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Abstract— This paper presents a probabilistic framework for
synthesizing control policies for general multi-robot systems
that is based on decentralized partially observable Markov
decision processes (Dec-POMDPs). Dec-POMDPs are a general
model of decision-making where a team of agents must coop-
erate to optimize a shared objective in the presence of uncer-
tainty. Dec-POMDPs also consider communication limitations,
so execution is decentralized. While Dec-POMDPs are typically
intractable to solve for real-world problems, recent research
on the use of macro-actions in Dec-POMDPs has significantly
increased the size of problem that can be practically solved.
We show that, in contrast to most existing methods that are
specialized to a particular problem class, our approach can
synthesize control policies that exploit any opportunities for
coordination that are present in the problem, while balancing
uncertainty, sensor information, and information about other
agents. We use three variants of a warehouse task to show that
a single planner of this type can generate cooperative behavior
using task allocation, direct communication, and signaling, as
appropriate. This demonstrates that our algorithmic framework
can automatically optimize control and communication policies
for complex multi-robot systems.

I. INTRODUCTION

Most multi-robot systems are controlled by hand-built

special-purpose algorithms that are difficult to design, im-

plement and verify. For single robots, automatic planning

systems provide a flexible general-purpose strategy for con-

structing plans given high-level declarative domain speci-

fications, even in the presence of substantial stochasticity

and partial observability [1]. We show that this strategy

can be effectively extended to multi-robot systems. Our

methods allow automatic off-line construction of robust

multi-robot policies that support coordinated action. As a

natural consequence of the approach, they can even generate

communication strategies that exploit the domain dynamics

to share critical information in service of achieving the

group’s overall objective.

Specifically, we are interested in problems where the

robots share the same objective function and each individual

robot (and, in fact, the collection of robots) can only make

noisy, partial observations of the environment. The decen-

tralized partially observable Markov decision process (Dec-
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Fig. 1. The warehouse domain with three robots.

POMDP) is a general framework for representing these prob-

lems and by solving them, we can automatically derive near-

optimal control strategies. Dec-POMDPs have been studied

in fields such as control [2], [3], operations research [4] and

artificial intelligence [5]. Like the POMDP [6] models that

they extend, Dec-POMDPs consider general probabilistic

dynamics, sensor and cost models. To make better use of

cooperation and computational resources, we consider the

case where we produce a cooperative solution of the problem

off-line which results in separate policies for individual

robots that are executed online in a decentralized manner.

These decentralized policies optimize movement, sensing

and communication actions while considering uncertainty in

outcomes, sensors and information about the other agents.

For example, consider the multi-robot warehousing prob-

lem (shown in Figure 1) that we present in the experiments. A

team of robots is tasked with finding a set of large and small

boxes in the environment and returning them to a shipping

location. Large boxes require multiple robots to push. As a

result, coordination is needed not just for assigning robots

to push specific boxes, but also requires that two robots

push the larger box at the same time. There is stochasticity

in the movements of robots and partial observability with

respect to the location of the boxes and other robots (both

can be only be detected when they are within range). We

also consider cases where the robots can send communication

signals to each other, but we do not define the meaning of

the messages. Therefore, our planner must determine where

the robots should navigate, what boxes they should push and

what communication messages should be sent (if at all) at

each step of the problem to optimize the solution for the

team. The robots must make these decisions based solely on

the information they individually receive during execution

(e.g., each robot’s estimate of its own location as well as

where and when boxes and other robots have been seen).



This multi-robot warehousing problem — as well as any

other problem where multiple robots share a single overall

reward or cost function — can be formalized as a Dec-

POMDP. Therefore, a Dec-POMDP solver could potentially

automatically generate control policies (including policies

over when and what to communicate) for very rich decen-

tralized control problems, in the presence of uncertainty.

Unfortunately, this generality comes at a cost: Dec-POMDPs

are typically infeasible to solve except for very small prob-

lems [4], [7].

