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Abstract

In this paper, we investigate non-Markovian Non-
deterministic Fully Observable Planning Domains
(NMFONDs), variants of Nondeterministic Fully
Observable Planning Domains (FONDs) where the
next state is determined by the full history lead-
ing to the current state. In particular, we introduce
TFONDs which are NMFONDs where conditions
on the history are succinctly and declaratively spec-
ified using the linear-time temporal logic on finite
traces LTLf and its extension LDLf . We provide
algorithms for planning in TFONDs for general
LTLf /LDLf goals, and establish tight complexity
bounds w.r.t. the domain representation and the goal,
separately. We also show that TFONDs are able to
capture all NMFONDs in which the dependency on
the history is “finite state”. Finally, we show that
TFONDs also capture Partially Observable Nonde-
terministic Planning Domains (PONDs), but without
referring to unobservable variables.

1 Introduction

Most formalisms for planning and reasoning about actions
make the Markov assumption: the executability of an ac-
tion and its effects are entirely determined by the current
state [Reiter, 2001; Geffner and Bonet, 2013]. The same as-
sumption plays a central role in Markov Decision Processes
(MDPs) [Puterman, 2005]. Here, we want to consider systems
with non-Markovian dynamics, as was done in work on reason-
ing about actions where executability conditions and effects of
an action depend not only on what holds when the action is to
occur, but also on whether certain conditions were satisfied in
the past [Giunchiglia and Lifschitz, 1995; Mendez et al., 1996;
Gonzalez et al., 2005; Gabaldon, 2011].

To get an intuition of non-Markovian dynamics, consider
the following example taken from [Gabaldon, 2011]: Imagine
a robot that works in a biological research facility with differ-
ent safety-level areas. The dynamics is such that a material
will be considered contaminated after the robot touches it if
the robot has been to a low safety area or has directly been
in contact with a hazardous material, and has not been to the
disinfection station since then. So the effect of touching the
material depends on the history of robot activities.

Situations in which the dynamics of the domain depend on
the history are common. In simple cases, it is not difficult
to avoid explicit reference to the whole history by extending
the state with suitable auxiliary state variables that preserve
the necessary information from the history. But in general it
may not be obvious how to do so, and the resulting Marko-
vian representation of the domain may be substantially more
complex, with a larger number of state variables and corre-
sponding description of their dynamics. In fact, as we show in
this paper, this may require, in the worst case, a doubly expo-
nential blowup in the number of states w.r.t. a non-Markovian
representation expressed using temporal logic (this answers
an informal conjecture in [Gabaldon, 2011]). This potential
blowup makes it implausible that a human designer can come
up with the suitable control variables to describe the dynamic
as a Markovian system in the general case. Moreover, mak-
ing intuitive sense of these auxiliary state variables may be
difficult or even impossible.

In this paper we consider non-Markovian specification in
the context of planning in Fully Observable Nondeterminis-
tic Domains (FOND), see e.g., [Geffner and Bonet, 2013],
and investigate strong planning for temporally extended goals
expressed in linear-time-logics over finite traces, namely
LTLf , and its extension LDLf [De Giacomo and Vardi, 2013;
Camacho et al., 2017; De Giacomo and Rubin, 2018].

For concreteness, we introduce Temporal FONDs (or
TFONDs) as a means to succinctly and declaratively define
non-Markovian dynamics in planning domain, based on the
use of LTLf /LDLf . We provide the following results:

• We devise a technique for planning in LTLf /LDLf

TFONDs for LTLf /LDLf temporally extended goals. This
technique is based on a reduction to a (larger) standard
FOND planning problem, and hence can exploit the
highly optimized FOND planners (such as NDP [Alford
et al., 2014], FIP [Fu et al., 2016], MyND [Mattmüller
et al., 2010], Gamer [Kissmann and Edelkamp, 2011],
PRP [Muise et al., 2012], and FOND-SAT [Geffner and
Geffner, 2018]).

• We caracterize the computational complexity of planning
for LTLf /LDLf goals in TFOND as 2EXPTIME-complete
both in the domain and in the goal.

• We also show that TFONDs are able to capture all Non-
Markovian Nondeterministic Fully Observable Planning
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Domains (NMFONDs) in which the dependency on the
history is “finite state” in a precise formal sense.

Finally we look at partially observable nondeterministic
planning domains (PONDs) and we show that these are equiv-
alent in a strong sense to LDLf TFONDs defined over the
observable variables only. This result is quite interesting since
it removes completely the unobservable variables, whose na-
ture is ambiguously being postulated by the modeller, but may
be intangible in reality. The ability to remove the dependence
on unobservable variables is likely to help learn such models
from data, which typically consists of observable entities only.

