
                          Gough, E., Conn, A. T., & Rossiter, J. (2021). Planning for a Tight
Squeeze: Navigation of Morphing Soft Robots in Congested
Environments. IEEE Robotics and Automation Letters, 6(3), 4752-
4757. https://doi.org/10.1109/LRA.2021.3067594

Peer reviewed version

Link to published version (if available):
10.1109/LRA.2021.3067594

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/9382069 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1109/LRA.2021.3067594
https://doi.org/10.1109/LRA.2021.3067594
https://research-information.bris.ac.uk/en/publications/6f231000-4878-459a-83c2-7d2cdfbb68a3
https://research-information.bris.ac.uk/en/publications/6f231000-4878-459a-83c2-7d2cdfbb68a3


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021 1

Planning for a Tight Squeeze:

Navigation of Morphing Soft Robots in Congested

Environments
Edward Gough1, Andrew T. Conn2 and Jonathan Rossiter3

Abstract—Autonomous navigation methods can prevent robots
becoming trapped between obstacles and ensure that they take
the most efficient route. As mobile robots have a limited power
supply, selecting the most efficient route is crucial. This paper
presents a path-planning method for morphing soft robots in
congested environments. The proposed method is suitable for all
scales of robots and environments, from intra-organ biomedical
navigation to search-and-rescue operations in cave networks. The
method utilizes 3D Voronoi diagrams and Dijkstra’s algorithm
to calculate an optimal path that balances cost between the
size and shape change of the robot and the length of the path.
The Voronoi method is particularly suitable for circumferentially
expanding robots because the waypoints generated lay where
a device with a circular cross-section would naturally sit. The
method is demonstrated by simulation in procedurally generated
environments with either spherical or continuous obstacles to
illustrate the effectiveness of the method for in-situ planning and
as an aid to design. This paper provides a generic approach
that has the potential to be easily adapted for many applications
across healthcare, industry and space exploration.

Index Terms—Modeling, Control, and Learning for Soft
Robots, Motion and Path Planning

I. INTRODUCTION

S
OFT robots are able to deform around structures that

would trap a traditional rigid robot, making accessing con-

fined and congested environments one of their key applications

[1]. The broad range of applications for soft robots [2] has led

to a variety of forms and locomotion modes being developed

[3]–[6]. Despite this aptitude, path-planning methods designed

for morphing soft robots have received little attention. Many

soft robots can be controlled directly and exploit adaptive

gaits for their specific form of locomotion [7], [8]. However,

bespoke path-planning for these robots remains absent.
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Fig. 1: Example path through congested environment of tubes

and discrete spherical objects. The color scale highlights the

change in localized robot diameter as a percentage of the

enclosure diameter.

This work is focused on a generic navigation method for

worm-like soft robots in congested pipework, cave networks

or intra-organ spaces [9]. Many of these robots utilise a

change in shape and size, passively or actively, to allow

them to access confined environments. However, untethered

devices will often need to contain pumps, a power supply

and other potentially inflexible components, meaning that their

range of morphing and adaptability is limited. Modes such as

peristaltic locomotion that rely on gripping surroundings will

also be limited by the elastic limit of inflating components. To

effectively plan within these limitations, the planning method

must take into account the maximum and minimum sizes that

the robot can take. We present a novel method to plan a

locomotion trajectory for an arbitrary morphing soft robot.

Often, robots are designed for a specific environment that
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will contain a predictable set of obstacles that fall within a

range of sizes and shapes. Our proposed method also serves

as a useful design tool for making an informed decision on

how to design a soft robot based on the intended environment.

The proposed method applies Voronoi diagrams and graph

search algorithms to the navigation of mobile robots. Prior

works using related approaches include using single points to

represent obstacles [10] or applying a bounding box around

obstacles [11], but do not consider the unique properties of

morphing soft robots. In this paper we significantly expand

this representation to model obstacles as a detailed point cloud

through which a soft robot can navigate.