One reason for the intractability of solving large Dec-

POMDPs is that current methods model problems at a low

level of granularity, where each robot’s actions are primitive

operations lasting exactly one time step. Recent research has

addressed the more realistic MacDec-POMDP case where

each robot has macro-actions: temporally extended actions

which may require different amounts of time to execute [7].

Macro-actions enable systems to be modeled at a higher

level of abstraction so that coordination decisions only occur

at the level of deciding which macro-actions to execute.

MacDec-POMDPs retain the ability to coordinate robots

while allowing near-optimal solutions to be generated for

significantly larger problems than would have been possible

using other Dec-POMDP-based methods.

Macro-actions are a natural model for the modular con-

trollers often sequenced to obtain robot behavior. The macro-

action approach leverages expert-designed or learned con-

trollers for solving subproblems (e.g., navigating to a way-

point or grasping an object), bridging the gap between

traditional robotics research and work on Dec-POMDPs.

This approach has the potential to produce high-quality

general solutions for real-world heterogeneous multi-robot

coordination problems by automatically generating control

and communication policies.

This paper presents a general framework for solving

decentralized cooperative partially observable robotics prob-

lems and provides the first demonstration of such method

running on real robots. We extend previously developed

approaches [7] and apply them to a real robotics problem.

We begin by formally describing the Dec-POMDP model,

its solution and relevant properties as well as the MacDec-

POMDP extension. We then describe a process for converting

a robot domain into a MacDec-POMDP model, solving it,

and using the solution to produce a set of SMACH [8]

finite-state machine task controllers that can be executed on

the robots. Finally, we use three variants of the warehouse

problem to show that a MacDec-POMDP planner generates

appropriate emergent behaviors by optimizing the available

macro-actions (i.e., allocating tasks, using direct communica-

tion, and employing signaling, as appropriate). The MacDec-

POMDP represents a foundational algorithmic framework for

generating solutions for a wide range of probabilistic multi-

robot systems.

II. DEC-POMDPS

Dec-POMDPs [4] generalize POMDPs to the multiagent,

decentralized setting. As depicted in Fig. 2, multiple agents
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Fig. 2. Representation of an n-agent Dec-POMDP with actions ai and
observations oi for each agent i along with a single reward r.

(e.g., robots) operate under uncertainty based on partial and

local views of the world, with execution unfolding over

a sequence of steps. At each step, every agent chooses

an action (in parallel) based purely on locally observable

information (i.e., one agent does not necessarily observe what

the others are seeing or doing), resulting in an immediate

reward and an observation being obtained by each individual

agent. The agents share a single reward or cost function,

making the problem cooperative, but their local views mean

that operation is decentralized during execution.

We focus on solving sequential decision-making problems

with discrete time steps and stochastic models with finite

states, actions, and observations, but the model can be

extended to continuous problems. A key assumption is that

state transitions are Markovian, meaning that the state at time

t depends only on the state and events at time t − 1. Note

that the robots do not perceive the state itself (only their

streams of observations). The reward is used as a way to

specify the objective of the problem and is not observed

during execution. A Dec-POMDP is described by a tuple

〈I, S, {Ai}, T, R, {Ωi}, O, h〉, where

• I is a finite set of agents.

• S is a finite set of states with designated initial state

distribution b0.

• Ai is a finite set of actions for each agent i with A =
×iAi the set of joint actions.

• T is a state transition probability function, T : S×A×
S → [0, 1], that specifies the probability of transitioning

from state s ∈ S to s′ ∈ S when actions ~a ∈ A are taken

by the agents. Hence, T (s,~a, s′) = Pr(s′|~a, s).
• R is a reward function: R : S×A → R, the immediate

reward for being in state s ∈ S and taking actions ~a ∈
A.

• Ωi is a finite set of observations for each agent, i, with

Ω = ×iΩi the set of joint observations.

• O is an observation probability function: O : Ω× A×
S → [0, 1], the probability of seeing observations ~o ∈ Ω
given actions ~a ∈ A were taken which results in state

s′ ∈ S. Hence O(~o,~a, s′) = Pr(~o|~a, s′).
• h is the number of steps until the problem terminates,

called the horizon.

