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Abstract

The motion-planning problem, involving the computation of a colli-

sion-free path for a moving entity amidst obstacles, is a central prob-

lem in fields such robotics and game design. In this paper we study the

problem of planning high-quality paths. A high-quality path should

have some desirable properties: it should be short, avoiding long de-

tours, and at the same time it should stay at a safe distance from

the obstacles, namely it should have clearance. We suggest a qual-

ity measure for paths, which balances between the above criteria of

minimizing the path length while maximizing its clearance. We ana-

lyze the properties of optimal paths according to our measure, and

devise an approximation algorithm to compute near-optimal paths

amidst polygonal obstacles in the plane. We also apply our quality

measure to corridors. Instead of planning a one-dimensional motion

path for a moving entity, it is often more convenient to let the entity

move in a corridor, where the exact motion path is determined by a lo-

cal planner. We show that planning an optimal corridor is equivalent

to planning an optimal path with bounded clearance.
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1. Introduction

1.1. Optimal Paths

The task of planning a collision-free path for a moving en-
tity that avoids obstacles plays an important role in robot-
ics, as well as in game design. The problem is often solved
by constructing a graph that discretizes the environment, and
extracting a collision-free path from this graph. The nodes
of such a graph may be the cells of a uniform grid (see,
e.g., Russel and Norvig (2002)) or, according to the proba-
bilistic roadmap (PRM) paradigm (see Kavraki et al. (1996)
and Choset et al. (2005, Chapter 7)), free configurations that
are chosen randomly, attempting to capture the connectivity of
the free configuration space. Alternatively, in exact algorith-
mic solutions, the nodes of the so-called connectivity graph
correspond to the cells of the exact decomposition of the free
space (see, e.g., Latombe (1991)� Sharir (2004)).
In many applications, computing some collision-free path is

not enough, and we are required to obtain a high-quality path.
The quality of a path can be determined according to several
properties. Usually, a preferable path is short, avoiding unnec-
essary detours. At the same time, the path is often required
to have some clearance from the obstacles, in order to allow
the moving entity more room to maneuver safely, or to gain

� A preliminary version of this paper appeared in Proceedings of the 7th Inter-

national Workshop on the Algorithmic Foundations of Robotics (WAFR), New
York, July 2006.
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increased visibility. Song et al. (2001) present a method for
extracting paths from a PRM according to these criteria. Ad-
ditional path properties of interest are the path smoothness or,
more generally, the amount of curvature a path has.
Paths extracted from a PRM are usually piecewise linear,

thus containing sharp turns, and possibly also self-loops. To be
of practical use, such paths need to be postprocessed. Here lies
a major drawback of the above approaches: they may select
a path which is optimal according to some quality measure
within the graph, yet other paths may exist in the graph that
may prove better after they are postprocessed. Trying all paths
and only selecting the best one after postprocessing would be
prohibitively expensive.
In this paper we consider the problem of characterizing

and computing high-quality motion paths. This problem is also
closely related to the problem of routing thick paths, as studied
by Mitchell and Polishchuk (2007). As we have already men-
tioned, this is a bi-criteria optimization problem, as we strive
for minimizing the path length while maximizing its clear-
ance for the given obstacles. These two requirements are often
contradictory. Given start and goal configurations and a set of
obstacles in the plane, the shortest collision-free path is con-
tained in the visibility graph of the obstacles� see, e.g., Mitchell
(2004). However, such a path is incident to obstacle boundaries
and therefore has zero clearance. Conversely, if one is only
concerned with clearance, allowing as long paths as needed,
then such paths are easily found by retracting the path to the
Voronoi diagram of the given obstacles (Ó’Dúnlaing and Yap
1985). It is also possible to consider interpolations of these
two structures, named visibility–Voronoi diagrams, as we sug-
gested in Wein et al. (2007). Indeed, a good path makes a good
trade-off between length and clearance.
Our work on the visibility–Voronoi diagram still falls short

of precisely quantifying the tradeoff between the length and
clearance of paths. In this paper we introduce a measure for the
quality of paths, which combines the two properties mentioned
above, path length and path clearance, and presents a method
to plan paths amidst polygonal obstacles in the plane that are
(nearly) optimal with respect to this measure. In addition, we
show that such optimal paths are always smooth.
Planning optimal paths with respect to our quality mea-

sure is a computationally difficult task. However, we show
how to devise optimal paths in some special cases, and devise
an approximation algorithm that computes near-optimal paths
amidst polygonal obstacles.

