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ABSTRACT 
Virtual execution environments have become increasingly useful in 

system implementation, with dynamic translation techniques being 

an important component for performance-critical systems. Many 

devices have exceptionally tight performance and memory 

constraints (e.g., smart cards and sensors in distributed systems), 

which require effective resource management. One approach to 

manage code memory is to download code partitions on-demand 

from a server and to cache the partitions in the 

resource-constrained device (client). However, due to the high cost 

of downloading code and re-translation, it is critical to 

intelligently manage the code buffer to minimize the overhead of 

code buffer misses. Yet, intelligent buffer management on the 

tightly constrained client can be too expensive. In this paper, we 

propose to move code buffer management to the server, where 

sophisticated schemes can be employed. We describe two schemes 

that use profiling information to direct the client in caching code 

partitions. One scheme is designed for workloads with stable 

run-time behavior, while the other scheme adapts its decisions for 

workloads with unstable behaviors. We evaluate and compare our 

schemes and show they perform well, compared to other 

approaches, with the adaptive scheme having the best 

performance overall. 

 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Memory Management, 

Run-Time Environments 

 

General Terms 
Design, Experimentation, Performance 

 

Keywords 
Distributed Environments, Code Buffer, Dynamic Translation, 

Generational Cache, Adaptive Code Cache, Program Partitioning 

 

 

 

1. INTRODUCTION 
 

Over the last several years virtual execution environments 

(VEE) have been increasingly useful in system implementation. A 

VEE can reduce and manage complexity by providing a common 

runtime and a self-contained operating environment that facilitates 

the programmatic modification of an executing program. In 

addition to the well-known Java virtual machine (JVM), a wide 

variety of systems can also be classified as virtual execution 

environments, such as dynamic optimizers [2,5,6,17], dynamic 

software updaters [18], dynamic binary translators [8,9,11,27], 

dynamic instrumentation systems [3,19,23], and certain emulators 

and simulators [26,29]. 

Although a virtual machine (VM) can execute programs using 

interpretation, performance-critical VMs often employ software 

dynamic translation because a translator has the potential to 

produce significantly higher quality code and thus is able to utilize 

resources efficiently. Just-in-time (JIT) compilation, for instance, 

is used in many JVMs. After translating a code segment, a 

translation-based VEE typically stores the translated code in a 

code buffer (CB), and reuses the code for future invocations. The 

overhead of dynamic translation can be amortized if the translated 

code is reused frequently. 

As VEE techniques have been applied to a range of computing 

environments, there is a set of environments in which devices have 

exceptionally tight memory and performance constraints, such as 

smart cards and sensors in distributed systems [4,10,15,22,25,28]. 

The software executing in such environments, however, has 

become quite complex. For example, a smart card might use the 

RSA protocol to authenticate a user's identity [25]. Furthermore, 

such constrained devices may need to support multitasking 

workloads. For instance, a sensor in an intrusion detection network 

concurrently monitors environmental events, tracks objects, and 

communicates with other sensors [1]. A consequence of this trend 

is that memory demands have become very high. 

Due to severe memory limitations (e.g., an Atmel ATmega128 

processor has 128 KB flash memory and 4 KB SRAM [4]), the 

original code of a single large program, or multiple small 

programs, may not fit in the memory of a resource-constrained 

device. To address such constraints, and inspired by program 

partitioning schemes for traditional systems [16,24,31,32], we 

propose to store the original software on a code server and to 

execute the VM using its code buffer on the device (as a client). A 

piece of original program code (e.g., trace, basic block sequence, 

method, program slices, etc.), called a partition, is downloaded 

from the code server to the client on-demand via a wireless link. 

The code executes on the client and a CB miss happens when a 

needed partition is not in the CB. Not only does this partition need 
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to be downloaded on-demand, it also needs to be re-translated by 

the VM before execution continues. As wireless bandwidth is 

limited in resource-constrained devices and dynamic translation is 

expensive, the CB has a high miss penalty, and it must be 

intelligently managed to keep miss rates low. 

In dynamic optimization systems, a generational buffer is 

proposed [14], which tries to identify and use the lifetime of code 

to manage the code buffer. Two other similar techniques that have 

been proposed to manage the CB are adaptive code unloading [30] 

and code collection [24], both of which use online profiling to 

trigger a garbage collector. Another technique for embedded 

systems is compiler-controlled function caching [32]. Code 

replacement policies employed in hardware caches and operating 

systems, such as LRU, are related as well. However, these 

methods are unsuitable for distributed VEEs due to two reasons. 

First, although a technique might effectively reduce CB misses, its 

overhead can be too high to be practical (e.g., a VM must maintain 

usage information to employ online profiling). Second, most of 

these approaches cannot achieve a satisfactory CB miss rate when 

memory space is tightly limited, as these approaches lack the 

awareness of both program and memory size. To achieve an 

effective CB miss rate, a scheme needs to utilize knowledge of a 

program and its memory size, while having a low run-time cost. 