2 Preliminaries

We breifly recall the main notions regarding LTLf /LDLf and
FOND planning. LTLf is the Linear-time Temporal Logic
LTL interpreted over finite traces [De Giacomo and Vardi,
2013], instead of infinite ones [Pnueli, 1977]. Given a set P
of propositional symbols, LTLf formulas ϕ are:

ϕ ∶∶= φ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ○ϕ ∣ ϕ1 U ϕ2

where φ is a propositional formula over P , ○ is the next opera-
tor and U is the until operator. We use the usual abbreviations
such as ϕ1∨ϕ2 ≐ ¬(¬ϕ1∧¬ϕ2); eventually as◇ϕ ≐ true U ϕ;
always as ◻ϕ ≐ ¬◇¬ϕ; and ●ϕ ≐ ¬○¬ϕ. (Note that on finite
traces ¬○ϕ /≡ ○¬ϕ.) LTLf is as expressive as FO (first order
logic) over finite traces and star-free regular expressions (RE),
thus strictly less expressive than RE, which in turn are as ex-
pressive as monadic second order logic over finite traces. RE

themselves are not convenient for expressing temporal specifi-
cations, since they miss direct constructs for negation and con-
junction, and adding them makes reasoning non-elementary,
see e.g., [Lodaya, 2012].

For this reason, [De Giacomo and Vardi, 2013] introduced
LDLf , linear dynamic logic on finite traces, which merges
LTLf with RE, through the syntax of the well-known logic
of programs PDL, propositional dynamic logic [Fischer and
Ladner, 1979; Harel et al., 2000; Vardi, 2011], but interpreted
over finite traces. Here, following, [Brafman et al., 2018], we
consider a variant of LDLf that works also on empty traces:

ϕ ∶∶= tt ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ⟨̺⟩ϕ
̺ ∶∶= φ ∣ ϕ? ∣ ̺1 + ̺2 ∣ ̺1;̺2 ∣ ̺

∗

where tt stands for logical truth; φ is a propositional formula
over P (including the propositional formula true , not to be
confused with tt); ̺ denotes path expressions, which are RE

over propositional formulas φ, and the test construct ϕ? typical
of PDL. We abbreviate [̺]ϕ ≐ ¬⟨̺⟩¬ϕ as in PDL, ff ≐ ¬tt for
false, and φ ≐ ⟨φ⟩tt to denote an occurence of propositional
formula φ. Intuitively, ⟨̺⟩ϕ states that, from the current step
in the trace, there exists an execution satisfying the RE ̺
such that its last step satisfies ϕ, while [̺]ϕ states that, from
the current step, all executions satisfying the RE ̺ are such
that their last step satisfies ϕ. Tests are used to insert into
the execution path checks for satisfaction of additional LDLf

formulas. As mentioned LDLf is as expressive as MSO over
finite words. It captures LTLf , by seeing next and until as
the abbreviations ○ϕ ≐ ⟨true⟩(ϕ ∧ ¬end) and ϕ1 U ϕ2 ≐

⟨(ϕ1?; true)
∗⟩(ϕ2 ∧ ¬end), and any RE r, with the formula

⟨r⟩end , where end ≐ [true]ff expresses that the trace has
ended. Note that in addition to end we can also denote the
last element of the trace as last ≐ ⟨true⟩end .

An NFA is a tuple A = ⟨Σ,Q, q0, δ, F ⟩, where: (i) Σ is the
input alphabet of the automaton; (ii) Q is the finite set of
states; (iii) q0 ∈ Q is the initial state; (iv) δ ⊆ Q ×Σ ×Q is the
transition relation; (v) F ⊆ Q is the set of final states. A DFA

is an NFA where δ is a function δ ∶ Q ×Σ→ Q. By L(A) we
mean the set of all traces over Σ accepted by A.

We can associate each LTLf /LDLf formula ϕ with an (ex-

ponentially large) NFA Aϕ = ⟨2
P ,Q, q0, δ, F ⟩ that accepts

exactly the traces satisfying ϕ. The construction relies on the
fact that (i) every LDLf formula ϕ can be associated with a
polynomial alternating automaton on words (AFW) accepting
exactly the traces that satisfy ϕ [De Giacomo and Vardi, 2013],
and (ii) every AFW can be transformed into an NFA, see, e.g.,
[De Giacomo and Vardi, 2013].

The NFA Aϕ can be transformed into a DFA, in exponen-
tial time, and then possibly put in (the unique) minimal form,
in polynomial time [Rabin and Scott, 1959]. Thus, we can
transform any LTLf /LDLf formula into a DFA of double expo-
nential size. While this is a worst-case complexity, in most
cases the size of the DFA is actually manageable [Tabakov and
Vardi, 2005]. Moreover, determinization can be performed
on-the-fly, without the need to explicitly construct the DFA

by progressing all possible states the NFA can be in after con-
suming the next trace symbol. We accept the trace iff, once
it has been completely read, the set of possible states con-
tains a final state. This on-the-fly construction allows for a
compact (i.e., logarithmically factorized) representation of
the DFA, and it is, e.g., exploited in [Camacho et al., 2018a;
Brafman et al., 2018].