1.2. Optimal Corridors

Computing a fixed path in response to a motion-planning
query is inadequate for many applications, as such a path lacks
flexibility to avoid local hazards (such as small obstacles, other
moving entities, etc.) that are encountered during the motion.
Moving along a fixed path also leads to predictable, and pos-

sibly unrealistic motions, which are not suitable for some ap-
plications, such as computer games. One approach for tackling
these problems is a potential-field planner, in which the mov-
ing entity is attracted to its goal configuration, and repelled by
obstacles, or other moving entities (see, e.g., Khatib (1986)).
However, this approach is prone to get stuck in local minima
of the potential field. Although there are methods that help in
getting out of local minima (see, e.g., Latombe (1991, Chap-
ter 7)), they may still not yield valid motions at all, even when
valid paths exist.
We would therefore like to indicate the global direction

of movement for the moving entity, while leaving enough
flexibility for some local planner to avoid local hazards. An
ideal solution for this is to use corridors, which have recently
been introduced in the field of game design� see Overmars
(2005). Corridors are defined as a union of balls whose cen-
ter points lie along a backbone path. The radius of the balls
is determined by the clearance (i.e. the distance to the nearest
obstacle) along the backbone path. The more restricted task
of locally planning the motion around the backbone path can
be successfully performed by applying potential-field methods
within the corridor. At the same time, in order to guarantee that
the local planner operates on a restricted environment, the radii
of the balls are upper bounded by some predetermined value1.
As a result, rather than moving along a fixed path, the moving
entity moves within a corridor around the backbone path. This
gives a strict global direction of movement, yet provides the
local flexibility we look for.
Planning within corridors has many applications. It has

been used to plan motions for coherent groups of entities,
where the backbone path provides the global motion of the
group (Kamphuis and Overmars 2004). The interactions be-
tween entities of the group are locally controlled by a social
potential-field method (Reif and Wang 1995). Corridors have
also been used to plan the motion of a camera that follows
a moving character (a guide) (Nieuwenhuisen and Overmars
2004a). If the guide moves along the backbone path, the cor-
ridor gives the flexibility for the camera to swerve if neces-
sary. Another advantage of corridors is that they allow for non-
holonomic and kinodynamic planning, if the motion of a single
entity (or multiple entities) is planned using a potential field
method within the corridor (Kamphuis et al. 2005). This is
very difficult to achieve and incorporate into a fixed path. A
common property of the applications of corridors is that the
moving entity is small compared with the scale of the envi-
ronment. In many fields (open field robotic navigation, games,
etc.) this is indeed the case.
We show that planning an optimal corridor is equivalent to

computing an optimal path with bounded clearance. We are
therefore able to generalize our analysis to corridors and plan
near-optimal corridors amidst polygonal obstacles.

1. The fact that the radii of the balls are bounded is a major difference between
a corridor and the medial axis transform of the free workspace.
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1.3. Paper Outline

The rest of this paper is organized as follows. In Section 2
we formally define a quality measure for paths and present
some elementary properties of general optimal paths with re-
spect to this measure. Section 3 focuses on the specific case
of optimal paths amidst polygonal obstacles in the plane and
discusses their properties. In Section 4 we present an approxi-
mation algorithm to compute near-optimal paths. In Section 5
we generalize our result to the case of corridors. We also take
the curvature of the path into account and augment the quality
measure accordingly. We give some concluding remarks and
future-work directions in Section 6.

2. Measuring Paths

In this section, we formally define what a path is, and how
we measure its quality. We show properties of paths that are
optimal with respect to this measure, namely that an optimal
path is smooth, and that it obeys Snell’s law of refraction when
the clearance function plays the role of the “speed of light”.

2.1. Paths

A path � �t� of an entity moving in a d-dimensional workspace
is defined as a continuous function � : [0� L] �� �d , parame-
terized by the length L of the path. In typical motion-planning
applications we are given a set of obstacles � that the moving
entity should avoid. If there exists some t � [0� L] such that
the interior of the moving entity intersects some obstacle when
positioned at � �t�, we say that � is an invalid path. For the time
being, let us assume that the moving entity is a point� thus, it is
sufficient to require that � is disjoint from the interior of any
of the obstacles. In the following sections we explain how it is
possible to avoid this assumption. In the rest of this paper we
consider only valid, namely collision-free, paths.
For any point p, we define the clearance as a function

c : �d �� �, where c�p� is the distance between p and
the nearest point on any of the obstacles. That is, c�p� �
minq�� �p � q�.
2.2. The Weighted Length Measure

As we have already indicated, a good path must be short,
namely it should avoid unnecessarily long detours, and it
should have as much clearance as possible. Informally speak-
ing, the path should go through narrow passages only if they
allow considerable shortcuts.
To combine the two desired properties of the path as dis-

cussed above, for any � � 0 we define the weighted length

L���� � of a path � to be

L���� � �
�
�

�
1

c�� �t��
��

dt � (1)