In this paper we present a technique whereby the server “plans” 

for memory management using both the program and the memory 

size. Using program profiles helps the schemes maintain hot code 

partitions in the CB and thus avoid caching cold partitions. We 

move management decision-making to a server to keep the 

demands placed on the clients minimal. One scheme is used for 

programs that are insensitive to data inputs, having stable behavior 

across different data sets, while the other scheme adapts decisions 

for programs that are highly sensitive to inputs.  

The contributions of this paper include: 

 

•  Planning for CB management before execution and moving 

decision-making from the client to a server;  

•  A simple yet effective planning management scheme for 

programs with stable behavior across different data inputs;  

•  An adaptive scheme for programs in which inputs can 

produce varying behaviors; and  

•  Experimental results that demonstrate the benefits of our 

schemes over previous approaches.  

 

The remainder of the paper is organized as follows. Section 2 

provides a background on resource-constrained systems, and 

Section 3 describes our planning schemes. Section 4 evaluates the 

schemes in terms of miss reduction and the impact on execution 

time. Section 5 surveys related work and Section 6 summarizes the 

paper. 

 

2. BACKGROUND 
 

Tight memory constraints and high CB miss penalties make 

good CB management decisions critical to performance. In general, 

with more knowledge about program behavior, better decisions 

can be made about buffer management. Program profiling can be 

used to identify likely execution paths. Indeed, it is known that 

most execution time is spent in a small portion (hot code) of a 

program, with recent studies showing similar results for code 

traces [5]. A trace is a sequence of basic blocks that are executed 

along a path. Hazelwood and Smith [13] showed that regardless of 

data inputs for SPEC2000 programs, code traces that account for 

roughly 85% of the dynamic instruction count are repeated during 

successive executions. Hence, basic block profiling works well in 

these programs and can identify sequences of hot code. 

Although there are many programs in which profiling can 

capture execution stability, there are some programs with much 

variability across inputs. For instance, the program blowfish [21] 

behaves differently when encoding a plain-text file and an image 

file. Considering the importance of good CB decisions, a 

management scheme needs adaptivity for these unstable programs. 

The adaptivity can be achieved by gathering run-time information 

about hot basic blocks and paths.  

When management decisions are made by the client, profiles 

can introduce considerable overhead. Offline profiles need to be 

accessible to the client and run-time information needs to be 

updated. Both are very expensive to use or maintain on the client. 

Indeed, it is typically infeasible for a severely restricted client to 

use profile information directly. Therefore, we propose to make a 

code server responsible for CB management, moving 

decision-making from a client to a more powerful server that can 

more easily maintain, update, and use profiles. Thus, the client 

only executes simple actions guided by the server, while the server 

manages the client’s CB. 

 

3. A PLANNING APPROACH 
 

The key idea in our work is for a powerful platform (called a 

cache planner) to develop CB cache plans based on a program’s  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Workflow of our schemes. 
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code partitions and profiles, with the knowledge of a client’s 

anticipated memory size. The plans are developed before 

execution of a program begins, with the goal of caching frequently 

executed (hot) partitions in the CB. The code server in charge of 

sending code partitions during the program’s execution forwards 

these plans to the client as code is downloaded. Both of our 

schemes partition the CB into separate buffers, called sub-buffers, 

to hold code partitions based on code hotness. 

Figure 1 shows the workflow of our management schemes. A 

program is firstly partitioned into code partitions using a 

partitioning scheme, and then stored in a code server connected to 

the client. Profiling is used to capture the hotness (execution 

frequency) of code partitions and to estimate the performance of 

potential CB management decisions. A cache planner uses 

program profiles and code partitions to develop management 

decisions (i.e., cache plans) before program execution. The plans 

are then stored on the code server with the corresponding code 

partitions. When a client needs a code partition, the server sends 

the appropriate plan with the partition. The sub-buffers are ordered 

by the hotness of partitions assigned to them. That is, one 

sub-buffer holds very hot code, while another may hold cold code 

that is executed infrequently. This approach is based on the fact 

that most programs spend a large part of their execution in a small 

portion of code. 

To handle the sub-buffers, we use two policies. A local policy 

manages an individual sub-buffer and a global policy manages the 

relationship among sub-buffers. The local policy is essentially the 

replacement policy for the partitions in a sub-buffer. The 

replacement policy has to possess all of the following attributes: 

high temporal locality, low overhead, and minimum fragmentation. 

The first factor is the foremost motivation for CB. The second 

factor is important for application performance because it is a part 

of user perceivable system overhead. The third factor must be 

considered because our caching element, a code partition, has 

variable size, which easily causes fragmentation. We use 

First-In-First-Out (FIFO) as our local policy as it has good 

performance with little fragmentation [12]. Our global policy is to 

cache code partitions in sub-buffers based on their hotness. 