Note that while the actions and observations are factored

with one factor per agent, the state need not be. Because

the full state is not directly observed, generating optimal

or approximately optimal behavior generally requires each

agent to remember a history of its observations. We can con-
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Fig. 3. A single agent’s policy represented as (a) a policy tree and (b) a
finite-state controller with initial state shown with a double circle.

sider an action-observation history for agent i representing

the actions taken and observations seen at each step (up to

step t) as hA
i = (a0i , o

0
i , . . . , a

t
i, o

t
i). Unlike in POMDPs, it is

not typically possible to calculate an estimate of the system

state from the observation history of a single agent, because

the system state depends on the behavior of all of the agents.

A solution to a Dec-POMDP is a joint policy—a set of

policies, one for each agent. Each agent’s policy maps its

own history of actions and observations to its next action.

It is typically represented as either a policy tree, where the

vertices indicate actions to execute and the edges indicate

transitions conditioned on an observation, or as a finite state

controller which executes in a similar manner. An example

of each is given in Figure 3.

As in the POMDP case, the goal is to maximize the total

cumulative reward, beginning at some initial distribution over

states b0. We assume that the model is known.

The value of a joint policy, π, from state s is V π(s) =

E

[

h−1
∑

t=0

γtR(~at, st)|s, π

]

, which represents the expected

value of the immediate reward for the set of agents summed

for each step of the problem given the action prescribed by

the policy until the horizon is reached. In the finite-horizon

case (which we consider in this paper), the discount factor,

γ, is typically set to 1. An optimal policy beginning at state

s is π∗(s) = argmaxπ V
π(s).

Unfortunately, large problem instances remain intractable.

Some advances have been made in optimal algorithms [9],

[10], [11], but optimally solving a Dec-POMDP is NEXP-

complete [4]. Most approaches that scale well make very

strong assumptions about the domain (e.g., a large amount

of independence between agents) [12], [13], [14], [15].

III. MACRO-ACTIONS FOR DEC-POMDPS

Dec-POMDPs require synchronous decision-making: ev-

ery agent determines which action to execute, and then

executes it within a single time step. This restriction is

problematic in robot domains for two reasons. First, robot

systems typically possess a set of controllers, and planning

consists of sequencing the execution of those controllers.

However, due to both environmental and controller complex-

ity, the controllers will almost always execute for an extended

period, taking differing amounts of time to run. Synchronous

decision-making would require waiting until all robots have

completed their controller execution (and achieve common

knowledge of this fact) before performing the next action

selection, which is suboptimal and generally infeasible. Sec-

ond, the planning complexity of a Dec-POMDP is doubly

exponential in the horizon. A planner that reasons about all

of the robots’ possible policies at every time step will only

ever be able to make very short plans.

The MacDec-POMDP formulation models a group of

robots that must plan by sequencing an existing set of

controllers, enabling planning at the appropriate level to

compute near-optimal solutions for problems with signifi-

cantly longer horizons and larger state-spaces [7]. We can

gain additional benefits by exploiting known structure in

the multi-robot problem. For instance, most controllers only

depend on locally observable information and do not re-

quire coordination. For example, consider a controller that

navigates to a waypoint. Only local information is required

for navigation—the robot may detect other robots but their

presence does not change its objective, and it simply moves

around them—but choosing the target waypoint likely re-

quires the planner to consider the locations and actions of

all robots. Macro-actions with independent execution allow

coordination decisions to be made only when necessary (i.e.,

when choosing macro-actions) rather than at every time

step. Because MacDec-POMDPs are built on top of Dec-

POMDPs, macro-action choice may depend on history, but

during execution macro-actions may depend only on a single

observation or on any number of steps of history, or even

represent the actions of a set of robots. That is, macro-actions

are very general and can be defined in such a way to take

advantage of the knowledge available to the robots during

execution.