Fully Observable Nondeterministic Domains (FOND) are
commonly studied in Planning see e.g., [Geffner and Bonet,
2013]. Here we consider the domains to be rooted, i.e., they
include the initial state and formally define FOND as a tuple
D = (P,A,2P , s0, tr) where: 1. P is a finite set of atomic
propositions also called fluents; 2. A is a finite set of actions;
3. 2P is the set of domain states; 4. s0 is the initial state
(initial assignment to fluents); 5. (s, a, s′) ∈ tr represents
action effects (including frame assumptions), and implicitly
also actions preconditions: action a is possible in state s if
(s, a, s′) ∈ tr, for any s′. Such a domain is assumed to be
represented compactly (e.g. in PDDL), hence we consider the
size of the domain as the cardinality of P , i.e., logarithmic in
the number of states. Intuitively, a nondeterministic domain
evolves as follows: from a given state s, the agent chooses
a possible action a (i.e., such that there exists an s′ such
that (s, a, s′) ∈ tr), after which the environment chooses a
successor state s′ with (s, a, s′) ∈ tr. The agent can choose
its action based on the history of states so far (i.e., the agent
has full observation).

Given a domain D and a LTLf /LDLf goal formula ϕ over
fluents P , a strategy f is a strong solution to D for goal ϕ,
if every f -trace of D is finite and satisfies ϕ. A solution this
problem is given in [De Giacomo and Rubin, 2018] (see also
[Camacho et al., 2018a; 2018b]):
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Solving FOND for LTLf /LDLf goals
Given FOND D and goal ϕG

1: Compute DFA AϕG
for ϕG (2exp in ϕG)

2: Compute product FOND Dp of D and AϕG
(poly)

3: Solve FOND Dp for goal g = {(s, q) ∣ q ∈ FG}
(poly in the number of states of Dp)

Here the product FOND Dp = (Pp,A,Sp, sp,0, trp)
of a FOND D = (P,A,2P , s0, tr) and a goal DFA

AϕG
= (2P ,QG, qG,0, δG, FG) is defined as follows: (i)

Pp = P ∪ PQG
, where PQG

is a set of additional fluents for

the logarithmic representation of QG, (ii) Sp = 2
P ×QG, (iii)

((s, q), a, (s′, q′)) ∈ trp iff (s, a, s′) ∈ tr and δG(q, s
′) = q′

(where, we project s′ on the propositions in P only). We
have following complexity characterization (note that the
complexity in the domain is the same as in classical FOND
[Rintanen, 2004]):

Theorem 1. [De Giacomo and Rubin, 2018] Planning for
LTLf /LDLf goals in FONDs is: EXPTIME-complete in the
domain (compactly represented) and 2EXPTIME-complete in
the goal.

3 NMFONDs

We now introduce the basic semantic model of a Non-
Markovian Nondeterministic Fully Observable Planning Do-
main (NMFOND). An NMFOND is very much like a standard
FOND, except that the effect of an action depends on the en-
tire history of states (trace) of the system. A Non-Markovian
Nondeterministic Fully Observable Planning Domain (NM-
FOND) is a tuple D = (P,A,S, s0, tr), where 1. P is finite
set of primitive propositions (the fluents); 2. A is a finite set of
actions; 3. S = 2P is the set of possible truth assignments to P ,
which we still call domain states; 4. s0 ∈ S denotes the initial
state (with an initial dummy action a0); 5. tr ∶ S+ ×A×S is a
transition relation, such that ((s0, . . . , sk), a, s

′) ∈ tr if given
the sequence of states s0, ..., sk starting from the initial state
s0 and an action a, the state s′ is a possible outcome resulting
from executing the action a after traversing s0, ..., sk. (We use
the standard notation S+ for denoting S ∪ S×S ∪ S×S×S ⋯.)
Note that if tr ∶ S+ ×A×S has in fact the form tr ∶ S ×A×S,
i.e., instead of the sequence s0, . . . , sk we consider only one
state s, then the NMFOND is actually a standard FOND.

A goal for an NMFOND is a subset G of S+, denoting
the desired traces. A plan is a partial function p ∶ S+ →
A such that for every w ∈ S+, if p(w) is defined then
∃s′.(w,p(w), s′) ∈ tr (the action chosen by p(w) is exe-
cutable). If p(w) is undefined, we write p(w) = �. A trace
τ is generated by p, or simply a p-trace, if (i) for any prefix
s0, . . . , sk, sk+1 of τ we have that p(s0, . . . , sk) = a for some
action a and ((s0, . . . , sk), a, sk+1) ∈ tr; and (ii) if τ is finite,
say τ = s0, . . . , sn, then p(s0, . . . , sn) = �.