We describe the overall strategy of CB memory planning and 

then describe two particular schemes. One scheme is a fixed 

scheme where code partitions are always housed in the same 

sub-buffer during execution. We then extend this scheme to an 

adaptive one, in which partitions are cached in sub-buffers based 

on a program’s run-time behavior. We also describe a method, 

using “code density”, which improves the code partition 

assignments made by either technique.   

 

3.1 Overall CB Management Strategy 
 

Our strategy generates plans for managing the CB, by using 

profiles to first determine the hotness of code partitions and then 

to assign partitions to sub-buffers. As management decisions are 

sensitive to program and memory size (in a small CB), our scheme 

generates a cache plan for each program and anticipated CB size. 

These plans are stored on a server and can be retrieved when a 

client connects with the server and provides a program name and 

the size of its CB. 

A cache plan records management decisions: For a given 

program and CB size, a plan indicates the number of sub-buffers, 

the size of the sub-buffers, and a cache blueprint for each code 

partition in the program. The size of a sub-buffer is recorded as the 

percentage (proportion) of the total CB size to allocate to this 

sub-buffer. A cache blueprint indicates the assignment of a code 

partition to a sub-buffer and has two fields. One field indicates 

whether to cache the partition and the other indicates which 

sub-buffer to use if the partition is to be cached. An example of a 

cache plan is shown in Figure 2. There are N code partitions in the 

program, each of which has been assigned a cache blueprint. For 

example, partition 2 is cached in sub-buffer 0. In this figure, the 

CB is partitioned into three buffers, and the sub-buffer size 

proportions are 20%, 40%, and 40%, respectively. 

 

Number of Sub-Buffers 3 

Sub-Buffer Allocation 20%-40%-40% 

Cache Blueprint 
Partition ID 

Cache? Sub-Buffer ID 

0 Yes 1 

1 No --- 

2 Yes 0 

. . . 

. . . 

. . . 

N-1 Yes 2 
 

Figure 2. Example cache plan. 
 

The cache plan, computed beforehand by the server, is used at 

the client side. Before a client executes a program, it informs the 

server which program is going to be run and the size of the CB. 

The server finds a corresponding plan and responds to the client 

with the number and size of the sub-buffers. The code partition 

containing the first instruction, and this partition's blueprint, are 

transferred to the client, and then the client starts program 

execution.  

After translating a code segment (called a translation unit), a 

VEE directly executes the translated code for efficiency. Some 

VEEs add an instruction at the exit of each translation unit to 

return control to the VEE, while other VEEs directly link 

translated units to avoid unnecessary invocations of the VEE. No 

matter what mechanism is used, the VEE is notified when a 

desired unit is not found in the translated code buffer. Every time 

this occurs, our approach performs several more operations, 

compared to what a traditional VEE does, to use the cache plan to 

manage the CB. 

At run-time, if a needed code partition is not cached in the CB, 

the client sends a request to the server for the partition. The server 

sends back the partition, with its cache blueprint attached. Note 

that a partition is both a translation unit and a caching unit. After 

the client receives the partition and cache blueprint, it translates 

the partition and follows the blueprint to cache the partition in the 

specified sub-buffer (or not to cache the partition). If the specified 

sub-buffer does not have enough free space to store it, other 

partition(s) in the specified sub-buffer are evicted using the local 

policy (FIFO). 

To generate a cache plan, two steps are performed. The first 

step uses a given configuration as parameters and assigns code 

partitions to sub-buffers based on profile information about the 

execution frequency of partitions. In other words, this assignment 

determines the cache blueprint for each code partition. The 

configuration includes the number of sub-buffers, each 

sub-buffer's size proportion and the assignment ratio. Assignment 

ratio is the ratio of the total size of all partitions assigned to a 

sub-buffer over the sub-buffer size, which limits the total size of 

partitions that can be assigned to a sub-buffer. 
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How well a cache plan works is influenced by the number of 

sub-buffers, the size proportion of each sub-buffer, and the 

assignment ratio of each sub-buffer. Because the quality of a cache 

plan depends on these three factors, we produce a number of 

candidate plans. The best plan is selected among these candidates 

to be loaded onto the code server. 

The second step selects the plan that is most likely to minimize 

the number of CB misses at run-time. This step iterates over all 

cache plans to determine a score for each one that indicates how 

well they may perform. The score is determined by running the 

application program with a training data set and collecting the 

number of CB misses. The cache plan with the smallest number of 

misses is the one that is selected. 

Figure 3 shows pseudo-code to generate a cache plan. Line 2 

determines a basic block execution frequency profile. Lines 4-8 

generate and try a range of configurations to produce candidate 

plans. Line 10 does the second step that determines the best plan 

among the candidates. The routine Assign_Blueprints() 

(line 6) generates the blueprints for each cache configuration. A 

naïve algorithm to implement this function is shown in Figure 4. 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Cache plan generation algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Cache blueprint assignment algorithm using 

frequency as criterion. 

