
PLANNING BY REWRITING

by

José Luis Ambite

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(Computer Science)

December 1998

Copyright c© 1999 José Luis Ambite

Abstract

Domain-independent planning is a hard combinatorial problem. Taking into account plan qual-

ity makes the task even more difficult. This thesis introduces Planning by Rewriting (PbR), a new

paradigm for efficient high-quality domain-independent planning. PbR exploits declarative plan

rewriting rules and efficient local search techniques to transform an easy-to-generate, but possibly

suboptimal, initial plan into a high-quality plan. In addition to addressing the issues of planning

efficiency and plan quality, this framework offers a new anytime planning algorithm. We have im-

plemented this planner and applied it to several existing domains, with special emphasis on query

planning in distributed and heterogeneous environments. Our PbR-based query planner is flexible,

scalable, and yields a novel combination of traditional cost-based query optimization and source

selection. The experimental results show that the PbR approach provides significant savings in

planning effort while generating high-quality plans.

ii

Acknowledgements

I would like to thank all of the people from whom I have learned.

My advisor, Craig Knoblock, has been a excellent source of insight and support. He has offered

the best advice in the most critical moments. I have always been amazed of his ability to provide

constructive criticism with great patience and good humor. I also want to thank the other members

of my thesis committee: Steve Minton, Dennis McLeod, Daniel O’Leary, and Aristides Requicha.

They have provided me with valuable comments. Especially, Steve contributed greatly to the

clarity of the thesis and helped me to keep things simple.

I have learned much from the members of the SIMS and Ariadne groups and enjoyed working

with them. Yigal Arens leadership has been an enormous asset. I hope to be as successful in

generating good research, and funding for it (!), as he is. Yigal, Craig, Steve, WeiMin Shen, and

Weixiong Zhang provided, along with their considerable knowledge, interesting research challenges

and the encouragement to pursue our own, Craig, Ion Muslea, and Andrew Philpot collaborated

in the design of the axiom compilation algorithm that was used in the application of PbR to

query planning. Andrew implemented most of that algorithm and taught me some good Lisp

programming. I am also benefiting from the programming skills of Maria Muslea for the ongoing

port of the PbR query planner to C++. Chunnan Hsu and Naveen Ashish have been excellent

office mates. They have expanded both my scientific and cultural horizons.

The Intelligent Systems Division at ISI is a remarkable research environment. Not only it is

comprised by a large number of very talented individuals, but there is an exceptional atmosphere of

collaboration. From the most senior professor to the newly arrived student, I always found all doors

open to exchange ideas. Sunsets over the marina do not hurt either. Many people contributed to

my research by offering good advice, commenting on my papers, and improving my presentations.

Apart from the members of the SIMS group, Yolanda Gil, Tom Russ, Ramesh Patil, Marcelo

Tallis, Gal Kaminka, and Irene Langkilde were specially helpful. Both social and scientifically,

I particularly enjoyed our daily lunch discussions. Over the years these covered most of human

endeavor, from knowledge representation to proportional representation, passing through infamous

uses of the Mercator projection. Tom and Ramesh deserve special recognition for starting many of

the topics and providing some of the most lucid contributions.

At the beginning of my graduate school, Paul Rosenbloom showed me what it means to take

a scientific position rigorously and to its ultimate consequences. Jihie Kim and Ben Smith were

great to have in the Soar lab.

iii

The Ministerio of Educación y Ciencia of Spain, through a Fulbright scholarship, generously

supported me during my first years of graduate school. I hope to be able to repay this moral debt.

To my family I am thankful for their support and encouragement to pursue my goals and ideas.

I regret the time I have not spend with my parents, my brother Emilio, my aunt Maribel, and

my grandmother Lola. Friends made this time in L.A. much more enjoyable: Sylvain, Jean-Pierre,

Ana, Tracey, Kumar, Spyros, Eric, Thanks.

To Maria Luisa for her love.

This work was supported in part by a Fulbright/Ministerio of Educación y Ciencia of Spain

scholarship, in part by the United States Air Force under contract number F49620-98-1-0046, in part

by the National Science Foundation under grant number IRI-9313993, in part by the Rome Labo-

ratory of the Air Force Systems Command and the Defense Advanced Research Projects Agency

(DARPA) under contract numbers F30602-94-C-0210, F30602-97-2-0352, F30602-97-2-0238, in part

by the Integrated Media Systems Center, a NSF Engineering Research Center, and in part by a

research grant from General Dynamics Information Systems. The views and conclusions contained

in this thesis are the author’s and should not be interpreted as representing the official opinion or

policy of any of the above organizations or any person connected with them.

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Solution Approach . 1
1.3 Advantages of Planning by Rewriting . 3
1.4 Query Planning in Mediators . 4
1.5 Contributions . 5
1.6 Outline . 6

2 Preliminaries: Planning, Rewriting, and Local Search 7
2.1 AI Planning . 7
2.2 Rewriting . 10
2.3 Local Search in Combinatorial Optimization . 11

3 Planning by Rewriting as Local Search 13
3.1 Initial Plan Generation . 14

3.1.1 Biased Generative Planners . 14
3.1.2 Facilitating Algorithmic Plan Construction 15

3.2 Local Neighborhood Generation: Plan Rewriting Rules 17
3.2.1 Plan Rewriting Rules: Syntax and Semantics 17
3.2.2 Valid Rewriting . 22
3.2.3 Rewriting Algorithm . 25
3.2.4 Complexity of Plan Rewriting . 28
3.2.5 A Taxonomy of Plan Rewriting Rules . 30

3.3 Plan Quality . 31
3.4 Selection of Next Plan: Search Strategies . 33

4 Planning by Rewriting for Query Planning 36
4.1 Query Planning in Mediators . 36
4.2 Query Planning as a Classical Planning Problem . 39
4.3 Planning by Rewriting for Query Planning in Mediators 43

4.3.1 Query Plan Quality . 43
4.3.2 Initial Query Plan Generation . 45
4.3.3 Query Plan Rewriting Rules . 46

4.3.3.1 Rewriting Rules from the Distributed Environment 46
4.3.3.2 Rewriting Rules from the Relational Algebra 48
4.3.3.3 Rewriting Rules from the Integration Axioms 50

v

4.3.4 Searching the Space of Query Plans . 52
4.4 Experimental Results in Query planning . 53

4.4.1 Distributed Query Planning . 54
4.4.2 Scaling the Number of Alternative Sources 55
4.4.3 Scaling the Size of the Integration Axioms . 57

4.5 Advantages of PbR for Query Planning . 62

5 Other Application Domains 63
5.1 Manufacturing Process Planning . 63
5.2 Blocks World . 74

6 Related Work 76
6.1 Foundations . 76

6.1.1 AI Planning . 76
6.1.2 Local search . 77
6.1.3 Graph Rewriting . 78

6.2 Plan Rewriting . 78
6.3 Query Planning . 80

6.3.1 Traditional Query Optimization . 80
6.3.2 Query Planning in Mediators . 82

6.4 Other Applications . 83

7 Discussion 84
7.1 Contributions . 85
7.2 Future Work . 86

Appendix A
Detailed Example of PbR for Query Planning . 88

Reference List 93

vi

List Of Figures

1.1 Transformations in Query Planning . 3

2.1 Blocks World Operators . 8
2.2 Manufacturing Operator . 9
2.3 Sample Plan in the Blocks World Domain . 10
2.4 Local Search . 12

3.1 Sample High-level Plan in the Blocks World . 16
3.2 Algorithm for Converting Total-order to Partial-order Plans 16
3.3 Blocks World Rewriting Rule . 17
3.4 Process Planning Rewriting Rule . 18
3.5 BNF for the Rewriting Rules . 18
3.6 Rewriting Rule Template . 19
3.7 Resource-Swap Rewriting Rule . 19
3.8 Sample Implementation of Interpreted Predicates . 21
3.9 Rewritten Plan in the Blocks World Domain . 22
3.10 Blocks World Rewriting Rule with Full Embedding Specified 25
3.11 Outline of the Plan Rewriting Algorithm . 26
3.12 Application of a Rewriting Rule: After Removing Subplan 27
3.13 Application of a Rewriting Rule: After Adding Replacement Steps 28
3.14 Exponential Embeddings . 30
3.15 Adding Actions Can Improve Quality . 31

4.1 Example of Mediator in the Web . 37
4.2 Sample Information Goal . 39
4.3 Operators for Query Planning (interpreted predicates in italics) 41
4.4 Behavior of the join-query interpreted predicate . 42
4.5 A Suboptimal Initial Query Plan . 45
4.6 An Optimized Query Evaluation Plan . 45
4.7 Transformations: Distributed Environment . 47
4.8 Remote-Join-Eval Rewriting Rule . 47
4.9 Transformations: Relational Algebra . 48
4.10 Join-Swap Rewriting Rule . 49
4.11 Join-Associativity Rewriting Rule . 50
4.12 Join-Commutativity Rewriting Rule . 50
4.13 Rewriting Rule for Integration Axiom . 52
4.14 Rewriting in Query Planning . 53
4.15 Queries for Distributed Query Planning . 55
4.16 Experimental Results: Distributed Query Planning 56
4.17 Experimental Results: Scaling Alternative Sources 57
4.18 Parameterized Integration Axioms . 58
4.19 Experimental Results: Complex Axioms, Planning Time 60

vii

4.20 Experimental Results: Complex Axioms, Plan Cost 61

5.1 Operators for Manufacturing Process Planning (I) 65
5.2 Operators for Manufacturing Process Planning (II) 66
5.3 Operators for Manufacturing Process Planning (III) 67
5.4 Rewriting Rules for Manufacturing Process Planning (I) 68
5.5 Rewriting Rules for Manufacturing Process Planning (II) 69
5.6 Rewriting Rules for Manufacturing Process Planning (III) 70
5.7 Rewriting in the Manufacturing Domain . 70
5.8 Experimental Results: Manufacturing Process Planning 73
5.9 Blocks World Rewriting Rules . 74
5.10 Experimental Results: Blocks World, Scaling the Number of Blocks 75

A.1 Sample Domain Model and Available Sources . 89
A.2 Lattice of Integration Axioms for Large Seaport . 90
A.3 Lattice of Integration Axioms for Seaport . 90
A.4 Query Plan P1 . 93
A.5 Query Plan P1a . 94
A.6 Query Plan P1a1 . 94
A.7 Query Plan P1a2 . 95
A.8 Query Plan P1a3 . 95
A.9 Query Plan P1a1a . 96
A.10 Query Plan P1a1a1 . 97
A.11 Query Plan P1a1a-v2 . 97
A.12 Query Plan P1a1a1-b . 98
A.13 Query Plan P1a1a1-v2 . 98
A.14 Query Plan Psl1 . 99
A.15 Query Plan Psl1a . 99

viii

Chapter 1

Introduction

1.1 Problem Statement

Planning is the process of generating a network of actions, a plan, that achieves a desired goal

from an initial state of the world. Many problems of practical importance can be cast as plan-

ning problems. Instead of crafting an individual planner to solve each specific problem, a long

line of research has focused on constructing domain-independent planning algorithms. Domain-

independent planning accepts as input, not only descriptions of the initial state and the goal for

each particular problem instance, but also a declarative domain specification, that is, the set of

actions that change the properties on the state. Domain-independent planning makes the develop-

ment of planning algorithms more efficient, allows for software and domain reuse, and facilitates

the principled extension of the capabilities of the planner. Unfortunately, domain-independent

planning (like most planning problems) is computationally hard [Bylander, 1994, Erol et al., 1995,

Bäckström and Nebel, 1995]. Given the complexity limitations, most of the previous work on

domain-independent planning has focused on finding any solution plan without careful considera-

tion of plan quality. Usually very simple cost functions, such as the length of the plan, have been

used. However, for many practical problems plan quality is crucial. In this thesis we present a new

planning paradigm, Planning by Rewriting (PbR), that addresses both planning efficiency and plan

quality while maintaining the benefits of domain independence. We also show the application of

PbR to several planning problems with an special emphasis on query planning in mediator systems.

1.2 Solution Approach

Two observations guided the present work. First, there are two sources of complexity in planning:

• Satisfiability: the difficulty of finding any solution to the planning problem (regardless of the

quality of the solution).

• Optimization: the difficulty of finding the optimal solution according to the given cost metric.

1

For a given domain, each of these facets may contribute differently to the complexity of planning.

In particular, there are many domains in which the satisfiability problem is easy and their complex-

ity is dominated by the optimization problem. For example, there may be many plans that would

solve the problem, so that finding one is easy (that is, in polynomial time), but the cost of each

solution varies greatly, thus finding the optimal one is hard. We will refer to these domains as op-

timization domains. Some optimization domains of great practical interest are query optimization

and manufacturing process planning.1

Second, planning problems have a great deal of structure. Plans are a type of graphs with

strong semantics, determined both by the general properties of planning, and each particular

domain specification. This structure should and can be exploited to improve the efficiency of the

planning process.

Prompted by the previous observations, we developed a novel approach for efficient planning in

optimization domains: Planning by Rewriting (PbR). The framework works in two phases:

1. Generate an initial solution plan. Recall, that in optimization domains this is easy. However

the quality of this initial plan may be far from optimal.

2. Iteratively rewrite the current solution plan improving its quality using a set of declarative

plan rewriting rules, until either an acceptable solution is found, or a resource limit is reached.

As motivation, consider two domains: distributed query processing and manufacturing process

planning.2 Distributed query processing [Yu and Chang, 1984] involves generating a plan that

efficiently computes a user query from data that resides at different nodes in a network. This query

plan is composed of data retrieval actions at diverse information sources and operations on this

data (such as those of the relational algebra: join, selection, etc). Some systems use a general-

purpose planner to solve this problem [Knoblock, 1996]. In this domain it is easy to construct an

initial plan (any parse of the query suffices) and then transform it using a gradient-descent search

to reduce its cost. The plan transformations exploit the commutative and associative properties of

the (relational algebra) operators and facts such as that when a group of operators can be executed

together at a remote information source it is generally more efficient to do so. Figure 1.1 shows

some sample transformations.

In manufacturing, the problem is to find an economical plan of machining operations that

implement the desired features of a design. In a feature-based approach [Nau et al., 1995], it is

possible to enumerate the actions involved in building a piece by analyzing its CAD model. It is

more difficult to find an ordering of the operations and the setups that optimize the machining cost.

However, similar to query planning, it is possible to incrementally transform a (possibly inefficient)

initial plan. Often, the order of actions does not affect the design goal, only the quality of the plan,

1Interestingly, one of the most widely studied planning domains, the Blocks World, also has this property.
2The more complex domain of distributed and heterogeneous query planning is the topic of Chapter 4. A graphical

example of the rewriting process in query planning appears in Figure 4.14. The process planning domain of [Minton,
1988b] is analyzed in detail in Chapter 5. Figure 5.7 shows an example of plan rewriting in this domain. The reader
may want to consult those figures even if not all details can be explained at this point.

2

Simple-Join-Swap:
retrieve(Q1, Source1) 1 [retrieve(Q2, Source2) 1 retrieve(Q3, Source3)] ⇔
retrieve(Q2, Source2) 1 [retrieve(Q1, Source1) 1 retrieve(Q3, Source3)]

Remote-Join-Eval:
(retrieve(Q1, Source) 1 retrieve(Q2, Source)) ∧ capability(Source, join)
⇒ retrieve(Q1 1 Q2, Source)

Figure 1.1: Transformations in Query Planning

thus many actions can commute. Also, it is important to minimize the number of setups because

fixing a piece on a machine is a rather time consuming operation. Interestingly, such grouping of

machining operations on a setup is analogous to evaluating a subquery at a remote information

source.

As suggested by these examples, there are many problems that combine the characteristics

of traditional planning satisfiability with quality optimization. For these domains there often

exists natural transformations that may be used to efficiently obtain high-quality plans by iterative

rewriting. Planning by Rewriting provides a domain-independent framework that allows plan

transformations to be conveniently specified as declarative plan rewriting rules and facilitates the

exploration of efficient (local) search techniques.

1.3 Advantages of Planning by Rewriting

There are several advantages to the planning style that PbR introduces. First, PbR is a declara-

tive domain-independent framework. This facilitates the specification of planning domains, their

evolution, and the principled extension of the planner with new capabilities. Second, the declara-

tive rewriting rule language provides a natural and convenient mechanism to specify complex plan

transformations.

Third, PbR accepts sophisticated quality measures because it operates on complete plans. In

general, a complete plan is required in order to accurately assess quality. Most previous planning

approaches are based on plan refinement [Kambhampati et al., 1995]. This means that only partial

plans are available during the planning process. A partial plan cannot offer enough information to

evaluate a complex cost metric. Therefore traditional planning systems either have not addressed

quality issues or have very simple quality measures such as the number of steps in the plan.

Fourth, PbR can use local search methods that have been remarkably successful in scaling to

large problems [Aarts and Lenstra, 1997].3 By using local search techniques high-quality plans

can be efficiently generated. Fifth, the search occurs in the space of solution plans, which is in

many cases much smaller than the space of partial plans explored by planners based on refinement

search.

3Although the space of rewritings can be explored exhaustively, we believe that our approach is more attuned to
the local search techniques typical of combinatorial optimization algorithms.

3

Sixth, our framework yields an anytime planning algorithm [Dean and Boddy, 1988]. The

planner always has a solution to offer at any point in its computation (modulo the initial plan

generation that should be fast). This is a clear advantage over traditional planning approaches,

which must run to completion before producing a solution. Thus, our system allows the possibility

of trading off planning effort and plan quality. For example, in query planning the quality of a plan

is its execution time and it may not make sense to keep planning if the cost of the current plan is

small enough, even if a cheaper one could be found. Further discussion and concrete examples of

these advantages are given throughout the following chapters.

1.4 Query Planning in Mediators

Query Planning is a problem of considerable practical importance. It is central to traditional

database and mediator systems. Using our Planing by Rewriting approach we have developed a

novel query processing algorithm for mediator systems.

Mediators provide access, in a given application domain, to information that resides in dis-

tributed and heterogeneous sources. These systems shield the user from the complexity of access-

ing and combining this information. The user interacts with the mediator using a single language

with agreed upon semantics for the application domain, as if it were a centralized system, without

worrying about the location or languages of the sources. In order to accomplish that, mediators

must provide mechanisms to resolve the semantic heterogeneity among the different sources. This

is critical for selecting which information sources are relevant for a user query. A common approach

consists in specifying a global model of the application domain and defining the contents of the

sources in terms in this global model [Arens et al., 1996, Levy et al., 1996a, Kwok and Weld, 1996,

Duschka and Genesereth, 1997].

Query planning in mediators involves generating a plan that efficiently computes a user query

from the relevant information sources. This plan is composed of data retrieval actions at diverse

information sources and data manipulation operations, such as those of the relational algebra: join,

selection, union, etc. For an efficient execution, the plan has to specify both from which sources

each different piece of information should be obtained and which data processing operations are

going to be needed and in what order. The first problem, source selection, is characteristic of

distributed and heterogeneous systems. The second problem has been the focus of traditional

cost-based query optimization in databases.

Query planning in mediators is a challenging domain for planning technology. First, finding a

good quality plan is computationally hard. The complexity arises both from choosing the relevant

sources among a large number of available sources and from selecting the data processing operations

and their ordering. Second, query planning must be done efficiently. Because in many cases the

quality of a plan is the query execution time, the planner must find a plan quickly. Finally,

mediators need to be flexible and extensible. A mediator should easily incorporate new sources

with different capabilities and new data processing techniques. The PbR approach was developed

4

to meet this type of challenges. A PbR-based query planner offers a good compromise among the

conflicting requirements of planning efficiency, high quality plans, flexibility, and extensibility.

We developed a PbR-based query planner for the SIMS and Ariadne mediator systems [Arens et

al., 1996, Knoblock and Ambite, 1997, Knoblock et al., 1998] that addresses both source selection

and traditional cost-based optimization. Previous approaches to query processing in mediators do

not consider cost-based optimization or do it in a two-phase process. In the first phase, they find

all possible translations to the user query in source terms (source selection). In the second phase,

each of those source queries is sent to a cost-based optimizer. Finally, the best source query plan

is selected for execution. This two-phase approach does not scale when there are many alternative

information sources such as is the case in the Web. PbR performs both aspects of query planning

in mediators in a single search process. By using local search techniques the combined optimization

is scalable and supports an anytime behavior.

1.5 Contributions

The main contribution of this thesis is the development of Planning by Rewriting, a novel domain-

independent paradigm for efficient high-quality planning. First, we define a language of declarative

plan rewriting rules and present the algorithms for domain-independent plan rewriting. Our tech-

niques for plan rewriting generalize traditional graph rewriting. Graph rewriting rules need to

specify in the rule consequent the complete embedding of the replacement subplan. We introduce

the novel class of partially-specified plan-rewriting rules that relax that restriction. By taking

advantage of the semantics of planning, this embedding can be automatically computed. A single

partially-specified rule can concisely represent a great number of fully-specified rules. These rules

are also easier to write and understand than their fully-specified counterparts. Second, we adapt

local search techniques, such as gradient descent and simulated annealing, to efficiently explore the

space of plan rewritings. Finally, we demonstrate the usefulness of the PbR approach in several

planning domains, with an special emphasis in query planning in mediator systems.

A second contribution of this thesis is a novel query planning algorithm for mediator systems

that combines source selection and traditional cost-based optimization. The design and imple-

mentation of this query planner was facilitated by following the general PbR framework. Our

PbR-based query planner is flexible, more scalable than previous approaches, and supports any-

time behavior.

An outline of the contributions of the Planning by Rewriting framework are:

1. New paradigm for efficient high quality planning: Planning by Rewriting

(a) Declarative Domain-independent,

i. Flexible, Extensible, Reusable

ii. Rewriting rules provide a natural and convenient mechanism to specify complex

plan transformations

5

(b) Supports sophisticated quality measures

(c) Scalable:

i. Uniform framework that combines efficient local search techniques and domain-

specific knowledge of useful plan transformations

ii. Explores a smaller search space (solution space) than traditional planners (partial-

plan space)

(d) Anytime algorithm: allows to trade-off planning efficiency and plan quality

2. Application to several domains, with special emphasis in query access planning in mediators:

(a) Flexible and scalable query planner

(b) Novel combination of traditional cost-based query optimization and source selection

1.6 Outline

The remainder of this thesis is structured as follows. Chapter 2 provides background on planning,

rewriting, and local search, some of the fields upon which PbR builds. Chapter 3 presents the

basic framework of Planning by Rewriting as a domain independent approach to local search. This

chapter describes in detail plan rewriting and our declarative rewriting rule language. Chapter 4

describes the challenging problem of query planning in distributed and heterogeneous domains and

how a PbR-based query planner offers a novel and efficient solution. Chapter 5 describes other

domains in which the PbR approach proved useful. We include experimental results for each of

these planning domains. Chapter 6 reviews related work. Finally, Chapter 7 summarizes the main

contributions of the thesis and discusses future work.

6

Chapter 2

Preliminaries: Planning, Rewriting, and Local Search

The framework of Planning by Rewriting arises as the confluence of several areas of research,

namely, artificial intelligence planning algorithms, graph rewriting, and local search techniques. In

this chapter we give some background on these areas and explain how they relate to PbR.

2.1 AI Planning

We assume that the reader is familiar with AI planning, but in this section we will highlight the

main concepts and relate them to the PbR framework. An excellent introduction to AI Planning,

including many pointers to the planning literature, can be found in [Russell and Norvig, 1995].

PbR follows the classical AI planning representation of actions that transform a state. The state

is a set of ground propositions understood as a conjunctive formula. Propositions not mentioned in

the initial state are considered false. In general, AI planners follow the Closed World Assumption,

that is, if a proposition is not explicitly mentioned in the state it can be assumed to be false,

similarly to the negation as failure semantics of logic programming. The propositions on the state

are modified, asserted or negated, by the actions in the domain. The actions of a domain are

specified by operator schemas.

An operator schema consists of two logical formulas: the precondition, which defines the condi-

tions under which the operator may be applied, and the postcondition, which specifies the changes

on the state effected by the operator. Propositions not mentioned in the postcondition are assumed

not to change during the application of the operator. This type of representation was initially in-

troduced in the STRIPS system [Fikes and Nilsson, 1971]. The language for the operators in PbR

is the same as in Sage [Knoblock, 1995, Knoblock, 1994b], which is an extension of UCPOP [Pen-

berthy and Weld, 1992]. The operator description language in PbR accepts arbitrary function-free

first-order formulas in the preconditions of the operators, and conditional and universally quanti-

fied effects (but no disjunctive effects). In addition, the operators can specify the resources they

use. Sage and PbR address unit non-consumable resources. These resources are fully acquired by

an operator until the completion of its action and then released to be reused.

7

A sample operator schema specification for a simple Blocks World domain,1 in the representation

accepted by PbR, is given in Figure 2.1. This domain has two actions: stack that puts one block

on top of another, and, unstack that places a block on the table.2 The state is described by two

predicates: (on ?x ?y)3 that denotes that a block, ?x, is on top of another block (or on the Table),

?y, and (clear ?x) that denotes that a block does not have any other block on top of it.

(define (operator STACK)
:parameters (?X ?Y ?Z)
:precondition (:and (on ?X ?Z) (clear ?X) (clear ?Y)

(:neq ?Y ?Z) (:neq ?X ?Z) (:neq ?X ?Y)
(:neq ?X Table) (:neq ?Y Table))

:effect (:and (on ?X ?Y)
(:not (on ?X ?Z))
(clear ?Z)
(:not (clear ?Y))))

(define (operator UNSTACK)
:parameters (?X ?Y)
:precondition (:and (on ?X ?Y) (clear ?X)

(:neq ?X ?Y) (:neq ?X Table) (:neq ?Y Table))
:effect (:and (on ?X Table)

(:not (on ?X ?Y))
(clear ?Y)))

Figure 2.1: Blocks World Operators

An example of a more complex operator from a process manufacturing domain is shown in

Figure 2.2. This operator describes the behavior of a punch, which is a machine used to make holes

in parts. The punch operation requires that there is an available clamp at the machine and that the

orientation and width of the hole is appropriate for using the punch. After executing the operation

the part will have the desired hole but it will also have a rough surface.4 Note the specification on

the resources slot. Declaring (machine punch) as a resource enforces that no other operator can

use the punch concurrently. Similarly, declaring the part, (is-object ?x), as a resource means

that only one operation at a time can be performed on the object. Further examples of operator

specifications appear in Figures 4.3, 5.1, 5.2, and 5.3.

A plan in PbR is represented by a graph, in the spirit of partial-order causal-link planners, such

as UCPOP [Penberthy and Weld, 1992]. The nodes are plan steps, that is, instantiated domain

operators. The edges specify a temporal ordering relation among steps imposed by causal links

and ordering constraints. A causal link is a record of how a proposition is established in a plan.

1To illustrate the basic concepts in planning, we will use examples from a simple Blocks World domain, the reader
will find a “real-world” application of planning techniques, query planning, in Chapter 4.

2(stack ?x ?y ?z) can be read as stack the block ?x on top of block ?y lifting from ?z. (unstack ?x ?y) can
be read as lift block ?x from the top of block ?y and put it on the Table.

3By convention, variables are preceded by a question mark symbol (?), as in ?x.
4This operator uses an idiom combining universal quantification and negated conditional effects to specify that

all previous values of the multi-valued attribute surface-condition are deleted.

8

(define (operator PUNCH)
:parameters (?x ?width ?orientation)
:resources ((machine PUNCH) (is-object ?x))
:precondition (:and (is-object ?x)

(is-punchable ?x ?width ?orientation)
(has-clamp PUNCH))

:effect (:and (:forall (?cond)(:when (:neq ?cond ROUGH)
(:not (surface-condition ?x ?cond))))

(surface-condition ?x ROUGH)
(has-hole ?x ?width ?orientation)))

Figure 2.2: Manufacturing Operator

This record contains the proposition (sometimes also called a condition), a producer step, and

a consumer step. The producer is a step in the plan that asserts the proposition, that is, the

proposition is one of its effects. The consumer is a step that needs that proposition, that is, the

proposition is one of its preconditions. By causality, the producer must precede the consumer.

The ordering constraints are needed to ensure that the plan is consistent. They arise from

resolving operator threats and resource conflicts. An operator threat occurs when a step that

negates the condition of a causal link can be ordered between the producer and the consumer

steps of the causal link. To prevent this situation, which possibly makes the plan inconsistent,

partial-order causal-link planners order the threatening step either before the producer (demotion)

or after the consumer (promotion) by posting the appropriate ordering constraints. For the unit

non-consumable resources we considered, steps requiring the same resource have to be sequentially

ordered, and such a chain of ordering constraints will appear in the plan.

An example of a plan in the Blocks World using this graph representation is given in Figure 2.3.

This plan transforms an initial state, consisting of two towers: C on A, A on the Table, B on D,

and D on the Table; to the final state consisting of one tower: A on B, B on C, C on D, and D on

the Table. The initial state is represented as step 0 with no preconditions and all the propositions

of the initial state as postconditions. Similarly, the goal state is represented as a step goal with

no postconditions and the goal formula as precondition. The plan achieves the goal by using two

unstack steps to destroy the towers and then using three stack steps to build the desired tower.

The causal links are shown as solid arrows and the ordering constraints as dashed arrows. The

additional effects of a step that are not used in causal links, sometimes called side effects, are shown

after each step pointed by thin dashed arrows. Negated propositions are preceded by ¬. Note the

need of the ordering link between the steps 2, stack(B C Table), and 3, stack(A B Table). If

step 3 could be ordered concurrently or before step 2, it would negate the precondition clear(B)

of step 2, making the plan inconsistent. A similar situation occurs between steps 1 and 2 where

another ordering link is introduced.

9

0
clear(C)

GOAL

clear(B)

clear(B) clear(C)

clear(B)

on(B D)

clear(C)
on(C A)

clear(A)

on(A B)

on(B C)
on(C D)

clear(D)

C

A D

B

A

B

C

D

Initial State Goal State

on(C Table)

on(A Table)

on(B Table)

Causal Link
Ordering Constraint
Side Effect

2 STACK(B C Table)

4 UNSTACK(C A)

5 UNSTACK(B D)

on(D Table)

1 STACK(C D Table)

3 STACK(A B Table)

on(B D)

on(C Table)
clear(D)

on(C A)

clear(C)
on(B Table)

clear(B)
on(A Table)

Figure 2.3: Sample Plan in the Blocks World Domain

PbR plans are always complete, consistent, and fully instantiated. All propositions in a PbR

plan are ground, that is all variables are bound to constants.5

2.2 Rewriting

Plan rewriting in PbR is related to term and graph rewriting. Term rewriting originated in the

context of equational theories and reduction to normal forms as an effective way to perform deduc-

tion — see [Avenhaus and Madlener, 1990] for a short introduction or [Baader and Nipkow, 1998]

for an in-depth treatment. A rewrite system is specified as a set of rules. Each rule corresponds

to a preferred direction of an equivalence theorem. The main issue in term rewriting systems is

convergence, that is, if two arbitrary terms can be rewritten in a finite number of steps into a

unique normal form. In PbR plans are considered “equivalent”, in the term rewriting sense, if

they are solutions to the same problem, although they may differ on their cost (that is they are

“equivalent” with respect to “satisfiability” as introduced above). However, we are not interested

in using the rewriting rules to prove that two arbitrary solution plans for a given problem are

indeed equivalent, our framework uses the rewriting rules to explore the space of solution plans.

Graph rewriting, akin to term rewriting, refers to the process of replacing a subgraph of a given

graph, when some conditions are satisfied, by another subgraph. Graph rewriting has found broad

applications, such as very high-level programming languages, database data description and query

languages, etc. See [Schürr, 1996a] for a survey. The main drawback of general graph rewriting is

their complexity. Because graph matching can be reduced to (sub)graph isomorphism the problem

5As we will show in the following chapter, this results from the requirement that PbR starts with a complete
initial plan and all rewritings being valid plans.