It is also worth noting that our approach can incorporate

state-of-the-art solution methods for solving more restricted

scenarios. The widespread use of techniques for solving

much more restricted scenarios has led to a plethora of usable

algorithms for specific problems, but no way to combine

these in more complex scenarios. Our approach can build

on the large amount of research in single and multi-robot

systems that has gone into solving difficult problems such

as navigation in a formation [16], cooperative transport of

an object [17], coordination with signaling [18] or com-

munication under various limitations [19]. The solutions to

these problems could be represented as macro-actions in our

framework, building on existing research to solve even more

complex multi-robot problems.

A. Model

While more complex macro-actions are possible, the

MacDec-POMDP model used here considers macro-actions

that only depend on a single robot’s information [7]. This

is an extension of the options framework [20] to multi-

agent domains while dealing with the lack of synchronization

between agents. The options framework is a formal model

of macro-actions [20] that has been very successful in aiding

representation and solutions in single robot domains [21].

A MacDec-POMDP with local options is defined as a Dec-

POMDP where we also assume Mi represents a finite set of



options for each agent, i, with M = ×iMi the set of joint

options [7]. A local option is defined by:

Mi = (βmi
, Imi

, πmi
),

with stochastic termination condition βmi
: HA

i → [0, 1],
initiation set Imi

⊂ HA
i and option policy πmi

: HA
i ×Ai →

[0, 1]. Note that this representation uses action-observation

histories in the termination and initiation conditions as well

as the option policy. Initiation and terminal conditions can

also depend on states (e.g., ending execution based on

unobserved events) or single observations.

MacDec-POMDP policies consider option histories (as

opposed to action-observation histories) because it may

be beneficial for agents to remember their histories when

choosing options. An option history, which includes both

the action-observation histories where an option was chosen

and the selected options themselves, is defined as hM
i =

(h0
i ,m

1
i , . . . , h

t−1
i ,mt

i). Here, h0
i may be a null observation

or an initial observation produced from the initial belief state

b0. The option history also provides a nice representation

for using histories within options by allowing initiation

conditions to depend on the histories of options already

taken and their results. Alternatively, it is more natural

for option policies and termination conditions to depend

on histories that begin when the option is first executed

(action-observation histories). While histories over primitive

actions provide the number of steps that have been executed

(because they include actions and observations at each step),

an option history may require many more steps to execute

than the number of options listed. A (stochastic) local policy,

µi : HM
i × Mi → [0, 1] then depends on these option

histories and a joint policy for all agents is given as µ.

Because option policies are built from primitive actions,

policies can be evaluated in a way that is similar to other

Dec-POMDP-based approaches. Given a joint policy, the

primitive action at each step is determined by the (high-

level) policy, which chooses the option, and the option

policy, which chooses the action. The joint policy and option

policies can then be evaluated as:

V µ(s) = E

[

h−1
∑

t=0

γtR(~at, st)|s, π, µ

]

Additional details about a slightly simpler case are given in

previous work [7].

The goal of MacDec-POMDP planning is to obtain a

hierarchically optimal policy: µ∗(s) = argmaxµV
µ(s). This

policy produces the highest expected value that can be

obtained by sequencing the agent’s given options. This policy

may have a lower value than the optimal policy for the Dec-

POMDP, because it does not include all possible history-

dependent low-level policies—the policies are restricted to

be sequences of macro-actions.

B. Algorithms

We use the macro-action-based memory bounded dynamic

programming (MBDP) approach [7] to solve the warehouse
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Fig. 5. A high-level system diagram.

problems. This approach is the extension of a standard

Dec-POMDP algorithm [22] to consider options instead of

primitive actions. MBDP searches through the space of

possible policies from the last problem step back to the first.

The extension is non-trivial since macro-actions may use

different amounts of time, requiring the consideration of the

horizon being reached during execution of a macro-action.