In Figure 4, Assign_Blueprints() sorts code partitions 

based on their execution frequency (from a profile) in descending 

order (line 5). Lines 7-24 divide the CB into sub-buffers, give each 

sub-buffer a unique identifier (ID), and assign partitions to each 

sub-buffer. Line 8 calculates a sub-buffer's size and line 9 

calculates the total size of partitions that can be assigned to this 

sub-buffer. Line 10 initializes a flag variable. Lines 12-23 

determine blueprints, assigning hotter partitions to the sub-buffer 

with a smaller ID. Line 13 sets the size limit which is an upper 

bound on the partitions to be assigned to this sub-buffer. Line 14 

seeks a candidate partition with maximal frequency (which has not 

been yet assigned to any sub-buffer) and not larger than the size 

limit. If no such partition exists, the assignment for this sub-buffer 

is done (line 17). Otherwise we assign the candidate partition to 

the sub-buffer (line 19-21). If there are partitions left unassigned 

after every sub-buffer has been processed, these partitions are 

marked No_Caching on lines 26-27. This mark indicates that 

these partitions will never be cached (they are too cold). The 

algorithm does not consider code partitions that remain 

unexecuted by the training input. These partitions are assigned to 

the sub-buffer with the largest ID (it holds the coldest code). 

The planning approach is quite efficient. Clients only execute 

simple actions as directed by the server; hence, their run-time 

overhead is low. However, transferring the blueprint with a code 

partition does introduce a small additional amount of 

communication. If one byte is used to encode the cache blueprint 

and a code partition itself is 20 bytes, the transfer overhead of the 

blueprint is just 5%. Larger code partitions reduce the overhead 

further. 

 

3.2 Fixed Scheme 
 

In the fixed strategy, a code partition is always stored in the 

sub-buffer that it was assigned in the original plan.  That is, the 

hotness of the code during execution is assumed to mirror the 

profile information. 

 

3.3 Adaptive Scheme 
 

The fixed scheme relies on the accuracy of profiles to guide the 

selection of cache plans. However, some programs (as described 

earlier) may have behavior that is not captured by a profile. Our 

adaptive scheme aims to overcome this problem by changing the 

assignment of code partitions to sub-buffers as a program executes. 

As before, the server is responsible for managing the partitions, 

but the adaptive scheme can change the assignment of a code 

partition to a sub-buffer based on its hotness at run-time.  The 

scheme moves a code partition from one sub-buffer to the next in 

sequence. This process is called promotion. At run-time, the server 

maintains a time window (called a miss window) to monitor 

missing partitions. The server uses the miss window to decide 

which partitions should be promoted. Whenever a partition is 

promoted, its new sub-buffer position is recorded in a registration 

list. Before the server sends a partition to the client, it checks the 

registration list. If a partition is found in the list, a temporary 

blueprint is created on-the-fly that designates a different 

sub-buffer to hold the partition (i.e., the sub-buffer holding the 

next hottest code). Otherwise, the original blueprint is used. 

Figure 5 shows pseudo-code for the server algorithm that 

decides which partitions to promote. Every time the server 

receives a request from the client, monitor_miss() is invoked. 

1  Assign_Blueprints (program x, profile prof, 
2                         configuration config) { 
3    (buffer_number,buffer_portion[],assign_ratio[]) 
4        = Extract_Config_Values (config); 
5    sort_parition[] = Sort_By_Freq(x, prof); 
6 
7    for (i=0; i < buffer_number; i++) { 

8      buffer_size=CB_size×buffer_portion[i]; 

9      remain_size=buffer_size×assign_ratio[i]; 
10     flag = 1; 
11 
12     while (flag) { 
13       sizeLimit = min(buffer_size, remain_size); 
14       cand = Max_Freq_P(sizeLimit); 
15 
16       if cand not existing { 
17         flag = 0; /* all partitions already tried */ 
18       } else { 
19         assign cand to sub-buffer[i]; 
20         remain_size -= size(cand); 
21         if (remain_size = 0) { frag = 0; } 
22       } /* of else */ 
23     } /* of while */ 
24   } /* of for */ 
25 

26   for each remaining partition p in sort_partition[] 
27     { sort_partition[p].blueprint = No_Caching; } 
28 } 
 

1  Generate_Plan (program x) { 
2    prof = First_Profile (x); 
3 
4    repeat 
5      config = Generate_New_Config(); 
6      blueprints = Assign_Blueprints(x, prof, config); 
7      candidate_plans.Add(config, blueprints); 

8    until no more configurations; 
9 
10   plan = Second_Profile(x, candidate_plans); 
11   return plan; 
12 } 

103



 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Partition promotion algorithm. 
 

Line 3 records the missing partition's ID (p_id) in the miss 

window (miss_win[]). The window size is a pre-defined 

threshold (win_size). When the window is full, lines 6-15 

check for promotion. (We skip line 7 for a moment –– it will be 

discussed shortly.) Lines 8-9 scan every partition in the window to 

determine how often they occurred. Line 10 checks a promotion 

condition: any partition that occurs more frequently than a 

threshold (promote_threshold) is promoted by adding the 

partition to the registration list. Lines 13 and 14 flush the miss 

window for the next interval of execution. 

