
 Open access Proceedings Article DOI:10.1145/1064979.1064994

Planning for code buffer management in distributed virtual execution environments
— Source link

Shukang Zhou, Bruce R. Childers, Mary Lou Soffa

Institutions: University of Virginia, University of Pittsburgh

Published on: 11 Jun 2005 - Virtual Execution Environments

Topics: Self-modifying code, Code mobility, Remote evaluation, Write buffer and Cache

Related papers:

 Dynamo: a transparent dynamic optimization system

 Retargetable and reconfigurable software dynamic translation

 Secure Execution via Program Shepherding

 Pin: building customized program analysis tools with dynamic instrumentation

 Maintaining Consistency and Bounding Capacity of Software Code Caches

Share this paper:

View more about this paper here: https://typeset.io/papers/planning-for-code-buffer-management-in-distributed-virtual-
4clyo3wzwp

https://typeset.io/
https://www.doi.org/10.1145/1064979.1064994
https://typeset.io/papers/planning-for-code-buffer-management-in-distributed-virtual-4clyo3wzwp
https://typeset.io/authors/shukang-zhou-51t7dia7cl
https://typeset.io/authors/bruce-r-childers-1pdr1hgak5
https://typeset.io/authors/mary-lou-soffa-3nkgxgqqxz
https://typeset.io/institutions/university-of-virginia-281v1o4c
https://typeset.io/institutions/university-of-pittsburgh-28nboreo
https://typeset.io/conferences/virtual-execution-environments-rvkinzu9
https://typeset.io/topics/self-modifying-code-cc55eef0
https://typeset.io/topics/code-mobility-1q2rzxzb
https://typeset.io/topics/remote-evaluation-2b6brr2u
https://typeset.io/topics/write-buffer-14dhj77v
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/papers/dynamo-a-transparent-dynamic-optimization-system-18ljty4tkn
https://typeset.io/papers/retargetable-and-reconfigurable-software-dynamic-translation-51yg7pzovv
https://typeset.io/papers/secure-execution-via-program-shepherding-ft46jdqpu5
https://typeset.io/papers/pin-building-customized-program-analysis-tools-with-dynamic-1cvwqey5sb
https://typeset.io/papers/maintaining-consistency-and-bounding-capacity-of-software-4qrgqqpi5a
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/planning-for-code-buffer-management-in-distributed-virtual-4clyo3wzwp
https://twitter.com/intent/tweet?text=Planning%20for%20code%20buffer%20management%20in%20distributed%20virtual%20execution%20environments&url=https://typeset.io/papers/planning-for-code-buffer-management-in-distributed-virtual-4clyo3wzwp
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/planning-for-code-buffer-management-in-distributed-virtual-4clyo3wzwp
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/planning-for-code-buffer-management-in-distributed-virtual-4clyo3wzwp
https://typeset.io/papers/planning-for-code-buffer-management-in-distributed-virtual-4clyo3wzwp

Planning for Code Buffer Management in Distributed
Virtual Execution Environments

Shukang Zhou
Dept. of Computer Science

Univ. of Virginia
zhou@cs.virginia.edu

Bruce R. Childers
Dept. of Computer Science

Univ. of Pittsburgh
childers@cs.pitt.edu

Mary Lou Soffa
Dept. of Computer Science

Univ. of Virginia
soffa@cs.virginia.edu

ABSTRACT
Virtual execution environments have become increasingly useful in

system implementation, with dynamic translation techniques being

an important component for performance-critical systems. Many

devices have exceptionally tight performance and memory

constraints (e.g., smart cards and sensors in distributed systems),

which require effective resource management. One approach to

manage code memory is to download code partitions on-demand

from a server and to cache the partitions in the

resource-constrained device (client). However, due to the high cost

of downloading code and re-translation, it is critical to

intelligently manage the code buffer to minimize the overhead of

code buffer misses. Yet, intelligent buffer management on the

tightly constrained client can be too expensive. In this paper, we

propose to move code buffer management to the server, where

sophisticated schemes can be employed. We describe two schemes

that use profiling information to direct the client in caching code

partitions. One scheme is designed for workloads with stable

run-time behavior, while the other scheme adapts its decisions for

workloads with unstable behaviors. We evaluate and compare our

schemes and show they perform well, compared to other

approaches, with the adaptive scheme having the best

performance overall.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Memory Management,

Run-Time Environments

General Terms
Design, Experimentation, Performance

Keywords
Distributed Environments, Code Buffer, Dynamic Translation,

Generational Cache, Adaptive Code Cache, Program Partitioning

1. INTRODUCTION

Over the last several years virtual execution environments

(VEE) have been increasingly useful in system implementation. A

VEE can reduce and manage complexity by providing a common

runtime and a self-contained operating environment that facilitates

the programmatic modification of an executing program. In

addition to the well-known Java virtual machine (JVM), a wide

variety of systems can also be classified as virtual execution

environments, such as dynamic optimizers [2,5,6,17], dynamic

software updaters [18], dynamic binary translators [8,9,11,27],

dynamic instrumentation systems [3,19,23], and certain emulators

and simulators [26,29].

Although a virtual machine (VM) can execute programs using

interpretation, performance-critical VMs often employ software

dynamic translation because a translator has the potential to

produce significantly higher quality code and thus is able to utilize

resources efficiently. Just-in-time (JIT) compilation, for instance,

is used in many JVMs. After translating a code segment, a

translation-based VEE typically stores the translated code in a

code buffer (CB), and reuses the code for future invocations. The

overhead of dynamic translation can be amortized if the translated

code is reused frequently.

As VEE techniques have been applied to a range of computing

environments, there is a set of environments in which devices have

exceptionally tight memory and performance constraints, such as

smart cards and sensors in distributed systems [4,10,15,22,25,28].

The software executing in such environments, however, has

become quite complex. For example, a smart card might use the

RSA protocol to authenticate a user's identity [25]. Furthermore,

such constrained devices may need to support multitasking

workloads. For instance, a sensor in an intrusion detection network

concurrently monitors environmental events, tracks objects, and

communicates with other sensors [1]. A consequence of this trend

is that memory demands have become very high.