10

is NP-complete. Nevertheless, under some restrictions graph rewriting can be performed efficiently
[Dorr, 1995].

Planning by Rewriting adapts general graph rewriting to the semantics of partial-order planning

with a STRIPS-like operator representation. A plan rewriting rule in PbR specifies the replacement,

under certain conditions, of a subplan by another subplan. However in our formalism the rule does

not need to specify the completely detailed embedding of the consequent as in graph rewriting

systems. All the consistent embeddings of the consequent, with the generation of edges if necessary,

are automatically computed according to the semantics of partial-order planning. Our algorithm

ensures that the rewritten plans always remain sound and complete.6 The plan rewriting rules are

intended to explore the space of solution plans and lead to high-quality plans.

2.3 Local Search in Combinatorial Optimization

PbR is inspired by the local search techniques used in combinatorial optimization. An instance

of a combinatorial optimization problem consists of a set of feasible solutions and a cost function

over the solutions. The problem consists in finding a solution with the optimal cost among all

feasible solutions. Generally the problems addressed are computationally intractable, thus ap-

proximation algorithms have to be used. One class of approximation algorithms that have been

surprisingly successful in spite of their simplicity are local search methods [Aarts and Lenstra, 1997,

Papadimitriou and Steiglitz, 1982].

Local search is based on the concept of a neighborhood. A neighborhood of a solution p is a set

of solutions that are in some sense close to p, for example because they can be easily computed from

p or because they share a significant amount of structure with p. The neighborhood generating

function may, or may not, be able to generate the optimal solution. When the neighborhood

function can generate the global optima, starting from some initial point, it is called exact.

Local search can be seen as a walk on a directed graph whose vertices are solutions points

and whose arcs connect each point with all its neighbors. The neighborhood generating function

determines the properties of this graph. In particular, whether it is connected or disconnected, how

densely, and more importantly if it contains the global optimum (that is, whether the neighborhood

is exact). In PbR the points are solution plans and the neighbors of a plan are the plans generated

by the application of a set of declarative plan rewriting rules.

The basic version of local search is iterative improvement. Iterative improvement starts with an

initial solution and searches a neighborhood of the solution for a lower cost solution. If such solution

is found, it replaces the current solution and the search continues. Otherwise the algorithm returns

a locally optimal solution. Figure 2.4 (a) shows a graphical depiction of basic iterative improvement.

There are several variations of this basic algorithm. First improvement generates the neighborhood

incrementally and selects the first solution of better cost than the current one. Best improvement

generates the complete neighborhood and selects the best solution within this neighborhood.

6Section 3.2.2 describes the rewriting process using partially-specified rules in detail.

11

Neighborhood Local Optima Local Optima

(a) Basic Iterative Improvement (b) Variable-Depth Search

Figure 2.4: Local Search

Basic iterative improvement obtains local optima not necessarily the global optimum. One way

to improve the quality of the solution is to restart the search from several initial points and choose

the best of the local optima reached from them. More advanced algorithms, such as variable depth

rewriting, simulated annealing and tabu search, attempt to minimize the probability of being stuck

in a low-quality local optimum.

Variable-depth search is based on applying a sequence of steps as opposed only one step at each

iteration. Moreover the length of the sequence may change from iteration to iteration. In this

way the system overcomes small cost increases if eventually they lead to strong cost reductions.

Figure 2.4 (b) shows a graphical depiction of variable-depth search.

Simulated annealing selects the next point randomly. If a lower cost solution is chosen, it is

selected. If a solution of a higher cost is chosen, it is still selected with some probability. This

probability is decreased as the algorithm progresses (analogously to the temperature in the physical

process of annealing). The function that governs the behavior of the acceptance probability is called

cooling schedule. It can be proven that simulated annealing converges asymptotically to the optimal

solution. Unfortunately such convergence requires exponential time. So, in practice, simulated

annealing is used with faster cooling schedules (not guaranteed to converge to the optimal) and

thus it behaves like an approximation algorithm.

Tabu search can also accept cost-increasing neighbors. The next solution is a randomly chosen

legal neighbor even if its cost is worse than the current solution. A neighbor is legal if it is not in a

tabu list. The dynamically updated tabu list prevents some solution points from being considered

for some period of time. The intuition is that if we decide to consider a solution of a higher cost

at least it should lie in an unexplored part of the space. This mechanism forces the exploration of

the solution space out of local minima.

Finally, we should stress that the appeal of local search relies on its simplicity and good average-

case behavior. As it could be expected, there are a number of negative worst-case results. For

example, in the traveling salesman problem it is known that exact neighborhoods, that do not

depend on the problem instance, must have exponential size [Weiner et al., 1973, Savage et al.,

1976]. Moreover, an improving move in these neighborhoods cannot be found in polynomial time

unless P = NP [Papadimitriou and Steiglitz, 1977]. Nevertheless, the best approximation algorithm

for the traveling salesman problem is a local search algorithm [Johnson, 1990].

12

Chapter 3

Planning by Rewriting as Local Search

Planning by Rewriting can be viewed as a domain-independent framework for local search. PbR

accepts arbitrary domain specifications, declarative plan rewriting rules that generate the neigh-

borhood of a plan, and arbitrary (local) search methods. Therefore, assuming that a given combi-

natorial problem can be encoded as a planning problem, PbR can take it as input and experiment

with different neighborhoods and search methods.

We will describe the main issues in Planning by Rewriting as an instantiation of the local search

idea typical of combinatorial optimization algorithms:

• Selection of an initial feasible point : In PbR this phase consists in efficiently generating an

initial solution plan.

• Generation of a local neighborhood : In PbR the neighborhood of a plan are the plans obtained

from the application of a set of declarative plan rewriting rules.

• Cost function to minimize: This is the measure of plan quality that the planner is optimizing.

The plan quality function can range from a simple domain independent cost metric, such as

the number of steps, to more complex domain specific ones, such as the query evaluation cost

or the total manufacturing time for a set of parts.

• Selection of the next point : In PbR, this consists in deciding which solution plan to consider

next. This choice determines how the global space will be explored and has a significant

impact on the efficiency of planning. A variety of local search strategies can be used in PbR,

such as steepest descent, simulated annealing, etc. Which search method yields the best

results may be domain or problem specific.

In the following sections we expand on these issues. First, we discuss the initial plan generation.

Second, we show how the local neighborhood is generated by the rewriting rules. We present the

syntax and semantics of the rules, the conditions for valid rewriting, the rewriting algorithm, a

complexity analysis of plan rewriting, and a rule taxonomy. Third, we discuss the measures of plan

quality. Finally, we address the selection of the next plan and the associated search techniques.

13

3.1 Initial Plan Generation

Fast initial plan generation is domain-specific in nature. It requires the user to specify an efficient

mechanism to compute the initial solution plan. In general, generating an initial plan may be as

hard as generating the optimal plan. However, the crucial intuition behind planning algorithms is

that most practical problems are quasi-decomposable [Simon, 1969], that is, that the interactions

among parts of the problems are limited. If interactions in a problem are pervasive, such as in the

8-puzzle, the operator-based representation and the algorithms of classical planning are of little

use, they would behave as any other search based problem solver. Fortunately, many practical

problems are indeed quasi-decomposable. This same intuition also suggests that finding initial

plan generators for planning problems may not be as hard as it appears, because the system can

solve the subproblems independently, and then combine them in the simplest way, for example,

concatenating the solutions sequentially. Moreover, in many circumstances the problems may be

easily transformed into a state that minimizes the interactions and solving the problem from this

state is much easier. For example, in the Blocks World the state in which all blocks are on the

table minimizes the interactions. It is simple to design an algorithm that solves any Blocks World

problem passing through such intermediate state. Using these methods an initial plan generator

may produce suboptimal initial plans but at a reasonable planning cost.

These ideas for constructing initial plan generators can be embodied in two general ways, which

are both implemented in our system. The first one is to bootstrap on the results of a general purpose

planning with a strong search control bias. The second one is to provide the user convenient high-

level facilities in which to describe plan construction algorithms programmatically.

3.1.1 Biased Generative Planners

There are a variety of ways in which to control the search of a generic planner. Some planners

accept search control rules, others accept heuristic functions, and some have built-in search control.

We present examples of these techniques.

A very general way of efficiently constructing plans is to use a domain-independent generative

planner that accepts search control rules. For example, Prodigy [Carbonell et al., 1991], UCPOP
[Penberthy and Weld, 1992] and Sage [Knoblock, 1995] are such planners. By setting the type of

search and providing a strong bias by means of the search control rules, the planner can quickly

generate a valid, although possibly suboptimal, initial plan. For example, in the manufacturing

domain of [Minton, 1988a], analyzed in Section 5.1, depth-first search and a goal selection heuristic

based on abstraction hierarchies [Knoblock, 1994a] quickly generates a feasible plan, but often the

quality of this plan, which is defined as the time required to manufacture all objects, is suboptimal.

TLPlan [Bacchus and Kabanza, 1995] is an efficient forward-chaining planner that uses search

control expressed in temporal logic. Because in forward chaining the complete state is available,

much more refined domain control knowledge can be specified. The preferred search strategy used

by TLPlan is depth-first search, so although it finds plans efficiently, the plans may be of low

14

quality. Note that because it is a generative planner that explores partial sequences of steps, it

cannot use sophisticated quality measures.

HSP [Bonet et al., 1997] is a forward search planner that performs a variation of heuristic

search applied to classical AI planning. The built-in heuristic function is a relaxed version of the

planning problem. It computes the number of required steps to reach the goal disregarding negated

effects in the operators. Such metric can be computed efficiently. Despite its simplicity and that

the heuristic is not admissible, it scales surprisingly well for many domains. Because the plans

are generated according to the fixed heuristic function, the planner cannot incorporate a quality

metric.

These types of planners are quite efficient in practice although produce suboptimal plans. They

are excellent candidates to produce the initial plans that will be subsequently optimized by PbR.

3.1.2 Facilitating Algorithmic Plan Construction

For many domains, simple domain-dependent approximation algorithms will provide good initial

plans. For example, in the query planning domain, the system can easily generate initial query

evaluation plans by randomly (or greedily) parsing the given query. In the Blocks World it is also

straightforward to generate a solution in linear time using the naive algorithm: put all blocks on

the table and build the desired towers from the bottom up. Note that this algorithm produces

plans of length no worse than twice the optimal, which makes it already a good approximation

algorithm. However, the interest in the Blocks World has traditionally been on optimal solutions

and this problem is known to be NP-hard [Gupta and Nau, 1992].

Our system facilitates the creation of these initial plans by freeing the user from specifying the

detailed graph structure of a plan. The user only needs to specify an algorithm that produces

a sequence of instantiated actions, that is, action names and the ground parameters that each

action takes.1 For example, Figure 3.1 shows the sequence of steps that the (user-defined) naive

algorithm for the Blocks World domain described above would need to produce for the problem in

Figure 2.3. Then, the system automatically converts this sequence of actions into a fully detailed

partial-order plan using the operator specification of the domain. The resulting plan conforms

to the internal data structures that PbR uses. This process includes creating nodes that are fully

detailed operators with preconditions and effects, and adding edges that represent all the necessary

causal links and ordering constraints. In our Blocks World example the resulting plan is that of

Figure 2.3.

The algorithm that transforms the user-defined sequence of instantiated steps into a partial-

order plan is presented in Figure 3.2. The algorithm first constructs the causal structure of the

plan (statements 2 to 6) and then adds the necessary ordering links to avoid threats (statements 7

to 10). Note that the user only needs to specify action names and the corresponding instantiated

action parameters as in Figure 3.1. Our algorithm consults the operator specification to find the

1The algorithm also accepts extra ordering constraints in addition to the sequence if they are available from the
initial plan generator

15

1. unstack(C A)
2. unstack(B D)
3. stack(C D Table)
4. stack(B C Table)
5. stack(A B Table)

Figure 3.1: Sample High-level Plan in the Blocks World

preconditions and effects, instantiate them, construct the causal links, and check for operator

threats. Operator threats all always resolved in favor of the ordering given by the user in the

input plan. The reason is that the input plan may be overconstrained by the total order, but it

is assumed valid. Therefore, by processing each step last to first, only the orderings that indeed

avoid threats are included in the partial-order plan.

procedure TO2PO
Input: a valid total-order plan (a1, ..., an)
Output: an equivalent partial-order plan
1. for i := n to 1
2. for p ∈ Preconditions(ai)
3. choose k < i such that
4. 1. p ∈ PositiveEffects(ak) ∧
5. 2. 6 ∃ l such that k < l < i ∧ p ∈ NegativeEffects(al)
6. add order ak ≺ ai

7. for p ∈ NegativeEffects(ai)
8. for j := (i − 1) to 1
9. if p ∈ Preconditions(aj)
10. then add order aj ≺ ai

11. return ((a1, ..., an), ≺)

Figure 3.2: Algorithm for Converting Total-order to Partial-order Plans

Our algorithm is an extension of the greedy algorithm presented in [Veloso et al., 1990]. Our al-

gorithm explores non-deterministically all the producers of a proposition (statement 3), as opposed

to taking the latest producer in the sequence as in Veloso’s algorithm.2 That is, if our algorithm is

explored exhaustively, it produces all partially-ordered causal structures consistent with the input

sequence. Our generalization stems from the criticism of [Bäckström, 1994b] to the algorithm in
[Veloso et al., 1990] and our desire of being able to produce alternative initial plans.

The problem of transforming a sequence of steps into an least constrained plan is analyzed in
[Bäckström, 1994b] under several natural definitions of optimality. Under his definitions of least-

constrained plan and shortest parallel execution the problem is NP-hard. Bäckström shows that

Veloso’s algorithm, although polynomial, does not conform to any of these natural definitions.

2To implement their algorithm it is enough to replace statement 3 in Figure 3.2 with:
find max k < i such that

16

Because our algorithm is not greedy, it does not suffer from the drawbacks pointed by Bäckström.

Moreover, for our purposes we do not need these optimal initial plans. The space of partial orders

will be explored during the rewriting process.

Initial plan generators that are able to provide multiple initial plans are preferable. The different

initial plans are used in conjunction with multiple restart search techniques in order to escape from

low-quality local minima.

3.2 Local Neighborhood Generation: Plan Rewriting Rules

The neighborhood of a solution plan is generated by the application of a set of declarative plan

rewriting rules. These rules embody the domain-specific knowledge about what transformations of

a solution plan are likely to result in higher-quality solutions and what part of the solution space

is generated. The application a given rule may produce one or several rewritten plans or fail to

produce a plan. The rewritten plans are guaranteed to be valid solutions.

In this section, first we describe the syntax and the semantics of the rules, including the con-

ditions for valid rewriting. Second we discuss the rewriting algorithm and the complexity of plan

rewriting. Finally, we present a taxonomy of plan rewriting rules.

3.2.1 Plan Rewriting Rules: Syntax and Semantics

First, we introduce the rule syntax and semantics through some examples. Then, we provide a

formal description. A sample rule for the Blocks World domain introduced in Figure 2.1 is given in

Figure 3.3. Intuitively, the rule says that, whenever possible, it is better to stack a block on top of

another directly, rather than first moving it to the table.3 Note that this situation occurs in plans

generated by the simple algorithm that first puts all blocks on the table and then build the desired

towers, such as the plan in Figure 2.3.

(define-rule :name avoid-move-twice
:if (:operators ((?n1 (unstack ?b1 ?b2))

(?n2 (stack ?b1 ?b3 Table)))
:links (?n1 (on ?b1 Table) ?n2)
:constraints ((possibly-adjacent ?n1 ?n2)

(:neq ?b2 ?b3)))
:replace (:operators (?n1 ?n2))
:with (:operators (?n3 (stack ?b1 ?b3 ?b2))))

Figure 3.3: Blocks World Rewriting Rule

3The interpreted predicate possibly-adjacent ensures that the operators are consecutive in some linearization
of the plan. Note that the link expression in the antecedent is actually redundant and could be removed form the
rule specification. Unstack puts the block ?b1 on the table from where it is picked up by the stack operator, thus
the causal link (?n1 (on ?b1 Table) ?n2) is already implied by the :operators and :constraints specification.

17

A rule for the manufacturing domain of [Minton, 1988b] is shown in Figure 3.4. This domain

and other rewriting rules are described in detail in Chapter 5. The rule states that if a plan includes

two consecutive punching operations in order to make holes in two different objects, but another

machine, a drill-press, is also available, the plan quality may be improved by replacing one of the

punch operations with the drill-press. In this domain the plan quality is the time to manufacture

all parts. This rule helps to parallelize the plan and thus improve the plan quality.

(define-rule :name punch-by-drill-press
:if (:operators ((?n1 (punch ?o1 ?width1 ?orientation1))

(?n2 (punch ?o2 ?width2 ?orientation2)))
:links (?n1 ?n2)
:constraints ((:neq ?o1 ?o2)

(possibly-adjacent ?n1 ?n2)))
:replace (:operators (?n1))
:with (:operators (?n3 (drill-press ?o1 ?width1 ?orientation1))))

Figure 3.4: Process Planning Rewriting Rule

The plan rewriting rule syntax is described by the BNF specification given in Figure 3.5. This

BNF generates rules that follow the template shown in Figure 3.6. Essentially, the rules have three

parts. The antecedent, the :if field, specifies a subplan to be matched. The consequent is divided

in two fields: :replace and :with. The :replace field identifies the subplan that is going to be

removed, a subset of steps and links of the antecedent. The :with field specifies the replacement

subplan.

<rule> ::= (define-rule :name <name>
:if (<graph-spec-with-constraints>)
:replace (<graph-spec>)
:with (<graph-spec>))

<graph-spec-with-constraints> ::= <graph-spec>
:constraints (<constraints>)

<graph-spec> ::= :operators (<nodes>)
:links (<edges>)

<nodes> ::= <node> | <node> <nodes>
<edges> ::= <edge> | <edge> <edges>
<constraints> ::= <constraint> | <constraint> <constraints>
<node> ::= (<node-var> <node-predicate> {:resource})
<edge> ::= (<node-var> <node-var>) |

(<node-var> <edge-predicate> <node-var>) |
(<node-var> :threat <node-var>)

<constraint> ::= <interpreted-predicate> |
(:neq <pred-var> <pred-var>)

<node-var> ∩ <pred-var> = ∅
= optional, | = alternative

Figure 3.5: BNF for the Rewriting Rules

18

(define-rule :name <rule-name>
:if (:operators ((<nv> <np> {:resource}) ...)

:links ((<nv> {<lp>|:threat} <nv>) ...)
:constraints (<ip> ...))

:replace (:operators (<nv> ...)
:links ((<nv> {<lp>|:threat} <nv>) ...))

:with (:operators ((<nv> <np> {:resource}) ...)
:links ((<nv> {<lp>} <nv>) ...)))

<nv> = node variable, <np> = node predicate,
<lp> = causal link predicate, {} = optional
<ip> = interpreted predicate, | = alternative

Figure 3.6: Rewriting Rule Template

The semantics of the rules is as follows. The antecedent, the :if field, identifies a subplan,

within the current plan, that satisfies some conditions. The antecedent has three parts. The

:operators field specifies a set of nodes. The :links field specifies a set of edges. Finally, the

constraints field specifies a set of constraints that the nodes and edges must satisfy.

The :operators field consists of a list of node variable and node predicate pairs. The step

number of those steps in the plan that match the given node predicate would be correspondingly

bound to the node variable. The node predicate can be interpreted in two ways: as an step action,

or as a resource used by an step. The node specification (?n2 (stack ?b1 ?b3 Table)) from

Figure 3.3 is an example of an node predicate that denotes an step action. This node specification

will collect tuples, composed of step number ?n2 and blocks ?b1 and ?b3, of steps whose action is

a stack of a block, ?b1, that is on the Table, and it is moved on top of another block, ?b3. This

node specification applied to the plan in Figure 2.3 would result in three matches: (1 C D), (2 B C),

and (3 A B), for the variables (?n2 ?b1 ?b3) respectively. If the optional keyword :resource is

present, the node predicate is interpreted as one of the resources used by a plan step, as opposed to

describing the step action. An example of a rule that matches against the resources of an operator

is given in Figure 3.7. In this rule, the node specification (?n1 (machine ?x) :resource) will

match all steps that use a resource of type machine and collect pairs of step number ?n1 and

machine object ?x.

(define-rule :name resource-swap
:if (:operators ((?n1 (machine ?x) :resource)

(?n2 (machine ?x) :resource))
:links ((?n1 :threat ?n2)))

:replace (:links (?n1 ?n2))
:with (:links (?n2 ?n1)))

Figure 3.7: Resource-Swap Rewriting Rule

19

The :links field consists of a list of link specifications. Our language admits link specifications

of three types. The first type is specified as a pair of node variables. For example (?n1 ?n2) in

Figure 3.4. This specification matches any temporal ordering link in the plan, regardless if it was

imposed by causal links or by the resolution of threats. This only requires that node ?n1 is indeed

ordered before ?n2 in the plan (not necessarily immediately before).

The second type of link specification matches causal links. Causal links are specified as triples

composed of a producer step node variable, an edge predicate, and a consumer step node variable.

The semantics of a causal link is that the producer step asserts in its effects the predicate, which

in turn is needed in the preconditions of the consumer step. For example, the link specification

(?n1 (on ?b1 Table) ?n2) in Figure 3.3 matches steps ?n1 that put a block ?b1 on the Table

and steps ?n2 that subsequently pick up this block. That link specification applied to the plan in

Figure 2.3 would result in the matches: (4 C 1) and (5 B 2), for the variables (?n1 ?b1 ?n2).

The third type of link specification matches ordering links originating from the resolution of

threats (coming either from resource conflicts or from operator conflicts). These links are selected

by using the keyword :threat in the place of a condition. For example, the resource-swap rule

in Figure 3.7 uses the link specification (?n1 :threat ?n2) to ensure that only steps that are

ordered because they are involved in a threat situation are matched. This helps to identify which

are the “critical” steps that do not have any other reasons (i.e. causal links) to be in such order,

and therefore this rule may attempt to reorder them. This is useful when the plan quality depends

on the degree of parallelism in the plan as a different ordering may help to parallelize the plan.

Recall that threats can be solved either by promotion or demotion, so the reverse ordering may

also produce a valid plan, which is often the case when the conflict is among resources as in the

rule in Figure 3.7.

Interpreted predicates, built-in and user-defined, can be specified in the :constraints field.

These predicates are implemented programmatically are opposed to being obtained by matching

against components from the plan. The built-in predicates currently implemented are inequality4

(:neq), comparison (< <= > >=), and arithmetic (+ - * /) predicates. The user can also add ar-

bitrary predicates and their corresponding programmatic implementations. The interpreted pred-

icates may act as filters on the previous variables or introduce new variables (and compute new

values for them). For example, the user-defined predicate possibly-adjacent in the rule in Fig-

ure 3.3 ensures that the steps are consecutive in some linearization of the plan. For the plan in

Figure 2.3 the extension of the possibly-adjacent predicate is: (0 4), (0 5), (4 5), (5 4), (4 1),

(5 1), (1 2), (2 3), and (3 Goal).

The user can easily add interpreted predicates in our system. The user only needs to in-

clude a function definition that implements the interpreted predicate. During rule matching our

algorithm passes arguments and calls such functions when appropriate. The current plan is a de-

fault first argument to the interpreted predicates to provide a context for the computation of the

predicate (the user may ignore it). Figure 3.8 show an skeleton for the (Lisp) implementation of

4Equality is denoted by sharing variables in the rule specification

20

the possibly-adjacent and less-than interpreted predicates. Several examples of interpreted

predicates that introduce new variables are shown in the rules in Chapter 4.

(defun possibly-adjacent (plan node1 node2)
<function body>)

(defun less-than (plan n1 n2)
(declare (ignore plan))
(when (and (numberp n1) (numberp n2))

(if (< n1 n2)
’(nil) ;; true

nil))) ;; false

Figure 3.8: Sample Implementation of Interpreted Predicates

The consequent is divided in two fields: :replace and :with. The :replace field identifies the

subplan that is going to be removed from the plan, which is a subset of steps and links identified in

the antecedent. If a step is removed, all the links that refer to the step are also removed. The :with

field specifies the replacement subplan. The replacement subplan does not need to be completely

specified. As we will see in Sections 3.2.2 and 3.2.3, the system generates all valid embeddings of

the replacement subplan into the original plan (once the subplan in the :replace field has been

removed). Thus, a single rule instantiation may produce several rewritten plans. For example, the

:with field of the avoid-move-twice rule in Figure 3.3 only specifies the addition of a stack step

but not how this step is embedded into the plan. The links to the rest of the steps of the plan are

automatically computed during the rewriting process. The plan resulting from the application of

this rule to the plan in Figure 2.3 is shown in Figure 3.9. Note how steps 4, unstack(C A), and 1,

stack(C D Table), have been removed (along with all the edges incoming and emanating from

them), and the new step 6, stack(C D A), has replaced both of them. Step 6 now produces both

clear(A), that was previously produced by step 4, and on(C D), that was previously produced by

step 1.

The rewriting rules must be safe. Safety is a syntactic restriction on the consequents of the

rules analogous to range-restriction and safety in database query languages [Abiteboul et al., 1995].

Safety for our rewriting rules has two conditions. First, the node variables in the :with field must

appear in the antecedent. Otherwise, the plan to be replaced would be undefined. Second, all vari-

ables in node and edge predicates in the :replace field must also be bound in the antecedent. This

ensures that the operators and links of the replacement subplan are fully instantiated. The node

variables of the replacement subplan are the only variables not appearing in the antecedent. Their

values, the identifiers of the new steps, cannot be known in advance and are assigned automatically

by the rewriting algorithm.

21

0
clear(C)

GOAL

clear(B) clear(C)

clear(B)

on(B D)

on(C A)

on(A B)

on(B C)
on(C D)

clear(D)

C

A D

B

A

B

C

D

Initial State Goal State

on(A Table)

on(B Table)

Causal Link
Ordering Constraint
Side Effect

2 STACK(B C Table)

5 UNSTACK(B D)

on(D Table)

clear(B)

clear(A)

3 STACK(A B Table)

6 STACK(C D A)

clear(C)
on(B Table)

on(C A)
clear(D)

on(B D)

on(A Table)
clear(B)

Figure 3.9: Rewritten Plan in the Blocks World Domain

3.2.2 Valid Rewriting

Before describing what the conditions for valid rewriting are, we need to introduce some definitions

about (sub)plans:

Preconditions: of a (sub)plan P are the union of the preconditions of all the steps in P .

Effects: of a (sub)plan P are the union of the effects of all the steps in P .

Net Preconditions of a subplan S, embedded in a plan P , are those predicates present in causal

links whose consumer is in S and whose producer is in P − S.

Useful Effects: of a subplan S, embedded in a plan P , are those predicates present in causal

links whose producer is in S and whose consumer is in P − S.

Note that in the definitions of preconditions and effects of a (sub)plan the resulting set of logical

formulas may not be consistent. In particular, a proposition and its negation may both appear

in these sets. This does not present a problem given that planning is a form of non-monotonic

reasoning. The temporal ordering in the plan ensures that a proposition and its negation cannot

occur concurrently. As an example of these definitions, consider the subplan formed by steps

4 and 1 of the plan in Figure 2.3, the preconditions of this subplan are: clear(C), on(C A),

clear(D), and on(C Table);5 the net preconditions are: clear(C), on(C A), and clear(D); the

effects are: clear(A), ¬on(C A), on(C Table), on(C D), ¬on(C Table), and ¬clear(D); and the

useful effects are: clear(A) and on(C D).

5Excluding the built-in inequality predicates.

22

Using these definitions we can state the formal conditions for valid rewriting:

Valid Rewriting A subplan S1, embedded in a plan P , can be replaced by a subplan S2, resulting

in plan P ′, iff:

1. UsefulEffects(S1, P) ⊆ Effects((P − S1) ∪ S2), and

2. Preconditions(S2) ⊆ Effects((P − S1) ∪ S2), and

3. there exists an acyclic ordering O for P ′ such that all causal links in P ′ are safe.

The first condition means that all the effects that the replaced subplan, S1, was producing, can

still be produced once S1 is removed and the replacement plan, S2, introduced. The needed effects

may come either from S2 or from other steps in the remainder of the plan, P − S1. Typically

all the effects are produced by the replacement subplan. The second condition means that the

preconditions of the replacement subplan, S2, can indeed be satisfied either by effects of the rest

of the plan, P − S1, or internally within S2. The preconditions provided by P − S1 to S2 are the

NetPreconditions(S2, P ′). The remaining preconditions of steps in S2 must be provided by (other)

steps within S2. These two conditions ensure that the causal links that embed S2 into P − S1 can

be established. The third condition states that the new plan, P ′, can be made internally consistent.

That is, that both the new causal links introduced by embedding S2 and those previously in P − S1

are not threatened. In order to ensure this property some additional ordering constraints may be

needed.6 These conditions are a generalization of plan merging [Foulser et al., 1992].

As an example, consider how these conditions are satisfied in the plan of Figure 3.9. This plan

results from applying the avoid-move-twice rule of Figure 3.3 to the plan of Figure 2.3. The rule

antecedent identifies the subplan formed by steps 1 and 4 in Figure 2.3, which is also the subplan to

be replaced. The useful-effects of this subplan are clear(A) and on(C D). This effects are provided

by the replacement subplan formed by step 6 in Figure 3.9, so our first condition is satisfied. The

preconditions of the replacement subplan are on(C A), clear(C), and clear(D). This propositions

are still found in the remainder of the plan after steps 1 and 4 are removed. In particular steps 0

provides on(C A) and clear(C), and step 5 provides clear(D). Thus, the second condition is also

6The conditions presented here are more general than those that appear in [Ambite and Knoblock, 1997], reprinted
here for convenience:

Valid Rewriting A subplan S1, embedded in a plan P , can be replaced by a subplan S2, resulting in plan P ′, iff
there exists an ordering O, such that

1. UsefulEffects(S1, P) ⊆ UsefulEffects(S2, P ′).

2. NetPreconditions(S2, P ′) ⊆ NetPreconditions(S1, P), and

3. P ′ = (P − S1) ∪ S2 ∪ O is a consistent plan, and

In particular, condition 1 requires the replacement subplan, S2, to produce all the effects that the replaced subplan,
S1, was producing. Although this is generally the case, it is possible that other steps in the remainder of the plan,
P − S1, can also provide some of the necessary effects and the rewritten plan, P ′, can be made complete even if S2
does not produce by itself all the necessary effects. Condition 2 requires that the replacement subplan takes only
preconditions that the replaced plan was using. This is unnecessarily restrictive, other precondition of preceding
steps can be used regardless if the replaced subplan was using them or not. The new condition 3 simply emphasizes
the requirements for a consistent ordering.

23

satisfied. Finally, it suffices to add an ordering link between step 5 and step 6 to ensure that the

plan is consistent and satisfy the third condition.

The conditions for valid rewriting are very general and admit a variety of implementations. One

way of ensuring the satisfaction of these conditions, that we call the full-specification approach, is

to rely on the user, or an automated rule defining procedure, to fully specify all steps and links

involved in a rewriting, both in the antecedent and consequent of the rule, in such a way that the

correctness of the rewriting is guaranteed. These kind of rules, that fully specify the embedding of

the replacement subplan, are the ones typically used in graph rewriting systems. However, we can

take advantage of the semantics of domain independent planning to relax the specification of the

rules. In this alternative, that we call the partial-specification approach, only the most significant

aspects of the replacement subplan are specified and the system is responsible for filling in the

details. That is, both the rule antecedent and consequent may state only a subset of the conditions

necessary for a valid rewriting. During the rewriting phase the system computes all the embeddings

consistent with such partial specification. Moreover, the user is free to specify rules that may not

necessarily be able to compute a rewriting for a plan that matches the antecedent because some

necessary condition was not checked in the antecedent. This may seem undesirable, but in many

cases a rule can be more naturally specified in this general form. The rule may only fail for rarely

occurring plans, so that the effort in defining and matching the complete specification may not be

worthwhile. In the partial-specification case, the system always ensures that the rewritten plans

are valid.

