
we also assert the consequent C. For instance, rule
(PullOpen.1) could be used to suggest that a goal
[DoorOpen Do1] could be accomplished by an event E1
if we can prove [PullOpen E1 T1] under the constraint
eff1(E1)=Do1. The same rule is also used to predict the
consequence of the same event E1 occurring at time T1:
ie., if [PullOpen E1 T1] is added then add [DoorOpen
eff1(E1)].

This simple example illustrates the basic technique for
generating plans - planning rules are used to backward
chain to suggested actions, and then in a forward
manner to compute the consequences of those actions.

In addition, all the domain prediction rules are also used
in a forward chaining manner to compute additional
consequences of the action. For example, Domain
constraint 1 above would be asserted as the following
forward chaining rule:

[Disjoint ?t1 ?t2] <forward<
 [DoorOpen ?t1] [DoorClosed ?t2].

All the other domain constraints can be expressed
similarly.

There are several additional issues to consider before
the final algorithm is specified. First, the planner must
be able to create event structures as needed, since the
appropriate events will not generally be known to occur
in advance of the planning. This is accomplished during
the backwards chaining phase: whenever a literal
containing an unbound event variable is to be
introduced as a goal, a new event constant is generated
and the temporal structure associated with that event is
added to the database together with any other
constraints specified in the planning rule. As an
example, given the goal [DoorOpen Do1], rule
(PullOpen.1) suggests a subgoal of proving [PullOpen
?e ?t]. Before this is considered further, a new event,
say E1, and a new time, say T1, are created and the
following constraints are added to the database from the
definition of the temporal structure of Stack events
(StackingAxiom 0):

[OverlapsDuring pre1(E1) T1]
[Meets T1,pre2(E1)]
[Start eff1(E1) T1].

What we have done is create the temporal structure for
an event that could accomplish the goal clause. We
have not asserted that this event yet occurs. This will
require further chaining to prove [PullOpen E1 T1].
This process of creating event and temporal constants to
replace the unbound variables will be called
instantiating the planning rule.

4.1 The Algorithm
The following algorithm defines a planner that does not
commit to the persistence assumptions until the entire
plan is otherwise complete. It uses the simple
backwards chaining technique from the goals as
described informally above, and forward chaining to
compute the consequences of its assumptions about
persistence and action attempts. Because the temporal
aspects of the plan are independent of the planning
algorithm, the simple back-chaining strategy does not
restrict the plans that can be produced.

It consists of two main parts: the plan generator,
which creates a particular plan and the assumption
verifier, which takes a suggested plan and evaluates
whether the persistence assumptions that support it still
appear to be consistent. Let GS be the goal stack, which
is initialized to the initial set of goals when the

-7-

7

algorithm is invoked. The output of this algorithm is a
set of actions to be attempted by the agent (the action
list), a set of assumptions about the world (the
assumption list), and the world state generated by the
prediction reasoner. Each persistence assumption
consists of a literal P true over some time period T and
an equality relation involving T that captures the
persistence assumption.

Plan Generation
This is a non-deterministic version of the planning
algorithm. A PROLOG-style search strategy to iterate
through all possible proof paths can be added in the
obvious way.

(0) Do until GS is empty; then go to verification
stage: remove the top element of GS and call it G;

(1) Choose:

(1.1) If a formula unifying with G is
found in the database, then bind any
variables in G as necessary;

(1.2) If G can be proven by a persistence
assumption, then pass G to the
prediction reasoner, and add G
together with the equality assertion
that justifies the assumption to the
assumption list;

(1.3) If G is of the form Try(A,e,t), for
some action A, then add G to the
action list, pass G to the prediction
reasoner;

(1.4) Find a planning rule R whose
consequent unifies with G, instantiate
the rule as defined above (i.e. binding
the event and temporal variables and
adding the constraints) and push the
antecedents onto GS.

Verifying Assumptions
This algorithm uses the temporal reasoner to check that
all the persistence assumptions appear to be globally
consistent. It does this by first re-checking the temporal
constraints for each assumption individually to see if it
is still possible. It then adds all the assumptions
together to see if they appear to be globally consistent
(according to the temporal reasoning algorithm). If
some assumptions are no longer consistent, the
planning stage is re-activated.