Due to severe memory limitations (e.g., an Atmel ATmega128

processor has 128 KB flash memory and 4 KB SRAM [4]), the

original code of a single large program, or multiple small

programs, may not fit in the memory of a resource-constrained

device. To address such constraints, and inspired by program

partitioning schemes for traditional systems [16,24,31,32], we

propose to store the original software on a code server and to

execute the VM using its code buffer on the device (as a client). A

piece of original program code (e.g., trace, basic block sequence,

method, program slices, etc.), called a partition, is downloaded

from the code server to the client on-demand via a wireless link.

The code executes on the client and a CB miss happens when a

needed partition is not in the CB. Not only does this partition need

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

VEE’05, June 11–12, 2005, Chicago, Illinois, USA.

Copyright 2005 ACM 1-59593-047-7/05/0006...$5.00.

100

to be downloaded on-demand, it also needs to be re-translated by

the VM before execution continues. As wireless bandwidth is

limited in resource-constrained devices and dynamic translation is

expensive, the CB has a high miss penalty, and it must be

intelligently managed to keep miss rates low.

In dynamic optimization systems, a generational buffer is

proposed [14], which tries to identify and use the lifetime of code

to manage the code buffer. Two other similar techniques that have

been proposed to manage the CB are adaptive code unloading [30]

and code collection [24], both of which use online profiling to

trigger a garbage collector. Another technique for embedded

systems is compiler-controlled function caching [32]. Code

replacement policies employed in hardware caches and operating

systems, such as LRU, are related as well. However, these

methods are unsuitable for distributed VEEs due to two reasons.

First, although a technique might effectively reduce CB misses, its

overhead can be too high to be practical (e.g., a VM must maintain

usage information to employ online profiling). Second, most of

these approaches cannot achieve a satisfactory CB miss rate when

memory space is tightly limited, as these approaches lack the

awareness of both program and memory size. To achieve an

effective CB miss rate, a scheme needs to utilize knowledge of a

program and its memory size, while having a low run-time cost.

In this paper we present a technique whereby the server “plans”

for memory management using both the program and the memory

size. Using program profiles helps the schemes maintain hot code

partitions in the CB and thus avoid caching cold partitions. We

move management decision-making to a server to keep the

demands placed on the clients minimal. One scheme is used for

programs that are insensitive to data inputs, having stable behavior

across different data sets, while the other scheme adapts decisions

for programs that are highly sensitive to inputs.

The contributions of this paper include:

• Planning for CB management before execution and moving

decision-making from the client to a server;

• A simple yet effective planning management scheme for

programs with stable behavior across different data inputs;

• An adaptive scheme for programs in which inputs can

produce varying behaviors; and

• Experimental results that demonstrate the benefits of our

schemes over previous approaches.

The remainder of the paper is organized as follows. Section 2

provides a background on resource-constrained systems, and

Section 3 describes our planning schemes. Section 4 evaluates the

schemes in terms of miss reduction and the impact on execution

time. Section 5 surveys related work and Section 6 summarizes the

paper.

2. BACKGROUND

Tight memory constraints and high CB miss penalties make

good CB management decisions critical to performance. In general,

with more knowledge about program behavior, better decisions

can be made about buffer management. Program profiling can be

used to identify likely execution paths. Indeed, it is known that

most execution time is spent in a small portion (hot code) of a

program, with recent studies showing similar results for code

traces [5]. A trace is a sequence of basic blocks that are executed

along a path. Hazelwood and Smith [13] showed that regardless of

data inputs for SPEC2000 programs, code traces that account for

roughly 85% of the dynamic instruction count are repeated during

successive executions. Hence, basic block profiling works well in

these programs and can identify sequences of hot code.

Although there are many programs in which profiling can

capture execution stability, there are some programs with much

variability across inputs. For instance, the program blowfish [21]

behaves differently when encoding a plain-text file and an image

file. Considering the importance of good CB decisions, a

management scheme needs adaptivity for these unstable programs.

The adaptivity can be achieved by gathering run-time information

about hot basic blocks and paths.

When management decisions are made by the client, profiles

can introduce considerable overhead. Offline profiles need to be

accessible to the client and run-time information needs to be

updated. Both are very expensive to use or maintain on the client.

Indeed, it is typically infeasible for a severely restricted client to

use profile information directly. Therefore, we propose to make a

code server responsible for CB management, moving

decision-making from a client to a more powerful server that can

more easily maintain, update, and use profiles. Thus, the client

only executes simple actions guided by the server, while the server

manages the client’s CB.

3. A PLANNING APPROACH

The key idea in our work is for a powerful platform (called a

cache planner) to develop CB cache plans based on a program’s

Figure 1. Workflow of our schemes.

Download Code Partitions

On-Demand
Wireless Networks

Client

Code Buffer
Processor

 gsm 4 KB 8KB . . .

jpeg 2 KB 4 KB . . .

Cache plans

Code Server

Code Partitions

Before Execution

At Run-Time

Profiling

gsm 4 KB 8KB . . .

jpeg 2 KB 4 KB . . .
Cache
plans

Program Profiles

Cache Planner

Program

Partitioning

 Code
Partitions

101

code partitions and profiles, with the knowledge of a client’s

anticipated memory size. The plans are developed before

execution of a program begins, with the goal of caching frequently

executed (hot) partitions in the CB. The code server in charge of

sending code partitions during the program’s execution forwards

these plans to the client as code is downloaded. Both of our

schemes partition the CB into separate buffers, called sub-buffers,

to hold code partitions based on code hotness.

Figure 1 shows the workflow of our management schemes. A

program is firstly partitioned into code partitions using a

partitioning scheme, and then stored in a code server connected to

the client. Profiling is used to capture the hotness (execution

frequency) of code partitions and to estimate the performance of

potential CB management decisions. A cache planner uses

program profiles and code partitions to develop management

decisions (i.e., cache plans) before program execution. The plans

are then stored on the code server with the corresponding code

partitions. When a client needs a code partition, the server sends

the appropriate plan with the partition. The sub-buffers are ordered

by the hotness of partitions assigned to them. That is, one

sub-buffer holds very hot code, while another may hold cold code

that is executed infrequently. This approach is based on the fact

that most programs spend a large part of their execution in a small

portion of code.