As an example of these two approaches to rule specification, consider the avoid-move-twice-fs

rewriting rule in Figure 3.10 that shows a fully specified version of the rule avoid-move-twice in

Figure 3.3. Note that the avoid-move-twice rule is simpler and more natural to specify than

avoid-move-twice-fs. But, more importantly, avoid-move-twice-fs is making more commit-

ments that avoid-move-twice. In particular, avoid-move-twice-fs fixes the producer of (clear

?b1) for ?n11 to be ?n1 when ?n7 is also known to be a valid candidate. Moreover, there may

be steps in the plan, other than the ones matched by ?n1, ?n8, and ?n2, that also produce the

needed propositions for ?n11. More rules would be needed to cover these additional cases. In

general the number of rules may grow exponentially as all permutations of the embeddings are

enumerated. However, by using the partial-specification approach we could express the general

plan transformation by only one natural rule.

In summary, the main advantage of the full-specification rules is that the rewriting can be

performed quite efficiently because the embedding of the consequent is already specified. The

disadvantages are that the number of rules to represent a generic plan transformation may be very

large and the resulting rules quite lengthy, both of these problems may decrease the performance of

the match algorithm. Also, the rule specification is error-prone if written by the user. Conversely,

the main advantage of the partial-specification rules is that a single rule can represent a complex

plan transformation naturally and concisely. The rule can cover a large number of plan structures

even if it may occasionally fail. Also, the partial specification rules are much easier to specify and

24

(define-rule :name avoid-move-twice-fs
:if (:operators ((?n3 (unstack ?b1 ?b2))

(?n9 (stack ?b1 ?b3 Table)))
:links ((?n1 (clear ?b1) ?n3)

(?n2 (on ?b1 ?b2) ?n3)
(?n3 (clear ?b2) ?n4)
(?n3 (on ?b1 Table) ?n9)
(?n7 (clear ?b1) ?n9)
(?n8 (clear ?b3) ?n9)
(?n9 (on ?b1 ?b3) ?n10))

:constraints ((possibly-adjacent ?n3 ?n9)
(:neq ?b2 ?b3)))

:replace (:operators (?n1 ?n2))
:with (:operators ((?n11 (stack ?b1 ?b3 ?b2)))

:links ((?n1 (clear ?b1) ?n11)
(?n8 (clear ?b3) ?n11)
(?n2 (on ?b1 ?b2) ?n11)
(?n11 (on ?b1 ?b3) ?n10))))

Figure 3.10: Blocks World Rewriting Rule with Full Embedding Specified

understand by the users of the system. As shown in this section, the PbR approach provides a

high degree of flexibility for defining the plan rewriting rules.

3.2.3 Rewriting Algorithm

The design of a plan rewriting algorithm depends on several parameters. First, the language of

the operators. Second, the language of the rewriting rules. Third, the choice of full-specification

or partial-specification rewriting rules. Finally, the need for all rewritings or one rewriting, as

required by the search method. In this section we analyze these issues in turn, and describe how

the rewriting algorithm accommodates these choices. In the next section, we present a complexity

analysis for plan rewriting.

The language of the operators affects the way in which the initial and rewritten plans are

constructed. Our framework supports the expressive operator definition language described in

Section 2.1. We provide support for this language by using standard techniques for causal link

establishment and threat checking like those in Sage [Knoblock, 1995] and UCPOP [Penberthy and

Weld, 1992].

The language of the antecedents of the rewriting rules affects the efficiency of matching. Our

system implements the conjunctive query language that was described in Section 3.2.1. However,

our system could easily accommodate a more expressive query language for the rule antecedent, such

as a relationally complete language (non-recursive first-order language), or a recursive language such

as datalog with stratified negation, without significantly increasing the computational complexity

of the approach in an important way, as we discuss in Section 3.2.4.

25

The choice of fully versus partially specified rewriting rules affects the way in which the replace-

ment plan is embedded into the current plan. If the rule is completely specified, the embedding

is already specified in the rule consequent, and the replacement subplan is simply added to the

current plan. If the rule is partially specified, our algorithm computes all the valid embeddings.

The choice of one versus all rewritings affects both the antecedent matching and the embedding

of rule consequent. The rule matches can be computed either all at the same time, as in bottom-

up evaluation of logic databases, or one-at-a-time as in Prolog, depending if the search strategy

requires one or all rewritings. If the rule is fully-specified only one embedding per match is possible.

But, if the rule is partially-specified multiple embeddings may result from a single match. If the

search strategy only requires one rewriting, it must also provide a mechanism for choosing which

rule is applied, which match is computed, and which embedding is generated. Different search

strategies are discussed in Section 3.4.

The design of the rewriting algorithm depends on the choices described above, which are in-

formed by the desired search strategy. Our rewriting algorithm has a modular implementation

that supports all these combinations. The main modules are the antecedent match and consequent

embedding routines. The rewriting algorithm is outlined in Figure 3.11.

1. For each plan rewriting rule, Match rule antecedent (:if field), returning a set of candidate
rule instantiations:

(a) Heuristic optimization of the antecedent query.

(b) Evaluate the antecedent query against the relational view of the current plan.

(c) Collect matches one-at-a-time or set-at-a-time.

2. For each antecedent instantiation:

(a) Remove the subplan specified in the :replace field from the current plan. Add open
preconditions for the net-effects of the replaced subplan.

(b) Generate the embedding(s) of the replacement subplan specified in the :with field.
This is achieved in three steps:

i. Add replacement subplan to the remainder of the current plan.
ii. Find new threats.
iii. Apply a standard partial-order causal-link planning algorithm specialized to do only

step reuse in order to resolve the threats and open conditions.

(c) Collect one or all rewritings.

Figure 3.11: Outline of the Plan Rewriting Algorithm

The matching of the antecedent of the rewriting rules is implemented straightforwardly as

conjunctive query evaluation. Our implementation keeps a relational representation of the steps

and links in the current plan similar to the node and link specifications of the rewriting rules. The

match process consists of converting the rule antecedent to a conjunctive query with interpreted

predicates, and executing this query against the relational view of the plan structures. In our

26

current implementation we perform a simple heuristic optimization of each antecedent query for

each rule, but we do not perform multiple query optimization across all rules, or a multiple rule

evaluation as in Rete [Forgy, 1982]. For example, matching the antecedent of the rule in Figure 3.3

against the plan in Figure 2.3 identifies steps 1 and 4. Considering the antecedent as query, the

result is the single tuple (4 C A 1 D) for the variables (?n1 ?b1 ?b2 ?n2 ?b3). Note that all the

variables in the rule consequent (except for the node identifiers) are present in the antecedent, thus

satisfying our rule safety restriction.

For each antecedent match, the algorithm removes the subplan identified in the :replace field,

which is a subset of the steps and links of antecedent. If a node is identified as part of the replaced

plan, all the edges incoming and emanating from this node are also removed. Continuing with

our example, the plan resulting of removing steps 1 and 4 from the plan in Figure 2.3 is shown

in Figure 3.12. The net-effects of the replaced plan will have to be achieved but the replacement

subplan. In order to facilitate this process, these effects are recorded as open conditions in the plan

structure.

0
clear(C)

GOAL

clear(B)

clear(B) clear(C)

clear(B)

on(B D)

clear(C)
on(C A)

clear(A)

on(A B)

on(B C)
on(C D)

clear(D)

C

A D

B

A

B

C

D

Initial State Goal State

on(C Table)

on(A Table)

on(B Table)

Causal Link
Ordering Constraint
Side Effect

2 STACK(B C Table)

4 UNSTACK(C A)

5 UNSTACK(B D)

on(D Table)

1 STACK(C D Table)

3 STACK(A B Table)

on(B D)

on(C Table)
clear(D)

on(C A)

clear(C)
on(B Table)

clear(B)
on(A Table)

REMOVED SUBPLAN

Figure 3.12: Application of a Rewriting Rule: After Removing Subplan

Finally, the algorithm embeds the replacement subplan (the :with field) into the remainder of

the original plan. If the rule is completely specified, the algorithm simply adds the (already instan-

tiated) steps and links of the replacement subplan to the plan, and no further work is necessary.

If the rule is partially specified, the system finds the embeddings of the replacement subplan

into the remainder of the original plan. The computation of these embeddings can be seen as the

application of an specialized partial-order causal-link planner that is restricted to only reuse steps.

In our current implementation this is exactly the case. This allows us to support our expressive

operator language and to have flexibility for computing one or all embeddings.

The embedding for the partially-specified rules is performed in three stages. First, the algorithm

adds the instantiated steps and links of the replacement plan (:with field) into the remainder

27

of the original plan. Second, the algorithm computes the possible threats, both operator threats

and resource conflicts, occurring in the plan. Figure 3.13 shows the state of our example after the

new stack step (6) has been incorporated into the plan. At this point the threat situation on the

clear(C) proposition between step 6 and 2 is identified. Finally, the system searches as in partial-

order causal-link planning for all complete plans. In this search all valid ways of satisfying the open

preconditions and resolving conflicts are explored, resulting in the set of plans that constitute all

the valid embeddings. If only one rewriting is needed, the search can stop at the first valid plan.

Otherwise, the search continues until exhausting all alternatives. In our running example, only one

embedding is possible and the resulting plan is that of Figure 3.9.

0 GOAL

clear(B)

clear(B) clear(C)

clear(B)

on(B D)

on(A B)

on(B C)

C

A D

B

A

B

C

D

Initial State Goal State

on(A Table)

on(B Table)

Causal Link
Ordering Constraint

2 STACK(B C Table)

5 UNSTACK(B D)

on(D Table)

3 STACK(A B Table)

on(B D)

clear(C)
on(B Table)

clear(B)
on(A Table)

clear(C)

clear(D)

clear(A)
6 STACK(C D A)

on(C A)
clear(D)

on(C D)

clear(C)

on(C A)on(C A)

clear(D)

clear(A)

on(C D)

Open conditions

Figure 3.13: Application of a Rewriting Rule: After Adding Replacement Steps

3.2.4 Complexity of Plan Rewriting

The complexity of plan rewriting in PbR originates from two sources: matching the rule antecedent

against the plan, and computing the embeddings of the replacement plan. In order to analyze the

complexity of matching the plan rewriting rules we will introduce the following database-theoretic

definitions of complexity [Abiteboul et al., 1995]:

Data Complexity: is the complexity of evaluating a fixed query for variable database inputs.

Expression Complexity: is the complexity of evaluating, for a fixed database instance, the

queries specifiable in a given query language.

Data complexity measures the complexity with respect to the size of the database. Expression

complexity measures the complexity with respect to the size of the queries (taken from a given

language). In our case, the database is the steps and links of the plan and the queries are the

antecedents of the plan rewriting rules.

28

Formally, the language of the rule antecedents that we have described consists of conjunctive

queries with interpreted predicates. Unfortunately, the worst-case combined data and expression

complexity of conjunctive queries is exponential [Abiteboul et al., 1995]. That is, if the size of the

query, the rule antecedent, and the size of the database, the plan, grow simultaneously, there is little

hope of matching efficiently. Fortunately, relationally-complete languages have a data complexity

contained in Logarithmic Space (which is, in turn, contained in Polynomial Time). Thus our

conjunctive query language has at most this complexity. This is a very encouraging result that

shows that the cost of evaluating a fixed query grows very slowly as the database size increases. For

PbR this means that matching the antecedent of the rules is not strongly affected by the size of the

plans. Moreover, in our experience useful rule antecedents are not very large. Besides, in practice

there are many constant labels in the rule antecedent (at least, the node and edge predicate names)

which help to reduce the size of the intermediate results. This result also indicates that we could

extend the language of the antecedent to be relationally complete without affecting significantly the

performance of the system. Another possible extension could be to datalog with stratified negation

which also has polynomial time data complexity. Some graph-theoretic properties of our plans

could be easily described in datalog. For example, the possibly-adjacent interpreted predicate

of Figure 3.4 could be described declaratively as a datalog program instead of a piece of code.

In summary, rule match for moderately sized rules, even for quite expressive languages and large

plans, remains tractable and can be made efficient using the techniques in the production match

and database literature.

The second source of complexity is computing the embeddings of the replacement plan given in

the consequent of a plan rewriting rule. By the definition of full-specification rules, the embedding

is completely specified in the rule itself. Given that the rules are required to be range-restricted

all the variables of the consequent have been instantiated in the antecedent, thus it suffices simply

to remove the undesired subplan and directly add the replacement subplan. This is linear in the

size of the consequent.

For partial-specification rules, computing all the embeddings of the replacement subplan can

be exponential in the size of the plan in the worst case. However this occurs only in pathological

cases. For example, consider the plan in Figure 3.14 (a) in which we are going to compute the

embeddings of step x into the remainder of the plan in order to satisfy the open precondition g0.

Step x has no preconditions and has two effects ¬b and g0. Each step in the plan has proposition

b as an effect. Therefore, the new step x conflicts with every step in the plan (1 to n) and has

to be ordered with respect to these steps. Unfortunately there are an exponential number of

orderings. In effect the orderings imposed by adding the step x correspond to all the partitions

of the set of steps (1 to n) into two sets: one ordered before x and one after. Figure 3.14 (b)

shows one of the possible orderings. If the subplan we were embedding contained several steps that

contained similar conflicts the problem would be compounded. Even deciding if a single embedding

exists can be NP-hard. For example, if we add two additional effects ¬a and ¬g1 to operator x,

there is no valid embedding. In the worst case (solving first the flaws induced by the conflicts on

proposition b) we have to explore an exponential number of positions for step x in the plan, all of

29

which end up in failure. Nevertheless, given the quasi-decomposability of useful planning domains

we expect the number of conflicts to be relatively small. Also most of the useful rewriting rules

specify replacement subplans that are small compared with the plan they are embedding into. Our

experience indicates that plan rewriting with partial-specification rules can be performed efficiently

as shown in Chapters 4 and 5.

g2
0

b
1

g

g1

gn

2
b

n b

g0

x

b

g0

a

a

a

g2

0

1

g

g1

gn

2
b

n b

b g0

x

b

a

a

a

(a) Before embedding (b) One possible embedding

Figure 3.14: Exponential Embeddings

3.2.5 A Taxonomy of Plan Rewriting Rules

In order to guide the user in defining plan rewriting rules for a domain or to help in designing

algorithms that may automatically deduce the rules from the domain specification (see Chapter 7),

it is helpful to know what kinds of rules are useful. So far we have identified the following general

types of transformation rules.

Reorder: These are rules based on algebraic properties of the operators, such as commutative,

associative and distributive laws. For example, the commutative rule that reorders two

operators that need the same resource in Figure 3.7, or the join-swap rule in Figure 4.10

that combines the commutative and associative properties of the relational algebra.

Collapse: These are rules that replace a subplan by a smaller subplan. For example, when several

operators can be replaced by one, as in the remote-join-eval rule in Figure 4.8. This

rule replaces two remote retrievals at the same information source and a local join operation

by a single remote join operation, when the remote source has the capability of performing

joins. An example of the application of this rule to a query plan is shown in Figure 4.14.

Another example is the Blocks World rule in Figure 3.3 that replaces an unstack and a stack

operators by an equivalent single stack operator.

30

Expand: These are rules that replace a subplan by a bigger subplan. Although this may appear

counter-intuitive initially, it is easy to imagine a situation in which an expensive operator can

be replaced by a set of operators that are cheaper as a whole. An interesting case is when

some of these operators are already present in the plan and can be synergistically reused. We

did not find this rule type in the domains analyzed so far, but [Bäckström, 1994a] presents a

framework in which adding actions improves the quality of the plans. His quality metric is the

plan execution time, similarly to the manufacturing domain of Section 5.1. Figure 3.15 shows

an example of planning domain where adding actions improves quality (from [Bäckström,

1994a]). In this example removing the link between Bm and C1 and inserting a new action A’

shortens significantly the time to execute the plan.

Parallelize: These are rules that replace a subplan with an equivalent alternative subplan that

requires fewer ordering constraints. A typical case is when there are redundant or alterna-

tive resources that the operators can use. For example, the rule punch-by-drill-press in

Figure 3.4. Another example, is the rule that Figure 3.15 suggests that could be seen as a

combination of expand and parallelize types.

R0 + R1+ P, + R0 Rn−1 + Rn

+ Q1 P

Qm−1
+ Qm

− P
A C1 Cn

BmB1

Rn−1 + Rn+ P, + R0
A

R0 + R1

− P
C1 Cn

P

Qm−1
+ QmBm

+ Q1
B1

+ P, + R0
A’

(a) Low Quality Plan (b) High Quality Plan

Figure 3.15: Adding Actions Can Improve Quality

3.3 Plan Quality

In most practical planning domains the quality of the plans is crucial. This is one of the motivations

for the Planning by Rewriting approach. In PbR the user defines the measure of plan quality most

appropriate for the application domain. This quality metric could range from a simple domain-

independent cost metric, such as the number of steps, to more complex domain-specific ones.

For example, in a query planning domain the measure of plan quality may be the estimated

query execution cost, or it may involve actual monetary costs if some of the information sources

require payments. In the job-shop scheduling domain some simple cost functions are the schedule

length (that is, the time to finish all pieces), or the sum of the times to finish each piece. A

more sophisticated manufacturing domain may include a variety of concerns such as the cost,

reliability, and precision of the each operator/process, the costs of resources and materials used by

the operators, the utilization of the machines, etc. The reader will find more detailed examples

31

of quality metrics in Chapters 4 and 5. As seen in these examples, the quality function may be

single objective or multi-objective. In a single objective cost function only one parameter, such as

execution time, is optimized. In a multi-objective cost function, the plans are evaluated against

several criteria and a combination of the objectives is the resulting cost function.

A significant advantage of PbR is that the complete plan is available to assess its quality. In

generative planners the complete plan is not available until the search for a solution is completed,

so usually only very simple plan quality metrics, such as the number of steps, have been used.

Some work that incorporates quality concerns into generative planners is [Pérez, 1996]. Her system

automatically learns quality-improving search control rules from examples of low and high quality

plans. In PbR the rewriting rules can be seen as “post-facto” optimization search control. As

opposed to guiding the search of a generative planner towards high-quality solutions based only

in the information available in partial plans, PbR improves the quality of complete solution plans,

on which quality can be better assessed. By exploiting domain-specific knowledge, conveniently

expressed as plan rewriting rules, and the local search approach, PbR achieves both planning

efficiency and high quality solutions.

High quality plans in some complex applications are better achieved by mixed-initiative plan-

ning. In mixed-initiative planning the user interacts with the planner in order to guide the search

and define the criteria of quality. An interesting feature of complex domains is that they have

multi-objective quality functions and the importance of different aspects of the quality metric may

not be fully known in advance or may change over time. For example, in manufacturing the user

may instruct the planner to find a solution with the cheapest monetary cost, but when the solution

is returned, the user may want to find additional solution plans emphasizing other aspects such as

time-to-finish, or introduce new quality criteria that may have been initially overlooked, such as

avoiding the excessive use of a particular machine. An advantage of the PbR framework is that by

working with complete plans the inefficiencies in the plan are more readily apparent. Sensibility

analysis is also important for some applications. The user may need to test how robust are the

solution plans with respect to changes in the quality criteria. Finally, note that in some domains

the quality metric may be quite expensive to evaluate, thus user guidance is required. For example,

in some manufacturing applications finding the quality of a plan may involve expensive geometrical

computations, so the user (and the planner) needs to be careful on which plans are generated and

evaluated if a high-quality plan is going to be obtained in a timely manner.

PbR is particularly well suited for mixed-initiative planning. First, the planning process is

easier to understand by the user. The planner always has a complete plan to show to the user

and the rewriting rules are natural perturbations of the plans which relate straightforwardly to the

application domain. Second, the user can conveniently guide the system interactively. The user has

the option to select which rewriting rules to apply at different stages during planning. Moreover,

the user may change the quality function to emphasize different quality criteria during planning or

perform sensibility analysis in order to obtain robust plans.

32

In summary, the Planning by Rewriting framework facilitates planning with complex quality

criteria both in an automatic or mixed-initiative mode. Moreover the optimization of the plan

quality is efficiently performed using local search techniques.

3.4 Selection of Next Plan: Search Strategies

Although the space of rewritings can be explored exhaustively, the Planning by Rewriting frame-

work is better suited to the local search techniques typical of combinatorial optimization algorithms.

Many of the local search algorithms available in the literature can be adapted to work within

the PbR framework. The characteristics of the planning domain, the initial plan generator, and

the rewriting rules determine which algorithm performs best. First, we discuss how the initial

plan generator affects the choice of local search methods. Second, we consider the impact of the

rewriting rules. Third, we discuss the role of domain knowledge in the search process. Finally, we

describe how several local search methods work in PbR.

An important difference between PbR and traditional combinatorial algorithms is the generation

of feasible solutions. Usually, in combinatorial optimization problems it is assumed that there

exists an effective procedure to generate all feasible solutions, for example, the permutations of an

schedule. Thus, even if the local search graph is disconnected, by choosing an appropriate initial

solution generator (for example random) we could fall in a component of the graph that contains

the global optimum. In PbR we cannot assume such powerful initial plan generators. Even in

optimization domains, in which an efficient initial plan generator is available, we may not have

guarantees on the coverage of the solution space that it provides. Therefore, the optimal plan may

not be reachable by the application of the rewriting rules starting from the initial plans available

from the generator. Nevertheless, for many domains an initial plan generator that provides a

good sample of the solution space is sufficient for multiple-restart search methods to escape from

low-quality local minima and provide high-quality solutions.

The plan rewriting rules define the neighborhood function, which may be exact or not. For

example, in the query planning domain we can define an exact set of rules that completely generate

the space of solution plans. In other domains it may be hard to prove that we have an exact set of

rules. However, in most cases a set of rules that provide access to low-cost local optima suffice.

Both the limitations on initial plan generation and the plan rewriting rules affect the possibility

of theoretically reaching the global optimum. This is not surprising as it can be proven that

many problems, regardless of whether they are cast as planning or in other formalisms, do not

have converging local search algorithms. Nevertheless, in practice, good local optima can still be

obtained for many domains.

PbR strives for a balance between domain knowledge and general local search techniques. PbR

does not rely only in blindly applying local search to a problem, domain knowledge also takes an

important role in structuring and directing the search process towards good solutions. Domain

33

knowledge is incorporated in PbR in two ways. First, PbR keeps the operator-based representa-

tion of a plan as a modular way of encoding planning knowledge. A STRIPS-like operator groups

the propositions related to one action. In PbR, operators are treated as units, as opposed to ap-

proaches that translate a planning problem to another representation and apply randomized search

with the new representation. For example, planning can be cast as a propositional satisfiability

problem [Kautz and Selman, 1996], but there it is not clear how to exploit the connections among

the propositions of an operator. We believe that some control of the search is lost during such

translations and the knowledge engineering performed during the planning domain design in PbR

helps in directing the search. Second, our plan rewriting rules encode useful domain knowledge.

The rules can range from very general rewritings to highly domain or problem specific. So what

rules are present and how the rules are expressed can be used to guide the search within a domain

or even for each particular problem instance.

Many local search methods can be applied straightforwardly to PbR. In the remainder of the

section we describe some of them and point to some of the adaptations needed to work within PbR.

Concrete examples of these techniques applied to several domains appear in the following chapters.

First improvement generates the rewritings incrementally and selects the first plan of better

cost than the current one. In order to implement this method efficiently we can use a tuple-at-

a-time evaluation of the rule antecedent, similarly to the behavior of Prolog. Then, for that rule

instantiation, generate one embedding, test the cost of the resulting plan, and if it is not better

that the current plan, repeat. Note that we have the choice of generating another embedding of

the same rule instantiation, generate another instantiation of the same rule, or generate a match

of another rule.

Best improvement generates the complete set of rewritten plans and selects the best. This

method requires computing all matches and all embeddings for each match. All the matches can be

obtained by evaluating the rule antecedent as a traditional set-at-a-time database query. Despite

that it may seem expensive to generate all matches for the rewriting rules, there are powerful

database and production match techniques to optimize this evaluation.

Simulated annealing selects the next plan randomly. If a higher quality plan is chosen, it is

selected. If a lower quality plan is chosen, it is still selected with some probability. This probability

is decreased as planning progresses according to a cooling schedule. The requirements for its

implementation are very similar to the first improvement method. The cooling schedule is another

degree of freedom that the user may set to fine tune PbR for a particular domain.

Variable-depth rewriting is based on applying a sequence of rewritings atomically as opposed

to only one rewriting at each iteration. This allows the planner to overcome initial cost increases

that eventually would lead to strong cost reductions. This method is particularly interesting for

PbR. Often it is easier to understand, specify, and apply a sequence of simple rules than a complex

transformation. In some domains, such as query planning, sequences of rewritings are very natural.

For example, a sequence of Join-Swap transformations may put two retrieve operators on the same

database together in the query tree and then Remote-Join-Eval would collapse the explicit join

34

operator and the two retrieves into a single retrieval of a remote join. The complex transformation

is more naturally expressed as a composition of the two simpler rules.

Tabu search is another method that facilitates escaping from local optima by allowing moves to

lower-quality neighbors. However only those neighbors not in a tabu list can be selected. Often, the

tabu list consists of the solutions recently considered. The problem of applying tabu search to PbR

is comparing the rewritten plans to those in the tabu list. As plans are graphs this can be quite

expensive. An interesting trick applicable when the plan cost is a real number is to differentiate

solutions based on their cost as opposed to comparing the whole plans. Although less precise than

comparing plans, this provides the desired behavior of exploring the space without the complexity

of plan comparison.

In Planning by Rewriting the choice of the initial plan generator, the rewriting rules, and

the search methods is intertwined. Once the initial plan generator is fixed, it determines the

shape of the plans that would have to be modified by the rewriting rules, then according to this

neighborhood, the most appropriate search mechanism can be chosen. Nevertheless, the design of

PbR is modular. Different initial plan generators, sets of rewriting rules, and search strategies can

be readily interchanged.

35

Chapter 4

Planning by Rewriting for Query Planning

In this chapter we present the application of the Planning by Rewriting (PbR) framework to query

planning in mediators. Mediator systems integrate information from distributed and heterogeneous

sources. These systems are becoming increasingly important in a world of interconnected infor-

mation. The problem of query planning constitutes an excellent testbed for planning technology.

Query planning is a practically important problem, planning efficiency and plan quality are critical,

flexibility and extensibility are desirable, and there exists an interesting interplay between planning

and execution.

Planning by Rewriting is able to address many of the challenges of query planning in mediators.

The resulting PbR-based query planner is scalable, flexible, has anytime behavior, and yields

a novel combination of traditional cost-based query optimization and heterogeneous information

source selection.

The chapter is organized as follows. First, we introduce the challenging domain of query

planning in mediators. Second, we present how this domain is encoded as a classical planning

problem. Third, we describe in detail how query planning can be performed within the Planning by

Rewriting framework. We describe the cost of a query plan, the initial plan generator, the rewriting

rules, and the search strategies. Fourth, we show the results of several scalability experiments.

Finally, we discuss the advantages of using the PbR approach for query planning.

4.1 Query Planning in Mediators

Mediators provide access, in a given application domain, to information that resides in distributed

and heterogeneous sources. These systems shield the user from the complexity of accessing and

combining this information. The user interacts with the mediator using a single language with

agreed upon semantics for the application domain, as if it were a centralized system, without

worrying about the location or languages of the sources.

As motivation, consider the example of a mediator that integrates restaurant information avail-

able on the Web as shown in Figure 4.1. Some sources are restaurant guides, such as Zagat and

Fodor’s. These provide information such as the type of cuisine, the cost, the rating, and a review of

36

the restaurants, in addition to basic information such as address, phone, etc. Other sources, such as

the Tiger map server, allow the system to plot latitude and longitude coordinates on a map. Other

sources, such as the ETAK geocoder, can translate from the street address of some location to the

corresponding latitude and longitude coordinates. Finally, some cities publish health inspection

information of food establishments. Having access to all these sources the mediator could answer

queries such as: Get the names, reviews, and map of all Chinese restaurants in Monterey Park with

excellent food and health ratings. The corresponding query plan involves accessing and combining

information from the sources mentioned above: the restaurant sources in order to get the names,

rating, reviews, and addresses of the restaurants; the health ratings source; a geocoder to translate

the restaurant addresses to latitudes and longitudes; and, finally, a map server to obtain maps with

the results displayed graphically.1

Figure 4.1: Example of Mediator in the Web

Mediators were initially developed to integrate structured information sources, such as databases.

As this example suggests sources on the web provide only semistructured information. Nevertheless,

we can apply the same mediator technology by wrapping the Web sources. A wrapper extracts the

contents of a page according to its underlying conceptual schema. Wrappers can be programmed

by hand or learned automatically [Kushmerick, 1997, Muslea et al., 1998]. Also semantic mark-up

1Some of the sources in this example have a restriction on the type of queries they can answer known as binding
pattern constraints. A binding pattern is a requirement that the values for some attributes must be given in order
to access the values for the rest of the attributes. For example, the ETAK geocoder requires a street address as
input to output its latitude and longitude. In this chapter we are not focusing on query planning in the presence
of binding patterns. However, the planning techniques we present can be extended to handle binding patterns (see
Section 7.2).

37

languages such as XML can facilitate considerably the extraction of information from Web sources.

For the purposes of this chapter we consider the sources to have a well-defined schema (be it because

the sources are databases or because they are appropriately wrapped sources).

Query planning in mediators involves generating a plan that efficiently computes a user query

from the relevant information sources. This plan is composed of data retrieval actions at diverse

information sources and data manipulation operations, such as those of the relational algebra: join,

selection, union, etc. For an efficient execution, the plan has to specify both from which sources each

different piece of information should be obtained and which data processing operations are going to

be needed and in what order. The first problem, source selection, is characteristic of distributed and

heterogeneous systems. The second problem has been the focus of traditional query optimization

in databases. The highly combinatorial nature of query planning in mediators arises from these

two independent sources of complexity, namely, the selection of relevant information sources for a

given query and the selection and ordering of data processing operations. In the remainder of this

section we describe source selection and which mechanisms our system uses to handle this problem.

Sections 4.2 and 4.3 show how source selection is combined with cost-based optimization in our

system.

Mediators must provide a coherent conceptual view of the application domain. This requires

providing mechanisms to resolve the semantic heterogeneity among the different sources. This is

critical in order to select which information sources are relevant for a user query.

In order to reconcile the semantic differences the mediator designer defines a global model of

the application domain, models of the contents of the sources, and integration statements that

relate the source terms with the global domain model. There are two approaches to specify these

integration statements. One approach [Arens et al., 1996, Levy et al., 1996a, Kwok and Weld, 1996,

Duschka and Genesereth, 1997] is to define each source term as a logical formula over terms of the

global domain model. Another approach is to define each domain term as a formula over source

terms [Hammer et al., 1995, Adali et al., 1996, Haas et al., 1997]. These two approaches have

complementary strengths and weaknesses [Ullman, 1997]. The former approach has the advantage

of facilitating the addition of new sources to the mediator, as the new source definitions do not

interact with the previous ones. The disadvantage is that finding the relevant sources is computa-

tionally harder [Levy et al., 1995, Duschka, 1997]. Conversely, the latter approach facilitates the

query processing, which is reduced to unfolding (the terms in the user query, which are domain

terms, are simply substituted by the formula of source terms given in the integration statement),

but adding new sources may involve extensive changes to the mediator definitions.

In our mediators (SIMS [Arens et al., 1996] and Ariadne [Knoblock et al., 1998]) we combine

the strengths of both approaches by defining source terms as formulas on the global model and

precompiling the inverse formulas (domain terms as a combination of source terms) before any

query planning starts. This allows our system to plan more efficiently by unfolding, but still accept

new source definitions without restructuring the domain model. During query planning our system

only uses the inverted formulas, which we will call integration axioms for the remainder of the

chapter. Our system precompiles a set of maximal integration axioms when the domain model

38

is defined. These axioms are maximal in the sense that they specify the maximum number of

attributes that can be obtained from a given combination of sources. The relevant axioms for a

given user query can be efficiently computed by instantiating these maximal axioms at run time.