(2.1) Check each persistence assumption individually
to see if it is still possible given the current temporal
network generated by the prediction reasoner. If not,
add the literal associated with each assumption that is
now impossible to GS and restart at step (0).

(2.2) (Given that step (5) succeeded) Add the
persistence assumptions to the prediction reasoner.

Unless the prediction reasoner returns an inconsistency,
we are done. If an inconsistency is found, then we must
select an assumption to retract. Designing a good
strategy for this is left as future work. For now we
simply select an assumption at random. Remember that
assumptions consist of a literal P, and an equality
assertion t=t'. Given the selected assumption, add t≠t' to
the prediction reasoner, add P to GS and restart at step
(0).

5 THE DOOR-LATCH PROBLEM
One of the major goals of this work was allowing plans
that necessarily required simultaneous actions. The
Door-Latch Problem was posed as the simplest example
of this type of situation. In this section, we show how
the domain can be formalized and a plan constructed
from first principles that will open the door. First we
present the planning axioms that define the actions, and
then give an overview of the solution.

Remember that the complication in this example is that
the agent must realize that it must continue to hold the
latch open while it is pulling on the door. The actions
needed are turning the latch, holding the latch open, and
pulling the door. Unless the latch is held open, it snaps
shut. Given that the planner uses persistence
assumptions about the world, some technique must be
introduced to prevent the planner from using this
technique to infer that the latch stays open. This would
best be handled by adding some causal reasoning to the
predictor, but a simpler technique can be used in this
class of situations. We will define the turn-latch action
such that its effect holds exactly for a moment, i.e. a
non-decomposable period. Thus any action that requires
the latch to be open for an extended period of time
cannot accomplish this by persistence, since a moment
cannot be equal to an interval by definition. The hold-
latch action is then defined so that it requires the latch
to be open at the time the action starts (which may be a
moment) and has the effect that the latch stays open for
the duration of the action. Specifically, we have the
planning rules below which are used by the predictor to
maintain the world representation.
The temporal structures for each event are axiomatized
below and shown graphically in Figure 2. The
PullOpen action was defined earlier. TurnLatch events
have a precondition interval (for the latch being closed)
and an effect moment (for the latch being open):

TurnLatch Axiom 0: Temporal Structure
∀ e,t . TurnLatch(e,t) ⊃ Finishes(t,pre1(e)) ∧

Moment(eff1(e)) ∧ Meets(t,eff1(e)).

HoldingLatch events define a single precondition
period (for the latch being open) and an effect interval
simultaneous with the event interval:

-8-

8

HoldingLatch Axiom 0: Temporal Structure
∀ e,t . HoldOpen(e,t) ⊃ Meets(pre1(e),t) ∧ EQ(eff1(e),t)

The planning rules for these actions are as follows:
Turning the Latch has the effect that the latch is
momentarily open:

(TurnLatch.1)
[LatchOpen ?t'] <<<
 [Moment ?t']
 [TurnLatch ?e ?t]
 such that [EQ ?t’ eff1(?e)].

Turning the latch can be accomplished by trying to do it
when the latch is shut:

(TurnLatch.2)
[TurnLatch ?e ?t] <<<
 [LatchShut pre1(?e)]
 [Try [turnlatch] ?e ?t].

The latch remains open if and only if it is held open. In
particular, note that the effect and the action in this rule
must be simultaneous:

(HoldOpen.1)
[LatchOpen ?t'] <<<
 [Interval ?t']

 [HoldOpen ?e ?t]
 such that [EQ eff1(?e) ?t'].

Holding the latch open succeeds whenever the latch is
open at the start of the holding act:

(HoldOpen.2)
[HoldOpen ?e ?t] <<< [LatchOpen pre1(?e)]
 [Try [holdopen] ?e ?t]

Assuming a situation, in which the agent is near the
door , the initial world description would be as follows,
where I is the current time, and G is the time when the
goal must hold:

[In I ls1] [LatchShut ls1]
[In I dc1] [DoorClosed dc1]
[Before I G].

The goal is simply to have the door open over time G,
i.e. [DoorOpen do1] such that [In G do1]. The initial
planning situation is shown in Figure 3.