To handle the sub-buffers, we use two policies. A local policy

manages an individual sub-buffer and a global policy manages the

relationship among sub-buffers. The local policy is essentially the

replacement policy for the partitions in a sub-buffer. The

replacement policy has to possess all of the following attributes:

high temporal locality, low overhead, and minimum fragmentation.

The first factor is the foremost motivation for CB. The second

factor is important for application performance because it is a part

of user perceivable system overhead. The third factor must be

considered because our caching element, a code partition, has

variable size, which easily causes fragmentation. We use

First-In-First-Out (FIFO) as our local policy as it has good

performance with little fragmentation [12]. Our global policy is to

cache code partitions in sub-buffers based on their hotness.

We describe the overall strategy of CB memory planning and

then describe two particular schemes. One scheme is a fixed

scheme where code partitions are always housed in the same

sub-buffer during execution. We then extend this scheme to an

adaptive one, in which partitions are cached in sub-buffers based

on a program’s run-time behavior. We also describe a method,

using “code density”, which improves the code partition

assignments made by either technique.

3.1 Overall CB Management Strategy

Our strategy generates plans for managing the CB, by using

profiles to first determine the hotness of code partitions and then

to assign partitions to sub-buffers. As management decisions are

sensitive to program and memory size (in a small CB), our scheme

generates a cache plan for each program and anticipated CB size.

These plans are stored on a server and can be retrieved when a

client connects with the server and provides a program name and

the size of its CB.

A cache plan records management decisions: For a given

program and CB size, a plan indicates the number of sub-buffers,

the size of the sub-buffers, and a cache blueprint for each code

partition in the program. The size of a sub-buffer is recorded as the

percentage (proportion) of the total CB size to allocate to this

sub-buffer. A cache blueprint indicates the assignment of a code

partition to a sub-buffer and has two fields. One field indicates

whether to cache the partition and the other indicates which

sub-buffer to use if the partition is to be cached. An example of a

cache plan is shown in Figure 2. There are N code partitions in the

program, each of which has been assigned a cache blueprint. For

example, partition 2 is cached in sub-buffer 0. In this figure, the

CB is partitioned into three buffers, and the sub-buffer size

proportions are 20%, 40%, and 40%, respectively.

Number of Sub-Buffers 3

Sub-Buffer Allocation 20%-40%-40%

Cache Blueprint
Partition ID

Cache? Sub-Buffer ID

0 Yes 1

1 No ---

2 Yes 0

. . .

. . .

. . .

N-1 Yes 2

Figure 2. Example cache plan.

The cache plan, computed beforehand by the server, is used at

the client side. Before a client executes a program, it informs the

server which program is going to be run and the size of the CB.

The server finds a corresponding plan and responds to the client

with the number and size of the sub-buffers. The code partition

containing the first instruction, and this partition's blueprint, are

transferred to the client, and then the client starts program

execution.

After translating a code segment (called a translation unit), a

VEE directly executes the translated code for efficiency. Some

VEEs add an instruction at the exit of each translation unit to

return control to the VEE, while other VEEs directly link

translated units to avoid unnecessary invocations of the VEE. No

matter what mechanism is used, the VEE is notified when a

desired unit is not found in the translated code buffer. Every time

this occurs, our approach performs several more operations,

compared to what a traditional VEE does, to use the cache plan to

manage the CB.

At run-time, if a needed code partition is not cached in the CB,

the client sends a request to the server for the partition. The server

sends back the partition, with its cache blueprint attached. Note

that a partition is both a translation unit and a caching unit. After

the client receives the partition and cache blueprint, it translates

the partition and follows the blueprint to cache the partition in the

specified sub-buffer (or not to cache the partition). If the specified

sub-buffer does not have enough free space to store it, other

partition(s) in the specified sub-buffer are evicted using the local

policy (FIFO).

To generate a cache plan, two steps are performed. The first

step uses a given configuration as parameters and assigns code

partitions to sub-buffers based on profile information about the

execution frequency of partitions. In other words, this assignment

determines the cache blueprint for each code partition. The

configuration includes the number of sub-buffers, each

sub-buffer's size proportion and the assignment ratio. Assignment

ratio is the ratio of the total size of all partitions assigned to a

sub-buffer over the sub-buffer size, which limits the total size of

partitions that can be assigned to a sub-buffer.

102

How well a cache plan works is influenced by the number of

sub-buffers, the size proportion of each sub-buffer, and the

assignment ratio of each sub-buffer. Because the quality of a cache

plan depends on these three factors, we produce a number of

candidate plans. The best plan is selected among these candidates

to be loaded onto the code server.

The second step selects the plan that is most likely to minimize

the number of CB misses at run-time. This step iterates over all

cache plans to determine a score for each one that indicates how

well they may perform. The score is determined by running the

application program with a training data set and collecting the

number of CB misses. The cache plan with the smallest number of

misses is the one that is selected.

Figure 3 shows pseudo-code to generate a cache plan. Line 2

determines a basic block execution frequency profile. Lines 4-8

generate and try a range of configurations to produce candidate

plans. Line 10 does the second step that determines the best plan

among the candidates. The routine Assign_Blueprints()

(line 6) generates the blueprints for each cache configuration. A

naïve algorithm to implement this function is shown in Figure 4.

Figure 3. Cache plan generation algorithm.

Figure 4. Cache blueprint assignment algorithm using

frequency as criterion.