A detailed explanation of the algorithm for automatic compilation of the integration axioms lies

outside the scope of this work (see [Ambite et al., 1998]). These integration axioms are analogous

to the inverted rules in [Duschka and Genesereth, 1997, Duschka, 1997]. However, we are using

a description logic formalism as opposed to datalog,2 and we only precompile a selected small set

of integration axioms (the maximal axioms). In any case, the query planning techniques that we

introduce in this chapter are independent of the axiom compilation algorithm. For, example our

planner could be adapted to use axioms compiled using the techniques in [Duschka and Genesereth,

1997] or [Levy et al., 1996a] (for the non-recursive cases). For the purposes of this chapter we will

consider these integration axioms as given.

4.2 Query Planning as a Classical Planning Problem

The first step in using PbR is to encode the query planning problem as a classical planning domain.

The operators for query processing and the encoding of information goals that we use were intro-

duced in [Knoblock, 1996]. In this encoding the main state predicate is essentially (available

?source ?query), which states that a particular set of information, represented declaratively by

a query, is available at a particular location (?source) in the network. A sample information goal

is shown in Figure 4.2. This goal asks to send to the output device of the mediator all the names

of airports in Tunisia. The desired query is expressed in the Loom query syntax that the SIMS

mediator accepts.3 Note that the query is represented as a complex term within the available

predicate. The query language addressed in this planning domain is essentially union of conjunctive

queries with interpreted predicates (over distributed and heterogeneous sources).

(available output (retrieve (?ap_name)
(:and (airport ?aport)

(country-name ?aport "Tunisia")
(port-name ?aport ?ap_name))))

Figure 4.2: Sample Information Goal

2In our mediators the global model and the user queries are specified in the Loom description logic [MacGregor,
1988], a very expressive knowledge representation system.

3Although other query languages could have been used. For example, the same query in SQL would be:
select port-name from airport where country-name = ’Tunisia’

39

The specification of the operators is shown in Figure 4.3.4 The operators have a similar struc-

ture. The preconditions impose that certain sets of data, described intensionally by queries, are

available at some location in the network, and that these queries satisfy some properties. Once the

queries in the preconditions are obtained, the operator processes them to produce a new resulting

query. In order to check for properties of the queries, the operators rely on user-defined interpreted

predicates. Interpreted predicates are satisfied by evaluating a function on its arguments (possibly

producing bindings for some of the arguments), as opposed to being satisfied by effects of other

operators (or the initial state) as normal state predicates.

As an example of the behavior of these operators, consider the join operator. The join

operator needs as preconditions two subqueries available locally at the mediator (?query-a and

?query-b). Combining these subqueries using some join conditions (?join-conds) produces the

joined query ?query. Perhaps a simpler way to understand the definition of the join operator is to

analyze its behavior in a regression planner (such as UCPOP [Penberthy and Weld, 1992] or Sage
[Knoblock, 1995]). Consider the top query in Figure 4.4 (associated with the variable ?query).

This conjunctive query obtains the port-names and country-codes of airports by joining the

airport and location classes on the geoloc-code attribute. For brevity we will call this query

query0. Assume a goal (available sims query0) is posted to the planner and that the join

operator is selected to satisfy such goal (because the effect of the join operator unifies with this

goal). The preconditions of the join are posted then as new subgoals. Assume the interpreted

predicate join-query is chosen first. Conceptually, the predicate join-query checks that ?query is

a conjunctive query that can be decomposed into two subqueries, ?query-a and ?query-b, joined

with some conditions ?join-conds. In order for the predicate to be evaluated, either ?query

must have a binding (returning bindings for ?query-a, ?query-b and ?join-conds), or ?query-a,

?query-b, and ?join-conds must have bindings (returning a binding for ?query), or all variables

are bound (returning true or false). In our example ?query is the only variable with a binding at

the time in which the interpreted predicate is called (the binding was performed when the effect

of the join operator was unified with the posted goal). As this query is indeed conjunctive, the

interpreted predicate computes bindings that decompose query0 into simpler subqueries. Thus,

?query-a, ?query-b, and ?join-conds will receive the bindings shown in Figure 4.4. These values

are propagated to the remaining preconditions, (available sims ?query-a) and (available

sims ?query-b), that become new subgoals and are solved in a similar fashion.

The remaining operators behave analogously to join, using supporting interpreted predi-

cates to analyze the queries. The select operator performs relational algebra selections. The

4Note that the predicate available actually used in the operators is (available ?source ?host ?query

!result). This predicate allows for several sources to reside at the same host machine, as well as having the
same source replicated at different machines. The run-time variable !result contains the result (tuples, objects)
after execution of the query. Run-time variables are used by the planner to propagate data throughout the plan and
to explicitly reason with data gathered at run-time. For simplicity in our examples, we will use (available ?source

?query).

40

(define (operator output)
:parameters (?query ?result)
:resources ((processor sims))
:precondition (available local sims ?query ?result)
:effect (available output sims ?query))

(define (operator retrieve)
:parameters (?source ?host ?query !result)
:resources ((processor ?host))
:precondition (:and (source-available ?source ?host)

(source-acceptable-query ?query ?source))
:effect (available local sims ?query !result))

(define (operator assign)
:parameters (?assignment ?subquery ?query ?subresult !result)
:precondition (:and (available local sims ?subquery ?subresult)

(assignment-query ?query ?assignment ?subquery))
:effect (available local sims ?query !result))

(define (operator select)
:parameters (?selection ?subquery ?query ?subresult !result)
:precondition (:and (available local sims ?subquery ?subresult)

(selection-partition-all ?query ?selection ?subquery))
:effect (available local sims ?query !result))

(define (operator join)
:parameters (?join-conds ?query ?query-a ?query-b ?result-a ?result-b !result)
:precondition (:and (available local sims ?query-a ?result-a)

(available local sims ?query-b ?result-b)
(join-query ?query ?join-conds ?query-a ?query-b))

:effect (available local sims ?query !result))

(define (operator binary-union)
:parameters (?subquery-a ?subquery-b ?query ?result-a ?result-b !result)
:precondition (:and (available local sims ?subquery-a ?result-a)

(available local sims ?subquery-b ?result-b)
(binary-union-query ?query ?subquery-a ?subquery-b))

:effect (available local sims ?query !result))

Figure 4.3: Operators for Query Planning (interpreted predicates in italics)

41

?query: (retrieve (?pn ?cc)
(:and (airport ?a) (port-name ?a ?pn) (geoloc-code ?a ?gc1)

(location ?l) (geoloc-code ?l ?gc2) (country-code ?l ?cc)
(= ?gc1 ?gc2)))

?query-a: (retrieve (?pn ?gc1)
(:and (airport ?a) (port-name ?a ?pn) (geoloc-code ?a ?gc1)))

?query-b: (retrieve (?cc ?gc2)
(:and (location ?l) (geoloc-code ?l ?gc2) (country-code ?l ?cc)))

?join-conds: (= ?gc1 ?gc2)

Figure 4.4: Behavior of the join-query interpreted predicate

binary-union performs the relational algebra union of two queries. The assign operator han-

dles queries in which new attributes are generated on the fly as arithmetic expressions over other

attributes of a query.

The retrieve operator executes a query at an information source provided that the source

is in operation at some host machine (source-available ?source ?host) and that the source

is capable of processing the query (source-acceptable-query ?query ?source). The SIMS

mediator keeps a model of the capabilities of the sources. The interpreted predicate source-

-acceptable-query checks the requirements of the query against the capabilities of the source.

For example, query0 could not be accepted by a source that cannot perform a join operation

even if both airport and location were present at such source. Such a query would have to be

decomposed first into the two simpler queries shown in Figure 4.4 and the join processed locally.

After executing the retrieve operator the results are available locally at the SIMS mediator.

As defined in Figure 4.3, all these data processing operators are executed locally at the SIMS

mediator. Note that generally a mediator does not have any control on the execution plans gener-

ated at a remote site. However, this planning domain can be easily generalized to represent query

plans that could execute remotely. Simply we would replace the constants local and sims in the

occurrences of the available predicate in the operators with variables that could be instantiated

to the appropriate locations in the network.

Two plans generated using this planning domain specification appear in Figures 4.5 and 4.6.

Both plans evaluate the query in Figure 4.2 but at a very different cost (as we will explain in Sec-

tion 4.3.1). These plans involve three source accesses, two joins, a select and an output operations.

The reason why the seemingly simple query in Figure 4.2 expands into a plan with seven operations

lies in the fact that in the application domain there is not a single source that answers that query,

but such information has to be composed from three different sources.

As we explained earlier, the mediator reconciles the semantic differences among the sources using

integration axioms. The axiom relevant for the query in Figure 4.2 and the plans of Figures 4.5

and 4.6 is:

42

airport(country-code country-name geoloc-code port-name) ⇔
airport(geoloc-code port-name) ∧ location(country-code geoloc-code) ∧
country(country-code country-name)

This axiom states that the system can obtain the attributes country-code, country-name, geoloc--

code, and port-name for the airport class, by performing the join of three sources: one that con-

tains geoloc-code and port-name of airports, a second source that provides country-code and

geoloc-code of locations, and, finally, a third source that lists country-codes and country--

names.5 This axiom shows the general structure of our integration axioms. They always have a

single domain class on one side of the biconditional, called the axiom head, and a positive existential

formula on the other side, called the axiom body.

The plans of Figures 4.5 and 4.6 are essentially alternative algebraic representations of the

integration axiom above, with the addition of the selection on country-name required in the query.

Note that the body of the axiom is expressed in terms of the domain model in order to provide

a level of abstraction over the possible sources for a query. For example, airport(geoloc-code

port-name) is obtained from the geoh@higgledy.isi.edu source in the plan of Figure 4.5 and from

the port@local source in the plan of Figure 4.6. The interpreted predicates in the operators consult

the integration axioms in the domain when processing a query. In our example, the join-query

interpreted predicate, will successively partition the user query of Figure 4.2 making explicit the

two joins present in the axiom above.

4.3 Planning by Rewriting for Query Planning in Mediators

This section describes in detail the application of the Planning by Rewriting framework to the

problem of query planning in mediators. For expository purposes, we will explain the approach

following the main issues of local search as we did in the previous chapter. First, we discuss the

factors that affect the quality of a query plan. Second, we describe how to generate initial query

plans. Third, we present the plan rewriting rules used to optimize query plans. Finally, we describe

the search methods we used in this domain.

4.3.1 Query Plan Quality

A significant advantage of PbR is that a complete plan is always available during the planning

process. Therefore, the user can specify complex plan quality metrics. In generative planners the

complete plan is not available until the search for a solution is completed, so usually only very

simple plan quality metrics, such as the number of steps, have been used. There are many factors

5Our source descriptions and integration axioms assume that the sources provide complete information about
the domain classes (note the use of ⇔), as opposed to the axioms in [Duschka and Genesereth, 1997] or [Levy et
al., 1996a]. This represents no loss of generality. The fact that a source class, S, provides partial information on a
domain class, C, (i.e. provides a subset of the extension of the class) can be easily represented by relating S to a
subclass of C.

43

that may affect the quality of a query plan. Traditionally the most important factor is the query

execution time. However many other considerations may be relevant. For example, in the Web

some sources may charge for the information delivered. Therefore a slower but monetarily cheaper

plan may be preferable.

For our query planning domain the quality of a plan is an estimation of its execution cost. The

execution cost of a distributed query plan depends on the size of intermediate results, the cost of

performing data manipulation operations (e.g., join, selection, etc.), and the transmission through

the network of the intermediate results from the remote sources to the mediator. We estimate

the execution cost based on the expected size of the intermediate results. We assume that the

transmission and processing costs are proportional to the size of the data involved. The query

size estimation is computed from simple statistics obtained from the source relations, such as the

number of tuples in a relation, the number of distinct values for each attribute, and the maximum

and minimum values for numeric attributes (see [Silberschatz et al., 1997]). As an example of query

size estimation consider a relation R(x y) that has 100 tuples and that the attributes x and y have

100 and 20 distinct values respectively (x is a key). Under a uniform distribution assumption the

expected number of tuples returned by the query q(x y) :- R(x y) ∧ y = 7 is 5 (100/20). If the

query were q(x y) :- R(x y) ∧ x = 7 we would expect 1 tuple. Our cost function also prefers

plans that can be evaluated in parallel. When a subplan has two parallel branches the cost of the

subplan is the maximum of the cost each of the parallel branches.

As an example of plan quality, consider the plans in Figures 4.5 and 4.6. These are two

alternative evaluation plans for the query in Figure 4.2 but with very different costs. In our

application domain there is no single source that can completely answer this query, so it has to be

computed by joining data from different sources. The sources in our example can only answer very

simple queries, that is, the remote queries cannot contain selections, joins, etc.

Figure 4.5 shows a randomly generated initial plan. Figure 4.6 shows an optimized plan. Note

that the initial plan is of much lower quality. The initial plan performs three sequential retrievals

from the same source, geoh, at the same host, higgledy.isi.edu, not taking advantage of the

possibility of executing the queries in parallel at different hosts. Also it is generally more efficient

to perform selections as early as possible in order to reduce the data that the subsequent steps of

the plan must process. The initial plan performs the selection step last as opposed to the optimized

plan where it is done immediately after the corresponding retrieve.

Estimating the execution cost of a complex query plan is a hard problem. A major difficulty is

the propagation of error. Small variances on the estimates of the base relations may cause large

differences of the estimated cost of the whole query because the error get compounded repeatedly

through the intermediate results [Ioannidis and Christodoulakis, 1991]. Cost estimation has been

a topic of considerable research in the database community. More sophisticated estimation models

are surveyed in [Mannino et al., 1988].

The fact that the cost function is an estimate with a considerable degree of uncertainty supports

using local search methods. Finding the global optima is not that valuable given it is only an

estimation of the real value. In practice, it is enough to find a good quality local minima.

44

Another advantage of the PbR approach is that because it allows the interleaving of planning

and execution it can perform a type of dynamic query optimization. As subqueries are answered

during the execution of a query plan, the system can refine the query size estimates based on the

actual results returned. This opens the opportunity to rewrite the remainder of the plan if the

difference between expected and actual costs warrants it.

Figure 4.5: A Suboptimal Initial Query Plan

Figure 4.6: An Optimized Query Evaluation Plan

4.3.2 Initial Query Plan Generation

For the Planning by Rewriting framework to be applicable, there must exist an efficient mechanism

to generate an initial solution plan. It is desirable that this mechanism also be able to produce

several (possibly random) initial plans on demand. Both properties are satisfied by the query

planning domain. Initial query evaluation plans can be efficiently obtained as random depth-first

search parses of the query.

As an example, consider how the initial plan in Figure 4.5 is obtained from the query in

Figure 4.2 by choosing randomly among the alternatives at each parsing and expansion point. The

generation of this plan is best understood starting from the output step (from right to left). The

first choice is either to introduce the select operator or expand the query using the integration

45

axiom above. The select operator is chosen. Because the remaining query contains only one class

but no source can provide all the required attributes, the next decision is fixed. The airport class

must be expanded using an integration axiom. Assume the axiom above is chosen. This new query

is a conjunction of three classes. The initial plan generator chooses randomly in which order to

perform the two joins. Finally, the three remaining single class queries can be executed at several

alternative sources. For the initial plan of Figure 4.5 the same source geoh@higgledy.isi.edu

happens to be selected. These initial plans are correct and efficient to produce, but they may be

of very low quality.

The user can customize the initial plan generator to the characteristics of the domain. In

domains where planning time is very limited, we may want to provide an initial plan generator

that heuristically produces better quality plans than a random generator. For example, as we

mentioned before, it is beneficial in most cases to perform selections as early as possible. The

initial plan generator can incorporate this and other similar heuristics in order to achieve higher

quality initial plans. Note that starting from a higher quality initial plan does not guarantee that

we find the optimal any sooner. Sometimes, good local minima can be reached more easily from a

random distribution of initial plans. Similarly, having a bias so strong that produces only a single

initial plan may cause a less efficient search of the solution space. Given that there are many choice

points in producing an initial plan, we may want to bias only a few aspects, such as the placement

of selections, so that a good coverage of the space can still be achieved. The initial plan generator

used in our experiments chooses randomly the sources, the integration axioms, and the join, union,

and the assignment orders, but it tries to perform selections as early as possible.

4.3.3 Query Plan Rewriting Rules

The core of the planning process consists of the iterative application of a set of plan rewriting

rules until a plan of acceptable quality is found. In our query planning domain, the rules can be

grouped into three classes according to their origin. The rules are derived from properties of the

distributed environment, the relational algebra, and the resolution of the semantic heterogeneity

in the application domain. We describe each of these in the following subsections.

4.3.3.1 Rewriting Rules from the Distributed Environment

The first class of rules is derived from the properties of the distributed environment. A logical

description of these rules is shown in Figure 4.7. The Source-Swap rule allows the planner to

explore the choice of alternative information sources that can satisfy the same query but may have

different retrieval or transmission costs. This rule is not only necessary for query plan optimization

but it also serves as a repair rule when planning and execution are interleaved. Suppose that the

planner started executing a plan and one of the sources needed went down, then the subquery sent

to that source will fail. By applying this rule PbR can repair the plan and complete the execution

without replanning and re-executing from scratch.

46

The Remote-Join-Eval, Remote-Selection-Eval, Remote-Assignment-Eval, and Remote-

-Union-Eval rules rely on the fact that, whenever possible, it is generally more efficient to execute

a group of operations together at a remote information source than to transmit the data over the

network and execute the operations at the local system. Note the need for checking the capabilities

of the information sources, as we do not assume that sources are full databases. The sources may

have no query processing capabilities (for example, wrapped WWW pages) or support very limited

types of queries (for example, WWW forms).

Figure 4.8 shows the Remote-Join-Eval rule in the input syntax accepted by the PbR planner.

This rule specifies that if in a plan there exist two retrieval operations at the same remote database,

which results are consequently joined, and the remote source is capable of performing joins, the

system can rewrite the plan into one that contains a single retrieve operation that pushes the join

to the remote database. A graphical example of the application of this rule during query planning

is shown in Figure 4.14. Similarly, the three remaining rules cover the other algebraic operators

that the SIMS language supports (selection, assignment, and union). These rewriting rules apply

successively to ensure that complex queries are evaluated remotely if possible.

Source-Swap:
retrieve(Q,Source1) ∧ alternative-source(Q,Source1, Source2)
⇒ retrieve(Q,Source2)

Remote-Join-Eval:
(retrieve(Q1, Source) 1 retrieve(Q2, Source))
∧capability(Source, join)
⇒ retrieve(Q1 1 Q2, Source)

Remote-Selection-Eval:
σAretrieve(Q1, Source) ∧ capability(Source, selection)
⇒ retrieve(σAQ1, Source)

Remote-Assignment-Eval:
assignX:=f(Ai)retrieve(Q1(Ai), Source)∧
capability(Source, assignment)
⇒ retrieve(assignX:=f(Ai)Q1(Ai), Source)

Remote-Union-Eval:
(retrieve(Q1, Source) ∪ retrieve(Q2, Source))∧
capability(Source, union)
⇒ retrieve(Q1 ∪ Q2, Source)

Figure 4.7: Transformations: Distributed Environment

(define-rule :name remote-join-eval
:if (:operators ((?n1 (retrieve ?query1 ?source))

(?n2 (retrieve ?query2 ?source))
(?n3 (join ?query ?jc ?query1 ?query2)))

:constraints ((capability ?source ’join)))
:replace (:operators (?n1 ?n2 ?n3))
:with (:operators ((?n4 (retrieve ?query ?source))))

Figure 4.8: Remote-Join-Eval Rewriting Rule

47

The transformations in Figure 4.7 are logically bidirectional. The designer has the choice of

implementing rules that correspond to both directions or only one. Implementing both directions

will cover the entire solution space. However, some directions may be much preferred. For example,

the direction that pushes operations to the remote sources is generally more useful, thus only that

direction may be implemented as a rewriting rule in the system. This results in a loss of accessibility

to some optima, but the savings in planning time may outweigh reaching some rarely occurring

optima. This is a version of the utility problem [Minton, 1990].

4.3.3.2 Rewriting Rules from the Relational Algebra

The second class of rules are derived from the commutative, associative, and distributive prop-

erties of the operators of the relational algebra. A logical description of these rules is shown in

Figure 4.9. The Join-Swap rule in the PbR syntax is shown in Figure 4.10 (a). A graphical

schematic of the behavior of this rule appears in Figure 4.10 (b). This rule specifies that two

consecutive joins operators can be reordered and allows the planner to explore the space of join

trees. In our query planning domain [Knoblock, 1996] queries are expressed as complex terms.

The PbR rules use the interpreted predicates in the constraints field to manipulate such query

expressions. The interpreted predicates in the rewriting rules are analogous to the those in the

operators. For example, the join-swappable predicate checks if the two join operators have

queries that can be exchanged. This user-defined predicate takes as input the description of the

two join operations (the first eight variables which must have bindings) and produces as output

the description of the two reordered join operations (as bindings for the last eight variables). For

example, in the schematic in Figure 4.10 (b) the two join operators, join(q0 jc12 q1 q2) and

join(q1 jc34 q3 q4), that compose the query tree on the left of Figure 4.10 (b) can be re-

ordered in two ways generating the two trees on the right of Figure 4.10 (b): one tree with joins

join(q0 jc35 q5 q3) and join(q5 jc24 q2 q4), and the other tree with join(q0 jc54 q5 q4)

and join(q5 jc32 q3 q2). If two subqueries do not share any attributes, a join degenerates into a

cross-product. Although a cross-product is inefficient, such rewritings are allowed for completeness.

Sometimes in order to get to a low cost plan the search may step through a plan of cost higher

than the current one.

Join-Swap: Q1 1 (Q2 1 Q3) ⇔ Q2 1 (Q1 1 Q3) ⇔ Q3 1 (Q2 1 Q1)

Selection-Join-Swap: σA(Q1 1 Q2) ⇔ σAQ1 1 Q2

Selection-Union-Swap: σA(Q1 ∪ Q2) ⇔ σAQ1 ∪ σAQ2

Assignment-Swap: assignX:=f(Ai)(Q1(Ai) 1 Q2) ⇔ assignX:=f(Ai)Q1(Ai) 1 Q2

Join-Union-Distributive: Q1 1 (Q2 ∪ Q3) ⇔ (Q1 1 Q2) ∪ (Q1 1 Q3)

Figure 4.9: Transformations: Relational Algebra

48

(define-rule :name join-swap
:if (:operators ((?n1 (join ?q1 ?jc1 ?sq1a ?sq1b))

(?n2 (join ?q2 ?jc2 ?sq2a ?sq2b)))
:links (?n2 ?n1)
:constraints (join-swappable ?q1 ?jc1 ?sq1a ?sq1b ;; in

?q2 ?jc2 ?sq2a ?sq2b ;; in
?q3 ?jc3 ?sq3a ?sq3b ;; out
?q4 ?jc4 ?sq4a ?sq4b)) ;; out

:replace (:operators (?n1 ?n2))
:with (:operators ((?n3 (join ?q3 ?jc3 ?sq3a ?sq3b))

(?n4 (join ?q4 ?jc4 ?sq4a ?sq4b)))
:links (?n4 ?n3)))

(a) Rule in PbR syntax

jc34

jc12

q1

q0

q3 q4

q2

n2

n1

q0

q4q2

q3

jc24

q5

jc53

1

n4

n3

q0

q3

q4

q2

jc32

q5

jc54

2

n3

n4

(b) Schematic

Figure 4.10: Join-Swap Rewriting Rule

Our rule rewriting language offers a great deal of flexibility to define different types of rewrit-

ing rules with different trade-offs between complexity and utility. For example, instead of the

join-swap rule in Figure 4.10, we could have defined a join associativity rule more directly as in

Figure 4.11. The join-associativity rule is shown in PbR syntax in Figure 4.11 (a) and as a

graphical schematic in Figure 4.11 (b). This is a simpler rule but it also makes more commitments

than join-swap. The join-associative interpreted predicate is simpler. It only has 3 output

variables (?jc24 ?q5 ?jc35) as opposed to the 8 output variables of join-swappable. However,

join-associative enforces the matching join structure to be a left tree and produces a right join

tree as shown in Figure 4.11 (b). Therefore we would also need another rule for join commutatitivy

as the one shown in Figure 4.12, or specify three more “associativity” rules in order to cover all four

cases that result from the combination of join associativity and commutativity. A disadvantage

49

of adding the commutativity rule is that the rewritten plans have the same quality. It is only af-

ter some other rule applies (e.g., the join-associativity) when the advantage of some ordering

becomes apparent. A greater number of rules decreases the performance of matching. Besides,

rules that are discriminative in the cost surface are more useful. The join-swap conveniently

combines all the four cases into one and produces rewritings of very different cost which helps to

move through the cost space.

(define-rule :name join-associativity
:if (:operators ((?n1 (join ?jc12 ?q0 ?q1 ?q2))

(?n2 (join ?jc34 ?q1 ?q3 ?q4)))
:links (?n2 ?n1)
:constraints (join-associative ?jc12 ?q0 ?q2 ?jc34 ?q1 ?q3 ?q4 ;; in

?jc24 ?q5 ?jc35)) ;; out
:replace (:operators (?n1 ?n2))
:with (:operators ((?n3 (join ?jc35 ?q0 ?q3 ?q5))

(?n4 (join ?jc24 ?q5 ?q4 ?q2)))))

(a) Rule in PbR syntax

jc34

jc12

q1

q0

q3 q4

q2

n1

n2

q0

jc35

q3 q5

n3

n4

q4 q2

jc42

(b) Schematic

Figure 4.11: Join-Associativity Rewriting Rule

(define-rule :name join-commutativity
:if (:operators (?n1 (join ?jc12 ?q0 ?q1 ?q2)))
:replace (:operators (?n1))
:with (:operators (?n2 (join ?jc12 ?q0 ?q2 ?q1)))

Figure 4.12: Join-Commutativity Rewriting Rule

4.3.3.3 Rewriting Rules from the Integration Axioms

The third set of rewriting rules arises from the heterogeneous nature of the environment. As we

explained earlier, our mediator reconciles the semantic differences among the sources using a set of

integration axioms (cf. Section 4.2). Our system automatically derives query-specific plan rewriting

50

rules from these integration axioms in order to explore the alternative ways of obtaining each class

of information in a user query. Two sample integration axioms relevant for the query in Figure 4.2

are:

(a) airport(country-code port-name) ⇔
airport(geoloc-code port-name) ∧ location(geoloc-code country-code)

(b) airport(country-code port-name) ⇔
airport(port-name) ∧ port-location(port-name country-code)

Axiom (a) states that in order to obtain the attributes country-code and port-name of the

airport class, the system needs to join data from two sources. The first source provides geoloc-

-code and port-name of airports, and the second provides geoloc-code and country-code of

geographic locations. In our model the class airport is a subclass of location so it inherits

its attributes. Thus, the airport class has three attributes: geoloc-code, country-code, and

port-name. Axiom (b) is similar but uses a more specialized source for location only applicable

to ports, port-location, and joins on the port-name key attribute (as opposed to joining on

geoloc-code).

The rewriting rules corresponding to the integration axioms above are shown in Figure 4.13.

Rule (a) corresponds to the axiom (a). This rule states that if in a plan there is a set of steps

(?nodes) that obtain attributes country-code and port-name of the airport class, the planner

could alternatively obtain this information using the axiom shown above. That is, the ?nodes

identified in the rule antecedent will be removed from the plan and replaced by the join and the

two retrieve steps in the rule consequent. Similarly, rule (b) specifies the alternative of using

axiom (b) to obtain airport(country-code port-name). Note that the consequents of these

rules are just the algebraic versions of the bodies of the axioms.

This type of rewriting rules are used to exchange alternative integration axioms in a plan. There

are several subtle points to this rule specification. First, for n integration axioms for the same

domain class and attributes, our system only writes n rules as opposed to the n2 direct exchanges.

This is possible because we use the axiom head as an abstraction of all these alternative axioms.

Note how in the antecedents of the rules in Figure 4.13 only the axiom head is mentioned. Second,

the interpreted predicate identify-axiom-steps finds all the steps that implement the body of

an axiom in a very simple way, it just looks for an step in the query plan that produces a query

that matches the axiom head. The subtree rooted at such step is the implementation of the axiom

body. This fact follows from the encoding of the query planning domain with the operators in

Figure 4.3.

This type of rewriting rules resemble task expansion in Hierarchical Task-Network Planning
[Erol et al., 1994, Tate, 1977]. The class of information desired, described by the axiom head,

takes the role of a higher level task. The axiom body is analogous to the specification of the

task expansion. However, in PbR the rewriting rules are used for local search as opposed to for

generative planning.

51

(define-rule :name (<=> (airport country-code port-name)
(:and (airport geoloc-code port-name)

(location geoloc-code country-code)))
:if (:constraints (identify-axiom-steps (airport country-code port-name) ?nodes))
:replace (:operators ?nodes)
:with (:operators ((?n1 (retrieve port@local (airport geoloc-code port-name)))

(?n2 (retrieve geoh@higgledy.isi.edu
(location geoloc-code country-code)))

(?n3 (join (airport country-code port-name)
((= geoloc-code.1 geoloc-code.2))
(airport geoloc-code.1 port-name)
(location geoloc-code.2 country-code))))))

(a)

(define-rule :name (<=> (airport country-code port-name)
(:and (airport port-name)

(port-location port-name country-code)))
:if (:constraints (identify-axiom-steps (airport country-code port-name) ?nodes))
:replace (:operators ?nodes)
:with (:operators ((?n1 (retrieve port@local (airport port-name)))

(?n2 (retrieve geoh@higgledy.isi.edu
(port-location port-name country-code)))

(?n3 (join (airport country-code port-name)
((= port-name.1 port-name.2))
(airport port-name.1)
(port-location port-name.2 country-code))))))

(b)

Figure 4.13: Rewriting Rule for Integration Axiom

4.3.4 Searching the Space of Query Plans

The space of rewritings for query planning is too large for complete search methods to provide an

acceptable performance. The fact that in many cases, such as query planning, the quality of a plan

can only be estimated supports the argument for possibly incomplete search strategies, such as

gradient descent or simulated annealing. The effort spent in finding the global optimum may not

be justified given that the cost function only captures approximately the real costs in the domain.

As the accuracy of the cost model increases the planner may perform a more complete search of

the plan space. In order to explore the space of query plans our planner currently uses variations of

gradient descent (steepest and first-improvement) with random restart to escape low-quality local

minima and a fixed-length random walk to traverse plateaus.