Here’s a brief sketch of the planner in operation. Given
the goal [DoorOpen do1], rule (PullOpen.1) applies
and introduces the subgoals after instantiation:

GS: [PullOpen E1 T1]
where [EQ eff1(E1) do1] and the temporal

TurnLatch(E1,T1)

LatchShut(pre1(E1))

LatchOpen(eff1(E1))

LatchOpen(pre1(E2))

HoldLatch(E2,T2)

LatchOpen(eff1(E2))

PullOpen(E3,T3)

LatchOpen(pre1(E3))

DoorClosed(pre2(E3))

DoorOpen(eff1(E3))

Figure 2: The temporal structure for three events in the door problem

DoorOpen(do1)DoorClosed(dc1)

LatchShut(ls1)

I
G

Figure 3: The Door-latch problem

-9-

9

constraints for the new PullOpen
event E1, i.e. [OverlapsDuring
pre1(E1) T1}, [Meets T1 pre2(E1)]
and [Starts eff1(E1) T1] are added to
the database

The subgoal [PullOpen E1 T1] can be proven by rule
(PullOpen.2) producing the new set of subgoals:

GS: [DoorClosed pre2(E1)]
 [LatchOpen pre1(E1)]
 [Try [pull] E1 T1].

The first subgoal is proven by persistence from the
initial state, using the assumption that pre2(E1)=dc1.
The second subgoal, [LatchOpen pre1(E1)], requires
further planning. Rule (TurnLatch.1) cannot apply here
as it requires the interval pre1(E1) to be a moment.
Rule (HoldOpen.1) does apply, however, and
introduces the subgoal [HoldOpen E2 pre1(E1)] (note
that by the planning rule pre1(E1)=eff1(E2), which in
turn equals the time of the HoldOpen event by its
definition). Rule (HoldOpen.2) then applies to this
subgoal and introduces the following subgoals after
instantiation:

GS:[LatchOpen pre1(E2)]
 [Try [holdopen] E2 pre1(E1)]
 [Try [pull] E1 T1].

This time, rule (TurnLatch.1) can apply (since pre1(E2)
can be a moment) and the action [TurnLatch E3 T3] is
introduced. After using rule (TurnLatch.2) to reduce
this goal, the following subgoals remain:

GS: [LatchShut pre1(E3)] [Try [turnlatch] E3 T3]
 [Try [holdopen] E2 pre1(E1)]
 [Try [pull] E1 T1].

The first of these subgoals can be proven by
persistence, since it is possible that pre1(E3)=ls1, and
the remaining three subgoals are trivially proven as they
are under the control of the planner. As each of these is
assumed, it is added to the database triggering the
forward-chaining prediction rules. As a result, the door
is predicted to be open at time do1.

Finally, the persistence assumptions must be verified,
and then added to the predictor producing the final plan

as shown in Figure 4, with the persistence assumptions
shown in grey. Note that the Pull action must start
within the time when the HoldOpen action occurs, as
desired. If this were not the case, the final effect,
namely that the door is open, would not be predicted by
the prediction mechanism. Thus we’ve shown that the
planner can find the correct plan, and that it would not
accept the faulty plan that would arise from a STRIPS-
style planner, or from a naive persistence mechanism.

6. PLANNING WITH EXTERNAL EVENTS
Another simple example of some interest shows that the
planner can co-ordinate with external events that it
knows will occur sometime in the future. For example,
consider a different initial situation, which is the same
as before except that the planner knows that the door is
unlocked automatically between 8AM and 9PM every
day, and the goal is to get the door open sometime
between 7AM and 9AM. This situation is shown in
Figure 5, where the times of day are represented by
moments.

The initial database consists of the following assertions:

[In I ls1]
[LatchShut ls1] [Meets ls1 lo1]
[LatchOpen lo1] [Meets ls1 8AM]
[In I dc1] [DoorClosed dc1]
[Before I 7AM] [Before 7AM 8AM
[Before 8AM 9AM] [Before 7AM G]
[Before G 9AM] [Moment 7AM]
[Moment 8AM] [Moment 9AM].

The initial goal is as before, to accomplish [DoorOpen
do1] such that [In G do1]. Using rule (PullOpen.1) we
get the subgoal of [PullOpen E1 T1], where
eff1(E1)=do1. Rule (PullOpen.2) gives two
preconditions for this action, namely

[DoorClosed pre2(E1)]
[LatchOpen pre1(E1)].