In Figure 4, Assign_Blueprints() sorts code partitions

based on their execution frequency (from a profile) in descending

order (line 5). Lines 7-24 divide the CB into sub-buffers, give each

sub-buffer a unique identifier (ID), and assign partitions to each

sub-buffer. Line 8 calculates a sub-buffer's size and line 9

calculates the total size of partitions that can be assigned to this

sub-buffer. Line 10 initializes a flag variable. Lines 12-23

determine blueprints, assigning hotter partitions to the sub-buffer

with a smaller ID. Line 13 sets the size limit which is an upper

bound on the partitions to be assigned to this sub-buffer. Line 14

seeks a candidate partition with maximal frequency (which has not

been yet assigned to any sub-buffer) and not larger than the size

limit. If no such partition exists, the assignment for this sub-buffer

is done (line 17). Otherwise we assign the candidate partition to

the sub-buffer (line 19-21). If there are partitions left unassigned

after every sub-buffer has been processed, these partitions are

marked No_Caching on lines 26-27. This mark indicates that

these partitions will never be cached (they are too cold). The

algorithm does not consider code partitions that remain

unexecuted by the training input. These partitions are assigned to

the sub-buffer with the largest ID (it holds the coldest code).

The planning approach is quite efficient. Clients only execute

simple actions as directed by the server; hence, their run-time

overhead is low. However, transferring the blueprint with a code

partition does introduce a small additional amount of

communication. If one byte is used to encode the cache blueprint

and a code partition itself is 20 bytes, the transfer overhead of the

blueprint is just 5%. Larger code partitions reduce the overhead

further.

3.2 Fixed Scheme

In the fixed strategy, a code partition is always stored in the

sub-buffer that it was assigned in the original plan. That is, the

hotness of the code during execution is assumed to mirror the

profile information.

3.3 Adaptive Scheme

The fixed scheme relies on the accuracy of profiles to guide the

selection of cache plans. However, some programs (as described

earlier) may have behavior that is not captured by a profile. Our

adaptive scheme aims to overcome this problem by changing the

assignment of code partitions to sub-buffers as a program executes.

As before, the server is responsible for managing the partitions,

but the adaptive scheme can change the assignment of a code

partition to a sub-buffer based on its hotness at run-time. The

scheme moves a code partition from one sub-buffer to the next in

sequence. This process is called promotion. At run-time, the server

maintains a time window (called a miss window) to monitor

missing partitions. The server uses the miss window to decide

which partitions should be promoted. Whenever a partition is

promoted, its new sub-buffer position is recorded in a registration

list. Before the server sends a partition to the client, it checks the

registration list. If a partition is found in the list, a temporary

blueprint is created on-the-fly that designates a different

sub-buffer to hold the partition (i.e., the sub-buffer holding the

next hottest code). Otherwise, the original blueprint is used.

Figure 5 shows pseudo-code for the server algorithm that

decides which partitions to promote. Every time the server

receives a request from the client, monitor_miss() is invoked.

1 Assign_Blueprints (program x, profile prof,
2 configuration config) {
3 (buffer_number,buffer_portion[],assign_ratio[])
4 = Extract_Config_Values (config);
5 sort_parition[] = Sort_By_Freq(x, prof);
6
7 for (i=0; i < buffer_number; i++) {

8 buffer_size=CB_size×buffer_portion[i];

9 remain_size=buffer_size×assign_ratio[i];
10 flag = 1;
11
12 while (flag) {
13 sizeLimit = min(buffer_size, remain_size);
14 cand = Max_Freq_P(sizeLimit);
15
16 if cand not existing {
17 flag = 0; /* all partitions already tried */
18 } else {
19 assign cand to sub-buffer[i];
20 remain_size -= size(cand);
21 if (remain_size = 0) { frag = 0; }
22 } /* of else */
23 } /* of while */
24 } /* of for */
25

26 for each remaining partition p in sort_partition[]
27 { sort_partition[p].blueprint = No_Caching; }
28 }

1 Generate_Plan (program x) {
2 prof = First_Profile (x);
3
4 repeat
5 config = Generate_New_Config();
6 blueprints = Assign_Blueprints(x, prof, config);
7 candidate_plans.Add(config, blueprints);

8 until no more configurations;
9
10 plan = Second_Profile(x, candidate_plans);
11 return plan;
12 }

103

Figure 5. Partition promotion algorithm.

Line 3 records the missing partition's ID (p_id) in the miss

window (miss_win[]). The window size is a pre-defined

threshold (win_size). When the window is full, lines 6-15

check for promotion. (We skip line 7 for a moment –– it will be

discussed shortly.) Lines 8-9 scan every partition in the window to

determine how often they occurred. Line 10 checks a promotion

condition: any partition that occurs more frequently than a

threshold (promote_threshold) is promoted by adding the

partition to the registration list. Lines 13 and 14 flush the miss

window for the next interval of execution.

In our experiments, we observed that input variability is limited

in applications for distributed environments. If a cold partition in a

profile is hot in actual runs, the partition seldom becomes hot

throughout the whole program execution. Thus, the adaptive

scheme has to also let promoted partitions cool and move back to

their original sub-buffer. On line 7, the registration list is cleared

immediately before the miss window is checked. In this way, any

promotion is conservative as it is only visible until the miss

window becomes full again. Furthermore, we have observed that it

is necessary to promote a partition by only one level to avoid

disturbing the original cache plan too much.

The server maintains a private miss window and a private

registration list for each execution. Consequently, executions of

the same program at different clients can be adapted individually

and concurrently. Repeated adaptations for a program may

indicate that the training input used in profiling is not

representative, and a single update of the cache plan can save the

multiple adaptations. However, we leave this as a question for

future studies.

In the adaptive scheme, no special operation is needed at the

client side; it is the code server that adapts. Hence, this scheme is

as efficient as the fixed scheme for a client. The adaptive scheme

does introduce some overhead in the server, but it is minimal.

3.4 Density: A Heuristic Algorithm

In Figure 4, we presented a naïve algorithm to assign blueprints

by using the frequency of code partitions. It looks quite

straightforward; however, the problem is complex. The naïve

algorithm may favor some extremely large partitions with high

frequency, overlooking a set of small partitions which together

have a higher total frequency. CB management is a trade-off

between code usage and code size. Rather than solely focusing on

an individual partition’s hotness, our goal is to find a set of

partitions that has an upper bound on combined size and possesses

the maximal total frequency simultaneously. Unfortunately, this is

the knapsack problem and is NP-complete.

To tackle the problem, we introduce a new concept, called

density, which is a criterion to measure the priority of code

partitions to reside in CB. A partition’s density is defined as a

partition’s execution frequency divided by its size.