We wish to minimize the weighted length by either shorten-
ing the path or by extending the path’s clearance. Given a start
position s � �d and a goal position g � �d , a path � satisfy-
ing � �0� � s and � �L� � g is optimal for a desired value of �
if for any other valid path � � connecting the two endpoints we
have L���� � 	 L���� ��.
The parameter � determines how much weight is given to

the clearance in the measure. That is, if � is small, the length is
more important than the clearance, and if � is large, the clear-
ance is more important than the length. Indeed, if � � 0, the
weighted length equals the length of the path, and the optimal
path is the shortest path. In the plane, the shortest path is con-
tained in the visibility graph of the obstacles�. This graph can
be computed in O�n log n 
 k� time (Mitchell 2004), where n

is the total complexity of the obstacles, and k the number of
edges in the visibility graph. For � ���, the optimal path is
the path with the largest minimal clearance in the Voronoi dia-
gram of the obstacles�. It can be found in O�n log n� time by
retraction, namely by constructing a minimum spanning tree
in the Voronoi diagram (Ó’Dúnlaing and Yap 1985).
Our weighting scheme can be applied directly to optimizing

the quality of paths extracted from PRMs that contain cycles, as
suggested by Nieuwenhuisen et al. (2004) and Nieuwenhuisen
and Overmars (2004b). In this case, instead of weighting each
edge in the PRM by its Euclidean length and extracting the
shortest path from the graph, we can consider some preferred
� value, and give each edge e the weight of L���e�, with respect
to the clearance function along the edge. We can thus extract
the optimal path the PRM contains with respect to �. However,
for polygonal obstacles in the plane we can devise a complete
scheme for calculating an optimal path, as we show in the next
section.

2.3. Properties of Optimal Paths

Observation 1. The clearance function c�� �t�� is a continu-

ous function along any path � . Moreover, for any p1� p2 � �d

we have �c�p2� � c�p1�� 	 �p2 � p1�, hence the clearance

function also satisfies the Lipschitz condition with a constant

that equals 1.

Lemma 2. Given a set of obstacles and 0 � � � �, an

optimal path connecting any given start position s to any goal

position g is smooth.

Proof. Let � �t� be an optimal path connecting s and g. As-
sume that � contains a sharp turn (a �1-discontinuity). Let us
approximate the sharp turn using a circular arc of radius r that
connects smoothly to the original path. As illustrated in Fig-
ure 1, as r approaches 0 the approximation is tighter. Let 	1 be
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Fig. 1. Shortcutting a path segment that contains a sharp turn
using a smooth circular arc.

the length of the original path segment we approximate, and
let 	2 be the length of the circular arc. It is easy to show that
there exists r � 0 and some constants A1 � A2 � 0 such
that for each 0 � r � r we have 	1 � A1r and 	2 � A2r .
If the maximal clearance c� along the original path segment is
attained at some point p�, then as the distance of any point p

along the circular arc from p� is bounded by Kr , where K is
some constant, and as the clearance function is 1-Lipschitz, we
have that c� � c�p� � Kr . Let L�1 be the weighted length of
the original path segment and let L�2 be the weighted length of
the circular arc. We therefore know that L�1 � �1
c��� � l1 and
L�2 	 �1
�c� � Kr��� � l2, so we can write

L�1
L�2 �

�1
c��� � l1
�1
�c� � Kr��� � l2 �

�
c� � Kr

c�
�� � A1

A2
�

As A1 � A2, we can choose

0 � r � min
�

c�
K

�
1� �
�

A2

A1

�
� r
�

such that the entire expression above is greater than one. We
thus have L�1 � L�2, and we managed to decrease the weighted
length of the original path by introducing a circular shortcut,
in contradiction to the optimality of � . We conclude that � �t�
must be a smooth function. �

It is clear that in the case of a constant clearance function,
the optimal path between two points is a straight-line segment.
We therefore use infinitesimal analysis at several places in this
paper, treating the clearance function as being piecewise con-
stant, and approximate optimal path between two points by
polylines. To this end, we need to examine the nature of opti-
mal paths with respect to a non-continuous clearance function.
Assume that we have some hyperplane � in �d that sepa-

rates two regions, such that in one region the clearance is c1
and in the second it is c2. Minimizing the weighted length
between two endpoints that are separated by � is equivalent
to applying Fermat’s principle, stating that the actual path be-
tween two points taken by a beam of light is the one that is tra-

versed in the least time. The optimal path thus crosses the sepa-
rating hyperplane once, such that the angles �1 and �2 it forms
with the normal to� obey Snell’s Law of refraction2, with c1

�
and c2

� playing the role of the “speed of light” in the respec-
tive regions. We omit the proof of the following lemma, as it is
identical to the usual Snell’s law of optimality in the weighted
regions problem (see Mitchell and Papadimitriou (1991)).