In our experiments, we observed that input variability is limited 

in applications for distributed environments. If a cold partition in a 

profile is hot in actual runs, the partition seldom becomes hot 

throughout the whole program execution. Thus, the adaptive 

scheme has to also let promoted partitions cool and move back to 

their original sub-buffer. On line 7, the registration list is cleared 

immediately before the miss window is checked. In this way, any 

promotion is conservative as it is only visible until the miss 

window becomes full again. Furthermore, we have observed that it 

is necessary to promote a partition by only one level to avoid 

disturbing the original cache plan too much. 

The server maintains a private miss window and a private 

registration list for each execution. Consequently, executions of 

the same program at different clients can be adapted individually 

and concurrently. Repeated adaptations for a program may 

indicate that the training input used in profiling is not 

representative, and a single update of the cache plan can save the 

multiple adaptations. However, we leave this as a question for 

future studies. 

In the adaptive scheme, no special operation is needed at the 

client side; it is the code server that adapts. Hence, this scheme is 

as efficient as the fixed scheme for a client. The adaptive scheme 

does introduce some overhead in the server, but it is minimal. 

 

3.4 Density: A Heuristic Algorithm  
 

In Figure 4, we presented a naïve algorithm to assign blueprints 

by using the frequency of code partitions. It looks quite 

straightforward; however, the problem is complex. The naïve 

algorithm may favor some extremely large partitions with high 

frequency, overlooking a set of small partitions which together 

have a higher total frequency. CB management is a trade-off 

between code usage and code size. Rather than solely focusing on 

an individual partition’s hotness, our goal is to find a set of 

partitions that has an upper bound on combined size and possesses 

the maximal total frequency simultaneously. Unfortunately, this is 

the knapsack problem and is NP-complete. 

To tackle the problem, we introduce a new concept, called 

density, which is a criterion to measure the priority of code 

partitions to reside in CB. A partition’s density is defined as a 

partition’s execution frequency divided by its size. 

 

Density = Execution Frequency / Size 

 

We employ density to avoid caching extremely large partitions 

with slightly high frequency. However, relying exclusively on 

density may lead to another problem. Assigning a small, dense 

partition first may make it impossible to assign a large, hot 

partition with less density later. To avoid both pitfalls, we designed 

a heuristic algorithm to assign cache blueprints, as shown in 

Figure 6. We use density to find a candidate partition first, and 

then check its frequency to make sure that it will not prevent us 

from caching a hotter fragment with a lower density later on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Cache blueprint assignment algorithm using 

density as criterion. 

 

The algorithm’s overall structure is similar to the naïve 

algorithm described in Figure 4; hence we emphasize only the 

differences. Line 5 sorts the code partitions based on their density. 

Lines 10-30 assign the blueprints. Line 10 initializes the search 

start position from and a flag variable. Line 13 sets the size limit 

which is an upper bound on the partitions to be assigned to this 

sub-buffer. Line 14 seeks a candidate partition (not assigned yet) 

with maximal density and not larger than the size limit, starting 

from position from in the sorted partition list. If no such partition 

1  index = 0; 
2  monitor_miss (p_id) { 
3    miss_win[index]=p_id; 
4    if (index < win_size-1) { 
5      index++; 

6    } else { /* check miss window and promote if necessary */ 

7      clear registration_list[]; 

8      for each unique partition p in miss_win[] { 

9        freq = frequency of p in miss_win[]; 
10       if (freq > promote_threshold) 

11         add p to registration_list[]; 
12     } 

13     clear miss_win[]; 
14     index = 0; 
15   } 
16 } 

1  Assign_Blueprints (program x, profile prof, 
2                         configuration config) { 
3    (buffer_number,buffer_portion[],assign_ratio[]) 
4        = Extract_Config_Values (config); 
5    sort_parition[] = Sort_By_Density(x, prof); 
6 
7    for (i=0; i < buffer_number; i++) { 

8      buffer_size=CB_size×buffer_portion[i]; 

9      remain_size=buffer_size×assign_ratio[i]; 
10     from = 0; flag = 1; 
11 
12     while (flag) { 
13       sizeLimit = min(buffer_size, remain_size); 
14       cand = Max_Density_P(from, sizeLimit); 
15 
16       if cand not existing { 
17         flag = 0; /* all partitions already tried */ 
18       } else { 
19         threat = Max_Freq_New_P(sizeLimit); 
20 
21         if (cand == threat || 
22             (remain_size>size(cand)+size(threat)){ 
23            assign cand to sub-buffer[i]; 
24            remain_size -= size(cand); 
25            if (remain_size = 0) { frag = 0; } 
26         } 
27         from ++; 
28       } /* of else */ 
29     } /* of while */ 
30   } /* of for */ 
31 

32   for each remaining partition p in sort_partition[] 
33     { sort_partition[p].blueprint = No_Caching; } 
34 } 
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exists, the assignment for this sub-buffer is done (line 17). 