Density = Execution Frequency / Size

We employ density to avoid caching extremely large partitions

with slightly high frequency. However, relying exclusively on

density may lead to another problem. Assigning a small, dense

partition first may make it impossible to assign a large, hot

partition with less density later. To avoid both pitfalls, we designed

a heuristic algorithm to assign cache blueprints, as shown in

Figure 6. We use density to find a candidate partition first, and

then check its frequency to make sure that it will not prevent us

from caching a hotter fragment with a lower density later on.

Figure 6. Cache blueprint assignment algorithm using

density as criterion.

The algorithm’s overall structure is similar to the naïve

algorithm described in Figure 4; hence we emphasize only the

differences. Line 5 sorts the code partitions based on their density.

Lines 10-30 assign the blueprints. Line 10 initializes the search

start position from and a flag variable. Line 13 sets the size limit

which is an upper bound on the partitions to be assigned to this

sub-buffer. Line 14 seeks a candidate partition (not assigned yet)

with maximal density and not larger than the size limit, starting

from position from in the sorted partition list. If no such partition

1 index = 0;
2 monitor_miss (p_id) {
3 miss_win[index]=p_id;
4 if (index < win_size-1) {
5 index++;

6 } else { /* check miss window and promote if necessary */

7 clear registration_list[];

8 for each unique partition p in miss_win[] {

9 freq = frequency of p in miss_win[];
10 if (freq > promote_threshold)

11 add p to registration_list[];
12 }

13 clear miss_win[];
14 index = 0;
15 }
16 }

1 Assign_Blueprints (program x, profile prof,
2 configuration config) {
3 (buffer_number,buffer_portion[],assign_ratio[])
4 = Extract_Config_Values (config);
5 sort_parition[] = Sort_By_Density(x, prof);
6
7 for (i=0; i < buffer_number; i++) {

8 buffer_size=CB_size×buffer_portion[i];

9 remain_size=buffer_size×assign_ratio[i];
10 from = 0; flag = 1;
11
12 while (flag) {
13 sizeLimit = min(buffer_size, remain_size);
14 cand = Max_Density_P(from, sizeLimit);
15
16 if cand not existing {
17 flag = 0; /* all partitions already tried */
18 } else {
19 threat = Max_Freq_New_P(sizeLimit);
20
21 if (cand == threat ||
22 (remain_size>size(cand)+size(threat)){
23 assign cand to sub-buffer[i];
24 remain_size -= size(cand);
25 if (remain_size = 0) { frag = 0; }
26 }
27 from ++;
28 } /* of else */
29 } /* of while */
30 } /* of for */
31

32 for each remaining partition p in sort_partition[]
33 { sort_partition[p].blueprint = No_Caching; }
34 }

104

exists, the assignment for this sub-buffer is done (line 17).

Otherwise, we check if the candidate will restrict the assignment

of hotter partitions. Line 19 looks for a partition with maximal

frequency that is not larger than the size limit. If the candidate is

also the one with the maximal frequency (line 21), or does not

restrict the assignment of hotter partitions (line 22), it will be

assigned to this sub-buffer (line 23-25). Line 27 updates the search

start position. This is a greedy algorithm, and one can easily

compose an example to show that it is not optimal. Our

experiments in Section 4, however, show that it is able to produce

satisfactory results in practice.

4. EVALUATION

We simulated our schemes to determine their effectiveness and

to compare their performance with other approaches as well as

with each other.

4.1 Experimental Methodology

We experimented with twelve MiBench [21] and MediaBench

[20] programs on a SPARC/Solaris 9 workstation, using gcc with

the compiler flags “–O3 –static”. We believe our selection of

benchmarks represents the applications which will be extensively

used in the next generation of VEEs for smart cards and sensor

networks (including ones performing biometric recognition and

those used in ad-hoc networks).

The results are collected by using a profiler and a simulator.

The profiler executes benchmarks and collects a log of partition

accesses. Our simulator uses the CB size, the cache plan, the

access log, and the size of each partition as inputs. It faithfully

mimics the operations of buffer management and produces CB

miss numbers as an output. Although simulation sometimes

provides inaccurate or incomplete results when compared to actual

execution, our simulators are trustworthy. Since all factors that

affect a buffer’s hit and miss action are considered in the simulator,

the simulation result (miss numbers) will be consistent with those

arising in actual execution.

We used a fragment (an instruction sequence that ends with a

conditional branch, indirect branch, or return) as a partition in our

experiments. A fragment is similar to a basic block, except that a

basic block terminates at a branch target while a fragment does not.

Our profiler was built on a software dynamic translator, Strata [27],

which implements a virtual execution environment and uses a

code fragment as its translation unit. Typically, a translation unit in

a VEE is also a caching unit in the CB. Therefore, we use

fragments as partitions in our experiments. Although the definition

of the translation unit (i.e., code partition in this work) changes

across VEE implementations and the variance may influence

caching performance, these different partitions possess certain

common properties. In particular, among the factors affecting CB

management, variable size and hotness are universal. Therefore,

our experimental results can demonstrate the benefits of our

approaches in general VEEs. Although we did not experiment with

other partitioning schemes, we believe that the qualitative trend

will be similar.

For each benchmark, we use a training data input for profiling

and a different reference input for evaluation. Table 1 shows the

miss numbers of the reference inputs when running with our

baseline, which is a unified circular buffer using a FIFO policy.

Column 1 lists the benchmarks. Column 2 lists the number of

Table 1. Miss numbers of the baseline. "*" designates

that all misses are compulsory.