In this case, both can be proven by persistence.
[DoorClosed pre2(E1)] would be true if pre2(E1)= dc1,
and [LatchOpen pre1(E1)] would be true if
pre2(E1)=lo1. Adding these assumptions creates a plan
that involves pulling the door after 8AM (since the

DoorOpen(do1)DoorClosed(dc1)

LatchShut(ls1)

I
G

TurnLatch(E3, T3)

HoldOpen(E2, pre1(E1))

LatchOpen(pre1(E1))

PullOpen(E1,T1)

LatchOpen(pre1(E2))

Figure 4: The solution to the Door-Latch Problem

-10-

10

Latch must be open) and before 9AM (to satisfy the
goal conditions on G). Thus we have constructed a plan
that takes advantage of the automatic latch, a known
event in the future, by scheduling its own actions to
take advantage of the latch being open. If, on the other
hand, the goal had been to open the door before 8AM,
i.e. G is constrained to be before 8AM, then this plan
will not be suggested since the persistence assumption
pre1(E1)=lo1 is not consistent with the database.

7 DISCUSSION AND EXTENSIONS

7.1 Persistence Assumptions
One of the critical techniques used to construct plans
was the use of assumptions about the equality of times.
In essence, this technique allows a time period to
extend as far as possible given its constraints to other
periods. Thus, if a proposition P is known to be true
over an interval that contains a time t, and nothing is
known to prevent P remaining true after t, then an
assumption may be made that P is true after t if needed
in a plan. Similarly, if nothing prevents P from being
true before t, an assumption might be made that P was
true some time before t. This capability to extend
forwards or backwards in time might seem strange at
first, but is quite useful in tasks that require plan
recognition, or planning in worlds where information
has to be acquired.

In Allen et al (1991), we show that this technique
corresponds to the technique of Dean & McDermott
[1987] if the persistence is into the future. The
differences arise in two cases: first when there is
uncertainty as to the starting time of the property, and
second when a property is proven by extending
backwards. Thus, the interval persistence rule is
considerably more liberal than the rule used by Dean
and McDermott. To handle these latter cases, Dean
introduces another mechanism based on abduction. The
different cases, however, seem to all reflect the same
interactions, so a single uniform method for handling
them seems preferable. In addition, the interval
persistence rule is considerably simpler to describe and

analyze. Situations requiring the more general rule
appear frequently in everyday situations.
For example, if we are told that our airline tickets will
be at the Bursars Office at 3 on Tuesday, then that
suggests that they might be there earlier - it depends on
the unknown information about when they were
delivered. Similarly, being there at 3 suggests that the
tickets will be there after 3 as well, and how long
depends on unknown information about when they
were picked up. In a single-agent domain, we have a
high degree of confidence that the tickets remain at the
office until we pick them up, since no other agent exists
to pick them up. Note, of course, in a single agent
domain, there wouldn't be an agent to deliver the tickets
to the office in the first place, so that the tickets would
need to be at the office in the initial situation. Thus,
with a single agent, and a completely defined initial
world, there is a strong bias to persistence only into the
future. With multi-agent worlds, and partially defined
situations, extension into the past becomes an equally
important technique.

Of course, a simple persistence technique like this has
problems. Using logical consistency is too weak a
measure for the plausibility of a persistence
assumptions. Rather, it would be better to evaluate the
likelihood of a persistence using a causal theory, or a
probabilistic method such as in Dean &
Kanazawa[1988]. Note that since the assumptions are
explicitly part of the final plan, such techniques could
be introduced into this framework to produce a
likelihood that a given plan will succeed if attempted.

7.2 A Hierarchical Planning Algorithm
The representation and algorithm above can easily be
extended to include reasoning based on action
decomposition as found in hierarchical planners such as
NONLIN (Tate, 1977), SIPE (Wilkins, 1988) or
FORBIN (Dean, Firby & Miller, 1989).

We could do this by introducing axioms that allow us to
prove formulae of the form [Try a e t] rather than
assuming them. But it turns out that the algorithm is
easier to specify if we introduce a new predicate

Figure 5: The door problem with an automatic latch system

-11-

11

Decomp on actions. The relation between Decomp and
Try is that you try an action by performing one of its
decompositions, ie.

∀ e,t,a . Decomp(a,e,t) ⊃ Try(a,e,t).