Given an NMFOND D and a goal G, a plan p realizes G in
D if every p-trace of D satisfies G.

4 TFONDs

A declarative way to specify NMFONDs is by using a logical
language to describe properties of finite traces, and a natural

choice for such a logical formalism is LTLf and its extension
LDLf . Hence, we introduce Temporal FONDs (TFONDs).
Formally a TFOND DL is a tuple DL = (P,A,S, s0, trL),
where P , A, S and s0 are as NMFONDs, while the transition
function is defined implicitly by trL as follows: trL is given
in terms of a set T of triples of the form:

(ϕ,a, φ)

where ϕ is a temporal LTLf /LDLf formula over P , a ∈ A,
and φ is a propositional formula over P . Each of the triples
(ϕ,a, φ) states that if the trace s0, . . . , sk from the initial state
s0 to the current state sk satisfies ϕ then performing action a
may bring about any state s′ where φ is true. We call LTLf

(resp. LDLf ) TFONDs those TFONDs that use LTLf (resp.
LDLf ) for ϕ. Given a trace s0, . . . , sk and an action a, the pos-
sible next states are those satisfying the propositional formula:

⋀
(ϕ,a,φ)∈T,s0,...,sk⊧ϕ

φ

In other words: ((s0, . . . , sk), a, s
′) ∈ tr iff s′ ⊧

⋀(ϕ,a,φ)∈T,s0,...,sk⊧ϕ φ. Note that if ⋀(ϕ,a,φ)∈T,s0,...,sk⊧ϕ φi ≡

false then there is no s′ ⊧ ⋀(ϕ,a,φ)∈T,s0,...,sk⊧ϕ φi, i.e., there
are no transitions at all (we can say that the precondition of
the actions are violated). Otherwise there is one transition for
each s′ satisfying the condition. Note also that if for no ϕ we
have s0, ..., sk ⊧ ϕ then there are no restrictions on s′, i.e., the
transition nondeterministically goes to every possible state.

Observe that if one restricts ϕ to be propositional then triples
(ϕ,a, φ) get a quite standard (Markovian) meaning, similar,
say, to PDDL conditional effects: if the current state s satisfies
condition ϕ then by doing action a one brings about effect φ.
Note that, differently from PDDL, we need to specify persis-
tence explicitly using further triples. This is easy to do when
capturing PDDL, but having such specification derived auto-
matically in the general case, e.g., by exploiting the semantic
principle of “explanation closure” used for deriving Successor
State Axioms in [Reiter, 2001], requires further studies. PDDL
also allows for “axioms” that define derived predicates and can
substantially simplify the representation of planning problems
[Thiébaux et al., 2005]. These can be introduced in TFONDs
as well, and are related to state constraints [Reiter, 2001]. We
leave both issues to future work. Finally, observe that, if in a
TFOND we do not constrain the effects of an action a through
some triple then the next state can be arbitrary. But notice
that if we want to constrain the effects to be always within,
say, φ1 . . . φn, similarly to a “one-of” clause in PDDL, we can
simply add the triple (true, a, φ1 ∨ . . . ∨ φn).

Consider the example in the introduction [Gabaldon, 2011],
and suppose we have the following fluents among other:
Material-is-Contaminated (mci, for each material i); Robot-in-
Low-Safety-Area (rlsa); Robot-in-Contact-with-Hazardous-
Material (rchm); Robot-in-Disinfection-Station (rds), and
action robot-touched-material i (touchi, for each material i)
Then the (non-Markovian) effect “a material i will be consid-
ered contaminated after the robot touches it if the robot has
been to a low safety area or has directly been in contact with
a hazardous material, and has not been to the disinfection
station since then” can be specified in LDLf as:

(⟨true∗; (rlsa ∨ rchm); (¬rds)∗⟩end , touchi, mci)
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which says that, if trace s0, ..., sk from the initial instant 0
to the current instant k satisfies the formula ⟨true∗; (rlsa ∨
rchm); (¬rds)∗⟩end , i.e., s0, ..., sk belongs to the regular
language true∗; (rlsa∨rchm); (¬rds)∗, then by doing action
touchi we get to a state sk+1 where mci holds i.e., where the
material i is contaminated.

5 Planning in TFONDs for LTLf /LDLf Goals

Next we look into solving planning in TFONDs for LTLf /LDLf

goals. We start by observing that planning in TFONDs even
for reachability goals is at least as difficult as LTLf /LDLf

synthesis, which is 2EXPTIME-complete [De Giacomo and
Vardi, 2015]. Consider a very simple TFOND DL =

(P,A,2P , s0, trL) with a single triple (ϕ, stop,Done),
where stop is an action in A and Done a fluent in P , and
consider as the goal reaching a state where Done is true. Then
there exists a (strong) plan for reaching Done if and only if
the agent controlling actions A has a winning strategy against
the environment controlling P . So in general, planning in
TFONDs can be difficult. But how can we solve it at all?