Benchmark
Partition

Number
2 KB 4KB 8KB 16KB

blowfish_dec 241 1881118 344 241 * 241 *

blowfish_enc 239 1881116 342 239 * 239 *

crc32 283 317 283 * 283 * 283 *

dijkstra 397 21466 16013 397 * 397 *

gsm_dec 690 351957 350246 350152 691

gsm_enc 908 1211052 1184794 646302 638472

jpeg_dec 1149 38049 5298 1619 1259

jpeg_enc 1403 62031 7168 2326 1594

patricia 792 3054768 2859748 2755161 3921

susan_corner 541 51001 727 664 541 *

susan_edge 564 157639 778 722 717

susan_smooth 445 770 667 598 445 *

unique partitions that have been downloaded in the execution, and

the remaining columns list the number of misses when the CB size

is 2 KB, 4 KB, 8 KB, and 16 KB. If the miss number is the same

as the partition number (designated by "*" in the table), it means

all misses are compulsory and the baseline is optimal.
The technique most similar to our work is the generational

buffer [14], which we compare our schemes against. The

generational buffer scheme was proposed to manage the trace

cache in dynamic optimization systems. It partitions the trace

cache into three distinct and separately managed regions, trying to

identify code lifetime at run-time. It uses a unified partitioning

proportion for all programs and CB sizes, and thus no profiling is

needed. Hazelwood and Smith showed that the generational buffer

can effectively reduce the miss rate for SPEC2000 and Windows

applications. However, we found that the partition proportion

suggested in [14] (a 45%-10%-45% ratio for three separate buffer

sizes and a promotion threshold of 1) works poorly for

resource-constrained devices in distributed VEEs.

Since the programs and environments studied in [14] are

significantly different from ours, we extend the generational

scheme for a fair comparison, using the training inputs (also used

in our schemes) to find the best configuration as well. We

investigate two ways to find the best configuration. First, for each

prospective CB size, we select the configuration with which the

generational buffer produces the minimal geometric mean of

normalized miss numbers (to the baseline) for training inputs

across all benchmarks. We call this configuration unified and use it

for all programs when that particular CB size is experimented.

Second, for each combination of prospective CB size and program,

we select the configuration with which the generational buffer

produces the minimal miss number for the training input. We call

this approach individualized and use it for the particular

combination of program and CB size.

We compare the miss reduction of the unified generational,

individualized generational, fixed, and adaptive schemes to the

baseline. When we calculate miss reduction, the size of the unified

buffer in the baseline equals the total size of all sub-buffers in the

generational and planning schemes.

In the fixed and adaptive approaches, we limit the maximal

105

number of sub-buffers to three (3) because our experience shows

that three sub-buffers are enough to classify the code partitions in

most cases. In addition, finer partitioning of the CB introduces

more fragmentation, which is expensive for resource-constrained

devices.

4.2 Miss Number Reduction

Figure 7 compares the miss reduction of the generational and

fixed schemes over the baseline for various CB sizes. For the

generational schemes, our experiments include both the unified

and individualized approaches. For the fixed scheme, both the

naïve algorithm (Figure 4) and the improved density algorithm

(Figure 6) are presented. Each chart shows the percentage of miss

reduction when the CB size is 2 KB, 4 KB, 8 KB, and 16 KB. If a

scheme produces the same number of misses as the baseline, the

miss reduction is zero (0).

The most consistent result is that the individualized

generational scheme performs better than (or as well as) the

unified generational one for every benchmark with each CB size.

Considering the performance of the generational buffer in

DynamoRio, this indicates that a tightly constrained CB is quite

different from the buffers in dynamic optimizers: CB performance

becomes very sensitive to the program when the CB is small.

Hence, a single configuration for all programs does not produce

good results.

Although the individualized generational scheme gains through

customized configuration by using profiling, the fixed scheme

exploits more benefits from profiling information. As shown, in

most cases, the fixed schemes perform better than the generational

buffer. It may be that a small generational buffer is unable to

capture the hottest code partitions accurately, since many

partitions seem to be missing frequently. Another possible reason

is the fragmentation caused by unnecessary partitioning of the CB.

Indeed, the best cache plans selected by the fixed scheme (using

density) divide the 2 KB CB into three sub-buffers for only 3

programs out of the 12 benchmarks, while the generational scheme

inherently does such partitioning for all programs.

As shown, the density algorithm can generate higher quality

cache plans than the naïve algorithm, especially when the CB size

is small. The argument to use density as a planning criterion in

constrained environment is thus well justified, as a tighter

environment demands a more careful trade-off decision between

the code hotness and size.

Not surprisingly, some programs are not friendly to the fixed

scheme, because program behavior can not always be predicted in

advance. An obvious example is patricia with a 16 KB CB in

Figure 7. Here, the fixed scheme produces 15 times more misses

than the baseline. A careful examination found that a code region

is executed once for the training data set, but its execution

frequency is over 33,000 for the reference input. The adaptive

scheme is able to correct this problem, as shown in Figure 8. We

only present the result for density because we know that density is

better able to determine cache plans than frequency. The results for

the adaptive scheme are collected when win_size = 50 and
promote_threshold = 20, which is the best configuration

Generational vs. Fixed Schemes (2 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Freq (Fix.)

Den (Fix.)

Generational vs. Fixed Schemes (4 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Freq (Fix.)

Den (Fix.)

Generational vs. Fixed Schemes (8 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Freq (Fix.)

Den (Fix.)

Generational vs. Fixed Schemes (16 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Freq (Fix.)

Den (Fix.)

Figure 7. Comparison of miss reduction over the baseline. “Gen (Unif.)” stands for unified generational scheme; “Gen (Ind.)”

stands for individualized generational scheme; “Freq (Fix.)” stands for fixed scheme using frequency in planning; and

“Den (Fix.)” stands for fixed scheme using density in planning.

106

that we found in our experiments. Figure 8 shows that the adaptive

approach can dramatically reduce the misses more than the fixed

scheme for certain benchmarks at some CB sizes. In other cases, it

does as well or is very close to the fixed scheme.

4.3 Impact on Execution Time

A common pitfall in cache performance evaluation is the

overemphasis on miss (rate) reduction while omitting the fact that

a significant miss reduction sometimes affects little in the overall

optimization objective. In our work, nevertheless, CB miss

reduction can translate into a meaningful performance

improvement. In VEEs for resource constrained devices, the time

for downloading a partition often dominates total execution time,

as wireless bandwidth can be severely limited.