Figure 4.14 shows an example of the local search through the space of query plan rewritings in a

simple distributed domain that describes a company. The figure shows alternative query evaluation

plans for a conjunctive query that asks for the names of employees, their salaries, and the projects

52

they are working on. The three relations requested in the query (Employees, Payroll, and Project)

are distributed among two databases (one at the company’s headquarters – HQ-db – and another at

a branch – Branch-db). Assume that the leftmost plan is the initial plan. This plan first retrieves

the Employee relation at the HQ-db and the Project relation at the Branch-db, and joins these

two tables on the employee name. Then, the plan retrieves the Payroll relation from the HQ-db

and joins it on ssn with the result of the previous join. Although a valid plan this initial plan is

suboptimal. Applying the join-swap rule to this initial plan generates two rewritings. One of them

involves a cross-product, which is a very expensive operation, so the system, following a gradient

descent search strategy, prefers the other plan. Now the system applies the remote-join-eval

rule and generates a new rewritten plan that evaluates the join between the employee and project

tables remotely at the headquarters database. This final plan is of much better quality. A detailed

example of the rewriting process in query planning in mediators appears in appendix A.

a(name sal proj) :- Emp(name ssn) ^ Payroll(ssn sal) ^ Projects(name proj)

name ssn

Ret Payroll
@ HQ-db

Ret Project
@ Branch-db

Ret Emp
@ HQ-db

name

ssn

Ret Emp
@ HQ-db

Ret Payroll
@ HQ-db

Ret Project
@ Branch-db

name

ssn

Ret Emp
@ HQ-db

Ret Project
@ Branch-db

Ret Payroll
@ HQ-db

Remote
Join
Eval

Join
Swap

name

Payroll)Ret (Emp
@HQ-db

Ret Project
@Branch-db

HQ-db
Emp(name ssn)
Payroll(ssn sal)

Branch-db
Project(name proj)

Figure 4.14: Rewriting in Query Planning

4.4 Experimental Results in Query planning

The Planning by Rewriting approach has been fully implemented and applied in several application

domains. In this section we report some scalability results for PbR applied to query planning in

53

mediators. We compare the planning efficiency and plan quality of different configurations of PbR

with other existing query planners. We present results for three query planners:

Sage: This is the original query planner [Knoblock, 1995, Knoblock, 1996] for the SIMS mediator,

which performs a best-first search with a heuristic commonly used in query optimization that

explores only the space of left join trees. Sage is a refinement planner that generates optimal

left-tree query plans.

Initial: This is the initial plan generator for PbR. It generates random depth-first search parses

of the query. It is the fastest planner but may produce very low quality plans.

PbR: We explored several gradient descent strategies and combinations of the rewriting rules

introduced in Section 4.3.3.

We have designed a three controlled experiments that test our PbR-based query planner along

each of the different factors that contribute to the complexity of query planing in mediators. In the

first experiment we compare the behavior of PbR, Initial, and Sage in a distributed query planning

domain as the size of the queries increases. In the second experiment we compare the planners in a

distributed and heterogeneous domain by increasing the number of alternative sources per domain

class. In the third experiment, we test the scalability of PbR and Sage in the presence of complex

integration axioms, showing the effects of increasing the size of the integration axioms and the

number of alternative axioms.

4.4.1 Distributed Query Planning

For the first experiment we generated a synthetic domain for the SIMS mediator and defined a set

of conjunctive chain queries involving from 1 to 30 domain classes. The queries have one selection

on an attribute of each class. The structure of the queries is shown in Figure 4.15. There is

only one source class per domain class so the integration axioms are trivial. Each information

source contains two source classes and can perform remote operations. Therefore, the optimal

plans involve pushing operations to be evaluated remotely at the sources.

The initial plan generator splits the joins randomly but pushes the selections (e.g., a3 >= 50)

to the sources. For PbR we defined the Join-Swap and the Remote-Join-Eval rules defined

in Figures 4.10 and 4.8. These two rules are sufficient to optimize the queries in the test set.

Rules involving selections are not used because the initial plans push the selections to the sources

and this is a very good heuristic. We tested two gradient-descent search strategies for PbR: first

improvement and steepest descent, both using three random restarts.

The results of this first experiment are shown in Figure 4.16. Figure 4.16 (a) shows the planning

time (in CPU seconds) as the query size grows. The planning time is shown in a logarithmic scale.

The times for PbR include both the generation of three random initial plans and their rewriting.

The times for Initial are the average of the three random parses of each query. Sage is able to

solve queries involving up to seven classes, but larger queries cannot be solved within the search

54

q2(j1 j2 a2 a3 b3) :-
a(j1 a2 a3), b(j1 j2 b3), a3 >= 50, b3 >= 50.

q3(j1 j2 j3 a2 a3 b3 c3) :-
a(j1 a2 a3), b(j1 j2 b3), c(j3 j2 c3),
a3 >= 50, b3 >= 50, c3 >= 50.

q4(j1 j2 j3 j4 a2 a3 b3 c3 d3) :-
a(j1 a2 a3), b(j1 j2 b3), c(j3 j2 c3), d(j3 j4 d3),
a3 >= 50, b3 >= 50, c3 >= 50, d3 >= 50.

q5(j1 j2 j3 j4 j5 a2 a3 b3 c3 d3 e3) :-
a(j1 a2 a3), b(j1 j2 b3), c(j3 j2 c3), d(j3 j4 d3), e(j5 j4 e3)
a3 >= 50, b3 >= 50, c3 >= 50, d3 >= 50, e3 >= 50.

...

Figure 4.15: Queries for Distributed Query Planning

limit of 200,000 nodes. Both configurations of PbR scale better than Sage. The first improvement

search strategy clearly dominates steepest descent in this experiment.

Figure 4.16 (b) shows the cost of the query plans for the four planners. The cost for Initial

is the average of the three initial plans. Figure 4.16 (c) compares in detail the cost of the plans

produced by Sage and the two configurations of PbR. The plan cost is an estimate of the query

execution cost. A logarithmic scale is used because of the increasingly larger absolute values of

the plan costs for our conjunctive chain queries and the very high cost of the initial plans. PbR

rewrites the very poor quality plans generated by Initial into high-quality plans. PbR produces

better quality plans than Sage for the range tractable for Sage and beyond that range it scales

gracefully. PbR produces better quality plans because it searches the larger space of bushy query

trees and can take greater advantage of parallel execution plans.6

Finally, Figure 4.16 (d) shows the number of steps in each plan. Note how the plans generated

by PbR are smaller than those produced by Sage and Initial. This is due to two facts. First, the

query plans that PbR produces are more parallel (the join trees are bushy) and thus they need

fewer join operators. Second, the Remote-Join-Eval rule collapses three steps (two retrieves and

join) into one (retrieve) when it is cost efficient to do so.

4.4.2 Scaling the Number of Alternative Sources

In the second experiment, we test the scalability of PbR as the number of alternative sources for

each class of information in the domain model increases. We defined a set of synthetic domains

with up to five domain classes but varying the number of alternative sources (source classes) per

6In order not to be unfair to Sage given its left-tree bias, all information sources in the experiment reside at the
same host so that true parallel execution plans do not exist. However, the join of the two source classes at each
information source can be executed remotely, which lowers the plan cost, and PbR can benefit from this situation.

55

0.01

0.1

1

10

100

1000

10000

0 5 10 15 20 25 30

P
la

nn
in

g
T

im
e

(in
 C

P
U

 s
ec

on
ds

)

Number of Classes per Query

Sage
Initial

PbR-FI
PbR-SD

1

1e+10

1e+20

0 5 10 15 20 25 30

P
la

n
C

os
t

Number of Classes per Query

Sage
Initial

PbR-FI
PbR-SD

(a) Planning Time (b) Plan Quality

10

100

1000

10000

100000

0 5 10 15 20 25 30

P
la

n
C

os
t

Number of Classes per Query

Sage
PbR-FI

PbR-SD

0

10

20

30

40

50

60

0 5 10 15 20 25 30

P
la

n
S

iz
e

(N
um

be
r

of
 S

te
ps

)

Number of Classes per Query

Sage
Initial

PbR-FI
PbR-SD

(c) Plan Quality (Detail) (d) Plan Size

Figure 4.16: Experimental Results: Distributed Query Planning

domain class from 1 to 100. That is, there are up to 500 information sources for the largest model.

PbR used a first improvement gradient descent search strategy with three random restarts and the

Join-Swap and Source-Swap rules defined in Figures 4.10 and 4.7 respectively.

Figure 4.17 (a) shows the planning time for PbR, Sage, and Initial for queries involving four

and five domain classes (queries q4 and q5 in Figure 4.15). Sage can solve the five-class queries

in domains with up to five sources per class and the four-class queries up to ten sources per class

within its 200,000 nodes search limit. PbR scales up much better solving all the tested queries

regardless of the increasingly large number of alternative sources for each domain class.

Figure 4.17 (b) shows the planning time for PbR, Sage, and Initial. In order to control for quality

we assigned the same cost of access to all sources relevant to a given domain class. However, the

cost increases for each different domain class. Thus, we know that the cost of the optimal plan

is constant (depending essentially on the join order). Even with this very simple cost model, the

sheer number of alternatives causes a combinatorial explosion in the best-first search used of Sage.

56

PbR achieves this optimal cost regardless of the increasing complexity of the search space and the

very high cost of the initial plans, which is over an order of magnitude higher than the optimal

cost. The plan size is constant at 8 operators for the four-class queries and at 10 operators for the

five-class queries.

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

P
la

nn
in

g
T

im
e

(in
 C

P
U

 s
ec

on
ds

)

Number of Classes per Query

Sage (4)
Sage (5)
Initial (4)
Initial (5)
PbR (4)
PbR (5)

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90 100

P
la

n
C

os
t

Number of Classes per Query

Sage (4)
Sage (5)
Initial (4)
Initial (5)
PbR (4)
PbR (5)

(a) Planning Time (b) Plan Quality

Figure 4.17: Experimental Results: Scaling Alternative Sources

4.4.3 Scaling the Size of the Integration Axioms

The third collection of experiments analyzes the effect of complex integration axioms in the effi-

ciency and quality of planning in PbR. We designed a set of parameterized integration models in

which we can control the size of the integration axioms for each domain class as well as the number

of alternative (and structurally different) integration axioms for each domain class.

As we mentioned before, these integration axioms are compiled automatically from the domain

and source models (cf. [Ambite et al., 1998]). The resulting integration axioms are shown in

Figure 4.18. In the axioms, a domain class has the dc suffix (e.g. Adc, Bdc, ...), a source class

contains sc (e.g. Asc01, Bsc11, ...), the attributes named ki are keys, and the attributes named

ri are non-key attributes. In this experiment each domain class has the same axiom structure.

All the axioms are conjunctive formulas. The length of the conjunction is one of the parameters

in the experiment. For example, consider domain class Adc in Figure 4.18. The first axiom is a

conjunction of source classes (Asc00, Asc01, Asc02, ...) joining in the key attribute k0. Notice that

each source class uniquely produces an attribute (i.e., Asc00 is the only source class to produce

r0, only Asc01 produces r1, etc.). This is used to control which source classes are used in the

axiom by just requesting the corresponding attributes in a query. The second axiom for Adc is

structurally identical but the axiom body joins on the key k1. Note that except for the keys (k0,

k1, ...) the returned attributes of both axiom are the same. Therefore for any query that requests

any combination of attributes of a class not involving the ki all the axioms are relevant. In other

words, each of the axioms for a domain class is a valid alternative to answer those queries. The

number of alternative axioms for each given class is another parameter in the experiment.

57

Another characteristic of this experiment is that all source classes with the same numerical

suffix are in located in the same information source. For example, Asc00, Bsc00, ..., are all located

on one information source db00. These information sources are capable of performing complex

queries. Therefore the space of valid query plans contains plans in which complex queries are

evaluated remotely at a source. For example, Asc00(k0 r0 rc) ∧ Bsc00(k0 r0 rc) ∧ ... can be

executed at db00.

Adc(k0 rc r0 r1 ...) ⇔ Asc00(k0 r0 rc) ∧ Asc01(k0 r1) ∧ Asc02(k0 r2) ∧ ...
Adc(k1 rc r0 r1 ...) ⇔ Asc10(k1 r0 rc) ∧ Asc11(k1 r1) ∧ Asc12(k1 r2) ∧ ...

...
Bdc(k0 rc r0 r1 ...) ⇔ Bsc00(k0 r0 rc) ∧ Bsc01(k0 r1) ∧ Bsc02(k0 r2) ∧ ...
Bdc(k1 rc r0 r1 ...) ⇔ Bsc10(k1 r0 rc) ∧ Bsc11(k1 r1) ∧ Bsc12(k1 r2) ∧ ...

...

Figure 4.18: Parameterized Integration Axioms

In this experiment we tested conjunctive star queries. Each query joins the domain classes on

a single non-key attribute (rc). For example, consider the following test query that involves two

domain concepts (Adc and Bdc):

q(rc r0 r1 r2) :- Adc(rc r0 r1 r2) ∧ Bdc(rc br0 br1 br2)

As the domain concepts Adc and Bdc in this query ask for attributes r0, r1, and r2, the

required axioms must have 3 conjuncts. A possible source-level expansion of this domain query is:

q(rc r0 r1 r2) :- Asc00(k0 r0 rc) ∧ Asc01(k0 r1) ∧ Asc02(k0 r2) ∧
Bsc10(k1 br0 rc) ∧ Bsc11(k1 br1) ∧ Bsc12(k1 br2)

We scaled the number of alternative axioms per domain class from 1 to 5, the length of each

individual axiom from 1 to 5 conjuncts, and we tested with conjunctive queries involving from 1 to 5

domain classes. Note that the real query size depends on the length of the axioms. For example, a

query involving 5 domain classes with an axiom size of 5 source classes unfolds into an equivalent

retrievable query involving 25 source classes. We generated a data cube of 125 points along these

three dimensions on which we measured planning time and plan quality for Sage, Initial, and PbR.

PbR used the Join-Swap and the Remote-Join-Eval rules defined in Figures 4.10 and 4.8 in

addition to the rules derived from the relevant integration axioms for each query. The number

of relevant integration axioms is the number of domain concepts in the query times the number

of alternative integration axioms. For example, for a query with 5 domain concepts and 5 alter-

native integration axioms the system applies 27 rules at each rewriting phase. PbR used a first

improvement search strategy with five restarts.

The results appear in Figures 4.19 and 4.20. In these graphs PbR data appears with dashed

lines and Sage data with solid lines. In the graphs Sage and PbR use the same dot marker to denote

the same experiment parameters. The abbreviation qn in the graphs denotes the query size, aax

58

the number of alternative axioms, and axl the axiom size (length). When the Sage lines stop, it

means that Sage could not solve more complex problems within its search limit of 100000 nodes or

a 1000 CPU seconds time limit — whichever comes first. Sage could not solve many queries as we

scaled the complexity of the query planning problem.

Figure 4.19 shows the evolution of planning time as we scale several dimensions that affect the

complexity of query planning. The first dimension is query size. Each of the five graphs in the

Figure 4.19 represents the results for a fixed (domain) query size. The second dimension is the

length of the integration axioms. In each graph we show the length of the relevant integration

axioms on the x-axis and the planning time in CPU seconds for PbR and Sage in the y-axis (using

a logarithmic scale). The third dimension is the number of alternative axioms. In each graph there

are up to 5 lines per planner parameterized by the number of alternative axioms.

Consider Figure 4.19 (b) which shows the results for queries with two domain classes. We can

draw the following conclusions. First, PbR scales much better than Sage with the length of the

integration axioms. The graph shows how the PbR lines scale with a very low slope. Sage can solve

only queries with an axiom length up to three conjuncts. And that only up to three alternative

axioms. Second, PbR is not strongly affected by the number of alternative axioms for each given

query size and axiom length. This is reflected in the graph by having all the PbR lines stay closely

together as the axiom length increases. On the other hand, Sage is severely affected by the number

of alternative axioms. This can be readily seen on the increasingly diverging lines at axiom length 3

and the disappearance of data points of Sage for queries involving more than 4 alternative axioms.

The conclusions we derive from the analysis of Figure 4.19 (b) hold for all the rest of the

planning time data in Figure 4.19, namely:

• PbR scales gracefully with query and axiom size

• PbR is not strongly affected by the number of alternative axioms

Consider the whole of Figure 4.19. As we increase the domain query size from 1 to 5, parts (a)

to (e) of the figure, Sage is able to solve fewer and fewer queries, disappearing from the graphs until

it only solves the queries involving axioms with one conjunct at query size 5 within the given time

limit (Sage points are on the y-axis). Moreover, the number of alternative axioms also contributes

to the performance degradation of the best-first search procedure of Sage. This is easily seen from

the increasing slope of the curves for a fixed axiom length and number of alternative axioms as

we increase the query size. For example, see the evolution of the lines labeled sage-qn-2-aax1,

sage-qn-3-aax1, and sage-qn-4-aax1 in graphs (b), (c) and (d) of the figure. On the other hand,

PbR scales well and solves all queries efficiently.

Figure 4.20 shows the evolution of plan cost along the same dimensions. Fortunately, the

planning efficiency of PbR is not achieved by decreasing the quality of the query plans. For the

increasing query size, axiom length, and number of alternative axioms, PbR produces good quality

plans. The quality of PbR is comparable to that of Sage in the range of problems solvable by

Sage and beyond it scales gracefully. Actually PbR produces better plans because by exploring the

space of bushy trees it can generate more parallel plans.

59

0.01

0.1

1

10

100

1 2 3 4 5

P
la

nn
in

g
T

im
e

(C
P

U
 s

ec
on

ds
)

Axiom Length

sage-qn-1-aax-1
sage-qn-1-aax-2
sage-qn-1-aax-3
sage-qn-1-aax-4
sage-qn-1-aax-5

pbr-qn-1-aax-1
pbr-qn-1-aax-2
pbr-qn-1-aax-3
pbr-qn-1-aax-4
pbr-qn-1-aax-5

0.01

0.1

1

10

100

1000

1 2 3 4 5

P
la

nn
in

g
T

im
e

(C
P

U
 s

ec
on

ds
)

Axiom Length

sage-qn-2-aax-1
sage-qn-2-aax-2
sage-qn-2-aax-3
sage-qn-2-aax-4
sage-qn-2-aax-5

pbr-qn-2-aax-1
pbr-qn-2-aax-2
pbr-qn-2-aax-3
pbr-qn-2-aax-4
pbr-qn-2-aax-5

(a) Domain Query Size = 1 (b) Domain Query Size = 2

0.01

0.1

1

10

100

1000

1 2 3 4 5

P
la

nn
in

g
T

im
e

(C
P

U
 s

ec
on

ds
)

Axiom Length

sage-qn-3-aax-1
sage-qn-3-aax-2
sage-qn-3-aax-3
sage-qn-3-aax-4
sage-qn-3-aax-5

pbr-qn-3-aax-1
pbr-qn-3-aax-2
pbr-qn-3-aax-3
pbr-qn-3-aax-4
pbr-qn-3-aax-5

0.01

0.1

1

10

100

1000

1 2 3 4 5

P
la

nn
in

g
T

im
e

(C
P

U
 s

ec
on

ds
)

Axiom Length

sage-qn-4-aax-1
sage-qn-4-aax-2
sage-qn-4-aax-3
sage-qn-4-aax-4
sage-qn-4-aax-5

pbr-qn-4-aax-1
pbr-qn-4-aax-2
pbr-qn-4-aax-3
pbr-qn-4-aax-4
pbr-qn-4-aax-5

(c) Domain Query Size = 3 (d) Domain Query Size = 4

0.01

0.1

1

10

100

1000

1 2 3 4 5

P
la

nn
in

g
T

im
e

(C
P

U
 s

ec
on

ds
)

Axiom Length

sage-qn-5-aax-1
sage-qn-5-aax-2
sage-qn-5-aax-3
sage-qn-5-aax-4
sage-qn-5-aax-5

pbr-qn-5-aax-1
pbr-qn-5-aax-2
pbr-qn-5-aax-3
pbr-qn-5-aax-4
pbr-qn-5-aax-5

(e) Domain Query Size = 5

Figure 4.19: Experimental Results: Complex Axioms, Planning Time

60

0

100

200

300

400

500

600

700

800

1 2 3 4 5

P
la

n
C

os
t

Axiom Length

sage-qn-1-aax-1
sage-qn-1-aax-2
sage-qn-1-aax-3
sage-qn-1-aax-4
sage-qn-1-aax-5

pbr-qn-1-aax-1
pbr-qn-1-aax-2
pbr-qn-1-aax-3
pbr-qn-1-aax-4
pbr-qn-1-aax-5

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

1 2 3 4 5

P
la

n
C

os
t

Axiom Length

sage-qn-2-aax-1
sage-qn-2-aax-2
sage-qn-2-aax-3
sage-qn-2-aax-4
sage-qn-2-aax-5

pbr-qn-2-aax-1
pbr-qn-2-aax-2
pbr-qn-2-aax-3
pbr-qn-2-aax-4
pbr-qn-2-aax-5

(a) Domain Query Size = 1 (b) Domain Query Size = 2

0

500

1000

1500

2000

2500

3000

1 2 3 4 5

P
la

n
C

os
t

Axiom Length

sage-qn-3-aax-1
sage-qn-3-aax-2
sage-qn-3-aax-3
sage-qn-3-aax-4
sage-qn-3-aax-5

pbr-qn-3-aax-1
pbr-qn-3-aax-2
pbr-qn-3-aax-3
pbr-qn-3-aax-4
pbr-qn-3-aax-5

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

P
la

n
C

os
t

Axiom Length

sage-qn-4-aax-1
sage-qn-4-aax-2
sage-qn-4-aax-3
sage-qn-4-aax-4
sage-qn-4-aax-5

pbr-qn-4-aax-1
pbr-qn-4-aax-2
pbr-qn-4-aax-3
pbr-qn-4-aax-4
pbr-qn-4-aax-5

(c) Domain Query Size = 3 (d) Domain Query Size = 4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

1 2 3 4 5

P
la

n
C

os
t

Axiom Length

sage-qn-5-aax-1
sage-qn-5-aax-2
sage-qn-5-aax-3
sage-qn-5-aax-4
sage-qn-5-aax-5

pbr-qn-5-aax-1
pbr-qn-5-aax-2
pbr-qn-5-aax-3
pbr-qn-5-aax-4
pbr-qn-5-aax-5

(e) Domain Query Size = 5

Figure 4.20: Experimental Results: Complex Axioms, Plan Cost

61

4.5 Advantages of PbR for Query Planning

Query planning in mediators presents particular challenges for planning technology. First, it is

a highly combinatorial problem, where complex queries have to be composed from the relevant

sources among hundreds of available information sources. Second, query plans often have to be

produced rapidly. Third, finding any valid plan is not enough, plan quality is also critical. Finally,

mediators need to be easily extensible in order to incorporate new sources and new capabilities,

such as replanning after failures and information gathering actions.

The Planning by Rewriting paradigm is designed to address planning efficiency and plan quality,

while providing the benefits of domain-independence. Its characteristics make it especially well-

suited for query planning. First, our PbR-based query planner is scalable. As shown in the results

section, our query planner scales gracefully to hundreds of sources and large query plans. In spite

of the complexity of query planning our system produces good quality plans.

Second, an important advantage of PbR is its anytime nature, which allows it to trade off

planning effort and plan quality. For example, a typical quality metric in query planning is the

plan execution time. It may not make sense to keep planning if the cost of the current plan is small

enough, even if a cheaper one could be found.

Third, PbR provides a declarative domain-independent framework that is easier to understand,

maintain and extend than traditional query optimizers. Different query planning domains can be

conveniently specified, for example, for different data models such as relational and object-oriented.

A general planning architecture fosters reuse in the domain specifications and the search methods.

For example, the specification of the join operator translates straightforwardly from a relational

to an object-oriented model. Likewise, search methods can be implemented once for the general

planner and the most appropriate configuration chosen for each particular domain. The uniform

and principled specification of the planner facilitates its extension with new capabilities, such as

learning mechanisms or interleaving planning and execution.

Finally, the generality of the PbR framework has allowed the design of a novel combination

of cost-based query optimization and source selection. In previous work these two types of query

processing had been performed in different stages. First, the mediator would find the set of all

retrievable queries, that is, all the queries which are equivalent to the user query but only use

source terms. Then, for each of these retrievable queries, the traditional query optimization problem

remains. The final plan would be the best among the optimizations of the retrievable queries. Given

that both finding retrievable queries and traditional query optimization are both combinatorial, the

two-stage approach of previous work cannot scale. The problem is particularly acute in domains

in which there exist many alternative sources of information, such as is the case in the WWW.

PbR performs both optimizations in a single search process. By using local search techniques the

combined optimization can be performed efficiently. Moreover, PbR supports an anytime behavior

while the two-stage approach cannot.

62

Chapter 5

Other Application Domains

The last section showed the detailed application of PbR to the query planning domain. In this

section we show the broad applicability of Planning by Rewriting by analyzing some additional

domains with different characteristics. In particular, we consider the process manufacturing domain

of [Minton, 1988b] and the Blocks World domain that we used in the examples throughout the

thesis.

5.1 Manufacturing Process Planning

The task in the manufacturing process planning domain is to find a plan to manufacture a set of

parts. We implemented a PbR translation of the domain specification in [Minton, 1988b]. This

domain contains a variety of machines, such as a lathe, punch, spray painter, welder, etc, for a total

of ten machining operations. The operator specification is shown in Figures 5.1, 5.2, and 5.3. The

features of each part are described in the by a set of predicates, such as temperature, painted,

has-hole, etc. These features are changed by the operators. Other predicates in the state, such

as has-clamp, is-drillable, etc, are set in the initial state of each problem.

As an example of the behavior of an operator, consider the polish operator in Figure 5.1. It

requires the part to manufacture to be cold and that the polisher has a clamp to secure the part

to the machine. The effect of applying this operator its to leave the surface of the part polished.

The universally quantified effect is an idiom we used to enforce that the surface-condition of an

part has a single value. Other features of a part can be multivalued, for example, a part can have

several holes. Note how the drill-press and the punch operators in Figure 5.2 do not prevent

several has-hole conditions from being asserted on the same part. Other interesting operators are

weld and bolt. These operators join two parts in a particular orientation to form a new part. No

further operations can be performed on the separate parts once they have been joined.

In this domain all of the machining operations are assumed to take unit time. The machines

and the objects (parts) are modeled as resources in order to enforce that only one part can be

placed on a machine at a time and that a machine can only operate on a single part at a time

63

(except bolt and weld that operate on two parts simultaneously). We take the schedule length,

the time to manufacture all parts, as the measure of plan cost.

We have already shown some of the types of rewriting rules for this domain in Figures 3.4

and 3.7. The set of rules that we used for our experiments are shown in Figures 5.4 and 5.5.

The rules in Figure 5.4 are quite straightforward once one becomes familiar with this domain.

The first two rules explore the space of alternative orderings originated by resource conflicts. The

machine-swap rule allows the system to explore the possible orderings of operations that require

the same machine. This rule finds two consecutive operations on the same machine and swaps their

order. Similarly, the rule object-swap allows the system to explore the orderings of the operations

on the same object. These two rules use the interpreted predicate adjacent-in-critical-path to

focus the attention on the steps that contribute to our cost function. Adjacent-in-critical-path

checks if two steps are consecutive along one of the critical paths of an schedule. A critical path is

a sequence of steps that take the longest time to accomplish. In other words, a critical path is one

of the sequences of steps that determine the schedule length.

The remaining rules of Figure 5.4 exchange operators that are equivalent with respect to

achieving some effects. For example, rules IP-by-SP and SP-by-IP propose the exchange of

immersion-paint and spray-paint operators. By examining the operator definitions in Fig-

ure 5.2, it can be readily noticed that both operators change the value of the painted predicate.

Similarly, PU-by-DP and DP-by-PU exchange drill-press and punch operators, which produce

the has-hole predicate. Finally, roll-by-lathe and lathe-by-roll exchange roll and lathe

operators as they both can make parts cylindrical. To focus the search on the most promising ex-

changes these rules only match operators in the critical path (by means of the interpreted predicate

in-critical-path).

The rewriting rules in Figure 5.5 and 5.6 are more sophisticated. The first rule, lathe+SP-by-SP,

takes care of an undesirable effect of the simple depth-first search used by our initial plan gener-

ator. In this domain, in order to spray paint a part, the part must have a regular shape. Being

cylindrical is a regular shape, therefore the initial planner may decide to make the part cylindri-

cal by lathing it in order to paint it (!). However, this may not be necessary as the part may

already have a regular shape (for example, it can be rectangular which is also a regular shape).

Thus, the lathe+SP-by-SP substitutes the pair spray-paint and lathe by a single spray-paint

operation. The supporting regular-shapes interpreted predicate just enumerates which are the

regular shapes. These rules are partially specified and are not guaranteed to always produce a valid

rewriting. Nevertheless, they are often successful in producing plans of lower cost.

The remaining rules in Figures 5.5 and 5.6 explore bolting two parts using bolts of different

size if fewer operations may be needed for the plan. We developed these rules by analyzing dif-

ferences in the quality of the optimal plans and the rewritten plans. For example, consider the

both-providers-diff-bolt rule. This rule states that if the parts to be bolted already have

compatible holes in them, it is better to reuse those operators that produced the holes. The initial

plan generator may have drilled (or punched) holes which only purpose was to bolt the parts.

However, the goal of the problem may already require some holes to be performed on the parts to

64

(define (operator POLISH)

:parameters (?x)

:resources ((machine POLISHER) (is-object ?x))

:precondition (:and (is-object ?x)

(temperature ?x COLD)

(has-clamp POLISHER))

:effect (:and (:forall (?oldsurf) (:when (:neq ?oldsurf POLISHED)

(:not (surface-condition ?x ?oldsurf))))

(surface-condition ?x POLISHED)))

(define (operator ROLL)

:parameters (?x)

:resources ((machine ROLLER) (is-object ?x))

:precondition (is-object ?x)

:effect (:and (:forall (?color) (:not (painted ?x ?color)))

(:forall (?shape) (:when (:neq ?shape CYLINDRICAL)

(:not (shape ?x ?shape))))

(:forall (?temp) (:when (:neq ?temp HOT)

(:not (temperature ?x ?temp))))

(:forall (?cond) (:not (surface-condition ?x ?cond)))

(:forall (?width ?orientation)

(:not (has-hole ?x ?width ?orientation)))

(temperature ?x HOT)

(shape ?x CYLINDRICAL)))

(define (operator LATHE)

:parameters (?x)

:resources ((machine LATHE) (is-object ?x))

:precondition (is-object ?x)

:effect (:and (:forall (?color) (:not (painted ?x ?color)))

(:forall (?shape) (:when (:neq ?shape CYLINDRICAL)

(:not (shape ?x ?shape))))

(:forall (?cond) (:when (:neq ?cond ROUGH)

(:not (surface-condition ?x ?cond))))

(surface-condition ?x ROUGH)

(shape ?x CYLINDRICAL)))

(define (operator GRIND)

:parameters (?x)

:resources ((machine GRINDER) (is-object ?x))

:precondition (is-object ?x)

:effect (:and (:forall (?color) (:not (painted ?x ?color)))

(:forall (?cond) (:when (:neq ?cond SMOOTH)

(:not (surface-condition ?x ?cond))))

(surface-condition ?x SMOOTH)))

Figure 5.1: Operators for Manufacturing Process Planning (I)

65

(define (operator PUNCH)

:parameters (?x ?width ?orientation)

:resources ((machine PUNCH) (is-object ?x))

:precondition (:and (is-object ?x)

(is-punchable ?x ?width ?orientation)

(has-clamp PUNCH))

:effect (:and (:forall (?cond)(:when (:neq ?cond ROUGH)

(:not (surface-condition ?x ?cond))))

(surface-condition ?x ROUGH)

(has-hole ?x ?width ?orientation)))

(define (operator DRILL-PRESS)

:parameters (?x ?width ?orientation)

:resources ((machine DRILL-PRESS) (is-object ?x))

:precondition (:and (is-object ?x)

(is-drillable ?x ?orientation)

(have-bit ?width))

:effect (has-hole ?x ?width ?orientation))

(define (operator SPRAY-PAINT)

:parameters (?x ?color ?shape)

:resources ((machine SPRAY-PAINTER) (is-object ?x))

:precondition (:and (is-object ?x)

(sprayable ?color)

(temperature ?x COLD)

(regular-shape ?shape)

(shape ?x ?shape)

(has-clamp SPRAY-PAINTER))

:effect (painted ?x ?color))

(define (operator IMMERSION-PAINT)

:parameters (?x ?color)

:resources ((machine IMMERSION-PAINTER) (is-object ?x))

:precondition (:and (is-object ?x)

(have-paint-for-immersion ?color))

:effect (painted ?x ?color))

Figure 5.2: Operators for Manufacturing Process Planning (II)

66

(define (operator WELD)

:parameters (?x ?y ?new-object ?orientation)

:resources ((machine WELDER) (is-object ?x) (is-object ?y))

:precondition (:and (is-object ?x)

(is-object ?y)

(composite-object ?new-object ?orientation ?x ?y)

(can-be-welded ?x ?y ?orientation))

:effect (:and (temperature ?new-object HOT)

(joined ?x ?y ?orientation)

(:not (is-object ?x))

(:not (is-object ?y))))

(define (operator BOLT)

:parameters (?x ?y ?new-object ?orientation ?width)

:resources ((machine BOLTER) (is-object ?x) (is-object ?y))

:precondition (:and (is-object ?x)

(is-object ?y)

(composite-object ?new-object ?orientation ?x ?y)

(has-hole ?x ?width ?orientation)

(has-hole ?y ?width ?orientation)

(bolt-width ?width)

(can-be-bolted ?x ?y ?orientation))

:effect (:and (:not (is-object ?x))

(:not (is-object ?y))

(joined ?x ?y ?orientation)))

Figure 5.3: Operators for Manufacturing Process Planning (III)

be joined. Reusing the available holes produces a more economical plan. The rules has-hole-x-

-diff-bolt-add-PU, has-hole-x-diff-bolt-add-DP, has-hole-y-diff-bolt-add-PU, and has-

-hole-y-diff-bolt-add-DP address the cases in which only one of the holes can be reused, and

thus an additional punch or drill-press operation needs to be added.