Voronoi partitioning is a fundamental geometric data struc-

ture [12] and a well-known method of representing an environ-

ment for collision avoidance and roadmap planning methods

because the edges of a Voronoi diagram provide maximum

clearance from a set of obstacles [13]. In this work, the vertices

of the Voronoi edges will act as the centerpoints for a series

of spheres that represent a worm-like robot. The application

of the Voronoi planning method for mobile robots typically

involves sampling the environment or using other methods

to generate a point cloud. A 3D Voronoi diagram is then

constructed and a graph search algorithm is applied to find the

optimal path between given start and end points [14]. The cost

of a path is typically defined solely by its length. In this paper,

the total change in the robot’s size is an additional factor used

in calculating the cost, thereby including a measure of work

done, which can be a better indication of the most efficient

route.

In section II the Voronoi-based method of generating way-

points is introduced, followed by a description of the graph

search path-planning algorithm used. In section III we discuss

the effects of different environmental parameters on the path

generated, and in section IV the effects of various parameters

for tailoring a path are discussed. The work concludes with

a discussion of the merits and limitations of the proposed

method, including avenues for future work.

II. METHOD OVERVIEW

We first acquire a 3D point cloud of the environment. In

practice, this may be achieved via external mapping tech-

nology or on-board sensors such as vision systems, LIDAR

or ultrasound [15], but in this study will be assumed to be

known a priori using simulated enclosures to demonstrate the

application of the method presented. Before a path can be

calculated, a discrete set of coordinates to be considered by

the path-planning algorithm is prepared; these coordinates are

referred to as waypoints. The worm-like robot is represented

by a series of spheres at each waypoint. The process of

generating and preparing waypoints from the point cloud is

summarized by Algorithm 1.

A. Enclosure generation

The internal structure of each cylindrical enclosure is ran-

domly generated to account for a wide range of possible

arrangements of obstacles. The nature of the enclosure is

tailored by specifying parameters for the number and shape

of obstacles, upper and lower bounds for their size and the

separation between obstacles. Each enclosure is constructed

by generating a set of random candidate obstacle coordinates

within the enclosure and radii within the specified range.

Candidate points are considered sequentially and added to the

enclosure as obstacles if they do or do not pass outside of

the enclosure, subject to the type of obstacle being modeled.

Obstacles must also satisfy the separation criterion by being

no closer than the lower bound, SL, to any other obstacle and

no further from the closest obstacle than the upper bound, SU .

The separation parameters, SL and SU , allow for a number of

clusters of overlapping obstacles to be formed. For example,

Fig. 2a shows two clusters, formed by specifying SU = ∞ and

a high SL for the initial two obstacles that form the base for

each cluster, then SU = 0 and a negative SL for the remaining

obstacles, causing them to overlap. Fig. 1 shows the two types

of obstacles used in this paper, namely floating spheres and

continuous, twisted cylinders, although other obstacles can be

used, as shown in Fig. 2b. The spheres are generated in a

3D space, whereas the cylinders are generated as a 2D cross-

section that can then be rotated or otherwise manipulated to

create extruded shapes throughout the length of the enclosure.

B. Waypoint generation

The set of vertices of the Voronoi diagram, or Voronoi

vertices, VV , are used as waypoints. The Voronoi diagram

divides a 2D or 3D set of seed points into cells, the vertices

of which are equidistant to the neighboring points. By lining

the surface of an obstacle with seeds, the resulting Voronoi

vertices form channels between the obstacles. Fig. 2a and

Fig. 2b show the Voronoi cells and channels formed by VV .

The channels in Fig. 2b can be observed within concave

features of an obstacle, creating sufficient paths to explore

the enclosure thoroughly. Resembling their inspiration, worm-

like soft robots usually have a circular cross section. These

channels therefore form the natural position that the centreline

of a soft robot would take when inflated to fill a given space. At

each waypoint, the maximum radius of the robot, R, is equal

to the Euclidean distance to the closest obstacle vertex, VO,

or the enclosure boundary vertex, VE . To deliver a uniform
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(a)

(b)

Fig. 2: Examples of 2D enclosures showing largest fitting

circle in black with (a) two clusters of red circular obstacles

formed by adjusting the separation parameters for SL and

SU , and also showing all Voronoi cells, and (b) non-circular

obstacles, showing only Voronoi channels.

distribution of Voronoi points around obstacles, VE and VO

should also be uniformly distributed across their respective

surfaces. To achieve this, spherical obstacles are represented

as icospheres with a number of vertices proportional to their

radius, and continuous obstacles are given a similarly uniform

surface mesh.