Figure 9 shows the impact of the miss reduction on the

execution time. The speedup is calculated by a method which has

been used in [31]. The calculation of total execution time is

divided into four parts: the download time for partition

transmissions, the connection setup time due to network delays,

the runtime environment time, and the real CPU time for the

program. Similar to the experimental settings used in [31], we

assume a bandwidth of 106 kb/sec, a connection time of 20 ms per

setup, a context switch (between the application and the VEE)

consuming 100 dynamic instructions, and an internal clock

frequency of 66 MHz. When we calculate the time for the fixed

and adaptive schemes, we add a byte, which records a cache

blueprint, to the size of each transferred partition. The additional

overhead of cache blueprint is amortized by greater miss reduction.

As demonstrated in the figure, the planning schemes have a

greater speedup than the generational schemes in most cases. As

these results show, it is important to reduce the CB miss rate and

small reductions can lead to large run-time improvements.

From the results, our schemes have a significant improvement

over a unified circular buffer and a generational buffer in terms of

miss reduction, which translates into considerable performance

speedup. In particular, the adaptive scheme does as well as the

fixed scheme in most cases, and in a few cases does substantially

better. Yet, it has low overhead. We conclude that the adaptive

scheme is a good choice for resource-constrained devices in

distributed VEEs.

5. RELATED WORK

DELI [9], an infrastructure for manipulating or monitoring

running programs, provides a mode (called code streaming) for

remote execution, where a remote application is loaded

on-demand piece by piece. The authors discussed the method

when the emulated ISA and the target ISA are the same, while we

extended the idea to general VEEs, even if the original and target

ISAs are different.

There are several buffer management approaches proposed for

dynamic translation/optimization systems, including: flushing the

Generational vs. Planning Schemes (2 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (4 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (8 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATR
IC

IA

SUSAN c

SUSAN e

SUSAN
 s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (16 KB)

-20%

0%

20%

40%

60%

80%

100%

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

M
is

s
N

u
m

b
er

 R
ed

u
ct

io
n

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Figure 8. Comparison of miss reduction over the baseline. “Gen (Unif.)” stands for unified generational scheme; “Gen (Ind.)”

stands for individualized generational scheme; “Den (Fix.)” stands for fixed scheme using density in planning; and

“Den (Adp.)” stands for adaptive scheme using density in planning.

107

Generational vs. Planning Schemes (2 KB)

0

1

2

3

4

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

E
xe

cu
ti

o
n

 T
im

e
S

p
ee

d
u

p

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (4 KB)

0

1

2

3

4

BF d
ec

BF e
nc

CRC

DIJ
KSTR

A

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

E
xe

cu
ti

o
n

 T
im

e
S

p
ee

d
u

p

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (8 KB)

0

1

2

3

4

BF d
ec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

E
xe

cu
ti

o
n

 T
im

e
S

p
ee

d
u

p

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Generational vs. Planning Schemes (16 KB)

0

1

2

3

4

BF
dec

BF e
nc

CRC

DIJ
KSTRA

GSM
 d

ec

GSM
 e

nc

JP
EG d

ec

JP
EG e

nc

PATRIC
IA

SUSAN c

SUSAN e

SUSAN s

Ave
ra

ge

E
xe

cu
ti

o
n

 T
im

e
S

p
ee

d
u

p

Gen (Unif.)

Gen (Ind.)

Den (Fix.)

Den (Adp.)

Figure 9. Execution time speedup over the baseline. “Gen (Unif.)” stands for unified generational scheme; “Gen (Ind.)” stands

for individualized generational scheme; “Den (Fix.)” stands for fixed scheme using density in planning; and

“Den (Adp.)” stands for adaptive scheme using density in planning.

buffer when it gets full (Dynamo [5] and DELI [9]), an unbounded

buffer (Strata [27] and DynamoRio [6] by default), and a circular

buffer. The generational buffer was proposed to overcome the

limitations of these techniques [14]. The results presented in

Section 4 show that these techniques are unsuitable for distributed

systems with tight resource constraints. Zhang and Krintz

proposed an adaptive code unloading method for JVMs with JIT

compilation [30]. Their cached element is method based, which

may include cold code. And the fragmentation is handled by the

system's garbage collector, which is too expensive to execute on a

constrained device. They mentioned a very simple offline profiling

method in their paper but its result was disappointing. Popa et al.

proposed a mechanism called code collection to support large

applications on mobile devices [24], which is similar to our

approaches. But their heuristic algorithm necessitates a client to

collect run-time information for selecting code units to discard,

while ours does not. And their scheme is also method-based and

requires a garbage collector running on the client. Zhang et al.

proposed a buffer management technique, function caching, for

smart cards [32]. Their approach is not adaptive as the compiler

fully controls the management, and their caching elements are

functions which may contain unneeded code. Another undesirable

side is that they only applied the technique in user defined calls

where source code is available.

Another related research is profile guided code compression [7],

which compresses cold code to achieve size reduction, and leaves

hot code uncompressed to minimize run-time penalty. The number

of their code categories is fixed to 2 (hot and cold), and the

classification can be adaptive to neither a particular input nor

available memory size.

Regarding the security concerns, our approaches can easily

incorporate the tamper-resistant partitioning method [32], and

transferred code could be encrypted.

Hazelwood and Smith have found that pure FIFO policy is not

enough for real world applications due to some complications,

such as undeletable cache code and program-forced evictions.

Pseudo-circular policy, a variant of FIFO, can be used in this

situation [14]. Our scheme is compatible to use the pseudo-circular

policy as the local policy.

6. CONCLUSION

As the memory requirements of distributed VEEs is growing,

we proposed to store the original programs on a code server, and

to execute a VEE with its code buffer on the client. The original

program is divided into code partitions and partitions are

downloaded on-demand. This paper described two schemes to

manage the CB with profile guidance. From experimental results,

we showed that these schemes have fewer CB misses than a

generational buffer and a unified circular buffer, which translates

into significant speedup. In particular, the adaptive scheme

performed better than the fixed scheme. Yet, it has low overhead

and it is a good choice for resource-constrained devices in

distributed VEEs.

108

7. ACKNOWLEDGEMENTS

This research is supported in part by the National Science

Foundation, under grant CNS-0305198. We thank Naveen Kumar

for his considerable contribution to the preliminary work [33] of

this paper. We also thank the anonymous reviewers for their useful

suggestions and comments on how to improve the paper.