We now show that TFONDs can be translated into FONDs
with additional fluents. To do so we first introduce what we call
finite NMFONDs, and show that TFONDs can be translated
into them. A finite NMFOND D = (P,A,S, s0, tr) is an
NMFOND whose transition relation tr is generated by a finite
state transition transducer Tr = (Q, q0, δ, ̺): (i) Q is the finite
set of the transducer states; (ii) q0 is the initial state of the
transducer; (iii) δ ∶ Q×S → Q is the transducer (deterministic)
transition function; (iv) ̺ ∶ Q ×A × S is the output function
of the transducer. As usual, we extend the transition function
δ ∶ Q × S → Q to sequences, i.e., δ ∶ Q × S+ → Q, in the
standard way [Hopcroft and Ullman, 1979].
Tr defines the NMFOND transition relation tr ∶ S+×A×S as:

((s1, . . . , sk), a, s
′) ∈ tr iff

δ(q0, (s1, . . . , sk)) = qk and (qk, a, s
′) ∈ ̺

Thus, the information about the current trace s1, . . . , sk rele-
vant to the future behavior of the NMFOND is summarized
by δ(q0, (s1, . . . , sk)), and the transition relation tr is repre-
sented by making use of δ together with ̺.

Now we show that given a TFONDDL, we can construct an
equivalent finite NMFONDD. Let us consider the set T of for-
mulas of the form (ϕ,a, φ) defining trL. For convenience let’s
enumerate the triples in T as (ϕ1, a1, φ1), . . . , (ϕnan, φn).
For each formula ϕi, we build the corresponding DFA Ai =

(2P ,Qi, qi,0, δi, Fi), i.e., an automaton that accepts exactly
those traces satisfying this formula. We define a corresponding
finite NMFONDD = (P,A,S, s0, tr)with tr generated by the
transducer Tr = (Q, q0, δ, ̺)with: 1. Q = Q0×⋯×Qn; 2. q0 =
q1,0, . . . , qn,0; 3. δ ∶ Q × S → Q where δ((q1, . . . , qn), s) =
(q′

1
, . . . , q′n)) iff q′i = δi(qi, s); 4. ̺ ∶ Q × A × S where

((q′
1
, . . . , q′n), a, s

′) ∈ ̺ iff s′ ⊧ ⋀i∶(ϕi,a,φi),q′i∈Fi
φi. The

construction is based on computing the automata for the
LTLf /LDLf formulas in the triples, and then run all of them
in parallel. The resulting NMFOND D is equivalent to the
TFOND DL in the sense that they produce sets of traces that
are isomorphic (i.e., in bijection).

Next we show that given a finite NMFOND D =

(P,A,S, s0, tr) with tr generated by any finite transducer

Tr = (Q, q0, δ, ̺), we can construct an equivalent FOND
Df = (Pf ,A,Sf , sf,0, trf) as follows: 1. Pf = P ∪ Paut

where P is the finite set of primitive propositions and Paut are
propositions for the separate binary encoding of states Q of
the transducer Tr; 2. A is the finite set of actions of D; 3. Sf

is the set of possible truth assignments to Pf , which we call
(domain) states; 4. sf,0 = s0 ∪ q0, where s0 is a truth assign-
ment over P denoting the initial state, and q0 is the (encoding
of) the initial state of Tr; 5. tr ∶ Sf ×A × Sf , such that:

((s, q), a, (s′, q′)) ∈ trf iff q′ = δ(q, s) ∧ (q′, a, s′) ∈ ̺.

Essentially, since the aspects of the history that are relevant
to future transitions in an NMFOND can be summarized by
some state q ∈ Q, if we maintain both the current element of
Q and of S, we have all the information that we need.

Again, the finite NMFONDD and the resulting finite FOND
Df are equivalent in the sense that they produce sets of traces
that are isomorphic (i.e., in bijection). Hence, by combin-
ing above constructions we get a way of solving LTLf /LDLf

TFOND planning.

Solving TFOND planning for LTLf /LDLf goals
Given a TFOND DL and a goal ϕG

1: Compute the finite NMFOND D (2exp in DL)
2: Compute FOND Df equivalent to D (poly)
3: Compute DFA AϕG

for ϕG (2exp in ϕG)
4: Compute product FOND Dp of Df and AϕG

(poly)
5: Solve FOND Dp for goal g = {(s, q) ∣ q ∈ FG}

(poly in the number of states of Dp)

Now we are ready to give the complexity characterization.

Theorem 2. Planning for finite trace temporal goals in
LTLf /LDLf TFONDs is 2EXPTIME-complete in the domain
and 2EXPTIME-complete in the LTLf /LDLf goals.