The key modification (as shown in Figure 4) is that

nodes in a policy tree now select macro-actions (rather

than primitive actions) and edges correspond to terminal

conditions (or, more generally, high-level observations). That

is, policy trees are generated for each agent that can be

executed based on that agent’s possible option histories. The

root node defines the option to choose in the known initial

state, and options are assigned to each of the legal terminal

states of that option; this continues for the depth of the tree.

This tree can be evaluated up to any (primitive) horizon using

the policy evaluation given above.

Our MBDP-based algorithm bounds the number of pos-

sible policies that are considered at each step. Without this

bound, dynamic programming methods can guarantee that

a hierarchically optimal policy is found, but when a bound

is imposed the result may be suboptimal [7]. Policies are

chosen that have the highest value at states that are sampled

from the initial state. Because the number of policies at each

step is bounded, MBDP has time and space complexity linear

in the horizon. As a result, this approach works well in some

relatively large MacDec-POMDPs [7].

IV. SOLVING MULTI-ROBOT PROBLEMS WITH

MACDEC-POMDPS

The MacDec-POMDP framework is a natural way to rep-

resent and generate behavior for general multi-robot systems.

A high-level description of this process is given in Figure

5. To use the MacDec-POMDP model as described above,

we would assume an abstract model of the system is given



in the form of macro-action representations, which include

the associated policies as well as initiation and terminal

conditions. These macro-actions are controllers operating

in (possibly) continuous time with continuous actions and

feedback, but their operation is discretized for use with

the planner. This discretization represents an underlying

discrete Dec-POMDP which consists of the primitive actions,

states of the system and the associated rewards. While the

complexity of our method primarily depends on the size

of the MacDec-POMDP model, and not the size of the

underlying Dec-POMDP, it is often difficult to generate and

represent a full Dec-POMDP model for real-world systems.

We extend this model to use a simulator rather than

a full model of the problem. In many cases, a simulator

already exists or is easier to construct than the full model.

Our planner still assumes a model of the macro-actions,

but while the initiation and terminal sets are known, the

policies of the macro-actions as well as the underlying Dec-

POMDP are not explicitly known. Instead, we make the

more realistic assumption that we can simulate the macro-

actions in an environment similar to the real-world domain.

As such, the algorithm for generating a policy over macro-

actions remains the same (since constructing policies of

macro-actions only requires knowledge of the set of macro-

actions and their initiation and terminal conditions), but all

evaluation is conducted in the simulator (through sampling)

rather than through use of the Bellman equations (which

requires enumeration over all reachable states at each step).

Specifically, a fixed policy can be evaluated by sampling

starting at an initial state (or belief state), choosing an

action for each agent according to the policy, sampling an

observation from the system, updating the current position

in the policy (i.e., the current node in each agent’s policy

tree) and then continuing this process until some maximum

time step has been reached. The value of the k-th sample-

based trajectory starting at s0 and using policy π is given

by V π,k(s0) = rk0 + . . . + γT rkT , where rkt is the reward

given to the team on the t-th step. After K trajectories,

V̂ π(s0) =
∑K

k=1
V π,k(s0)

K
. As the number of samples in-

creases, the estimate of the policy’s value will approach the

true value. This sample-based evaluation is necessary in large

or continuous state spaces.

Given the macro-actions and simulator, our off-line plan-

ner can automatically generate a solution which optimizes the

value function with respect to the uncertainty over outcomes,

sensor information and other robots. The planner generates

the solution in the form of a set of policy trees (as in Figure

4) which are parsed into a corresponding set of SMACH

controllers [8], one for each robot. SMACH controllers are

hierarchical state machines for use in a ROS [23] environ-

ment. Just like the policy trees they represent, each node

in the SMACH controller represents a macro-action which

is executed on the robot and each edge corresponds to a

terminal condition. Our system is thus able to automatically

generate SMACH controllers, which are typically designed

by hand, for complex, general multi-robot systems.