As an illustration of the rewriting process in the manufacturing domain, consider the Figure 5.7.

The plan at the top of the figure is the result of a simple initial plan generator that solves each

part independently and concatenates the subplans. Although presumably such plan is generated

efficiently, it is of poor quality. It requires 6 time-steps to manufacture all parts. The figure shows

the application of two rewriting rules machine-swap and IP-by-SP that improve the quality of

this plan. The operators matched by the rule antecedent are shown in italics. The operators

introduced in the rule consequent are shown in bold. First, the machine-swap rules reorders

the punching operations of parts A and B. This breaks the long critical path that resulted from

the simple concatenation of their respective subplans. The schedule length improves from 6 to 4

time-steps. Still, the three parts A, B, and C use the same painting operation (immersion-paint).

As the immersion-painter can only process one piece at a time, the three operations must be

done serially. Fortunately, in our domain there is another painting operation: spray-paint. The

IP-by-SP rule takes advantage of this fact and substitutes an immersion-paint operation on part

B by a spray-paint operation. This further parallelizes the plan obtaining a schedule length of 3

time-steps that is the optimal for this plan.

67

(define-rule :name machine-swap

:if (:operators ((?n1 (machine ?x) :resource)

(?n2 (machine ?x) :resource))

:links ((?n1 :threat ?n2))

:constraints ((adjacent-in-critical-path ?n1 ?n2)))

:replace (:links (?n1 ?n2))

:with (:links (?n2 ?n1)))

(define-rule :name object-swap

:if (:operators ((?n1 (is-object ?x) :resource)

(?n2 (is-object ?x) :resource))

:links ((?n1 :threat ?n2))

:constraints ((adjacent-in-critical-path ?n1 ?n2)))

:replace (:links (?n1 ?n2))

:with (:links (?n2 ?n1)))

(define-rule :name IP-by-SP

:if (:operators ((?n1 (immersion-paint ?x ?color)))

:constraints ((regular-shapes ?shape)

(in-critical-path ?n1)))

:replace (:operators (?n1))

:with (:operators (?n2 (spray-paint ?x ?color ?shape))))

(define-rule :name SP-by-IP

:if (:operators ((?n1 (spray-paint ?x ?color ?shape)))

:constraints ((in-critical-path ?n1)))

:replace (:operators (?n1))

:with (:operators (?n2 (immersion-paint ?x ?color))))

(define-rule :name PU-by-DP

:if (:operators ((?n1 (punch ?x ?width ?orientation)))

:constraints ((in-critical-path ?n1)))

:replace (:operators (?n1))

:with (:operators (?n2 (drill-press ?x ?width ?orientation))))

(define-rule :name DP-by-PU

:if (:operators ((?n1 (drill-press ?x ?width ?orientation)))

:constraints ((in-critical-path ?n1)))

:replace (:operators (?n1))

:with (:operators (?n2 (punch ?x ?width ?orientation))))

(define-rule :name roll-by-lathe

:if (:operators ((?n1 (roll ?x)))

:constraints ((in-critical-path ?n1)))

:replace (:operators (?n1))

:with (:operators (?n2 (lathe ?x))))

(define-rule :name lathe-by-roll

:if (:operators ((?n1 (lathe ?x)))

:constraints ((in-critical-path ?n1)))

:replace (:operators (?n1))

:with (:operators (?n2 (roll ?x))))

Figure 5.4: Rewriting Rules for Manufacturing Process Planning (I)

68

(define-rule :name lathe+SP-by-SP

:if (:operators ((?n1 (lathe ?x))

(?n2 (spray-paint ?x ?color ?shape1)))

:constraints ((regular-shapes ?shape2)))

:replace (:operators (?n1 ?n2))

:with (:operators (?n3 (spray-paint ?x ?color ?shape2))))

(define-rule :name both-providers-diff-bolt

:if (:operators ((?n3 (bolt ?x ?y ?z ?o ?w1)))

:links ((?n1 (has-hole ?x ?w1 ?o) ?n3)

(?n2 (has-hole ?y ?w1 ?o) ?n3)

(?n4 (has-hole ?x ?w2 ?o) ?n5)

(?n6 (has-hole ?y ?w2 ?o) ?n7))

:constraints ((:neq ?w1 ?w2)))

:replace (:operators (?n1 ?n2 ?n3))

:with (:operators ((?n8 (bolt ?x ?y ?z ?o ?w2)))

:links ((?n4 (has-hole ?x ?w2 ?o) ?n8)

(?n6 (has-hole ?y ?w2 ?o) ?n8))))

(define-rule :name has-hole-x-diff-bolt-add-PU

:if (:operators ((?n3 (bolt ?x ?y ?z ?o ?w1)))

:links ((?n1 (has-hole ?x ?w1 ?o) ?n3)

(?n2 (has-hole ?y ?w1 ?o) ?n3)

(?n4 (has-hole ?x ?w2 ?o) ?n5))

:constraints ((:neq ?w1 ?w2)))

:replace (:operators (?n1 ?n2 ?n3))

:with (:operators ((?n8 (bolt ?x ?y ?z ?o ?w2))

(?n6 (punch ?y ?w2 ?o)))

:links ((?n4 (has-hole ?x ?w2 ?o) ?n8)

(?n6 (has-hole ?y ?w2 ?o) ?n8))))

(define-rule :name has-hole-x-diff-bolt-add-DP

:if (:operators ((?n3 (bolt ?x ?y ?z ?o ?w1)))

:links ((?n1 (has-hole ?x ?w1 ?o) ?n3)

(?n2 (has-hole ?y ?w1 ?o) ?n3)

(?n4 (has-hole ?x ?w2 ?o) ?n5))

:constraints ((:neq ?w1 ?w2)))

:replace (:operators (?n1 ?n2 ?n3))

:with (:operators ((?n8 (bolt ?x ?y ?z ?o ?w2))

(?n6 (drill-press ?y ?w2 ?o)))

:links ((?n4 (has-hole ?x ?w2 ?o) ?n8)

(?n6 (has-hole ?y ?w2 ?o) ?n8))))

Figure 5.5: Rewriting Rules for Manufacturing Process Planning (II)

69

(define-rule :name has-hole-y-diff-bolt-add-PU

:if (:operators ((?n3 (bolt ?x ?y ?z ?o ?w1)))

:links ((?n1 (has-hole ?x ?w1 ?o) ?n3)

(?n2 (has-hole ?y ?w1 ?o) ?n3)

(?n6 (has-hole ?y ?w2 ?o) ?n7))

:constraints ((:neq ?w1 ?w2)))

:replace (:operators (?n1 ?n2 ?n3))

:with (:operators ((?n8 (bolt ?x ?y ?z ?o ?w2))

(?n4 (punch ?x ?w2 ?o)))

:links ((?n4 (has-hole ?x ?w2 ?o) ?n8)

(?n6 (has-hole ?y ?w2 ?o) ?n8))))

(define-rule :name has-hole-y-diff-bolt-add-DP

:if (:operators ((?n3 (bolt ?x ?y ?z ?o ?w1)))

:links ((?n1 (has-hole ?x ?w1 ?o) ?n3)

(?n2 (has-hole ?y ?w1 ?o) ?n3)

(?n6 (has-hole ?y ?w2 ?o) ?n7))

:constraints ((:neq ?w1 ?w2)))

:replace (:operators (?n1 ?n2 ?n3))

:with (:operators ((?n8 (bolt ?x ?y ?z ?o ?w2))

(?n4 (drill-press ?x ?w2 ?o)))

:links ((?n4 (has-hole ?x ?w2 ?o) ?n8)

(?n6 (has-hole ?y ?w2 ?o) ?n8))))

Figure 5.6: Rewriting Rules for Manufacturing Process Planning (III)

Reorder Parts on a Machine

Immersion-Paint => Spray-Paint

Lathe A IPaint A Red Punch A 2 Punch C 1 IPaint C Blue

Roll B IPaint B Red

Cost: 6

Lathe A IPaint A Red Punch A 2

Punch C 1 IPaint C Blue
Roll B IPaint B Red

Cost: 4

Lathe A IPaint A Red Punch A 2

Punch C 1 IPaint C Blue

Roll B Spray-Paint B Red

Cost: 3

Figure 5.7: Rewriting in the Manufacturing Domain

70

In this experiment we compare four planners: IPP, Initial, and two configurations of PbR:

IPP: This is one of the most efficient domain-independent planners [Koehler et al., 1997] as was

demonstrated in the planning competition held at the Fourth International Conference on

Artificial Intelligence Planning Systems (AIPS-98). IPP is an optimized re-implementation

and extension of Graphplan [Blum and Furst, 1995]. IPP produces shortest parallel plans.

For our manufacturing domain this is exactly the schedule length, the cost function that we

are optimizing.1

Initial: The initial plan generator uses a divide and conquer heuristic in order to generate plans as

fast as possible. First, it produces subplans for each part and for the joined goals indepen-

dently. These subplans are generated by Sage using a depth-first search without any regard

to plan cost. Then, it concatenates the subsequences of actions and merges them plans using

the facilities of Section 3.1.2.

PbR: We present results for two configurations of PbR, that we will refer to as PbR-100 and PbR-

300. Both configurations use a first improvement gradient search strategy with random walk

on the cost plateaus. The rewriting rules used are those of Figures 5.4, 5.5, and 5.6. For each

problem PbR starts its search from the plan generated by Initial. The two configurations

differ only on how many total plateau plans are allowed. PbR-100 allows considering up

to 100 plans that do not improve the cost without terminating the search. Similarly, PbR-

300 allows 300 plateau plans. Note that the limit is across all plateaus encountered during

the search for a problem, not for each plateau. For example, assume PbR reaches a plateau

of cost 9, it may need to consider 25 plans before finding a lower cost plan, say of cost 7,

then consider another 15 non-improving plans of cost 7, find an improving plan to cost 6,

walk for 20 plans in the plateau of cost 6, improve to cost 5, and finally consider another 40

non-improving plans until it reaches the limit of 100 plateau which ends the search.

We tested each of the four systems on 200 problems, for machining 10 parts, ranging from 5

to 50 goals.2 The goals are distributed randomly over the 10 parts. So, for the 50-goal problems,

1The operators for IPP are identical to those of PbR shown in Figures 5.1, 5.2, and 5.3, but we added com-
plementary side effects to each operator to enforce the contention for machines and parts. Each operator has a
side-effect uses-machine() for each machine its uses, and a side-effect uses(?x) for each object ?x it operates upon.
For example, the IPP specification of the polish operator is:

polish

:v ?x object

:p is-object(?x) temperature(?x COLD) has-clamp(POLISHER)

:e ADD surface-condition(?x POLISHED)

uses-polisher() not uses-polisher() uses(?x) not uses(?x);

ALL ?oldsurf surf-cond !eq(?oldsurf POLISHED) =>

ADD not surface-condition(?x ?oldsurf).

2The problems for IPP, PbR, and Initial are, of course, identical. However, as IPP cannot generate new objects,
we listed in the initial state of the IPP problems all of the possible composite-objects. To limit the number of these
ground facts, the problems only join any given pair of parts once (thus there are 90 possible composite objects for
the 10 parts in the problems).

71

there is an average of 5 goals per part. The results are shown in Figure 5.8. In this graphs each

data point is the average of 20 problems for each given number of goals. There were 10 provably

unsolvable problems. Initial and PbR solved all the 200 problems (or proved them unsolvable).

IPP solved 65 problems in total: all problems at 5 and 10 goals, 19 at 15 goals, and 6 at 20 goals.

IPP could not solve any problem with more than 20 goals under the 1000 CPU seconds time limit.

Figure 5.8 (a) shows the average time on the solvable problems for each problem set for the

four planners. Figure 5.8 (b) shows the average schedule length for the problems solved by all the

planners, that is, over the 65 problems solved by IPP up to 20 goals. The fastest planner is Initial,

but it produces plans with a cost of about twice the optimal. IPP produces the optimal plans, but

it cannot solve problems of more than 20 goals. The two configurations of PbR scale much better

than IPP solving all problems and producing good quality plans. PbR-300 matches the optimal

cost of the IPP plans, except in one problem (the reason for the difference is interesting and we

explain it below). The faster PbR-100 also stays very close to the optimal.

Figure 5.8 (c) shows the average schedule length for the problems solved by each of the plan-

ners for the 50 goal range. The PbR configurations scale gracefully across this range improving

considerably the cost of the plans generated by Initial. The additional exploration of PbR-300

allows it to improve the plans even further. The reason for the difference between PbR and IPP

at the 20-goal complexity level is because the cost results for IPP are only for the 6 problems that

it could solve, while the results for PbR and Initial are the average of all of the 20 problems. The

problems solved by IPP are arguably the easiest and PbR matches their (optimal) cost as shown

in Figure 5.8 (b). However, the average cost of for all problems at the 20-goals complexity level

seems to be higher.

Figure 5.8 (d) shows the average number of operators in the plans for the problems solved by

all three planners (up to 20 goals). Figure 5.8 (e) shows the average number of operators in the

plans for the problems solved by each planner across the whole range of 50 problems. The plans

generated by Initial use about 2-3 additional operators. Both PbR and IPP produce plans that

requires fewer steps. Interestingly, IPP sometime produces plans than use more operations than

PbR. IPP produces the shortest parallel plan, but not the one with the minimum number of steps.

In particular, we observed that some of the IPP plans suffer from the same problem as Initial. IPP

would also lathe a part in order to paint it, but as opposed to Initial it would only do so if it did

not affect the optimal schedule length. Surprisingly, adding such additional steps in this domain

may improve the schedule length, albeit in fairly rare situations. This was the case in the only

problem in which IPP produced a better schedule than PbR-300.3

This experiment illustrates the flexibility of PbR in specifying complex rules for a planning do-

main. The results show the benefits of finding a suboptimal initial plan quickly and then efficiently

transforming it to improve its quality.

3We could have introduced a rewriting rule that substituted an immersion-paint operator by both a lathe and
spray-paint operators for such cases. However, such rule is of very low utility (in the sense of [Minton, 1988b]). It
expands the rewriting search space, adds to the cost of match, and during the random search provides some benefit
very rarely.

72

0.01

0.1

1

10

100

1000

5 10 15 20 25 30 35 40 45 50
A

ve
ra

ge
 P

la
nn

in
g

T
im

e
(C

P
U

 S
ec

on
ds

)
Number of Goals

PbR-300
PbR-100

Initial
IPP

(a) Average Planning Time

2

3

4

5

6

7

8

9

4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 P
la

n
C

os
t (

S
ch

ed
ul

e
Le

ng
th

)

Number of Goals

PbR-300
PbR-100

Initial
IPP

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 P
la

n
C

os
t (

S
ch

ed
ul

e
Le

ng
th

)

Number of Goals

PbR-300
PbR-100

Initial
IPP

(b)
Average Plan Cost
(Problems Solved by All) (c)

Average Plan Cost
(Problems Solved by Each)

4

6

8

10

12

14

16

18

20

22

24

4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 N
um

be
r

of
 P

la
n

O
pe

ra
to

rs

Number of Goals

PbR-300
PbR-100

Initial
IPP

5

10

15

20

25

30

35

40

45

50

55

60

5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 N
um

be
r

of
 P

la
n

O
pe

ra
to

rs

Number of Goals

PbR-300
PbR-100

Initial
IPP

(d)
Number of Plan Operators
(Problems Solved by All) (e)

Number of Plan Operators
(Problems Solved by Each)

Figure 5.8: Experimental Results: Manufacturing Process Planning

73

5.2 Blocks World

We implemented a classical Blocks World domain with the two operators in Figure 2.1. This

domain has two actions: stack that puts one block on top of another, and, unstack that places

a block on the table to start a new tower. Plan quality in this domain is simply the number of

steps. Optimal planning in this domain is NP-hard [Gupta and Nau, 1992]. However, it is trivial

to generate a correct, but suboptimal, plan in linear time using the naive algorithm: put all blocks

on the table and build the desired towers from the bottom up. We compare three planners on this

domain:

IPP: In this experiment we used the GAM goal ordering heuristic [Koehler, 1998] that had been

tested in simple Blocks World problems with very good scaling results.

Initial: This planner is a programmatic implementation of the naive algorithm using the facilities

introduced in Section 3.1.2.

PbR: This configuration of PbR starts from the plan produced by Initial and uses the two plan

rewriting rules shown in Figure 5.9 to optimize plan quality. PbR applies a first improvement

strategy with only one run (no restarts).

(define-rule :name avoid-move-twice
:if (:operators ((?n1 (unstack ?b1 ?b2))

(?n2 (stack ?b1 ?b3 Table)))
:links (?n1 (on ?b1 Table) ?n2)
:constraints ((possibly-adjacent ?n1 ?n2)

(:neq ?b2 ?b3)))
:replace (:operators (?n1 ?n2))
:with (:operators (?n3 (stack ?b1 ?b3 ?b2))))

(define-rule :name avoid-undo
:if (:operators ((?n1 (unstack ?b1 ?b2))

(?n2 (stack ?b1 ?b2 Table)))
:constraints ((possibly-adjacent ?n1 ?n2))

:replace (:operators (?n1 ?n2))
:with NIL))

Figure 5.9: Blocks World Rewriting Rules

We generated random Blocks World problems scaling the number of blocks. The problem set

consists of 25 random problems at 3, 6, 9, 12, 15, 20, 30, 40, 50, 60, 70, 80, 90, and 100 blocks for a

total of 350 problems. The problems may have multiple towers in the initial state and in the goal

state.

Figure 5.10 (a) shows the average planning time of the 25 problems for each block quantity.

IPP cannot solve problems with more than 20 blocks within the time limit of 1000 CPU seconds.

The problem solving behavior of IPP was interesting. IPP either solved a given problem very fast

74

or it timed out. For example, it was able to solve 11 out of the 25 20-block problems under 100

seconds, but it timed out at 1000 seconds for the remaining 14 problems. This seems to be the

typical behavior of complete search algorithms [Gomes et al., 1998]. The local search of PbR allows

it to scale much better and solve all the problems.

Figure 5.10 (b) shows the average plan cost as the number of blocks increases. PbR improves

considerably the quality of the initial plans. The optimal quality is only known for very small

problems, where PbR approximates it, but does not achieve it (we run Sage for problems of

less than 9 blocks). For larger plans we do not know the optimal cost. However, [Slaney and

Thiébaux, 1996] performed an extensive experimental analysis of Blocks World planning using a

domain like ours. In their comparison among different approximation algorithms they found that

our initial plan generator (unstack-stack) achieves empirically a quality around 1.22 the optimal

for the range of problem sizes we have analyzed (Figure 7, page 1214). The value of our average

initial plans divided by 1.22 suggests the quality of the optimal plans. The quality achieved by

PbR is comparable with that value. In fact it is slightly better which may due to the relatively

small number of problems tested (25 per block size) or to skew in our random problem generator.

Interestingly the plans found by IPP are actually of low quality. This is due to the fact that IPP

produces shortest parallel plans. That means that the plans can be constructed in the fewest time

steps, but IPP may introduce more actions in each time step that could be required.

In summary, the experiments in this and the previous chapter show that across a variety of do-

mains Planning by Rewriting scales to much larger problems than previous approaches to planning

while still producing high-quality plans.

0.01

0.1

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 P
la

nn
in

g
T

im
e

(C
P

U
 S

ec
on

ds
)

Number of Blocks

PbR-FI
Initial

IPP

0

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 P
la

n
C

os
t (

N
um

be
r

of
 O

pe
ra

to
rs

)

Number of Blocks

PbR-FI
Initial

IPP
Initial/1.22

(a) Average Planning Time (b) Average Plan Cost

Figure 5.10: Experimental Results: Blocks World, Scaling the Number of Blocks

75

Chapter 6

Related Work

In this chapter we review previous work related to the general Planning by Rewriting framework,

as well as to the application of PbR on several domains, with an emphasis on query planning.

6.1 Foundations

In this section we review related work on several of the disciplines upon which the Planning by

Rewriting framework builds, namely, classical AI planning, local search, and graph rewriting.

6.1.1 AI Planning

PbR is designed to find a balance among the requirements of planning efficiency, high quality plans,

flexibility, and extensibility. A great amount of work on AI Planning has focussed on improving its

average-case efficiency given that the general cases are computationally hard [Erol et al., 1995]. One

possibility is to incorporate domain knowledge in the form of search control rules. PbR rewriting

rules can be seen as a form of “post facto” search control for plan optimization. Instead of guiding

a generative planner towards the optimal solution, PbR improves the quality of a given complete

plan. Some advantages of our approach is that quality can be better assessed in a complete plan

and the anytime behavior.

Some systems automatically learn search control for a given planning domain or even specific

problem instances. Minton [Minton, 1988b] shows how to deduce search control rules for a problem

solver by applying explanation-based learning to traces of problem-solving traces. He also discusses

the impact of the utility problem. The utility problem, simply stated, says that the (computational)

benefits of using the additional knowledge must outweigh the cost of applying it. PbR plan rewriting

rules also are subject to the utility problem. The quality improvement obtained by adding more

rewriting rules to a PbR-based planner may not be worth the performance degradation. Another

approach to automatically generating search control rules is by analyzing statically the operators

in the planning domain [Etzioni, 1993]. Abstraction provides another form of search control.

Knoblock [Knoblock, 1994a] presents a system that automatically learns abstraction hierarchies

from a planning domain or a particular problem instance in order to speed up planning. PbR does

76

not currently learn the rewriting rules but we believe that similar learning methods can be applied.

Finding the differences among a suboptimal and optimal plan may suggest rules to transform

one into the other. Analyzing the planning operators and which combinations of operators are

equivalent with respect to the achievement of some goals also can lead to automatically generating

the rewriting rules.

Local search algorithms have also been used to improve planning efficiency although in a some-

what indirect way. Planning can be reduced to solving a series of propositional satisfiability prob-

lems [Kautz and Selman, 1992]. Therefore, Kautz and Selman used an efficient satisfiability testing

algorithm based on local search to solve the SAT encodings of a planning problem [Kautz and Sel-

man, 1996]. Their approach proved more efficient than specialized planning algorithms. We believe

that the power of their approach stems from the use of local search. PbR directly applies local

search on the plan structures, as opposed to translating it first to a larger propositional represen-

tation.

Although all these approaches do improve the efficiency of planning, they do not specifically

address plan quality, or else they consider only very simple cost metrics (such as the number of

steps). Quality-improving control rules are learned in [Pérez, 1996], but planning efficiency was

not significantly improved. By exploiting domain-specific knowledge, conveniently expressed as

plan rewriting rules, and the local search approach, we improve both plan efficiency and quality.

Moreover, we provide an anytime algorithm while other approaches must run to completion.

6.1.2 Local search

Local search has a long tradition in combinatorial optimization [Aarts and Lenstra, 1997, Papadim-

itriou and Steiglitz, 1982]. Local improvement ideas have found application in many domains. Some

of the general work most relevant for PbR is on constraint satisfaction, satisfiability testing, and

heuristic search.

In constraint satisfaction, local search techniques have been able to solve problems orders of

magnitude more complex than the respective complete (backtracking) approaches. Minton et al.
[Minton et al., 1990, Minton, 1992] developed a simple repair heuristic, min-conflicts, that could

solve large constraint satisfaction and scheduling problems, such as the scheduling of operations in

the Hubble Space Telescope. The min-conflicts heuristic just selects the variable value assignment

that minimizes the number of constraints violated. This heuristic was used as the cost function of

a gradient-descent search and also in an informed backtracking search.

In satisfiability testing a similar method, GSAT, was introduced by [Selman et al., 1992]. GSAT

solves hard satisfiability problems using local search where the repairs consist in changing the truth

value of a randomly chosen variable. The cost function is the number of clauses satisfied by the

current truth assignment. Their approach scales much better than the corresponding complete

method (the Davis-Putnam procedure).

Our work is inspired by these approaches but there are several differences. First, PbR operates

on complex graph structures — partial-order plans — as opposed to variable assignments. Second,

77

our repairs are declaratively specified and may be changed for each problem domain, as opposed to

their general but fixed repair strategies. Third, PbR accepts arbitrary measures of quality not just

constraint violations as in min-conflicts. GSAT is a satisfiability approach so it does not addresses

cost optimization. Finally, and most importantly, PbR searches the space of solution plans, which

are complete and sound, as opposed to the space of variable assignments which may be internally

inconsistent.

Iterative repair ideas have also been used in heuristic search. In [Ratner and Pohl, 1986] a two-

phase approach similar to PbR is presented. In the first phase, they find a initial valid sequence

of operators using an approximate algorithm. In the second phase, they perform local search from

that initial sequence. The cost function is the plan length. The local neighborhood is generated

by identifying segments in the current solution sequence and attempting to optimize them. The

repair consists of a heuristic search with the initial state being the beginning of the segment and

the goal the end of the segment. If a shorter path is found, the original sequence is repaired by the

replacing the old by the new shorter segment. A significant difference with PbR is that they are

doing a state-space search, while PbR is doing a plan-space search. The least-committed partial-

order nature of PbR allows it to optimize the plans in ways that cannot be achieved by optimizing

linear subsequences.

6.1.3 Graph Rewriting

PbR builds on ideas from graph rewriting (see [Schürr, 1996a] for a survey). The plan rewriting

rules in PbR are an extension to traditional graph rewriting rules. By taking advantage of the

semantics of planning PbR introduces partially-specified plan rewriting rules, where the rules do

not need to specify the completely detailed embedding of the consequent as in pure graph rewriting.

Nevertheless, there are several techniques that can transfer from graph rewriting into Planning by

Rewriting. In particular, [Dorr, 1995] defines an abstract machine for graph isomorphism and

studies a set of conditions under which traditional graph rewriting can be performed efficiently.

Perhaps a similar abstract machine for plan rewriting can be defined. The idea of rule programs

also appear in this field and has been implemented in the PROGRES system [Schürr, 1990, Schürr,

1996b]. Perhaps we could reimplement PbR by extending some of the existing graph rewriting

systems.

6.2 Plan Rewriting

The most closely related work to the plan rewriting algorithm we have introduced in this thesis

is plan merging [Foulser et al., 1992]. Foulser et al. provide a formal analysis and algorithms for

exploiting positive interactions within a plan or across a set of plans. However, their work only

considers the case on which a set of operators can be replaced by one operator that provides the

same effects to the rest of the plan and consumes the same or fewer preconditions. Their focus in on

optimal and approximate algorithms for this type of operator merging. Plan rewriting in PbR can

78

be seen as a generalization of operator merging where a subplan can replace another subplan. In

fact, the conditions for valid plan rewriting of Section 3.2.2 generalize their mergeability conditions.

A difference is that PbR is not concerned with finding the optimal merge (or rewritten plan) in

a single pass of an optimization algorithm as their approach does. In PbR we are interested

in generating possible plan rewritings during each rewriting phase, not the optimal one. The

optimization occurs as the (local) search progresses.

Case-based planning (e.g. [Kambhampati, 1992, Veloso, 1994, Nebel and Koehler, 1995, Hanks

and Weld, 1995, Muñoz-Avila, 1998]) solve a problem by modifying a previous solution. There two

phases in case-based planning. The first one identifies a plan from the plan library that is most

similar to the current problem. In the second phase this previous plan is adapted to solve the new

problem. PbR modifies a solution to the current problem, so there is no need for a retrieval phase

nor the associated similarity metrics. Plan rewriting in PbR can be seen as type of adaptation from

a solution to a problem to an alternate solution for the same problem. That is, a plan rewriting

rule in PbR identifies a pair of subplans (the replaced and replacement subplans) that may be

interchangeable.

Veloso [Veloso, 1994] describes a general approach to case-based planning based on derivational

analogy. Her approach works in three steps. First, the retrieval phase selects a similar plan from

the library. Second, the parts of this plan irrelevant to the current problem are removed. Finally,

her system searches for a completion of this plan selecting as much as possible the same decisions

as the old plan did. In this sense the planning knowledge encoded in the previous solution is

transferred to the generation of the new solution plan. The plan rewriting algorithm for partially-

specified rules of PbR can be seen as a strongly constrained version of this approach. In PbR the

subplan in the rule consequent fixes the steps that can be added to repair the plan. We could use

her technique of respecting previous choice points when completing the plan as a way of ensuring

that most of the structure of the plan before and after the repair is maintained. This could be

useful to constrain the number of rewritten plans for large rewriting rules.

Nebel and Koehler [Nebel and Koehler, 1995] present a computational analysis of case-based

planning. In this context they show that the worst case complexity of plan modification is no

better than plan generation and point to the limitations of reuse methods. The related problem in

the PbR framework is the embedding of the replacement subplan for partially specified rules. As

we explained in Section 3.2.4 there may be pathological cases in which the number of embeddings

is exponential in the size of the plan or deciding if the embedding exists is NP-hard. However,

often we are not interested in finding all rewritings, for example when following a first improvement

search strategy. Also the average case behavior seems to be much better in our experience as was

presented in Chapters 4 and 5.

Systematic algorithms for case-based planning, such as [Hanks and Weld, 1995], invert the

decisions done in refinement planning to find a path between the solution to a similar old problem

and the new problem. The rewriting rules in PbR indicate how to transform a solution into another

solution plan based on domain knowledge, as opposed to the generic inversion of the refinement

operations. Moreover, plan rewriting in PbR is done in a very constrained way instead of an open

79

search up and down the space of partial plans. However, the rules in PBR may search the space

of rewritings non-systematically. Such an effect is ameliorated by using local search.

6.3 Query Planning

In this section, we discuss related approaches both in traditional query optimization and in query

planning in mediators.

6.3.1 Traditional Query Optimization

In the database literature, query optimization has been extensively studied (see [Jarke and Koch,

1984] and [Graefe, 1993] for surveys). Query optimizers attempt to both find the most efficient

algebraic form of a query and to choose specific methods to implement each data processing op-

eration. For example, a join can be performed by a variety of algorithms, such as nested loops,

merge scan, hash join, etc. In our analysis of query planning in mediators we have focused on

the algebraic part of query optimization because in our distributed environment the mediator does

not have any control over the optimizations employed in the remote information sources, and, so

far, the size of data the mediator needs to manipulate locally has not required very sophisticated

consideration of implementation algorithms. However, our work on the query planning domain

could easily be extended with more operators for each of the distinct implementation methods of

the algebraic operations and a cost function that reflects the characteristics of different physical

evaluation plans.