Proof (sketch). Membership comes from the construction
above. Note that we easily devise a logarithmic represen-
tation in terms of fluents for Dp, however, solving FOND
with a compact representation requires exponential time. The
2EXPTIME-hardness in the domain comes for the reduction
of LTLf synthesis to TFONDs discussed above, which is for a
fixed goal. The 2EXPTIME-hardness in the goal comes from
planning for LTLf goals in FONDs [De Giacomo and Rubin,
2018], which are a special case of TFONDs.

The increase of complexity in the domain with respect to
standard FOND is due to the succinctness of the representation
that LTLf /LDLf formulas provide: the corresponding FOND
requires exponentially many additional auxiliary fluents to
logarithmically represent the DFAs for the formulas in the
triples. This blowup is inevitable, and it makes it virtually
impossible even for a human to come up directly with a FOND
that captures dependencies on history that are conveniently
expressed in LTLf /LDLf . This answers positively an informal
conjecture in [Gabaldon, 2011].

Observe that, in practice, the 2EXPTIME worst-case
complexity often does not manifest itself, since DFAs for
LTLf /LDLf formulas are often small. Moreover, while, in
general, deteminization of NFA can produce an exponential
blowup, often the size of the DFA obtained (possibly after
minimization) from a NFA, is comparable to that of the NFA

itself [Tabakov and Vardi, 2005].
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The reduction from TFOND to FOND can be seen as a way
to synthesize automatically and conveniently “control fluents”.
To see this, consider the following example: an action “rest”
has the effect of “putting the robot on maintenance” only when
performed in an history satisfying ⟨(s; (a; b∗; c)∗; e)∗⟩end ,
i.e., a finite repetition of starting condition, followed by fi-
nite repetitions of three phases a (“preparing an item”), b
(“cleaning the item”), c (“finalizing the item”), in which b can
be repeated an arbitrary number of times (multiple cleaning
phases may be needed), then followed by an end condition.
The minimal DFA for this formula has 7 states (see, e.g., LDLf

translator at https://flloat.herokuapp.com). Hence, if we factor
these states into a binary representation we get 3 new control
fluents. Note that it is not easy to come with these 3 fluents
in the first place since it is not obvious how to assign intuitive
meaning to them (after all they simply capture the dynamics of
the DFA). As the number of these formulas grows, it becomes
more and more unmanageable to come up with such con-
trol fluents directly. For example, if we replace the previous
formula with ⟨(s; (a; b∗; c)∗; e)∗⟩end ∧ [true∗; (a; c;a; c)]ff ,
intuitively, disallowing two consecutive repetition of phase a
and c in which cleaning does not occur, the number of states
in the minimal DFA grows to 32 and hence we need 5 con-
trol fluents whose dynamics is rather obscure. Note also that
if we consider the two formulas ⟨(s; (a; b∗; c)∗; e)∗⟩end and
[true∗; (a; c;a; cx)]ff (whose minimal DFA has 6 states) sep-
arately, then we get 6 control fluents in total, which is more
than what is actually needed.

6 TFONDs and finite NMFONDs

We can consider finite NMFONDs as the class of NMFONDs
in which the dependency of transitions on the history is finite-
state (i.e., can be expressed by using a finite state function).
Above, we have seen that TFONDs can be translated into fi-
nite NMFONDs. We now show every finite NMFOND can be
translated into LDLf TFONDs. Hence, LDLf TFONDs can
be considered a sort of declarative counterpart of finite NM-
FONDs. Note that it is not true for LTLf TFONDs, since LTLf

does not have the full power of RE needed for the translation.

Let D = (P,A,S, s0, tr) be a finite NMFOND with
tr generated by a finite state transition transducer Tr =
(Q, q0, δ, ̺). We define the corresponding LDLf TFOND
DL = (P,A,S, s0, trL), where the transition relation trL is
generated by a set T of triples (ϕ,a, φ) defined as follows: For
every transducer state q we consider the DFA A

q
Tr defined as

A
q
Tr = (Q, q0, δ, {q}). That is, we consider the DFA obtained

from the transducer by removing the output function ̺ and
making final the state q. Notice that we have one A

q
Tr for

each q but all of them are identical except for the accepting
state. From basic automata theory, we know that there is a
regular expression rq that accepts the paths, i.e., the traces in
S+ leading from the initial state q0 to q. Hence we can express
reaching q by the LDLf formula ϕq = ⟨rq⟩end .

Using these formulas, for every transducer state q and ev-
ery action a, we can define the triple (ϕq, a, φ) where φ =

⋁(q,a,s′)∈̺ s
′. As observed above, all DFA A

q
Tr (for q ∈ Q) are

identical except for the accepting state, hence each formula ϕq

can be represented by the exact same DFA, except for the final

states, which depend on the specific q. This means that when
we transform such an LDLf TFOND DL = (P,A,S, s0, trL)
into the corresponding finite TFOND using the construction
above, we get exactly D = (P,A,S, s0, tr).