For example, a stacking action is accomplished by
moving the arm to the block desired, opening the hand,
lowering the hand over the block, grasping the block,
raising the arm and moving it to the desired destination,
and then lowering the arm and opening the hand again.
Figure 6 shows the decomposition of the Stack action
together with the necessary persistence assumptions
required to make the decomposition effective. In
particular, the effect of picking up b1, namely
Holding(b1,eff1(e1)), must extend to satisfy the
precondition on the PutDown action. In addition, this
effect is identical to the constraint originally defined for
the Stacking action.
We capture this information by adding a planning rule
that specifies this as one way to decompose the action:

Stack Decomposition Axiom
[Decomp [stack ?x ?y] ?e ?t] <<< [Pickup ?x ?e1 ?t1]

[MoveArmTo ?y ?e2 ?t2] [PutDown ?x ?e3 ?t3]
such that [Meets ?t1 ?t2][Meets ?t2 ?t3][Starts ?t1

?t] [Finishes ?t3 ?t] [EQ eff1(?e1) pre1(?e3)]
[EQ eff1(?e1) con1(?e)].

The only other complication is that the initial algorithm
used a second stage to verify that all persistence
assumptions made in the plan were still consistent. We
could leave this second stage until the entire plan is
decomposed, but it is more in line with traditional
hierarchical planners to verify these assumptions at
each decomposition level before the next level is
constructed. This can be accomplished simply in the
new algorithm by adding a "dummy" goal on the
bottom of the goal stack that invokes the consistency
checking algorithm. When this goal rises to the top of
the stack, one complete level of decomposition has
been completed. The constraints are checked and the
dummy goal is added again at the bottom of the goal
stack to signal the end of the next level of
decomposition. We will call this dummy goal
[VerifyAssumptions]. A precise specification of the
algorithm is as follows:This algorithm is a slight

variation of the earlier algorithm. It differs in how
action attempts are treated, and in the time that
assumptions are verified. As before, this is a non-
deterministic version of the algorithm, and the goal
stack GS is initialized to the goal statement.
Do until GS is empty:

(0) Remove the top element of GS and call it G;

(1) Choose

(1.1) If a formula unifying with G is
found in the database, bind any
variables in G as necessary.

(1.2) Otherwise, if G can be proven by a
persistence assumption, then pass G
to the prediction reasoner, and add G
together with the equality assertion
that justifies the assumption to the
assumption list.

(1.3) Otherwise, if G is of the form
Try(A,e,t), for some action A, add G
to the action list and pass G to the
prediction reasoner. Also, if there are
axioms with a consequence of form
Decomp(A,e,t) in the database, add
Decomp(A,e,t) to the end of GS.

(1.4) If G = [VerifyAssumptions], then
invoke the assumption verifier. (Note,
if verifying the assumptions fails,
then G is not achieved and the
algorithm backtracks). Unless GS is
now empty, add a new goal
[VerifyAssumptions] to the end to
GS.

(1.5) Otherwise, find a planning rule R
whose antecedent unifies with G,
instantiates the rule as defined above
and push the antecedents of R onto
GS.

This algorithm expands a plan level-by-level through a
decomposition hierarchy, validating the consistency of
the plan at each level before the next level was
addressed. Constraints imposed by the higher levels

Stack(b1,b2,e,t)

Pickup(b1,e1,t1) MoveArmTo(b2,e2,t2) PutDown(b1,e3,t3)

Holding(b1,eff1(e1))

 eff1(e1)=pre1(e3)=con1(e)

Figure 6: The decomposition of the Stack Action

-12-

12

makes the accomplishment of the actions at the lower
levels considerably easier.

8 CONCLUSIONS
We showed how traditional planning systems could be
recast fairly directly as a specialized inference process
on a temporal logic. By doing this, we have produced a
framework that is much easier to understand and
extend. By separating the temporal aspects of a plan
from the procedural aspects of plan construction, for
example, we found that even the simplest backwards
chaining planning algorithm can generate non-linear
plans. Similarly, a hierarchical planner can be generated
by changing the set of assumptions about action
attempts that the system is willing to make at any given
time. As such, this work provides a uniform framework
for examining many of the different planning
frameworks developed to date.
While the actual system described duplicated the
abilities of traditional planning algorithms, the
situations that can be represented and reasoned about
are more general than can be represented in a state-
based model. In particular, we can reason about plans
involving complex interactions between overlapping
actions. It can reason about the effects of simultaneous
actions that are not the effect of any one of the actions
individually. The representation is limited, however, in
representing partial interference between actions. This
is because the current representation cannot explicitly
capture the notion of possibility (as found in branching
time models) and from the simple technique used for
generating persistence assumptions.