V. MACDEC-POMDPS IN THE WAREHOUSE DOMAIN

We test our methods in a warehousing scenario using

a set of iRobot Creates (Figure 1) where we will vary

communication capabilities. This is the first time that Dec-

POMDP-based methods have been used to solve large multi-

robot domains, and we do not compare with other Dec-

POMDP-based methods because they cannot solve problems

of this size. The results demonstrate that our methods can

automatically generate the appropriate motion and communi-

cation behavior while considering uncertainty over outcomes,

sensor information and other robots.

A. The Warehouse Domain

We consider three robots in a warehouse that are tasked

with finding and retrieving boxes of two different sizes: large

and small. Robots can navigate to known depot locations

(rooms) to retrieve boxes and bring them back to a designated

drop-off area. The larger boxes can only be moved effectively

by two robots (if a robot tries to pick up the large box by

itself, it will move to the box, but fail to pick it up). While the

locations of the depots are known, the contents (the number

and type of boxes) are unknown. Our planner generates a

SMACH controller for each of the robots off-line which are

then executed online in a decentralized manner.

In each scenario, we assumed that each robot could

observe its own location, see other robots if they were within

(approximately) one meter, observe the nearest box when in

a depot and observe the size of the box if it is holding one.

In the simulator used by the planner to evaluate solutions,

the resulting state space includes the location of each robot

(discretized into nine possible locations) and the location of

each of the boxes (in a particular depot, with a particular

robot or at the goal). The primitive actions are to move

in four different directions as well as pickup, drop and

communication actions. Note that this primitive state and

action representation is used for evaluation purposes and not

actually implemented on the robots (which just utilize the

SMACH controllers). Higher fidelity simulators could also

be used, but running time may increase if the simulations

are computationally intensive (average solution times for

the policies presented below were approximately one hour).

The three-robot version of this scenario has 1,259,712,000

states, which is several orders of magnitude larger than

problems typically solvable by Dec-POMDP approaches.

These problems are solved using the option-based MBDP

algorithm initialized with a hand coded heuristic policy.

Navigation has a small amount of noise in the amount of

time required to move to locations (reflecting the real-world

dynamics): this noise increases when the robots are pushing

the large box (reflecting the need for slower movements and

turns in this case). We defined macro-actions that depend

only on the observations above, but option selection depends

on the history of options executed and observations seen as

a result (the option history). Note that the MacDec-POMDP

framework is very general so other types of macro-actions

and observations could also be used (including observation

of other failures).
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Fig. 7. Scenario 1 video cap-
tures (no communication).

B. Scenario 1: No Communication

In the first scenario, the robots cannot communicate with

each other. Therefore, all cooperation is based on the con-

trollers that are generated by the planner (which generates

controllers for all robots when planning off-line) and ob-

servations of the other robots (when executing online). The

macro-actions were: Go to depot 1, Go to depot

2, Go to the drop-off area, Pick up the

small box, Pick up the large box, and Drop

off a box.

The depot macro-actions are applicable anywhere and

terminate when the robot is within the walls of the appro-

priate depot. The drop-off and drop macro-actions are only

applicable if the robot is holding a box, and the pickup

macro-actions are only applicable when the robot observes

a box. Picking up the small box was assumed to succeed

deterministically, but the model could easily be adjusted

if the pickup mechanism is less robust. The macro-actions

correspond to natural choices for robot controllers.

This case1 (seen in Figure 7 along with a depiction of

the executed policy in Figure 6) uses only two robots to

more clearly show the optimized behavior in the absence of

communication. The policy generated by the planner begins

by assigning one robot to go to each of the depots. The

robots then observe the contents of the depots they are in. If

there is only one robot in a depot and there is a small box to

push, the robot will push the small box (Figure 7(a)). If the

1All videos can be seen at http://youtu.be/fGUHTHH-JNA

robot is in a depot with a large box and no other robots, it

will stay in the depot, waiting for another robot to come and

help push the box (also Figure 7(a)). In this case, once the

other robot is finished pushing the small box, it goes back to

the depots to check for other boxes or robots that need help

(Figure 7(b)). When it sees another robot and the large box

in the depot on the left (depot 1), it attempts to help push the

large box and the two robots are successful pushing the large

box to the goal (Figure 7(c)). The planner has automatically

derived a strategy for dynamic task allocation—two robots

go to each room, and then search for help needed after

pushing any available boxes. This behavior was generated by

an optimization process that considered the different costs of

actions and the uncertainty involved (in the current step and

into the future) and used those values to tailor the behavior

to the particular problem instance.