Theorem 3. Every finite NMFOND can be expressed as a
LDLf TFOND, and vice-versa.

7 PONDs and TFONDs

In this section we consider Partially Observable Nonde-
terministic Planning Domains (POND). Our main result
here is to show the equivalence between POND and (fully
observable) TFONDs. While it is not surprising that a
POND can be translated into a FOND – this is the well
known belief state construction [Bonet and Geffner, 2000;
Goldman and Boddy, 1996; Reif, 1984] – the significant as-
pect of this representability result is that the TFOND makes
no mention of the unobservable fluents, not even in the form
of belief states. This is particularly significant in the case
of learning, where we may have no a-priori knowledge of
the nature of the hidden variables. Indeed, if we think of an
agent situated in a domain, this agent has access only to its
observations, and knowledge of hidden variables presupposes
some prior knowledge pertaining to the understanding of the
underlying structure of the domain.

We formally define POND as follows: A Partially Observ-
able Nondeteministic Planning Domain (POND) is a tuple
PO = ⟨O,U,A,S,S0, tr⟩, where 1. P = O ∪U is a finite set
of atomic propositions or fluents, partitioned ( O ∩ U = ∅)
into observable ones O and unobservable ones U ; 2. A is a
finite set of actions; 3. S = 2O × 2U is the set of states of
PO which are truth assignments to P partitioned into the one
for O and the one for U . We denote states by (o, u) ∈ S
4. S0 = {(o0, u1), . . . , (o0, un)} is the set of possible initial
states in S, all sharing the same observation o0; 5. tr ∶ S×A×S
is the transition relation. POND is a Markovian model where
both observable and unobservable fluents are nondetermin-
istic. The dynamics of the state is Markovian and depends
on the current value of all the fluents – both observable and
unobservable, and the current action. Initially, the acting agent
knows the value of all the observable fluents, and following
each action, it gets to observe their new value. Note that the
fact that P is divided into fully observable and unobservable
fluents does not lead to loss of generality, as it easily captures
a model with separate transition and observation functions,
often adopted in POMDPs [Kaelbling et al., 1998].

A goal for a POND PO is a subset G of (2O)+, denoting
the desired sequences of observations. A plan is a partial
function p ∶ (2O)+ → A such that for every w ∈ S+, if p(w∣O)
is defined (where w∣O is the projection of w onto O) then

∃s′.(w,p(w∣O), s
′) ∈ tr (the action chosen by p(w∣O) is ex-

ecutable). If p(w∣O) is undefined, we write p(w∣O) = �. A
trace τ is generated by p, or simply a p-trace, if (i) if s0, . . . sk
is a prefix of τ then s0, . . . sk, p((s0, . . . , sk)∣O), sk+1 is also
a prefix of τ , and (ii) if τ is finite, say τ = s0, . . . , sn, then
p((s0, . . . , sn)∣O) = �. Given a POND PO and a goal G,
a plan p realizes G in PO if every p-trace of PO satisfies
G. Notice that this definition is essentially the same as for
NMFOND, with the only exception that the plan p takes as
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input only the sequence of observations, instead of the states
themselves. As a result, the choice of action at each point of
time depends only on what was observed so far.

We can reduce POND to FOND by the so called belief
state construction [Goldman and Boddy, 1996; Reif, 1984].
Given a POND PO = ⟨O,U,A,S,S0, tr⟩ we can construct

a FOND Dpo = ⟨O × 2U ,A,Spo, b0, trpo⟩ defined as follows:

1. O × 2U are the available propositions (in fact, the propo-
sitions 2U are expressed in terms of knowledge, typically);

2. A is the original set of actions; 3. Spo = 2O × 22
U

is the
set of states, of the form b = (o,u), where o is a truth assign-
ments to the observable fluents, and u is a set of possible truth
assignments for the unobservable fluents. Each state b is a
belief-state; 4. b0 = (o0,u0) where u0 = {u ∣ (o0, u) ∈ S0}
is the initial belief state corresponding to the set of (o0, u)
considered initially possible, which forms the initial state
of PO; 5. Spo × A × Spo is the transition function defined
as follows: ((o,u), a, (o′,u′)) ∈ trpo iff (i) for all u ∈ u

there exists a u′ such that ((o, u), a, (o′, u′)) ∈ tr; and
(ii) u

′
= {u′ ∣ u ∈ u and ((o, u), a, (o′, u′)) ∈ tr}; notice

that given o, u, a and o′ there exists a single u
′ such that

((o,u), a, (o′,u′)) ∈ trpo.

Theorem 4 ([Goldman and Boddy, 1996; Reif, 1984]). A plan
realizes G in PO iff it realizes G in Dpo.