The research on traditional query optimization most relevant to our approach lies in three areas:

distributed query optimization, declarative and extensible query optimizers, and efficient search

algorithms. An algorithm for distributed query optimization based on query tree transformations

is presented in [Chu and Hurley, 1982]. Our plan rewriting rules for the relational algebra and

the distributed environment are similar to their transformations, but our system accepts arbitrary

specification of rules as opposed to a hand-coded algorithm. Chu and Hurley also provide several

theorems that describe the optimality of some types of plans under several cost models. A sample

theorem is: “if the unit communication cost among databases is the same and the processing cost

if a given operation is the same for all computers and is proportional to the volume of data, then

placing the unary operations at the lowest possible position in a query tree is a necessary condition

to obtain the optimal query processing policy”. Using this type of results would enable us to prove

that some potential rewriting rules are unnecessary. For example, in a system where the previous

theorem hold we could leave out the rewriting rule that pulls selections up in the query tree without

any loss of solutions.

The second area is declarative and extensible query optimizers. An extensible query optimizer

based on query rewriting was implemented for the Starburst system [Haas et al., 1989, Pirahesh et

al., 1992]. Their rules are just condition-action pairs of C functions that manipulate a representation

of the queries called the query graph. Although representing the transformations as arbitrary code

80

allows for maximum generality in the type of rules that can be specified, it certainly does not

help in the understandability or maintainability of the system. Our PbR-based query planner

uses a declarative rule definition language which is easier to understand and maintain. At the

same time, we also provide support for interpreted predicates that can be arbitrary functions in

order to analyze the query structures and check for conditions that cannot be easily specified

in a declarative manner. Starburst follows a two phase approach to optimization. First, their

system generates a set of candidate query graphs by using a set of query graph rewriting rules.

Then, for each query graph a query plan is generated and optimized independently. Finally, the

best among these optimized query plans is selected. The PbR-based query planner described in

chapter 4 performs mainly transformations that correspond to the query rewrite level in Starburst.

However, because we assume that cost estimates for the data processing operators are available,

our query planner is also performing cost-based transformations, such as join orderings. Moreover,

our query plan optimization occurs in a single search space. Starburst covers a greater number

of transformations than the ones we have implemented so far. For example, we do not currently

support the optimization of aggregation operations, but we could incorporate rewriting rules such as

those presented in [Yan and Larson, 1994, Yan and Larson, 1995]. Another difference between the

two approaches is the control of the search. Starburst follows a production rule system paradigm

in which rules apply until quiescence or a time limit. Our model is that of (local) search and the

particular search algorithm can be changed independently of the rest of the query planner.

Another influential work in query optimization is Exodus [Graefe and DeWitt, 1987]. Exodus

is a query optimizer generator that compiles a query optimizer out of a given set of operators,

transformation rules and the code for the methods that implement each operator. Thus, it is

much more declarative than the Starburst system. Although Exodus strives for extensibility, its

operator definition language is more restricted than ours. Also it has a fixed search strategy

(a form of hill climbing). Exodus distinguishes between transformation rules, that denote the

algebraic equivalence of two queries (such as join associativity), and implementation rules, that

map an algebraic operator into a particular implementation method (such as performing a join by

using a hash join). In our work, we have not considered implementation rules but we could add

similar rules. Exodus operates on centralized databases. Volcano [Graefe and McKenna, 1993,

Graefe et al., 1994] improves the capabilities of Exodus. Volcano adds a goal-directed dynamic

backtracking search, that is more efficient than Exodus’ search, along with the ability to define

other search strategies. In addition, Volcano offers support for parallel execution, as well as a

more modular and extensible design. Our planner shares with Exodus and Volcano the idea of

performing all optimization on a single search space. Another interesting idea emerging from these

projects is that of dynamic query evaluation plans [Graefe and Ward, 1989, Cole and Graefe, 1994].

Dynamic query evaluation plans include several alternative subplan which are chosen for execution

at depending on run-time conditions. From the planning perspective, this is a simple form of

contingency planning. We expect that a general planning framework such as PbR would be able

to provide more general interleaving of planning and execution [Knoblock, 1995]. In particular,

the inclusion of information gathering actions [Ashish et al., 1997]. This actions do not have a

81

correspondence in traditional query optimization. However, they are quite useful in a distributed

and heterogeneous environment. For example, consider a simple query that requests the work

phone number of Steve Minton. One possibility is to query in parallel all the phone books to which

our system has access. This can be very expensive. A better alternative is to consult a source that

can provide the affiliation of Steve Minton, which would produce ISI. Then, go to the phone list of

ISI to find his phone. This is a much more cost effective evaluation plan.

The third area of work is on efficient search algorithms for query optimization. Local search

techniques have proven the most scalable. Ioannidis and Kang applied iterative improvement,

simulated annealing, and a combination of the two, called two phase optimization, to large join

queries [Ioannidis and Kang, 1990]. Two phase optimization consists in applying iterative im-

provement up to a local minima, which in turn serves as the starting point to a simulated anneal-

ing search. This last method performs best in their experiments. In [Swami and Gupta, 1988,

Swami, 1989] another set of local search strategies is presented with similarly good scaling results.

Since our PbR framework is modular, these different search methods can be incorporated. More

importantly, methods that perform well in one domain may transfer to other planning domains.

6.3.2 Query Planning in Mediators

A number of projects have focussed on query planning for mediators. For example, the Infor-

mation Manifold [Levy et al., 1996b], TSIMMIS [Hammer et al., 1995], HERMES [Adali et al.,

1996], and Garlic [Tork Roth et al., 1996, Haas et al., 1997, Roth and Schwarz, 1997]. TSIMMIS

and the Information Manifold do not specifically address cost-based optimization. Although the

Information Manifold does find retrievable plans that access the minimum number of sources. Cost

based optimization could be incorporated in these systems in a two phase approach in which a set

retrievable plans are found first, and then each optimized independently.

HERMES [Adali et al., 1996] does address issues of cost-based optimization. Their mediator

uses an expressive logic language to integrate a set of information sources. Their system includes a

rule rewriter that transforms the logic programs that evaluate a user query to a more cost effective

form by pushing selections to the sources, reordering subgoals in a rule, and using cached relations.

However these transformations are expressed procedurally. They do not focus in an extensible or

declarative query optimization framework, such as our PbR-based query planner.

The Garlic project [Tork Roth et al., 1996, Haas et al., 1997, Roth and Schwarz, 1997] does

consider cost optimization for mediators in the style of Starburst. In addition to traditional query

optimization rewrites, their system also considers remote evaluation of subqueries at the informa-

tion sources. Query optimization proceeds in three stages. For example, for conjunctive queries,

their system first selects the sources, then it uses a dynamic programming enumeration of join

orders, and finally, it places the operations not achieved so far. At that point they choose the

best cost plan. Their query rewritings are implemented as C++ functions. Our PbR-based query

planner is declarative and performs the search in a single space in the style of Exodus and Volcano.

82

Moreover our local search approach is more scalable than their complete enumeration of all query

plans.

Despite the practical importance of query planning, there has been little work in the planning

literature (either in traditional or in query planning for mediators). Occam [Kwok and Weld, 1996]

is a planner for information gathering in distributed and heterogeneous domains that focuses on

the source selection problem. Our work combines both source selection and traditional cost-based

query optimization. Sage [Knoblock, 1996] considers plan quality and supports interleaving of

planning and execution. PbR does not currently interleave planning and execution, but it is as

general as Sage with better scaling properties as shown in Section 4.4.

6.4 Other Applications

Transformation-based optimization techniques such as PbR have appeared in several domains.

The code optimization phase of compilers performs rewritings analogous to the PbR-rewriting

rules [Aho et al., 1986]. However, PbR currently works only on acyclic plans. Therefore our plan

language cannot describe directly code segments containing loops. However, this is a limitation

of the underlying planning model not of the PbR framework. The plan rewriting engine and plan

rewriting language of PbR would apply directly to plans with loops for fully-specified rewriting

rules. For partially-specified rules the algorithm would need to be extended according to the

semantics of plans with iteration.

Iterative repair has been applied successfully in scheduling applications. Above we already men-

tioned [Minton, 1992] where large scheduling problems, operations on the Hubble Space Telescope,

were solved by local search using the simple min-conflicts heuristic. In work on scheduling and

rescheduling, [Zweben et al., 1994] define a set of general, but fixed, repair methods, and use sim-

ulated annealing to search the space of schedules. Our plans are networks of actions as opposed to

the metric-time totally-ordered tasks. Also we can easily specify different rewriting rules (general

or specific) to suit each domain, as opposed to their fixed strategies.

In summary, the advantage of PbR is being domain-independent so that the core rewriting

engine and search strategies need to be implemented only once. Furthermore, this generality

enables results from one application domain to be easily transferable to another.

83

Chapter 7

Discussion

This thesis has presented Planning by Rewriting, a new paradigm for efficient high-quality domain-

independent planning. PbR adapts graph rewriting and local search techniques to the semantics

of domain-independent partial-order planning. The basic idea of PbR consists in transforming

an easy-to-generate, but possibly suboptimal, initial plan into a high-quality plan by applying

declarative plan rewriting rules in an iterative repair style.

There are several important advantages to the PbR planning approach. First, PbR is a declar-

ative domain-independent framework, which brings the benefits of reusability and extensibility.

Second, it addresses sophisticated plan quality measures, while most work in domain-independent

planning has not addressed quality or does it in very simple ways. Third, PbR is scalable because

it uses efficient local search methods. Finally, PbR is an anytime planning algorithm that allows

trading planning effort for plan quality in order to maximize the utility of the plans.

Planning by Rewriting can be viewed as a domain-independent framework for local search. PbR

accepts domain specifications in an expressive operator language, declarative plan rewriting rules

(to generate the neighborhood of a plan), complex quality metrics, and arbitrary (local) search

methods. In our work, we provide domain-independent solutions to the main issues in local search.

First, we provide two general methods to efficiently construct initial plans: a generative planner

with an strong search bias, and high-level programmatic facilities. Second, we define a declarative

language in which to specify plan rewriting rules and a rewriting algorithm for this language. The

rewriting language is very flexible and can be extended to be quite expressive while remaining

efficient. Finally, we adapt several local search strategies to the PbR framework, such as variations

of gradient descent.

Planning by Rewriting is not only useful as a black-box planning approach, PbR is also well-

suited to mixed-initiative planning. In mixed-initiative planning, the user and the planner interact

in defining the plan. For example, the user defines the quality criteria of interest at the moment,

specifying which are the available actions, etc. Some domains can only be approached through

mixed-initiative planning. For example, when the quality metric is very expensive to evaluate,

such as in geometric analysis in manufacturing, the user must guide the planner towards good

quality plans in a way that a small number of plans are generated and evaluated. Another example

84

is when the plan quality metric is multi-objective or changes over time. Several characteristics

of PbR support mixed-initiative planning. First, because PbR offers complete plans, the user

can easily understand the plan and perform complex quality assessment. Second, the rewriting

rule language is a convenient mechanism by which the user can propose modifications to the plans.

Third, by selecting which rules to apply or their order of application the user can guide the planner.

PbR also introduces a framework in which to perform sensibility analysis for plans. By finding

the quality of the possible rewritings around a solution we can evaluate the robustness of a plan

with respect to a set of possible changes.

Our framework achieves a balance between domain knowledge, expressed as plan rewriting

rules, and general local search techniques that have been proved useful in many hard combinatorial

problems. We expect that these ideas will push the frontier of solvable problems for many practical

domains in which high quality plans and anytime behavior are needed.

7.1 Contributions

The main contribution of this thesis is the definition of a novel planning paradigm, Planning by

Rewriting, that addresses the combined challenges of flexibility, planning efficiency, and support

for complex quality metrics. In order to meet these challenges PbR offers a framework for the

principled application of iterative repair techniques to classical domain-independent planning.

We have defined and implemented the algorithms for domain-independent plan rewriting. We

described a declarative language in which to specify plan rewriting rules. We provided support for

two types of plan rewriting rules: fully-specified and partially-specified. Fully-specified rewriting

rules are typical of graph rewriting systems. The novel class of partially-specified rewriting rules has

no counterpart in general graph rewriting. Partially-specified rules capture naturally and concisely

powerful plan transformations. By relying on the strong semantics of partial-order planning we

defined a plan rewriting algorithm for partially-specified rules.

We have applied our framework to several domains with an emphasis on query planning in me-

diator systems. The resulting PbR-based query planner is scalable, flexible, has anytime behavior,

and yields a novel combination of traditional query optimization and heterogeneous information

source selection. This novel approach to query optimization in mediators constitutes a second

contribution of this thesis. Previous approaches perform the query processing in two stages. First,

they find all possible translations to the user query in terms of source terms (source selection).

Then each of these retrievable queries is optimized by traditional methods separately. Finally, the

best alternative is selected. This approach does not scale when there are many alternative infor-

mation sources such as is the case in the Web. PbR performs both aspects of query processing in

mediators in a single search process. By using local search techniques the combined optimization

is scalable and supports an anytime behavior.

85

7.2 Future Work

The planning style introduced by PbR opens many areas of research. In the first place, there

is a great potential for applying machine learning techniques to PbR. An important issue is the

generation of the plan rewriting rules. Conceptually, plan rewriting rules arise from the chosen

plan equivalence relation. All valid plans that achieve the given goals in a finite number of steps,

i.e. all solution plans, are (satisfiability) equivalent. Each rule arises from a theorem that states

that two subplans are equivalent for the purposes of achieving some goals, with the addition of

some conditions that indicate in which context that rule can be usefully applied.

We believe that the plan rewriting rules can be generated by fully automated procedures. The

methods can range from static analysis of the domain operators to analysis of sample equivalent

plans that achieve the same goals but at different costs. Note the similarity with methods to

automatically deduce search control [Minton, 1988b, Etzioni, 1993], and also the need to deal with

the utility problem.

Beyond learning the rewriting rules, we intend to develop a system that can automatically

learn the optimal planner configuration for a given planning domain and problem distribution in

a manner analogous to Minton’s Multi-TAC system [Minton, 1996]. Our system would perform a

search in the configuration space of the PbR planner proposing candidate sets of rewriting rules

and different search methods. By testing each proposed configuration against a training set of

simple problems, the system would hill-climb in the configuration space in order to arrive at the

most useful rewriting rules and search strategies for the given planning domain and distribution of

problems.

There are many advanced techniques in the local search literature that can be adapted and

extended in our framework. In particular, the idea of variable-depth rewriting leads naturally to

the creation of rule programs, which specify how a set of rules are applied to a plan. We have

already seen how in query planning we could find transformations that are better specified as

program of simple rewriting rules. For example, a sequence of Join-Swap transformations may put

two retrieve operators on the same database together in the query tree and then Remote-Join-Eval

would collapse the explicit join operator and the two retrieves into a single retrieval of a remote

join. More complex examples of this sort of programs are presented in [Cherniack and Zdonik, 1996,

Cherniack and Zdonik, 1998]. This work defines a query optimizer for object-oriented languages

based on sophisticated programs of rewriting rules.

Another area for further research is the interplay of plan rewriting and plan execution. Some-

times the best transformations for a plan may only be known after some portion of the plan has

been executed. This information obtained at run-time can guide the planner to select the appro-

priate rewritings. For example, in query planning the plans may contain information gathering

actions [Ashish et al., 1997] and depend on run-time conditions. This yields a form of dynamic

query optimization. Interleaved planning and execution is also necessary in order to deal effectively

with unexpected situations in the environment such as database or network failures.

86

An open area of research is to relax our framework to accept incomplete plans during the

rewriting process. This expands the search space considerably and some of the benefits of PbR,

such as its anytime property, are lost. But for some domains the shortest path of rewritings from

the initial plan to the optimal may contain incomplete or inconsistent plans. This idea could be

embodied as a planning style that combines the characteristics of generative planning and Planning

by Rewriting. Note that the plan refinements both of partial order planning [Kambhampati et al.,

1995] and Hierarchical Task Network Planning [Erol et al., 1994] can be easily specified as plan

rewriting rules.

The query planning domain presents a great number of opportunities to push the limits of

our framework (and planning in general), as we develop more sophisticated planning domains.

There are several directions in which to develop more sophisticated planning domains. First, we

could incorporate more complex query processing operators, such as aggregation and grouping.

For example, we could build on the rewriting rules introduced in [Yan and Larson, 1995]. Second,

we could push towards a more refined consideration of evaluation methods for each of the data

processing operators as in traditional query optimization. For example, the algebraic join can

be evaluated by a variety of methods, such as sort-join, hash-join, etc. Third, we could define

operators and rewriting rules specialized for non-traditional data types, such as multimedia data.

Fourth, we could incorporate more sophisticated model of the capabilities of the sources. In fact,

we are in the process of adding support for binding patterns pattern constraints in source access.

Binding patterns are annotations on the schema of an information source that indicate that some

arguments have to be bound to constants. Their role is similar to input parameters that have to

be provided in order to retrieve a set of output values. Many sources on the Web have binding

constraints. For example, some web sites that provide stock information on a company need as

input the ticker symbol of the company. Finally, interleaving query planning and execution presents

very interesting opportunities for optimization. Specially in domains in which sources have limited

query capabilities such as binding pattern constraints. Information gathering on the WWW is such

an environment.

Applying PbR to other domains will surely provide new challenges and the possibility of dis-

covering and transferring general planning techniques from one domain to another. We hope that

the local search methods used by PbR will help planning techniques to scale to large practical

problems and conversely that the domain-independent nature of PbR will help in the analysis and

principled extension of local search techniques.

87

Appendix A

Detailed Example of PbR for Query Planning

In this section we present a detailed example of PbR applied to query planning in mediators. First,

we introduce a simple domain model and a set of sources relevant to this model. Second we present

the set of integration axioms compiled from this domain model. Third, we show a portion of the

space of solution plans as it is explored by the application of the rewriting rules. Finally, we discuss

the limitations of the current encoding and rewriting rules for query planning.

Consider the domain model and sources shown in Figure A.1. This model is a small fraction

of a logistics application. We show a hierarchy with different classes of seaports and some sources

for those classes of information. For example, the model states that Large Seaport and Small

Seaport form a covering of the class Seaport, and that the Large Seaports are exactly those with

more than seven cranes. The description of the sources in terms of the domain model is depicted

with dashed lines. For example, the source S4 provides the port name (pn), geographic code (gc),

and number of cranes (cr) for American Large Seaports.

Given a domain model and source descriptions, our system automatically compiles a set of

integration axioms (cf. Section 4.1). Each integration axiom indicate an alternative combination

of sources that provide a given set of attributes for a domain class. In order to facilitate the

retrieval and the computation of new axioms at runtime the integration axioms are organized

into a lattice.1 The complete lattice of integration axioms for the concepts large-seaport and

seaport are shown in Figures A.2 and A.3 respectively. Each node of this lattice contains a set of

alternative axioms for a given set of attributes of a domain model class. For example the bottom

node of Figures A.2 describe five alternative axioms for the attributes port name (pn), geographic

code (gc), and number of cranes (cr). The first axiom in this node (LS1
gc,pn,cr) states that these

attributes can be obtained from the union of the sources S4 and S5. The second axiom (LS2
gc,pn,cr)

presents an alternative: accessing source S1, which contains all seaports, and selecting those with

more than 7 cranes, which ensures that are large seaports.

In order to explain the details of our approach to query planning in mediators, we will use a

simple query based on the previous integration model and axioms:

1See [Ambite et al., 1998] for details on how some of these integration axioms are precompiled and the rest
computed on demand taking advantage of the lattice structure.

88

European
Large
Seaport

American
Large
Seaport

Large
Seaport

Small
Seaport

S2
pn

S3
gc

covering

covering

Seaport

gc

pn

cr
S1 pn

gc

cr

S4

gc

pn

cr

S5

gc

pn

cr

= Seaport ^
 (> cr 7)

= Seaport ^
 (<= cr 7)

S7
pn

S6
pn

cr

Legend

Domain
Class

Info
Source

provided
attributes

(source link)

(class inheritance)

Attribute Names

gc = geographic code
pn = port name
cr = # of cranes

Figure A.1: Sample Domain Model and Available Sources

q(gc pn cr g c) ← LS(gc pn cr) ∧ LZ(g p c) ∧ cr = c

In this simple conjunctive query, LS represents large seaports. For brevity we assume that there

exists a concept LZ isomorphic to LS, thus having the analogous axioms. Figure A.4 shows in detail

an initial plan that evaluates this query using axioms LS1
gc,pn,cr and LZ1

gc,pn,cr. The initial plan

was generated by first randomly parsing the given query, then, for each domain concept (LS and

LZ in this case), finding an integration axiom that obtains the required attributes for the domain

concept (in this figure axioms LS1
gc,pn,cr and LZ1

gc,pn,cr).

There are two important features of our encoding. First, the query expressions in the operators

are kept at the domain level as a way of providing a layer of abstraction on the choices of particular

sources. The plan only commits to which sources it uses on the retrieve operators. Second, the

relational algebra operators are extended with reasoning about integration axioms. For example,

the union operator in the left of the figure can decompose the query LS(gc pn cr), which is a

89

LS1
gc,pn,cr : (v (s4 gc pn cr) (s5 gc pn cr))

LS2
gc,pn,cr : (^ (s1 gc pn cr) (> cr 7))

LS3
gc,pn,cr : (^ (s1 gc pn cr) (s3 gc))

LS4
gc,pn,cr : (^ (s1 gc pn cr) (s2 pn))

LS5
gc,pn,cr : (^ (s1 gc pn cr) (s7 pn))

LS1
pn,cr : (v (s4 pn cr) (s5 pn cr))

LS2
pn,cr : (^ (s1 pn cr) (> cr 7))

LS3
pn,cr : (^ (s1 gc pn cr) (s3 gc))

LS4
pn,cr : (^ (s1 pn cr) (s2 pn))

LS5
pn,cr : (^ (s1 pn cr) (s7 pn))

LS1
cr : (v (s4 cr) (s5 cr))

LS2
cr : (^ (s1 cr) (> cr 7))

LS3
cr : (^ (s1 gc cr) (s3 gc))

LS4
cr : (^ (s1 pn cr) (s2 pn))

LS5
cr : (^ (s1 pn cr) (s7 pn))

LS1
pn : (v (s4 pn) (s5 pn))

LS2
pn : (^ (s1 pn cr) (> cr 7))

LS3
pn : (^ (s1 gc pn) (s3 gc))

LS4
pn : (s2 pn)

LS5
pn : (s7 pn)

LS1
gc : (v (s4 gc) (s5 gc))

LS2
gc : (^ (s1 gc cr) (> cr 7))

LS3
gc : (s3 gc)

LS4
gc : (^ (s1 gc pn) (s2 pn))

LS5
gc : (^ (s1 gc pn) (s7 pn))

LS1
gc,pn : (v (s4 gc pn) (s5 gc pn))

LS2
gc,pn : (^ (s1 gc pn cr) (> cr 7))

LS3
gc,pn : (^ (s1 gc pn) (s3 gc))

LS4
gc,pn : (^ (s1 gc pn) (s2 pn))

LS5
gc,pn : (^ (s1 gc pn) (s7 pn))

LS1
gc, cr : (v (s4 gc cr) (s5 gc cr))

LS2
gc,cr : (^ (s1 gc cr) (> cr 7))

LS3
gc,cr : (^ (s1 gc cr) (s3 gc))

LS4
gc,cr : (^ (s1 gc pn cr) (s2 pn))

LS5
gc,cr : (^ (s1 gc pn cr) (s7 pn))

Figure A.2: Lattice of Integration Axioms for Large Seaport

S1
gc,pn,cr : (s1 gc pn cr)

S1
pn,cr : (s1 pn cr)

S2
pn,cr : (v (s4 pn cr) (s5 pn cr) (s6 pn cr)

S1
cr : (s1 cr)

S2
cr : (v (s4 cr) (s5 cr) (s6 cr)

S1
pn : (s1 pn)

S2
pn : (v (s2 pn) (s6 pn))

S3
pn : (v (s7 pn) (s6 pn))

S4
pn : (v (s4 pn) (s5 pn) (s6 pn))

S1
gc : (s1 gc)

S1
gc,pn : (s1 gc pn) S1

gc, cr : (s1 gc cr)

Figure A.3: Lattice of Integration Axioms for Seaport

90

single domain concept, because there exists an integration axiom, namely LS1
gc,pn,cr, that obtains

LS(gc pn cr) by the union of two sources, namely s4 and s5.

In the figures in this section the most important parameters of each operator are shown (accord-

ing to the specification in Figure 4.3). For example, the topmost join of Figure A.4 is annotated with

two subqueries it joins (sq1: LS(gc pn cr) and sq2 LZ(g p c)), the join conditions (cr = c),

and the query that results from the join (q: LS(gc pn cr) ∧ sq2 LZ(g p c) ∧ cr = c). Also,

each operator is annotated with the axiom that introduced it in the plan, or the letter Q to indicate

that the operator was needed to implement the original query, but this annotation is not available

to the query planner.

Figure A.5 shows the plan resulting from substituting axiom LS1
gc,pn,cr by LS5

gc,pn,cr in the plan

in Figure A.4 according to the approach presented in Section 4.3.3.3. A rule analogous to the one

in Figure 4.13 performs this transformation. Note that the algebraic implementation of the axiom

lies completely in a subtree of the query plan.

Figures A.6 and A.7 show two rewritten plans after the Join-Swap rule is applied to the plan

in Figure A.5. Figure A.8 shows the rewriting after applying Remote-Join-Eval to the plan in

Figure A.5. Applying the distributive property of join and union to the plan in Figure A.6 results

in the plan in Figure A.9. The search process will proceed in this fashion applying rewriting rules

and moving to new solution plans.

Our Swap-Axioms rule is very conservative: it only replaces an integration axiom when its

implementation lies in a subtree of the query plan. We considered transformations that exchange

axioms even when the components of the axiom are distributed arbitrarily in the plan. However,

the transformations in such cases may require extensive changes to the plan. The complexity of

reasoning what are these changes and applying the changes to the plan argue against implementing

such more powerful transformations. One way of implementing them could be as a sequence of

simpler transformations in a variable-depth rewriting fashion. Another alternative could be to use

a version of derivational analogy [Veloso, 1994] that respected as much of the old plan as possible

but could change the plan freely.

As an example of the complexity of exchanging axioms consider the plan in Figure A.10. This

is the plan that we would like to obtain after replacing axiom LS5
gc,pn,cr by LS3

gc,pn,cr in the plan in

Figure A.9. By careful reasoning the rewriting would realize that it can reuse the steps involving

S(gc pn cr), replace the retrieval of LS(pn) by LS(gc), and change the join conditions to be

on gc as opposed to pn. This is complicated enough but seems feasible. However, consider a

slight variation of our query in which gc is not required in the output. A plan for this new query,

analogous to the one in Figure A.9, is shown in Figure A.11. Replacing axiom LS5
pn,cr by LS3

pn,cr on

this plan is much harder. Note that because gc is not a part of the left tree of the root join of plan

1a1a, the subexpressions involving S(pn cr) cannot not be reused directly. There are two options.

If we want to conserve as much as possible the structure of the current plan, the transformation

would add gc throughout the queries and operators in left tree. Obviously this solution is not

scalable, given that the tree can be arbitrarily large. The resulting plan would be the same as in

Figure A.12. The second option amounts to reconstructing the plan from the highest node that

91

involves some component of the axiom to be replaced. In the worst case this is the root node of

the query tree and the whole query plan needs to be replanned from scratch. Such is the case in

our example, the resulting plan, that uses the new axiom LS3
pn,cr, is shown in Figure A.13.

Finally, Figure A.14 shows a query plan with intermediate queries represented at the source

level. That representation is considerably more constrained than the one we have used, that is,

to keep intermediate queries at the domain level. Figure A.15 shows the result of exchanging one

axiom. As it can be seen the query plan required extensive changes even though the axiom was

clustered in a subtree. Our encoding using domain level terms as an abstraction mechanism avoids

such limitations and allows a greater number of transformations to apply to the plans.

92

q(gc pn cr g c) :- LS(gc pn cr) ^ LZ(g p c) ^ cr = c

q : LS(gc pn cr) ^ LZ(g p c) ^ cr = c

sq1 : LS(gc pn cr)

sq2 : LZ(g p c)cr = c

U
q : LS(gc pn cr)

sq1: ALS(gc pn cr)

sq2: ELS(gc pn cr)
U

q : LZ(g p c)

sq1 : ALZ(g p c)

sq2 : ELZ(g p c)

Q

LS1

@ s4

LS1

q : ALS(gc pn cr)

RET @ s5
LS1

RET
q : ELS(gc pn cr)

@ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

1

LZ1

Note that in the join and union
operators, the join-partition and
union-partition interpreted predicates,
incorporate reasoning about the
integration axioms, ie, they recognize:
LS(gc pn cr) = S(gc pn cr) ^ LS(pn)
LZ(g p c) = ALZ(g p c) U ELZ(g p c)

Initial Plan

Figure A.4: Query Plan P1

93

q(gc pn cr g c) :- LS(gc pn cr) ^ LZ(g p c) ^ cr = c

q : LS(gc pn cr) ^ LZ(g p c) ^ cr = c

sq1 : LS(gc pn cr)

sq2 : LZ(g p c)
cr = c

q : LS(gc pn cr)

sq1 : S(gc pn cr)

sq2 : LS(pn)
U

q : LZ(g p c)

sq1 : ALZ(g p c)

sq2 : ELZ(g p c)

LS5 LZ1

LS5

(s1) @ db1

q : S(gc pn cr)

RET

pn = pn

LS5

RET
q : LS(pn)

(s7) @ db1

Q
1a

Swap-axiom LS1 > LS5

@ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

LS1
gc,pn,cr : (v (s4 gc pn cr) (s5 gc pn cr))

LS5
gc,pn,cr : (^ (s1 gc pn cr) (s7 pn))

Figure A.5: Query Plan P1a

q(gc pn cr g c) :- LS(gc pn cr) ^ LZ(g p c) ^ cr = c

q : LS(gc pn cr) ^ LZ(g p c) ^ cr = c

sq1 : S(gc pn cr) ^ LZ(g p c)

sq2 : LS(pn)
pn = pn

q : S(gc pn cr) ^ LZ(g p c)

sq1 : S(gc pn cr)

sq2 : LZ(g p c)

U
q : LZ(g p c)

sq1 : ALZ(g p c)

sq2 : ELZ(g p c)

LZ1

cr = c

Q

LS5
1a1

Join-Swap

LS5

(s1) @ db1

q : S(gc pn cr)

RET

LS5

RET
q : LS(pn)

(s7) @ db1

@ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

Figure A.6: Query Plan P1a1

94

q(gc pn cr g c) :- LS(gc pn cr) ^ LZ(g p c) ^ cr = c

U
q : LZ(g p c)

sq1 : ALZ(g p c)

sq2 : ELZ(g p c)

LZ1

q : LS(gc pn cr) ^ LZ(g p c) ^ cr = c

sq1 : LZ(g p c) ^ LS(pn)

sq2 : S(gc pn cr)
cr = c

q : LZ(g p c) ^ LS(pn)

sq1 : LZ(g p c)

sq2 : LS(pn)

Q

pn = pn

LS5

1a2
Join-Swap

LS5

(s1) @ db1

q : S(gc pn cr)

RET

LS5

RET
q : LS(pn)

(s7) @ db1

@ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

Figure A.7: Query Plan P1a2

q(gc pn cr g c) :- LS(gc pn cr) ^ LZ(g p c) ^ cr = c

q : LS(gc pn cr) ^ LZ(g p c) ^ cr = c

sq1 : LS(gc pn cr)

sq2 : LZ(g p c)
cr = c

U
q : LZ(g p c)

sq1 : ALZ(g p c)

sq2 : ELZ(g p c)

LZ1

Q
1a3

If s1 and s7 are both at the
join-capable source db1, then
the whole axiom LS5 can be
implemented remotely

Remote-Join-Eval

LS5

(s1 ^ s7) @ db1

q : LS(gc pn cr)

RET

@ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

Figure A.8: Query Plan P1a3

95

q(gc pn cr g c) :- LS(gc pn cr) ^ LZ(g p c) ^ cr = c

q : LS(gc pn cr) ^ LZ(g p c) ^ cr = c

sq1 : S(gc pn cr) ^ LZ(g p c)

sq2 : LS(pn)
pn = pn

U
q : S(gc pn cr) ^ LZ(g p c)

sq1 : S(gc pn cr) ^ ALZ(g p c)

sq2 : S(gc pn cr) ^ ELZ(g p c)

LZ1

LS5

1a1a

q : S(gc pn cr) ^ ALZ(g p c)

sq1 : S(gc pn cr)

sq2 : ALZ(g p c)cr = c

Q
q : S(gc pn cr) ^ ELZ(g p c)

sq1 : S(gc pn cr)

sq2 : ELZ(g p c)cr = c

Q

In the union operator, the union-partition
interpreted predicated recognizes that
LZ(g p c) = ALZ(g p c) U ELZ(g p c)
and thus:
S(gc pn cr) ^ LZ(g p c) =
 (S(gc pn cr) ^ ALZ(g p c)) U
 (S(gc pn cr) ^ ELZ(g p c))

Join-Thru-Union

LS5

(s1) @ db1

q : S(gc pn cr)

RET

LS5

RET
q : LS(pn)

(s7) @ db1

@ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

LS5

(s1) @ db1

q : S(gc pn cr)

RET

Figure A.9: Query Plan P1a1a

96

q(gc pn cr g c) :- LS(gc pn cr) ^ LZ(g p c) ^ cr = c

q : LS(gc pn cr) ^ LZ(g p c) ^ cr = c

sq1 : S(gc pn cr) ^ LZ(g p c)

sq2 : LS(gc)gc = gc

U
q : S(gc pn cr) ^ LZ(g p c)

sq1 : S(gc pn cr) ^ ALZ(g p c)

sq2 : S(gc pn cr) ^ ELZ(g p c)

LZ1
LS3

RET
q : LS(gc)

@ s3

LS3

1a1a1

q : S(gc pn cr) ^ ALZ(g p c)

sq1 : S(gc pn cr)

sq2 : ALZ(g p c)cr = c

Q
q : S(gc pn cr) ^ ELZ(g p c)

sq1 : S(gc pn cr)

sq2 : ELZ(g p c)cr = c

Q

Swap-axiom LS5 > LS3LS3
gc,pn,cr : (^ (s1 gc pn cr) (s3 gc))

LS5
gc,pn,cr : (^ (s1 gc pn cr) (s7 pn))

LS3

(s1) @ db1

q : S(gc pn cr)

RET @ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

LS3

(s1) @ db1

q : S(gc pn cr)

RET

Complex swap-axioms
transformation: recognizes equivalent
subformulas and reuses them.