8. REFERENCES

[1] T. Abdelzaher et al. EnviroTrack: Towards an Environmental

Computing Paradigm for Distributed Sensor Networks. IEEE

Intl. Conf. on Distributed Computing Systems. March 2004.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.

Adaptive Optimization in the Jalapeño. Conf. on

Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA '00). October 2000.

[3] M. Arnold and B. G. Ryder. A Framework for Reducing the

Cost of Instrumented Code. Conf. on Programming

Language Design and Implementation (PLDI'01). June 2001.

[4] Atmel's ATmega128 Processor Online Document.

http://www.atmel.com/dyn/resources/prod_documents/2467S.

pdf. November 2004.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A

Transparent Dynamic Optimization System. Conf. on

Programming Language Design and Implementation (PLDI).

June 2000.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An

Infrastructure for Adaptive Dynamic Optimization. Intl.

Symp. on Code Generation and Optimization (CGO’03).

March 2003.

[7] S. Debray and W. Evans. Profile-Guided Code Compression.

Conf. on Programming Language Design and

Implementation (PLDI). June 2002.

[8] J. C. Dehnert et al. The Transmeta Code Morphing™

Software: Using Speculation, Recovery, and Adaptive

Retranslation to Address Real-Life Challenges. Intl. Symp.

on Code Generation and Optimization (CGO'03). March

2003

[9] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi and J. A.

Fiser. DELI: A New Run-Time Control Point. Proceedings of

the 35th Annual Intl. Symp.on Microarchitecture

(MICRO-35). November 2002.

[10] D. Deville, A. Galland, G. Grimaud, and S. Jean. Smart Card

Operating Systems: Past, Present and Future. Fifth

USENIX/NordU Conference. February 2003.

[11] K. Ebcio�lu and E. R. Altman. DAISY: dynamic compilation

for 100% architectural compatibility. Intl. Symp. on

Computer Architecture (ISCA'97). June 1997.

[12] K. Hazelwood and M. D. Smith. Code Cache Management

Schemes for Dynamic Optimizers. Sixth Annual Workshop on

Interaction between Compilers and Computer Architectures.

February 2002.

[13] K. Hazelwood and M. D. Smith. Characterizing Inter-

Execution and Inter-Application Optimization Persistence.

Workshop on Exploring the Trace Space for Dynamic

Optimization Techniques. June 2003.

[14] K. Hazelwood and M. D. Smith. Generational Cache

Management of Code Traces in Dynamic Optimization

Systems. Proceedings of the 36th Annual Intl. Symp. on

Microarchitecture (MICRO-36). December 2003.

[15] Infineon's SLE 88CFX4002P Smart Card Document.

http://www.infineon.com/cmc_upload/documents/098/829/SP

I_SLE88CFX4002P0104.pdf. January 2004.

[16] G. Kortuem, S. Fickas, and Z. Segall. On-Demand Delivery

of Software in Mobile Environments. Nomadic Computing

Workshop. April 1997.

[17] C. Lattner and V. Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. Intl. Symp.

on Code Generation and Optimization (CGO'04). March

2004.

[18] D. E. Lowell, Y. Saito, and E. J. Samberg. Devirtualizable

Virtual Machines Enabling General, Single-Node, Online

Maintenance. Proceedings of the 11th Intl. Conf. on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS'04). October 2004.

[19] J. Maebe, M. Ronsse, and K. De Bosschere. DIOTA:

Dynamic Instrumentation, Optimization and Transformation

of Applications. Compendium of Workshops and Tutorials

Held in conjunction with Intl. Conf. on Parallel Architectures

and Compilation Techniques. September 2002.

[20] MediaBench. http://cares.icsl.ucla.edu/MediaBench.

[21] MiBench. http://www.eecs.umich.edu/mibench.

[22] Doug Palmer. A Virtual Machine Generator for

Heterogeneous Smart Spaces. USENIX 3rd Virtual Machine

Research and Technology Symposium (VM’04). May 2004.

[23] Pin Website. http://rogue.colorado.edu/Pin/.

[24] L. Popa, C. Raiciu, R. Teodorescu, I. Athanasiu, and R.

Pandey. Using Code Collection to Support Large

Applications on Mobile Devices. Proceedings of the 10th

Annual Intl. Conf. on Mobile Computing and Networking

(Mobicom’04). September 2004.

[25] RSA SecurID 5100 Smart Card Online Document.
http://www.rsasecurity.com/node.asp?id=1215. June 2004.

[26] E. Schnarr, M. Hill, and J. Larus. Facile: A Language and

Compiler For High-Performance Processor Simulators. Conf.

on Programming Language Design and Implementation

(PLDI'01). June 2001.

[27] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson,

and M. L. Soffa. Reconfigurable and Retargetable Software

Dynamic Translation. Intl. Symp. on Code Generation and

Optimization (CGO’03). March 2003.

[28] F. Vacherand. New Emerging Technologies for Secure Chips

and Smart Cards. The 3rd Intl. Micro and Nanotechnology

Meeting (MINATEC). September 2003.

[29] E. Witchel and M. Rosenblum. Embra: Fast and Flexible

Machine Simulation. Conf. on Measurement and Modeling of

Computer Systems (SIGMETRICS'96). May 1996.

[30] L. Zhang and C. Krintz. Adaptive Code Unloading for

Resoruce-Constrained JVMs. Conf. on Languages,

Compilers, and Tools for Embedded Systems (LCTES'04).

June 2004.

[31] T. Zhang, S. Pande, A. Santos, and F. J. Bruecklmayr.

Leakage-Proof Program Partitioning. Conf. on Compilers,

Architectures and Synthesis for Embedded Systems

(CASES'02). October 2002.

[32] T. Zhang, S. Pande, and A. Valverde. Tamper-Resistant

Whole Program Partitioning. Conf. on Languages, Compilers,

and Tools for Embedded Systems (LCTES'03). June 2003.

[33] S. Zhou, B. R. Childers, N. Kumar. Profile Guided

Management of Code Partitions for Embedded Systems.

Conf. on Design, Automation and Test in Europe (DATE'04).

February 2004.

109