C. Scenario 2: Local Communication

In scenario 2, robots can communicate when they

are within one meter of each other. The macro-

actions are the same as above, but we added ones

to communicate and wait for communication. The re-

sulting macro-action set is: Go to depot 1, Go

to depot 2, Go to the drop-off area, Pick

up the small box, Pick up the large box,

Drop off a box, Go to an area between the

depots (the "waiting room"), Send signal

#1, Send signal #2, and Wait in the waiting

room for another robot.

Here, we allow the robots to choose to go to a “waiting

room” which is between the two depots. This permits the

robots to possibly communicate or receive communications

before committing to one of the depots. The waiting-room

macro-action is applicable in any situation and terminates

when the robot is between the waiting room walls. The

depot macro-actions are now only applicable in the waiting

room, while the drop-off, pick up and drop macro-actions

remain the same. The wait macro-action is applicable in

the waiting room and terminates when the robot observes

another robot in the waiting room. The signaling macro-

actions are applicable in the waiting room and are observable

by other robots that are within approximately a meter of the

signaling robot. Note that we do not specify what sending

each communication signal means.

The results for this three-robot domain are shown in Figure

8. The robots go to the waiting room and then two of the

robots go to depot 2 (the one on the right) and one robot

goes to depot 1 (the one on the left) (Figure 8(a)). Because

there are three robots, the choice for the third robot is random

while one robot will always be assigned to each of the depots.

Because there is only a large box to push in depot 1, the

robot in this depot goes back to the waiting room to try

to find another robot to help it push the box (Figure 8(b)).

The robots in depot 2 see two small boxes and they choose

to push these back to the goal (also Figure 8(b)). Once the

small boxes are dropped off, one of the robots returns to

the waiting room and then is recruited by the other robot to



(a) One robot goes to depot 1 and
two robots go to depot 2. The depot
1 robot sees a large box.

(b) The robot saw a large box, so it
moved to the waiting room while the
other robots pushed the small boxes.

(c) The green robot goes to the wait-
ing room to check for signals and the
white robot sends signal #1.

(d) Signal #1 is interpreted as a need
for help in depot 1, so they move to
depot 1 and push the large box.

Fig. 8. Scenario 2 video captures (limited communication).

push the large box back to the goal (Figure 8(c)). The robots

then successfully push the large box back to the goal (Figure

8(d)). In this case, the planning process determines how the

signals should be used to perform communication.

D. Scenario 3: Global Communication

In the last scenario, the robots can use signaling (rather

than direct communication). In this case, there is a switch

in each of the depots that can turn on a blue or red

light. This light can be seen in the waiting room and

there is another light switch in the waiting room that

can turn off the light. (The light and switch were simu-

lated in software and not incorporated in the physical do-

main.) The macro-actions were: Go to depot 1, Go to

depot 2, Go to the drop-off area, Pick up

the small box, Pick up the large box, Drop

off a box, Go to the "waiting room"), Turn

on a blue light, Turn on a red light, and

Turn off the light.

The first seven macro-actions are the same as for the

communication case except we relaxed the assumption that

the robots had to go to the waiting room before going to

the depots (making both the depot and waiting room macro-

actions applicable anywhere). The macro-actions for turning

the lights on are applicable in the depots and the macro-

actions for turning the lights off are applicable in the waiting

room. While the lights were intended to signal requests for

help in each of the depots, we did not assign a particular

color to a particular depot. In fact, we did not assign them

any meaning at all, allowing the planner to set them in any

way that improves performance.