C. Graph search path-planning algorithm

From VV , paths are defined in 3D space using Dijkstra’s

shortest path algorithm [16]. Dijkstra’s algorithm was chosen

as it is easily implemented, although other node-based optimal

algorithms such as A* could also be used [14]. Dijkstra’s

algorithm is a breadth-first search method that finds the

optimal path - the path with the lowest cost - by expanding

from the start point to adjacent vertices and calculating the

cost to reach each vertex until the end point has been reached.

In general, a graph is denoted G(V,K), where V is a set

of vertices and K is a set of edges, uv, connecting adjacent

vertices u ∈ V and v ∈ V . The edge list, K, can be generated

from a Delaunay triangulation of V , which creates a triangular

mesh between all adjacent vertices [17].

Generating the edge list from VV alone could result in paths

that pass directly through obstacles, therefore VE and VO

are also included. The Delaunay triangulation of VA, where

VA = {VV ∪ VE ∪ VO}, produces the initial edge list, K. K

is modified so that any edge including a vertex from VE or

VO is excluded, giving adjacent pairs for only VV that do not

pass through any obstacles. A potential limitation in using a

Voronoi diagram to generate waypoints is that the density of

VV is driven by the density of VO and VE . Having too low

a density of VV can result in an edge for which the distance

between the two points d(u, v) > R(u) + R(v) and hence

point v could be unreachable if there is a closure between the

two points that is smaller than the minimum size of the robot.

Conversely having too high a density leads to unnecessarily

expensive computation. To ensure that the robot can ‘reach’

an adjacent vertex, regardless of the density of VO and VE ,

bisecting points between u and v can be added to VV when

the distance between vertices d(u, v) > R(u)+R(v), and both

R(u) and R(v) > Rmin, the minimum size of the robot. R is

extended to include radii for any new points and the Delaunay

triangulation is repeated until no new points are added. Note

that this does not negate the effect of a low input-point density

on error in R (see discussion section). After any points have

been added, a final modification is made that excludes edges

that connect to a point with R outside the defined size range

for the robot, so that R = [Rmin, Rmax].
In Dijkstra’s algorithm, the cost to move between adjacent

verticies, u and v, is given by the cost matrix C(u, v), where

C ∈ R
n×n and n = |VV |. In this paper, the total cost matrix

(1) is calculated by the weighted sum of the distance between

vertices and the change in radius. A cost matrix is calculated

for each factor then normalized to the interval [0, 1] so that

they influence the path proportionately.

C = wdCd + wrCr (1)

Where Cr is the radius cost matrix and Cd is the distance cost

matrix. wd is the weight of distance and wr is the weight of

change in R. The separate costs of a path starting at v1 and

finishing at vk are defined by (2) and (3).

r(v1, vk) =
k∑

i=2

Cr(vi−1, vi) (2)

d(v1, vk) =
k∑

i=2

Cd(vi−1, vi) (3)

Where r and d are the radius cost and distance cost of a path,

respectively. The choice of end points depends on the goal of

the robot. If its purpose is to explore a space for maximum

coverage or to progress in a general direction, multiple possi-

ble end points can be selected and the lowest cost path chosen

from the multiple paths generated. Alternatively, there may be

a specific location that the robot should reach, in which case

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/LRA.2021.3067594

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

only that single point would be chosen. For tests with a single

start and end point, these are waypoints with R closest to the

midpoint of Rmin and Rmax, as this would mimic where the

robot would most likely be if it was part way through a larger

environment. This selection can have a significant impact on

the success of generating a path and should be tailored for

any given robot. For tests with multiple possible end points,

the method of selecting a start point is unchanged, but the end

points are randomly selected from vertices towards the end of

the enclosure. In these tests, 100 possible end points are chosen

as it was found that, beyond this number, paths would tend

to wind around the vertices at the end of the enclosure rather

than finding new routes through the bulk of the enclosure.