Otherwise, we check if the candidate will restrict the assignment 

of hotter partitions. Line 19 looks for a partition with maximal 

frequency that is not larger than the size limit. If the candidate is 

also the one with the maximal frequency (line 21), or does not 

restrict the assignment of hotter partitions (line 22), it will be 

assigned to this sub-buffer (line 23-25). Line 27 updates the search 

start position. This is a greedy algorithm, and one can easily 

compose an example to show that it is not optimal. Our 

experiments in Section 4, however, show that it is able to produce 

satisfactory results in practice. 

 

4. EVALUATION 
 

We simulated our schemes to determine their effectiveness and 

to compare their performance with other approaches as well as 

with each other. 

 

4.1 Experimental Methodology 
 

We experimented with twelve MiBench [21] and MediaBench 

[20] programs on a SPARC/Solaris 9 workstation, using gcc with 

the compiler flags “–O3 –static”. We believe our selection of 

benchmarks represents the applications which will be extensively 

used in the next generation of VEEs for smart cards and sensor 

networks (including ones performing biometric recognition and 

those used in ad-hoc networks). 

The results are collected by using a profiler and a simulator. 

The profiler executes benchmarks and collects a log of partition 

accesses. Our simulator uses the CB size, the cache plan, the 

access log, and the size of each partition as inputs. It faithfully 

mimics the operations of buffer management and produces CB 

miss numbers as an output. Although simulation sometimes 

provides inaccurate or incomplete results when compared to actual 

execution, our simulators are trustworthy. Since all factors that 

affect a buffer’s hit and miss action are considered in the simulator, 

the simulation result (miss numbers) will be consistent with those 

arising in actual execution. 

We used a fragment (an instruction sequence that ends with a 

conditional branch, indirect branch, or return) as a partition in our 

experiments. A fragment is similar to a basic block, except that a 

basic block terminates at a branch target while a fragment does not. 

Our profiler was built on a software dynamic translator, Strata [27], 

which implements a virtual execution environment and uses a 

code fragment as its translation unit. Typically, a translation unit in 

a VEE is also a caching unit in the CB. Therefore, we use 

fragments as partitions in our experiments. Although the definition 

of the translation unit (i.e., code partition in this work) changes 

across VEE implementations and the variance may influence 

caching performance, these different partitions possess certain 

common properties. In particular, among the factors affecting CB 

management, variable size and hotness are universal. Therefore, 

our experimental results can demonstrate the benefits of our 

approaches in general VEEs. Although we did not experiment with 

other partitioning schemes, we believe that the qualitative trend 

will be similar. 

For each benchmark, we use a training data input for profiling 

and a different reference input for evaluation. Table 1 shows the 

miss numbers of the reference inputs when running with our 

baseline, which is a unified circular buffer using a FIFO policy. 

Column 1 lists the benchmarks. Column 2 lists the number of  

Table 1. Miss numbers of the baseline. "*" designates 

that all misses are compulsory. 

Benchmark 
Partition 

Number 
2 KB 4KB 8KB 16KB 

blowfish_dec 241 1881118 344 241 * 241 * 

blowfish_enc 239 1881116 342 239 * 239 * 

crc32 283 317 283 * 283 * 283 * 

dijkstra 397 21466 16013 397 * 397 * 

gsm_dec 690 351957 350246 350152 691 

gsm_enc 908 1211052 1184794 646302 638472 

jpeg_dec 1149 38049 5298 1619 1259 

jpeg_enc 1403 62031 7168 2326 1594 

patricia 792 3054768 2859748 2755161 3921 

susan_corner 541 51001 727 664 541 * 

susan_edge 564 157639 778 722 717 

susan_smooth 445 770 667 598 445 * 

 

unique partitions that have been downloaded in the execution, and 

the remaining columns list the number of misses when the CB size 

is 2 KB, 4 KB, 8 KB, and 16 KB. If the miss number is the same 

as the partition number (designated by "*" in the table), it means 

all misses are compulsory and the baseline is optimal. 
The technique most similar to our work is the generational 

buffer [14], which we compare our schemes against. The 

generational buffer scheme was proposed to manage the trace 

cache in dynamic optimization systems. It partitions the trace 

cache into three distinct and separately managed regions, trying to 

identify code lifetime at run-time. It uses a unified partitioning 

proportion for all programs and CB sizes, and thus no profiling is 

needed. Hazelwood and Smith showed that the generational buffer 

can effectively reduce the miss rate for SPEC2000 and Windows 

applications. However, we found that the partition proportion 

suggested in [14] (a 45%-10%-45% ratio for three separate buffer 

sizes and a promotion threshold of 1) works poorly for 

resource-constrained devices in distributed VEEs.  