The results are shown in Figure 9. Because one robot

started ahead of the others, it was able to go to depot 1

to sense the size of the boxes while the other robots go to

the waiting room (Figure 9(a)). The robot in depot 1 turned

on the light (red in this case, but not shown in the images)

to signify that there is a large box and assistance is needed

(Figure 9(b)). The green robot (the first other robot to the

waiting room) sees this light, interprets it as a need for help

in depot 1, and turns off the light (Figure 9(c)). The other

robot arrives in the waiting room, does not observe a light

on and moves to depot 2 (also Figure 9(c)). The robot in

depot 2 chooses to push a small box back to the goal and

the green robot moves to depot 1 to help the other robot

(Figure 9(d)). One robot then pushes the small box back

to the goal while the two robots in depot 1 begin pushing

(a) One robot starts first and goes to
depot 1 while the other robots go to
the waiting room.

(b) The robot in depot 1 sees a large
box, so it turns on the red light (the
light is not shown).

(c) The green robot sees light first,
turns it off, and goes to depot 1. The
white robot goes to depot 2.

(d) Robots in depot 1 move to the
large box, while the robot in depot
2 begins pushing the small box.

(e) Robots in depot 1 begin pushing
the large box and the robot in depot
2 pushes a small box to the goal.

(f) The robots from depot 1 suc-
cessfully push the large box to the
goal.

Fig. 9. Scenario 3 video captures (signaling).

the large box (Figure 9(e)). Finally, the two robots in depot

1 push the large box back to the goal (Figure 9(f)). This

behavior is optimized based on the information given to the

planner. The semantics of all these signals as well as the

movement and signaling decisions were decided on by the

planning algorithm to maximize value.

VI. RELATED WORK

There are several frameworks for multi-robot decision

making in complex domains. For instance, behavioral meth-

ods have been studied for performing task allocation over

time with loosely-coupled [24] or tightly-coupled [25] tasks.

These are heuristic in nature and make strong assumptions

about the type of tasks that will be completed.

Linear temporal logic (LTL) has also been used to specify

robot behavior [26], [27]; from this specification, reactive

controllers that are guaranteed to satisfy the specification can

be derived. These methods are appropriate when the world



dynamics can be effectively described non-probabilistically

and when there is a useful characterization of the robot’s

desired behavior in terms of a set of discrete constraints.

When applied to multiple robots, it is necessary to give

each robot its own behavior specification. In contrast, our

approach (probabilistically) models the domain and allows

the planner to automatically optimize the robots’ behavior.

Market-based approaches use traded value to establish

an optimization framework for task allocation [28], [29].

These approaches have been used to solve real multi-robot

problems [30], but are largely aimed to tasks where the robots

can communicate through a bidding mechanism.

Emery-Montemerlo et al. [31] introduced a (cooperative)

game-theoretic formalization of multi-robot systems which

resulted in solving a Dec-POMDP. An approximate forward

search algorithm was used to generate solutions, but because

a (relatively) low-level Dec-POMDP was used scalability

was limited. Their system also required synchronized exe-

cution by the robots.

VII. CONCLUSION

We have demonstrated—for the first time—that complex

multi-robot domains can be solved with Dec-POMDP-based

methods. The MacDec-POMDP model is expressive enough

to capture multi-robot systems of interest, but also simple

enough to be feasible to solve in practice. Our results show

that a general purpose MacDec-POMDP planner can gener-

ate cooperative behavior for complex multi-robot domains

with task allocation, direct communication, and signaling

behavior emerging automatically as properties of the solution

for the given problem model. Because all cooperative multi-

robot problems can be modeled as Dec-POMDPs, MacDec-

POMDPs represent a powerful tool for automatically trading-

off various costs, such as time, resource usage and com-

munication while considering uncertainty in the dynamics,

sensors and other robot information. These approaches have

great potential to lead to automated solution methods for

general probabilistic multi-robot coordination problems with

heterogeneous robots in complex, uncertain domains.
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