III. INFLUENCE OF ENCLOSURE GENERATION

PARAMETERS

The influence of the enclosure generation parameters are ex-

plored individually, while keeping other parameters constant.

Fig. 3 shows trends in the distribution of robot radius, R, as

a percentage of enclosure radius, ER. Increasing the size or

quantity of obstacles leads to more waypoints being generated,

therefore the frequency of each value of R is shown as a

percentage of |R| for the sake of comparison. The effect of

having either more obstacles (Fig. 3a) or larger obstacles (Fig.

3b) is to increase the frequency of smaller values of R and

to reduce the overall range of R. This is to be expected as a

more cluttered environment will only permit the passing of a

smaller robot.
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Fig. 3: Histograms of influence of parameter size on distribu-

tion of R as a percentage of ER: (a) number of obstacles and

(b) radius of spherical obstacles relative to ER.

IV. INFLUENCE OF PATH SELECTION CONSTRAINTS

As Rmin and Rmax are increased and decreased respec-

tively, the overall trend in Fig. 4 shows that a narrower range

of sizes leads to fewer successful paths, and the paths that

are possible have a higher distance cost. For this comparison,

a single end point is selected and generation parameters for

enclosures with spherical obstacles and continuous obstacles

are adjusted to have a similar total volume of obstacles.

Comparison of Fig. 4 (b) and (d) shows that the overall trend

is the same for both obstacle types, but the size limits have

a sudden cut-off point for the success rate with continuous
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Fig. 4: The effect of Rmin and Rmax on the (a) cost in envi-

ronment with spherical obstacles, (b) percentage of successful

paths with spherical obstacles, (c) cost with continuous obsta-

cles, and (d) percentage of successful paths with continuous

obstacles.
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Fig. 5: The effect of wr on total cost contributions from the

distance cost, d, and the radius cost, r, for enclosures similar

to Fig. 6c, with wd = 1. The ratio r:d is also shown for clarity.

obstacles. This pattern may be the result of a smoother and less

chaotic environment than one with spheres, which provides

more opportunities to weave between the obstacles. Fig. 5

shows that radius cost of a path, r (2), is inversely proportional

to radius weight, wr, for the chosen path.

Examples of the influence on the shape of a path by radius

weight, wr, distance weight, wd, and size limits of the robot,
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(a) (b)

31 33 35 37

(c)

20 25 30 35

(d)

Fig. 6: Influence of size range on number of available paths with (a) open size range and (b) narrow size range. The start point

is shown as a black marker and the possible end points are shown as blue markers. Influence of cost ratio on cost of path with

(c) wr = 1 and wd = 0, and (d) wr = 0 and wd = 1. The color scale highlights the change in localized robot diameter as a

percentage of the enclosure diameter.

Rmin and Rmax, are shown in Fig. 6, where (a) and (b) use

multiple end points, showing all possible paths, and (c) and

(d) use the same start and single end point. It can be observed

that the open size range in (a) leads to paths branching off

into many more direct paths, whereas the narrow size range

in (b) is limited to a single, winding route through the majority

of the enclosure and the end points within the size range are

more clustered together. Fig. 6 (c) and (d) show that wr and

wd are effective in tailoring a path with a bias for minimizing

change in radius or the length of a path.

V. DISCUSSION AND FUTURE WORK

The Voronoi method employed in this application is rela-

tively robust in that, even with a low input-point density, the

Voronoi channels do not significantly change position, only

resolution. However, the error in robot size from calculating

R based on the single closest point of VE∪VO is dependent on

the input-point density. The error in R is proportional to the

distance between two neighboring points of VO relative to the

curvature of the obstacle. In the case of a convex obstacle, R

will be overestimated and overlap with the obstacle, whereas

a concave shape will cause R to be underestimated. As soft

robots commonly rely on pressure sensors to detect contact

[18], a small error in R will have little impact in practical

applications. However, when using the proposed method to

guide robot design, it is better to underestimate the size of a

gap than to overestimate it.