Since the programs and environments studied in [14] are 

significantly different from ours, we extend the generational 

scheme for a fair comparison, using the training inputs (also used 

in our schemes) to find the best configuration as well. We 

investigate two ways to find the best configuration. First, for each 

prospective CB size, we select the configuration with which the 

generational buffer produces the minimal geometric mean of 

normalized miss numbers (to the baseline) for training inputs 

across all benchmarks. We call this configuration unified and use it 

for all programs when that particular CB size is experimented. 

Second, for each combination of prospective CB size and program, 

we select the configuration with which the generational buffer 

produces the minimal miss number for the training input. We call 

this approach individualized and use it for the particular 

combination of program and CB size.  

We compare the miss reduction of the unified generational, 

individualized generational, fixed, and adaptive schemes to the 

baseline. When we calculate miss reduction, the size of the unified 

buffer in the baseline equals the total size of all sub-buffers in the 

generational and planning schemes. 

In the fixed and adaptive approaches, we limit the maximal 
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number of sub-buffers to three (3) because our experience shows 

that three sub-buffers are enough to classify the code partitions in 

most cases. In addition, finer partitioning of the CB introduces 

more fragmentation, which is expensive for resource-constrained 

devices. 

 

4.2 Miss Number Reduction 
 

Figure 7 compares the miss reduction of the generational and 

fixed schemes over the baseline for various CB sizes. For the 

generational schemes, our experiments include both the unified 

and individualized approaches. For the fixed scheme, both the 

naïve algorithm (Figure 4) and the improved density algorithm 

(Figure 6) are presented. Each chart shows the percentage of miss 

reduction when the CB size is 2 KB, 4 KB, 8 KB, and 16 KB. If a 

scheme produces the same number of misses as the baseline, the 

miss reduction is zero (0). 

The most consistent result is that the individualized 

generational scheme performs better than (or as well as) the 

unified generational one for every benchmark with each CB size. 

Considering the performance of the generational buffer in 

DynamoRio, this indicates that a tightly constrained CB is quite 

different from the buffers in dynamic optimizers: CB performance 

becomes very sensitive to the program when the CB is small. 

Hence, a single configuration for all programs does not produce 

good results. 

Although the individualized generational scheme gains through 

customized configuration by using profiling, the fixed scheme 

exploits more benefits from profiling information. As shown, in 

most cases, the fixed schemes perform better than the generational 

buffer. It may be that a small generational buffer is unable to 

capture the hottest code partitions accurately, since many 

partitions seem to be missing frequently. Another possible reason 

is the fragmentation caused by unnecessary partitioning of the CB. 

Indeed, the best cache plans selected by the fixed scheme (using 

density) divide the 2 KB CB into three sub-buffers for only 3 

programs out of the 12 benchmarks, while the generational scheme 

inherently does such partitioning for all programs. 

As shown, the density algorithm can generate higher quality 

cache plans than the naïve algorithm, especially when the CB size 

is small. The argument to use density as a planning criterion in 

constrained environment is thus well justified, as a tighter 

environment demands a more careful trade-off decision between 

the code hotness and size. 

Not surprisingly, some programs are not friendly to the fixed 

scheme, because program behavior can not always be predicted in 

advance. An obvious example is patricia with a 16 KB CB in 

Figure 7. Here, the fixed scheme produces 15 times more misses 

than the baseline. A careful examination found that a code region 

is executed once for the training data set, but its execution 

frequency is over 33,000 for the reference input. The adaptive 

scheme is able to correct this problem, as shown in Figure 8. We 

only present the result for density because we know that density is 

better able to determine cache plans than frequency. The results for 

the adaptive scheme are collected when win_size = 50 and 
promote_threshold = 20, which is the best configuration 
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Generational vs. Fixed Schemes (8 KB)
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Generational vs. Fixed Schemes (16 KB)
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Figure 7. Comparison of miss reduction over the baseline. “Gen (Unif.)” stands for unified generational scheme; “Gen (Ind.)” 

stands for individualized generational scheme; “Freq (Fix.)” stands for fixed scheme using frequency in planning; and 

“Den (Fix.)” stands for fixed scheme using density in planning.
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that we found in our experiments. Figure 8 shows that the adaptive 

approach can dramatically reduce the misses more than the fixed 

scheme for certain benchmarks at some CB sizes. In other cases, it 

does as well or is very close to the fixed scheme. 

 

4.3 Impact on Execution Time 
 

A common pitfall in cache performance evaluation is the 

overemphasis on miss (rate) reduction while omitting the fact that 

a significant miss reduction sometimes affects little in the overall 

optimization objective. In our work, nevertheless, CB miss 

reduction can translate into a meaningful performance 

improvement. In VEEs for resource constrained devices, the time 

for downloading a partition often dominates total execution time, 

as wireless bandwidth can be severely limited. 