We formalize the correspondence between POND and
TFONDs whose fluents are restricted to the observable ones
only. For convenience, we work with finite NMFONDs in-
stead of TFONDs. We start by formalizing when a POND
and a finite NMFOND produce the same observable behav-
ior. A POND PO = ⟨O,U,A,S,S0, tr⟩ with observable

fluents O and an NMFOND D = ⟨O,A, 2O, o0, tro⟩ with
fluents O are O-indistinguishable iff (i) for every sequence
of observations and actions: o0, a1, o1, . . . , ak, ok in D with
((o0, o1, . . . , oi−1), ai, oi) ∈ tro for i = 1, . . . , k, there exists a
sequence of states and actions s0, a1, . . . , ak, sk in PO such
that s0 ∈ S0, and (si−1, ai, si) ∈ tr for i = 1, . . . , k, and
si∣O = oi for i = 0, . . . , k; (ii) for every s0, a1, s1, . . . , ak, sk
in PO with s0 ∈ S0 and (si−1, ai, si) ∈ tr for i = 0, . . . , k,
let si∣O = oi, then o0, a1, o1, . . . , ak, ok is such that o0 is
the initial state of D and ((o0, o1, . . . , oi−1), ai, oi) ∈ tro
for i = 1, . . . , k. Next we show that for every POND,
there exists a finite NMFOND over its observables that is
O-indistinguishable.

Theorem 5. For every POND PO = ⟨O,U,A,S,S0, tr⟩ there

exists a finite NMFOND Dt = ⟨O,A, 2O, o0, trt⟩ such that
PO and Dt are O-indistinguishable.

Proof. Given PO we start with the belief set con-
struction, defining a standard FOND Dpo = ⟨O ×

2U ,A,Spo, b0, trpo⟩. From Dpo we define the finite NM-

FOND Dt = ⟨O,A, 2O, o0, trt⟩, where O are the observable

fluents and A the original set of actions; Spo = 2
O is the set

of states and o0 the initial observation; trt is generated by
a finite state transition transducer Tr = ⟨Q, q0, δ, ̺⟩ where:
1. Q = {q0} ∪ Spo is the set of the transducer states; 2. q0 is
the initial state of the transducer; 3. δ ∶ Q × S → Q is the
deterministic transition function of the transducer, defined as

follows: (i) δ(qo, o0) = (o0,u0); (ii) δ((o,u), o′) = (o′,u′)
where ((o,u), a, (o′,u′)) ∈ trpo with o′ ⊧ a; 4. ̺ ∶ Q×A×S
is the output function of the transducer, defined as follows:
(i) (qo, a0, o0) ∈ ̺ where a0 is the (dummy) action in o0; (ii)
((o,u), a, o′) ∈ ̺ where again ((o,u), a, (o′,u′)) ∈ trpo with

o′ ⊧ a. It is easy to see thatDt = ⟨O,A, 2O, o0, trt⟩ andDpo =

⟨O×2U ,A,Spo, b0, trpo⟩ are indeed O-indistinguishable.

Also the reverse result holds.

Theorem 6. For every finite NMFONDD with fluents O there
exists a POND PO with observables O such that D and PO
are O-indistinguishable.

Proof. Take the finite NMFOND, and using the construction
in the previous section, transform it into a FOND. Let O be
the set of fluents that define the state of the finite NMFOND.
Let U be fluents that correspond to (a boolean encoding of)
the state of the finite transducer. We can easily re-express
transitions of the FOND in terms of such fluents. Considering
U as unobservable fluents we get the desired POND.

Considering the relationship between finite NMFOND and
TFONDs, we finally get:

Theorem 7. For every POND PO there exists a LDLf

TFOND DL such that PO and DL are O-indistinguishable.
Moreover, for every LDLf /LTLf TFOND DL there exists a
POND PO such that DL and PO are O-indistinguishable.

Hence, LDLf TFONDs (but not LTLf TFOND, in general)
provide an alternative to POND with one major benefit – in
TFONDs there is no mention of, nor no need to know, nor
hypothesize, a set U of unobservables.

Finally we observe that the construction that reduces POND
to a finite NMFOND generates a transducer Trt, which can be
minimized by reducing its number of states, without changing
the traces generated by the NMFOND, and hence the observ-
able traces of the original POND. If we transform back the
resulting finite NMFOND into a POND with new unobserv-
able fluents which are a factorization of the minimized states of
Trt, we get a POND that is equivalent to the original one but
with a minimal number of unobservable fluents. The practical
ramification of such an observation deserves further study.

8 Conclusion

In many natural cases, the dynamics of the domain of interest
is non-Markovian. In this paper we introduced and studied
NMFONDs and, in particular, TFONDs, which provide a
succinct and elegant formalism for specifying non-Markovian
dynamics and rewards. We showed that this model can be
solved using one’s favorite FOND algorithm after an initial
automated preprocessing phase. With these tools, we believe
handling non-Markovian models becomes quite realistic and
undaunting.
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