Since the number of waypoints, |VV |, is proportional to

|VE ∪ VO|, in an empty section of an enclosure the lack of

waypoints would create a path that follows the centerline. This

is a limitation of the method as, in this case, R = ER, if

ER > Rmax then the algorithm would not be able to return a

suitable route. However, a more natural trajectory may be used

by the robot that involves moving along the floor of the empty

enclosure. A solution for making the method more robust in

these cases would be to populate spaces devoid of any VO

or VV with an array of dummy waypoints. Open spaces such

as these could also have a cost associated with gravitational

potential to make the floor of an enclosure more appealing.

Other costs such as the difference between R and the robot’s

neutral size can also be easily added, to better determine an

efficient route in the case that there is a relationship between

size and velocity or work done. A constraint for the maximum

angle between points or an angle cost can be added, however

this would require a different approach using, for example,

a 3D cost matrix. Another avenue of future work in more
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varying environments is to implement dynamically changing

cost weights to suit the local environment.

A limitation of this algorithm is found when planning

to cross a gap between features of the environment. The

method presented assumes that contact with the environment is

maintained at each waypoint along the path, whereas in reality

a large portion of the robot’s body could be supported by fewer

contact points. The algorithm can be altered to include the

length of the robot and a tally of the number of waypoints for

which R > Rmax, that is, where the robot is not in contact

with the environment. In this way gaps can be crossed. When

the tally to reach a particular vertex exceeds a defined limit, the

cost would default to infinity, thus marking it as unreachable.

This modification also makes the algorithm more robust when

applied to robots with a higher elastic modulus by allowing

for a narrower range of expansion without limiting the number

of available paths, as illustrated in Fig. 6b.

The examples in this paper model a relatively small section

of a closed environment with a complete dataset, however

this method is also suitable for a localized set of points

without a finite border. In this case, a meshed convex hull

can be generated around local data points to prevent a path

being generated that would skirt the point cloud through

unknown space. In practice, there is likely to be environmental

uncertainty due to noise or lack of sensory penetration, subject

to the type of 3D scanner(s) being used. To reduce this

uncertainty, depending on the specific environment and robot,

it could be possible to have a coarse route planned ahead

with data collected from sensors outside the environment. On-

board sensors would then deliver a more refined localized map

and route in real-time. A goal for future works is to explore

performance when using an incomplete dataset and to explore

how environmental uncertainty can be reduced.

Regarding time complexity, a large portion of computation

time is taken up by Dijkstra’s algorithm, which runs in time

O(|K| log |VV |) [19]. The remaining time is largely dependent

on Rmin, as this will strongly influence how many times the

bisecting procedure repeats. When Rmin is set to be equal

to the lowest value of R along the calculated path, the time

excluding Dijkstra’s algorithm can be summarized as being

time O(|VV |).
Here we use a series of spheres to represent sections of

the soft worm-like robot. This does not account for passive

deformation as the robot squeezes against its environment.

The robots illustrated here are also assumed to be able to

change volume. Another interesting constraint for this method

would be to account for having a fixed volume, especially in

combination with a tally of the number of secure points. A goal

of future works is to perform proof-of-concept experiments to

determine how material properties and a fixed volume may

influence the optimal path.

VI. CONCLUSION

In this work, a novel method of path planning for soft

robots in congested environments is presented, utilizing 3D

Voronoi diagrams and graph search algorithms. By employing

a cost function that includes the required change in a robot’s

diameter in addition to the distance between two waypoints,

the most efficient route can be calculated. The method shown

is suitable for congested sections of an enclosure and has the

potential to be easily modified to account for more diverse

environments such as crossing large gaps and unobstructed

sections without the need to employ a different planning

method. This work provides the foundation for efficient path

planning for soft morphing robots and their wider application

in industry, healthcare and the exploration of tight spaces.
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