By separating the domain reasoning from the plan
construction algorithm, we have developed a general
representation for reasoning about action that is
independent of the particular application that is driving
it. A plan recognition system could use the same action
definitions in the same representation. Plan recognition
can be viewed as just another specialized inference
process on this same world representation.

More details on all these topics can be found in Allen et
al (1991).

Acknowledgements
Thanks to George Ferguson and Nat Martin for
comments on a draft of this paper. This work was
supported in part by the Air Force Systems Command,
RADC (now Rome Laboratory) and the Air Force
Office of Scientific Research, under contract no.
F30602-85-C-0008, and NSF grant N00014-90-J-1811.

References
Allen, J.F. “Maintaining knowledge about temporal

intervals,” CACM 26, 11, 832-843, 1983.
Allen, J.F. “Towards a general theory of action and

time,” Artificial Intelligence 23, 2, 123-154, 1984.

Allen, J.F. and P.J. Hayes. “A common-sense theory of
time,” Proc. IJCAI 85, Los Angeles, CA 1985.

Allen, J.F. and J.A. Koomen, "Planning using a
temporal world model", Proc. IJCAI 83, Karlsruhe,
Germany, 1983.

Allen, J.F.,H. Kautz, R. Pelavin, and J. Tenenberg
Reasoning.About Plans Morgan Kaufmann, 1991.

Bacchus, F., J. Tenenberg and H. Koomen, "A non-
reified temporal logic", Proc. of the First Int'l
Conf. on Principles of Knowledge Representation
and Reasoning, Morgan Kaufmann, 1989.

Davidson, D. “The logical form of action sentences,”
in N. Rescher (ed.). The Logic of Decision and
Action. U. Pittsburgh Press, 1967.

DeKleer, J. “An assumption-based TMS,” Artificial
Intelligence 28, 127-162, 1986.

Dean, T., J. Firby and D. Miller. “Hierarchical
planning involving deadlines, travel time and
resources,” Computational Intelligence, 1990.

Fikes, R.E., and N.J. Nilsson. “STRIPS: A new
approach to the application of theorem proving to
problem solving,” Artificial Intelligence 2 231-272,
1971.

Harel, D. “Dynamic logic,” in Handbook of
Philosophical Logic, Vol. II. Reidel, 1984.

Koomen, J.A. "Localizing temporal constrain
propagation", Proc. of the First Int'l Conf. on
Principles of Knowledge Representation and
Reasoning, Morgan Kaufmann, 1989.

McCarthy, J. and P. Hayes “Some philosophical
problems from the standpoint of artificial
intelligence” in Machine Intelligence 4. Edinburgh
University Press, 1969.

McDermott, D. “A temporal logic for reasoning about
processes and plans,” Cognitive Science 6, 2, 101-
155, 1982.

McDermott, D. “Reasoning about plans,” in J.R.
Hobbs and R.C. Moore (eds.). Formal Theories of
the Commonsense World, Ablex, 1986.

Pelavin, R. “A formal approach to planning with
concurrent actions and external events,” TR 254,
Computer Science Dept., U. Rochester, 1988.

Rosenchein, S.J. “Plan synthesis: A logical
perspective,” Proc. IJCAI, 331-337. Vancouver,
British Columbia, 1981.

Sacerdoti, E.D. A Structure for Plans and Behavior.
New York: American Elsevier, 1977.

Shoham, Y. “Temporal logics in AI: Semantical and
ontological considerations,” Artificial Intelligence
33, 1, 89-104, 1987.

Tate, A. “Generating project networks,” Proc. IJCAI,
888-93, Cambridge, MA, 1977.

Vere, S. “Planning in time: Windows and durations for
activities and goals,” IEEE Trans. Pattern Analysis
Mach. Intell. 5, 3, 246-67, 1983.

Waldinger, R. "Achieving several goals
simultaneously", in Elcock,E & Michie, D (eds),
Machine intelligence 8, Ellis Horwood, pp 94-136.

-13-

13

Wilkins, D. Practical Planning, Morgan Kaufmann,
1988