Figure 9 shows the impact of the miss reduction on the 

execution time. The speedup is calculated by a method which has 

been used in [31]. The calculation of total execution time is 

divided into four parts: the download time for partition 

transmissions, the connection setup time due to network delays, 

the runtime environment time, and the real CPU time for the 

program. Similar to the experimental settings used in [31], we 

assume a bandwidth of 106 kb/sec, a connection time of 20 ms per 

setup, a context switch (between the application and the VEE) 

consuming 100 dynamic instructions, and an internal clock 

frequency of 66 MHz. When we calculate the time for the fixed 

and adaptive schemes, we add a byte, which records a cache 

blueprint, to the size of each transferred partition. The additional 

overhead of cache blueprint is amortized by greater miss reduction. 

As demonstrated in the figure, the planning schemes have a 

greater speedup than the generational schemes in most cases. As 

these results show, it is important to reduce the CB miss rate and 

small reductions can lead to large run-time improvements.  

From the results, our schemes have a significant improvement 

over a unified circular buffer and a generational buffer in terms of 

miss reduction, which translates into considerable performance 

speedup. In particular, the adaptive scheme does as well as the 

fixed scheme in most cases, and in a few cases does substantially 

better. Yet, it has low overhead. We conclude that the adaptive 

scheme is a good choice for resource-constrained devices in 

distributed VEEs. 

 

5. RELATED WORK 
 

DELI [9], an infrastructure for manipulating or monitoring 

running programs, provides a mode (called code streaming) for 

remote execution, where a remote application is loaded 

on-demand piece by piece. The authors discussed the method 

when the emulated ISA and the target ISA are the same, while we 

extended the idea to general VEEs, even if the original and target 

ISAs are different. 

There are several buffer management approaches proposed for 

dynamic translation/optimization systems, including: flushing the 
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Generational vs. Planning Schemes (8 KB)
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Generational vs. Planning Schemes (16 KB)
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Figure 8. Comparison of miss reduction over the baseline. “Gen (Unif.)” stands for unified generational scheme; “Gen (Ind.)” 

stands for individualized generational scheme; “Den (Fix.)” stands for fixed scheme using density in planning; and 

“Den (Adp.)” stands for adaptive scheme using density in planning. 
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Generational vs. Planning Schemes (8 KB)
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Figure 9. Execution time speedup over the baseline. “Gen (Unif.)” stands for unified generational scheme; “Gen (Ind.)” stands 

for individualized generational scheme; “Den (Fix.)” stands for fixed scheme using density in planning; and 

“Den (Adp.)” stands for adaptive scheme using density in planning. 

 

 
buffer when it gets full (Dynamo [5] and DELI [9]), an unbounded 

buffer (Strata [27] and DynamoRio [6] by default), and a circular 

buffer. The generational buffer was proposed to overcome the 

limitations of these techniques [14]. The results presented in 

Section 4 show that these techniques are unsuitable for distributed 

systems with tight resource constraints. Zhang and Krintz 

proposed an adaptive code unloading method for JVMs with JIT 

compilation [30]. Their cached element is method based, which 

may include cold code. And the fragmentation is handled by the 

system's garbage collector, which is too expensive to execute on a 

constrained device. They mentioned a very simple offline profiling 

method in their paper but its result was disappointing. Popa et al. 

proposed a mechanism called code collection to support large 

applications on mobile devices [24], which is similar to our 

approaches. But their heuristic algorithm necessitates a client to 

collect run-time information for selecting code units to discard, 

while ours does not. And their scheme is also method-based and 

requires a garbage collector running on the client. Zhang et al. 

proposed a buffer management technique, function caching, for 

smart cards [32]. Their approach is not adaptive as the compiler 

fully controls the management, and their caching elements are 

functions which may contain unneeded code. Another undesirable 

side is that they only applied the technique in user defined calls 

where source code is available. 

Another related research is profile guided code compression [7], 

which compresses cold code to achieve size reduction, and leaves 

hot code uncompressed to minimize run-time penalty. The number 

of their code categories is fixed to 2 (hot and cold), and the 

classification can be adaptive to neither a particular input nor 

available memory size. 

Regarding the security concerns, our approaches can easily 

incorporate the tamper-resistant partitioning method [32], and 

transferred code could be encrypted. 

Hazelwood and Smith have found that pure FIFO policy is not 

enough for real world applications due to some complications, 

such as undeletable cache code and program-forced evictions. 

Pseudo-circular policy, a variant of FIFO, can be used in this 

situation [14]. Our scheme is compatible to use the pseudo-circular 

policy as the local policy. 

 

6. CONCLUSION 
 

As the memory requirements of distributed VEEs is growing, 

we proposed to store the original programs on a code server, and 

to execute a VEE with its code buffer on the client. The original 

program is divided into code partitions and partitions are 

downloaded on-demand. This paper described two schemes to 

manage the CB with profile guidance. From experimental results, 

we showed that these schemes have fewer CB misses than a 

generational buffer and a unified circular buffer, which translates 

into significant speedup. In particular, the adaptive scheme 

performed better than the fixed scheme. Yet, it has low overhead 

and it is a good choice for resource-constrained devices in 

distributed VEEs. 
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