Figure A.10: Query Plan P1a1a1

q(pn cr g c) :- LS(pn cr) ^ LZ(g p c) ^ cr = c

q : LS(pn cr) ^ LZ(g p c) ^ cr = c

sq1 : S(pn cr) ^ LZ(g p c)

sq2 : LS(pn)
pn = pn

U
q : S(pn cr) ^ LZ(g p c)

sq1 : S(pn cr) ^ ALZ(g p c)

sq2 : S(pn cr) ^ ELZ(g p c)

LZ1

LS5

1a1a-v2

q : S(pn cr) ^ ALZ(g p c)

sq1 : S(pn cr)

sq2 : ALZ(g p c)cr = c

Q
q : S(pn cr) ^ ELZ(g p c)

sq1 : S(pn cr)

sq2 : ELZ(g p c)cr = c

Q

Join-Thru-Union

Assume gc is not requested by Q

LS5

(s1) @ db1

q : S(pn cr)

RET @ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

LS5

(s1) @ db1

q : S(pn cr)

RET

LS5

RET
q : LS(pn)

(s7) @ db1

Figure A.11: Query Plan P1a1a-v2

97

q(gc pn cr g c) :- LS(pn cr) ^ LZ(g p c) ^ cr = c

q : LS(pn cr) ^ LZ(g p c) ^ cr = c

sq1 : S(gc pn cr) ^ LZ(g p c)

sq2 : LS(gc)gc = gc

U
q : S(gc pn cr) ^ LZ(g p c)

sq1 : S(gc pn cr) ^ ALZ(g p c)

sq2 : S(gc pn cr) ^ ELZ(g p c)

LZ1
LS3

RET
q : LS(gc)

@ s3

LS3

1a1a1-b

q : S(gc pn cr) ^ ALZ(g p c)

sq1 : S(gc pn cr)

sq2 : ALZ(g p c)cr = c

Q
q : S(gc pn cr) ^ ELZ(g p c)

sq1 : S(gc pn cr)

sq2 : ELZ(g p c)cr = c

Q

Swap-axiom LS5 > LS3LS3
gc,pn,cr : (^ (s1 gc pn cr) (s3 gc))

LS5
gc,pn,cr : (^ (s1 gc pn cr) (s7 pn))

LS3

(s1) @ db1

q : S(gc pn cr)

RET @ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

LS3

(s1) @ db1

q : S(gc pn cr)

RET

Complex swap-axioms
transformation: recognizes equivalent
subformulas and reuses them.

Figure A.12: Query Plan P1a1a1-b

q(pn cr g c) :- LS(pn cr) ^ LZ(g p c) ^ cr = c

q : LS(gc pn cr) ^ LZ(g p c) ^ cr = c

sq1 : LZ(g p c)

sq2 : LS(pn cr)
cr = c

U
q : LZ(g p c)

sq1 : ALZ(g p c)

sq2 : ELZ(g p c)

LZ1

Q

1a1a1-v2
Swap-axiom LS5 > LS3

If gc is not a part of the left tree of the root join
of 1a1a, the subexpressions (S) could not be
reused directly. Two options:
1. Notice that gc can be added but it involves
extensive rewriting (gc has to be added throught
the left tree). Result same as 1a1a1.
2. Remove nodes belonging to LS5, remove
unnecessary joins, introduce the new axiom
according to query: 1a1a1-v2

q : LS(pn cr)

sq1 : S(gc pn cr)

sq2 : LS(gc)
gc = gc

LS3

LS3
pn,cr : (^ (s1 gc pn cr) (s3 gc))

LS5
pn,cr : (^ (s1 pn cr) (s7 pn))

LS3

@ s3

q : LS(gc)

RET@ s14

LZ1

RET
q : ALZ(g p c)

@ s15

LZ1

RET
q : ELZ(g p c)

LS3

(s1) @ db1

q : S(gc pn cr)

RET

Figure A.13: Query Plan P1a1a1-v2

98

q(gc pn cr g c) :- LS(gc pn cr) ^ LZ(g p c) ^ cr = c

q : (s4(s4.gc s4.pn s4.cr) v s5(s5.gc s5.pn s5.cr)) ^ s4-5.cr = s14-15.c ^
 (s14(s14.gc s14.pn s14.cr) v s15(s15.gc s15.pn s15.cr))
sq1 : s4(s4.gc s4.pn s4.cr) v s5(s5.gc s5.pn s5.cr)

sq2 : (s14(s14.gc s14.pn s14.cr) v s15(s15.gc s15.pn s15.cr))

s4-5.cr = s14-15.c

(^ (s14 ?s14)
 (s14.g ?s14 ?g)
 (s14.p ?s14 ?p)
 (s14.c ?s14 ?c))

(^ (s4 ?s4)
 (s4.gc ?s4 ?gc)
 (s4.pn ?s4 ?pn)
 (s4.cr ?s4 ?cr))

(^ (s5 ?s5)
 (s5.gc ?s5 ?gc)
 (s5.pn ?s5 ?pn)
 (s5.cr ?s5 ?cr))

(^ (s15 ?s15)
 (s15.g ?s15 ?g)
 (s15.p ?s15 ?p)
 (s15.c ?s15 ?c))

U
q : s4(s4.gc s4.pn s4.cr) v s5(s5.gc s5.pn s5.cr)

sq1 : s5(s5.gc s5.pn s5.cr)

sq2 : s5(s5.gc s5.pn s5.cr)
U

q : s14(s14.gc s14.pn s14.cr) v
 s15(s51.gc s15.pn s15.cr)
sq1 : s14(s14.gc s14.pn s14.cr)

sq2 : s15(s51.gc s15.pn s15.cr)

Q

LS1

LS1
LS1 LZ1LZ1

LZ1

RET RET RET RET

SL 1
q(gc pn cr g c) :- (s4(s4.gc s4.pn s4.cr) v s5(s5.gc s5.pn s5.cr)) ^ s4-5.cr = s14-15.c ^

 (s14(s14.gc s14.pn s14.cr) v s15(s15.gc s15.pn s15.cr))

Q = LS1 , LZ1

Figure A.14: Query Plan Psl1

q(gc pn cr g c) :- LS(gc pn cr) ^ LZ(g p c) ^ cr = c

q : (s1(s1.gc s1.pn s1.cr) ^ s1.pn = s7.pn ^ s7(s7.pn)) ^ s4-5.cr = s14-15.c ^
 (s14(s14.gc s14.pn s14.cr) v s15(s15.gc s15.pn s15.cr))
sq1 : s1(s1.gc s1.pn s1.cr) ^ s7(s7.pn) ^ s1.pn = s7.pn

sq2 : (s14(s14.gc s14.pn s14.cr) v s15(s15.gc s15.pn s15.cr))

s4-5.cr = s14-15.c

(^ (s14 ?s14)
 (s14.g ?s14 ?g)
 (s14.p ?s14 ?p)
 (s14.c ?s14 ?c))

(^ (s15 ?s15)
 (s15.g ?s15 ?g)
 (s15.p ?s15 ?p)
 (s15.c ?s15 ?c))

U
q : s14(s14.gc s14.pn s14.cr) v
 s15(s51.gc s15.pn s15.cr)
sq1 : s14(s14.gc s14.pn s14.cr)

sq2 : s15(s51.gc s15.pn s15.cr)

Q

LZ1

LZ1

RET RET

SL 1a
q(gc pn cr g c) :- (s1(s1.gc s1.pn s1.cr) ^ s1.pn = s7.pn ^ s7(s7.pn)) ^ s4-5.cr = s14-15.c ^

 (s14(s14.gc s14.pn s14.cr) v s15(s15.gc s15.pn s15.cr))

Q = LS5 , LZ1

Swap-axiom LS1 > LS5

q : s1(s1.gc s1.pn s1.cr) ^ s7(s7.pn) ^ s1.pn = s7.pn

sq1 : s1(s1.gc s1.pn s1.cr)

sq2 : s7(s7.pn)

LS5

LS5

(^ (s1 ?s1)
 (s1.gc ?s1 ?gc)
 (s1.pn ?s1 ?pn)
 (s1.cr ?s1 ?cr))

q : s1(s1.gc s1.pn s1.cr)

RET

s1.pn = s7.pn

LS5

RET
q : s7(s7.pn)

(^ (s7 ?s7)
 (s7.pn ?s7 ?pn7))

Figure A.15: Query Plan Psl1a

99

Reference List

[Aarts and Lenstra, 1997] Emile Aarts and Jan Karel Lenstra. Local Search in Combinatorial
Optimization. John Wiley and Sons, Chichester, England, 1997.

[Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[Adali et al., 1996] Sibel Adali, Kasim Selcuk Candan, Yannis Papkonstantinou, and V. S. Sub-
rahmanian. Query caching and optimization in distributed mediator systems. SIGMOD Record
(ACM Special Interest Group on Management of Data), 25(2):137–148, June 1996.

[Aho et al., 1986] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[Ambite and Knoblock, 1997] José Luis Ambite and Craig A. Knoblock. Planning by rewriting:
Efficiently generating high-quality plans. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence, pages 706–713, Providence, RI, 1997.

[Ambite et al., 1998] José Luis Ambite, Craig A. Knoblock, Ion Muslea, and Andrew Philpot.
Compiling source descriptions for efficient and flexible information integration. Submitted, 1998.

[Arens et al., 1996] Yigal Arens, Craig A. Knoblock, and Wei-Min Shen. Query reformulation for
dynamic information integration. Journal of Intelligent Information Systems, Special Issue on
Intelligent Information Integration, 6(2/3):99–130, 1996.

[Ashish et al., 1997] Naveen Ashish, Craig A. Knoblock, and Alon Levy. Information gathering
plans with sensing actions. In Sam Steel and Rachid Alami, editors, Recent Advances in AI
Planning: 4th European Conference on Planning, ECP’97. Springer-Verlag, New York, 1997.

[Avenhaus and Madlener, 1990] Juergen Avenhaus and Klaus Madlener. Term rewriting and equa-
tional reasoning. In Formal Techniques in Artificial Intelligence, pages 1–43. Elsevier, North
Holland, 1990.

[Baader and Nipkow, 1998] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[Bacchus and Kabanza, 1995] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to
control search in a forward chaining planner. In Proceedings of the 3rd European Workshop on
Planning, 1995.

[Bäckström and Nebel, 1995] Christer Bäckström and Bernhard Nebel. Complexity results for
SAS+ planning. Computational Intelligence, 11(4):625–655, 1995.

[Bäckström, 1994a] Christer Bäckström. Executing parallel plans faster by adding actions. In
A. G. Cohn, editor, Proceedings of the Eleventh European Conference on Artificial Intelligence,
pages 615–619, Amsterdam, Netherlands, August 1994. John Wiley and Sons.

100

[Bäckström, 1994b] Christer Bäckström. Finding least constrained plans and optimal parallel exe-
cutions is harder that we thought. In C. Bäckström and E. Sandewell, editors, Current Trends in
AI Planning: Proceedings of the 2nd European Workshop on Planning (EWSP-93), pages 46–59,
Vadstena, Sweeden, December 1994. IOS Press (Amsterdam).

[Blum and Furst, 1995] Avrim L. Blum and Merrick L. Furst. Fast planning through planning
graph analysis. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, Montreal, Canada, 1995.

[Bonet et al., 1997] Blai Bonet, Gábor Loerincs, and Héctor Geffner. A robust and fast action
selection mechanism for planning. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence, pages 714–719, Providence, RI, 1997.

[Bylander, 1994] Tom Bylander. The computation complexity of propositional strips. Artificial
Intelligence, 69(1-2):165–204, 1994.

[Carbonell et al., 1991] Jaime G. Carbonell, Craig A. Knoblock, and Steven Minton. PRODIGY:
An integrated architecture for planning and learning. In Kurt VanLehn, editor, Architectures
for Intelligence, pages 241–278. Lawrence Erlbaum, Hillsdale, NJ, 1991.

[Cherniack and Zdonik, 1996] Mitch Cherniack and Stanley B. Zdonik. Rule languages and in-
ternal algebras for rule-based optimizers. SIGMOD Record (ACM Special Interest Group on
Management of Data), 25(2):401–412, June 1996.

[Cherniack and Zdonik, 1998] Mitch Cherniack and Stanley B. Zdonik. Changing the rules: Trans-
formations for rule-based optimizers. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pages 61–72, Seattle, WA, 1998.

[Chu and Hurley, 1982] Wesley W. Chu and Paul Hurley. Optimal query processing for distributed
database systems. IEEE Transactions on Computers, 31(9):835–850, September 1982.

[Cole and Graefe, 1994] Richard L. Cole and Goetz Graefe. Optimization of dynamic query evalu-
ation plans. SIGMOD Record (ACM Special Interest Group on Management of Data), 23(2):150–
160, June 1994.

[Dean and Boddy, 1988] Tom Dean and Mark Boddy. An analysis of time-dependent planning.
In Proceedings of the Seventh National Conference on Artificial Intelligence, pages 49–54, Saint
Paul, MN, 1988.

[Dorr, 1995] Heiko Dorr. Efficient graph rewriting and its implementation, volume 922 of Lecture
Notes in Computer Science. Springer-Verlag Inc., New York, NY, USA, 1995.

[Duschka and Genesereth, 1997] Oliver M. Duschka and Michael R. Genesereth. Answering re-
cursive queries using views. In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, Tucson, Arizona, May 1997.

[Duschka, 1997] Oliver M. Duschka. Query Planning and Optimization in Information Integration.
PhD thesis, Stanford University, 1997.

[Erol et al., 1994] Kutluhan Erol, Dana Nau, and James Hendler. UMCP: A sound and complete
planning procedure for hierarchical task-network planning. In Proceedings of the Second Inter-
national Conference on Artificial Intelligence Planning Systems, pages 249–254, Chicago, IL,
1994.

[Erol et al., 1995] Kutluhan Erol, Dana Nau, and V. S. Subrahmanian. Decidability and undecid-
ability results for domain-independent planning. Artificial Intelligence, 76(1-2):75–88, 1995.

101

[Etzioni, 1993] Oren Etzioni. Acquiring search-control knowledge via static analysis. Artificial
Intelligence, 62(2):255–302, 1993.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial Intelligence, 2(3/4):189–208, 1971.

[Forgy, 1982] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19:17–37, 1982.

[Foulser et al., 1992] David E. Foulser, Ming Li, and Qiang Yang. Theory and algorithms for plan
merging. Artificial Intelligence, 57(2–3):143–182, 1992.

[Gomes et al., 1998] Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial
search through randomization. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, Madison, WI, 1998.

[Graefe and DeWitt, 1987] Goetz Graefe and David J. DeWitt. The EXODUS optimizer genera-
tor. In Proceedings of the ACM SIGMOD International Conference on Management of Data,
San Francisco, California, 1987.

[Graefe and McKenna, 1993] G. Graefe and W. J. McKenna. The volcano optimizer generator:
Extensibility and efficient search. In Proceedings IEEE International Conference on Data Engi-
neering., pages 209–218, Vienna, Austria, April 1993.

[Graefe and Ward, 1989] Goetz Graefe and Karen Ward. Dynamic query optimization plans. ACM
SIGMOD RECORD, 18(2), June 1989. Also published in/as: 19 ACM SIGMOD Conf. on the
Management of Data, (Portland OR), May.-Jun.1989.

[Graefe et al., 1994] Goetz Graefe, Richard L. Cole, Diane L. Davison, William J. McKenna, and
Richard H. Wolniewicz. Extensible query optimization and parallel execution in volcano. In J. C.
Freytag, G. Vossen and D. Maier, editor, Query Processing for Advanced Database Applications,
pages 305–381. Morgan Kaufmann, San Francisco, California, 1994.

[Graefe, 1993] Goetz Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys, 25(2):73–170, 1993.

[Gupta and Nau, 1992] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world plan-
ning. Artificial Intelligence, 56(2–3):223–254, 1992.

[Haas et al., 1989] Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman, and Hamid Pira-
hesh. Extensible query processing in Starburst. In James Clifford, Bruce G. Lindsay, and David
Maier, editors, Proceedings of the 1989 ACM SIGMOD International Conference on Manage-
ment of Data, Portland, Oregon, May 31 - June 2, 1989, pages 377–388. ACM Press, June
1989.

[Haas et al., 1997] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Op-
timizing queries across diverse data sources. In Proceedings of the Twenty-third International
Conference on Very Large Data Bases, pages 276–285, Athens, Greece, 1997.

[Hammer et al., 1995] Joachim Hammer, Hector Garcia-Molina, Kelly Ireland, Yannis Papakon-
stantinou, Jeffrey Ullman, and Jennifer Widom. Information translation, mediation, and mosaic-
based browsing in the TSIMMIS system. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, page 483, San Jose, California, 1995.

[Hanks and Weld, 1995] Steven Hanks and Daniel S. Weld. A domain-independent algorithm for
plan adaptation. Journal of Artificicial Intelligence Research, 2:319–360, 1995.

102

[Ioannidis and Christodoulakis, 1991] Yannis E. Ioannidis and Stavros Christodoulakis. On the
propagation of errors in the size of join results. SIGMOD Record (ACM Special Interest Group
on Management of Data), 20(2):268–277, June 1991.

[Ioannidis and Kang, 1990] Yannis Ioannidis and Younkyung Cha Kang. Randomized algorithms
for optimizing large join queries. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 312–321, Atlantic City, NJ, May 1990.

[Jarke and Koch, 1984] Matthias Jarke and Jurgen Koch. Query optimization in database systems.
ACM Computing Surveys, 16(2):111–152, 1984.

[Johnson, 1990] David S. Johnson. Local optimization and the traveling salesman problem. In
M. S. Paterson, editor, Automata, Languages and Programming: Proc. of the 17th International
Colloquium, pages 446–461. Springer, New York, 1990.

[Kambhampati et al., 1995] Subbarao Kambhampati, Craig A. Knoblock, and Qiang Yang. Plan-
ning as refinement search: A unified framework for evaluating the design tradeoffs in partial
order planning. Artificial Intelligence, 76(1-2):167–238, 1995.

[Kambhampati, 1992] Subbarao Kambhampati. A validation-structure-based theory of plan mod-
ification and reuse. Artificial Intelligence, 55(2-3):193–258, 1992.

[Kautz and Selman, 1992] H. Kautz and B. Selman. Planning as satisfiability. In Bernd Neumann,
editor, Proceedings of the 10th European Conference on Artificial Intelligence, pages 359–363,
Vienna, Austria, August 1992. John Wiley & Sons.

[Kautz and Selman, 1996] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propo-
sitional logic, and stochastic search. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 1194–1201, Portland, OR, 1996.

[Knoblock and Ambite, 1997] Craig A. Knoblock and José Luis Ambite. Agents for information
gathering. In J. Bradshaw, editor, Software Agents. AAAI/MIT Press, Menlo Park, CA, 1997.

[Knoblock et al., 1998] Craig A. Knoblock, Steven Minton, José Luis Ambite, Naveen Ashish,
Pragnesh Jay Modi, Ion Muslea, Andrew G. Philpot, and Sheila Tejada. Modeling web sources
for information integration. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pages 211–218, Madison, WI, 1998.

[Knoblock, 1994a] Craig A. Knoblock. Automatically generating abstractions for planning. Arti-
ficial Intelligence, 68(2):243–302, 1994.

[Knoblock, 1994b] Craig A. Knoblock. Generating parallel execution plans with a partial-order
planner. In Proceedings of the Second International Conference on Artificial Intelligence Plan-
ning Systems, Chicago, IL, 1994.

[Knoblock, 1995] Craig A. Knoblock. Planning, executing, sensing, and replanning for informa-
tion gathering. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, Montreal, Canada, 1995.

[Knoblock, 1996] Craig A. Knoblock. Building a planner for information gathering: A report from
the trenches. In Proceedings of the Third International Conference on Artificial Intelligence
Planning Systems, Edinburgh, Scotland, 1996.

[Koehler et al., 1997] Jana Koehler, Bernard Nebel, Jörg Hoffman, and Yannis Dimopoulos. Ex-
tending planning graphs to an ADL subset. In Sam Steel and Rachid Alami, editors, Proceedings
of the Fourth European Conference on Planning (ECP-97): Recent Advances in AI Planning,
volume 1348 of LNAI, pages 273–285, Berlin, September24 –26 1997. Springer.

103

[Koehler, 1998] Jana Koehler. Solving complex planning tasks through extraction of subproblems.
In Reid Simmons, Manuela Veloso, and Stephen Smith, editors, Proceedings of the Fourth Inter-
national Conference on Artificial Intelligence Planning Systems, pages 62–69, Pittsburgh, PA,
June7 –10 1998.

[Kushmerick, 1997] Nicholas Kushmerick. Wrapper Induction for Information Extraction. PhD
thesis, Department of Computer Science and Engineering, University of Washington, 1997.

[Kwok and Weld, 1996] Chung T. Kwok and Daniel S. Weld. Planning to gather information.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence, pages 32–39,
Portland, OR, 1996.

[Levy et al., 1995] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava.
Answering queries using views. In Proceedings of the 14th ACM Symposium on Principles of
Database Systems, pages 95–104, San Jose, California, 1995.

[Levy et al., 1996a] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query-answering
algorithms for information agents. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence, pages 40–47, Portland, OR, 1996.

[Levy et al., 1996b] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying hetero-
geneous information sources using source descriptions. In Proceedings of 22th International
Conference on Very Large Data Bases, pages 251–262, Bombay, India, 1996.

[MacGregor, 1988] Robert MacGregor. A deductive pattern matcher. In Proceedings of the Seventh
National Conference on Artificial Intelligence, Saint Paul, MN, 1988.

[Mannino et al., 1988] Michael V. Mannino, Paicheng Chu, and Thomas Sager. Statistical profile
estimation in database systems. ACM Computing Surveys, 20(3):191–221, 1988.

[Minton et al., 1990] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird.
Solving large-scale constraint satisfaction and scheduling problems using a heuristic repair
method. In Proceedings of the Eighth National Conference on Artificial Intelligence, pages 17–24,
Boston, MA, 1990.

[Minton, 1988a] Steven Minton. Learning Effective Search Control Knowledge: An Explanation-
Based Approach. PhD thesis, Computer Science Department, Carnegie Mellon University, 1988.

[Minton, 1988b] Steven Minton. Learning Search Control Knowledge: An Explanation-Based Ap-
proach. Kluwer, Boston, MA, 1988.

[Minton, 1990] Steven Minton. Quantitative results concerning the utility of explanation-based
learning. Artificial Intelligence, 42(2-3):363–392, 1990.

[Minton, 1992] Steven Minton. Minimizing conflicts: A heuristic repair method for constraint-
satisfaction and scheduling problems. Artificial Intelligence, 58(1-3):161–205, 1992.

[Minton, 1996] Steven Minton. Automatically configuring constraint satisfaction programs: A case
study. Constraints, 1(1):7–43, 1996.

[Muñoz-Avila, 1998] Hector Muñoz-Avila. Integrating Twofold Case Retrieval and Complete De-
cision Replay in CAPlan/CbC. PhD thesis, University of Kaiserslautern, 1998.

[Muslea et al., 1998] Ion Muslea, Steven Minton, and Craig A. Knoblock. Wrapper induction for
semistructured, web-based information sources. In Proceedings of the Conference on Automated
Learning and Discovery Workshop on Learning from Text and the Web, Pittsburgh, PA, 1998.

104

[Nau et al., 1995] Dana S. Nau, Satyandra K. Gupta, and William C. Regli. AI planning versus
manufacturing-operation planning: A case study. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, Montreal, Canada, 1995.

[Nebel and Koehler, 1995] Bernhard Nebel and Jana Koehler. Plan reuse versus plan generation:
A theoretical and empirical analysis. Artificial Intelligence, 76((1-2)):427–454, 1995.

[Papadimitriou and Steiglitz, 1977] Christos H. Papadimitriou and Kenneth Steiglitz. On the com-
plexity of local search for the traveling salesman problem. SIAM, 6(1):76–83, March 1977.

[Papadimitriou and Steiglitz, 1982] Christos H. Papadimitriou and Kenneth Steiglitz. Combina-
torial Optimization: Algorithms and Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982.

[Penberthy and Weld, 1992] J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete,
partial order planner for ADL. In Third International Conference on Principles of Knowledge
Representation and Reasoning, pages 189–197, Cambridge, MA, 1992.

[Pérez, 1996] M. Alicia Pérez. Representing and learning quality-improving search control knowl-
edge. In Proceedings of the Thirteenth International Conference on Machine Learning, Bari,
Italy, 1996.

[Pirahesh et al., 1992] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. Extensible/rule
based query rewrite optimization in starburst. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, San Diego, California, June 1992.

[Ratner and Pohl, 1986] Daniel Ratner and Ira Pohl. Joint and LPA*: Combination of approxi-
mation and search. In Proceedings of the Fifth National Conference on Artificial Intelligence,
Philadelphia, PA, 1986.

[Roth and Schwarz, 1997] Mary Tork Roth and Peter Schwarz. Don’t scrap it, wrap it! A wrapper
architecture for legacy data sources. In Proceedings of the Twenty-third International Conference
on Very Large Data Bases, pages 266–275, Athens, Greece, 1997.

[Russell and Norvig, 1995] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 1995.

[Savage et al., 1976] Sam Savage, Peter Weiner, and A. Bagchi. Neighborhood search algorithms
for guaranteeing optimal traveling salesman tours must be inefficient. Journal of Computer and
System Sciences, 12(1):25–35, February 1976.

[Schürr, 1990] Andy Schürr. Introduction to PROGRES, an attribute graph grammar based spec-
ification language. In M. Nagl, editor, Graph-Theoretic Concepts in Computer Science, volume
411 of Lecture Notes in Computer Science, pages 151–165, 1990.

[Schürr, 1996a] Andy Schürr. Programmed Graph Replacement Systems. World Scientific, 1996.

[Schürr, 1996b] Andy Schürr. Programmed graph transformations and graph transformation units
in GRACE. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, Proc. Fifth Intl.
Workshop on Graph Grammars and Their Application to Comp. Sci., volume 1073 of Lecture
Notes in Computer Science, pages 122–136. Springer, 1996.

[Selman et al., 1992] Bart Selman, Hector Levesque, and David Mitchell. A new method for solv-
ing hard satisfiability problems. In Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI-92), pages 440–446, San Jose, California, July 1992. AAAI Press.

[Silberschatz et al., 1997] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database
System Concepts. McGraw-Hill, third edition, 1997.

105

[Simon, 1969] Herbert Simon. The sciences of the artificial. MIT Press, 1969.

[Slaney and Thiébaux, 1996] John Slaney and Sylvie Thiébaux. Linear time near-optimal plan-
ning in the blocks world. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference, pages
1208–1214, Menlo Park, August 1996. AAAI Press / MIT Press.

[Swami and Gupta, 1988] Arun Swami and Anoop Gupta. Optimization of large join queries.
SIGMOD Record (ACM Special Interest Group on Management of Data), 17(3):8–17, September
1988.

[Swami, 1989] Arun Swami. Optimization of large join queries: Combining heuristic and combi-
natorial techniques. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 367–376, Portland, Oregon, May 1989.

[Tate, 1977] Austin Tate. Generating project networks. In Proceedings of the Fifth International
Joint Conference on Artificial Intelligence, pages 888–893, Cambridge, MA, 1977.

[Tork Roth et al., 1996] Mary Tork Roth, Manish Arya, Laura M. Haas, Michael J. Carey, William
Cody, Ron Fagin, Peter M. Schwarz, John Thomas, and Edward L. Wimmers. The Garlic
project. SIGMOD Record (ACM Special Interest Group on Management of Data), 25(2):557–
558, 1996.

[Ullman, 1997] Jeffrey D. Ullman. Information integration using logical views. In Proceedings of
the Sixth International Conference on Database Theory, pages 19–40, Delphi, Greece, January
1997.

[Veloso et al., 1990] Manuela M. Veloso, M. Alicia Perez, and Jaime G. Carbonell. Nonlinear plan-
ning with parallel resource allocation. In Proceedings of the Workshop on Innovative Approaches
to Planning, Scheduling and Control, pages 207–212, San Diego, CA, 1990.

[Veloso, 1994] Manuela Veloso. Planning and Learning by Analogical Reasoning. Springer Verlag,
December 1994.

[Weiner et al., 1973] P. Weiner, S. L. Savage, and A. Bagchi. Neighborhood search algorithms
for finding optimal traveling salesman tours must be inefficient. In Conference Record of Fifth
Annual ACM Symposium on Theory of Computing, pages 207–213, Austin, Texas, 30 April–2
May 1973.

[Yan and Larson, 1994] Weipeng P. Yan and Per-Åke Larson. Performing group-by before join.
In Ahmed K. Elmagarmid and Erich Neuhold, editors, Proceedings of the 10th International
Conference on Data Engineering, pages 89–101, Houston, TX, February 1994. IEEE Computer
Society Press.

[Yan and Larson, 1995] Weipeng P. Yan and Per-Åke Larson. Eager aggregation and lazy ag-
gregation. In Dennis McLeod, Ron Sacks-Davis, and Hans Schek, editors, Proceedings of 21th
International Conference on Very Large Data Bases, Zurich, Switzerland, 1995.

[Yu and Chang, 1984] C.T. Yu and C.C. Chang. Distributed query processing. ACM Computing
Surveys, 16(4):399–433, 1984.

[Zweben et al., 1994] Monte Zweben, Brian Daun, and Michael Deale. Scheduling and rescheduling
with iterative repair. In Intelligent Scheduling, pages 241–255. Morgan Kaufman, San Mateo,
CA, 1994.

106