Lemma 3. (Snell’s law of refraction) Consider two regions

separated by the line y � 0, such that if our path is given

by � �t� � �x�t�� y�t��, then c�� �t�� � c1 for y�t� � 0 and

c�� �t�� � c2 for y�t� � 0. The angles �1 and �2 that the

optimal path between p1 � �x1� y1� and p2 � �x2� y2�, where

y1 � 0 and y2 � 0, forms with a vertical line perpendicular to

y � 0 satisfy

c2
� sin�1 � c1

� sin�2� (2)

3. Optimal Paths Amidst Polygonal Obstacles in

the Plane

In this section, we consider planar environments cluttered with
polygonal obstacles. We show that the behavior of an optimal
path is determined by the identity of the nearest obstacle fea-
ture, which is either a polygon vertex (or a point obstacle), or a
polygon edge (or a line obstacle): we show that an optimal path
is a logarithmic spiral in the vicinity of a point obstacle, and
a circular arc in the vicinity of a line obstacle. Based on these
results, we show that an optimal path consists of a bounded
number of segments whose identity is determined by the cell
of the Voronoi diagram of the polygons the path is in. We also
show that an optimal path can lie on an arc of this Voronoi di-
agram. We also show how to compute the weighted length of
each type of path segment.
From now on, we assume that � � 1, which gives a natural

trade-off between length and clearance in two-dimensional en-
vironments, and for which we can analytically express the
structure of an optimal path. The choice of � � 1 will become
more natural when we introduce corridors in Section 5 and fo-
cus on planning optimal backbone paths for corridors. To sim-
plify the notation, we refer to L�1��� simply as L����. We men-
tion that the analysis for arbitrary values of � is performed us-
ing calculus of variations� see, e.g., Gelfand and Fomin (2000).
In Appendix A we give more details on the techniques we use
in the general case.

3.1. A Single Point Obstacle

Let us assume that there is only a single point obstacle p in
our environment. Without loss of generality, we assume that p

2. See also Mitchell and Papadimitriou (1991), where this observation is used
in a similar setting of the problem.
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Fig. 2. An optimal path in the case of (a) a single point obstacle and (b) a single line segment obstacle.

is located at the origin. We show how to compute an optimal
path between two endpoints s� g � �2. Note that the clearance
c�� �t�� along such a path simply is equal to �� �t��.
We first approximate the optimal path by a polyline:

for some small �r � 0, we look at the circles of radii
�r� 2�r� 3�r� � � � that are centered at the origin. Each pair of
neighboring circles define an annulus. Since �r is small we
assume that the distance from p of all points in the kth an-
nulus is constant and equal to k�r . Consider the scenario de-
picted in Figure 2(a), where � enters one of the annuli at some
point A, where �A� � r1, and leaves this annulus at B, where�B� � r2 � r1 
�r . The angles that the path forms with p A

and pB are �1 and 1, respectively. When entering the annu-
lus we have c1 � r1 and c2 � r2, so applying Equation (2) for
� � 1 we can express the refracted angle �2, using

sin�2 � r2

r1
sin�1�

By applying the law of sines on the triangle�p AB, we obtain

r2

sin�� � �2� �
r1

sin1 �

sin1 � r1

r2
sin�� � �2� � r1

r2
sin�2 � sin�1 �

As the two angles are less than �
2, we have that 1 � �1.
Taking �r �� 0, we obtain a smooth curve � , such that the
angle that �� �t� forms with ����p� �t� is a constant � . It is pos-
sible to show that a curve that has this property must be a seg-
ment of a logarithmic spiral (also called an equiangular spiral)
whose polar equation is given by r�t� � aeb��t�, where a is a
constant and b � cot� . See, e.g., Gray (1997) for a proof of
this latter fact.
The two parameters a and b of the logarithmic spiral that

support the optimal path between two given endpoints can

therefore be computed by substituting the polar coordinates of
the endpoints into the equation r � aeb� :

Proposition 4. Given a single point obstacle located at the

origin, a start position s � rsei� s and a goal position g �
rgei�g (in polar coordinates), the optimal path connecting s

and g is a spiral arc supported by a logarithmic spiral r �
a�eb�� . Since both s and g lie on this spiral, we have (assuming

� s �� � g, otherwise the optimal path is simply a line segment):

a� � rg
�s
�� s��g� � rs

��g
�� s��g�� (3)

b� � 1

� g � � s � ln
rg

rs

� (4)

Proposition 5. Given a single point obstacle located at the

origin, a start position s � rsei� s and a goal position g �
rgei�g (in polar coordinates), the weighted length of the opti-

mal path � between s and g is given by

L��� � � � �2
�1

1

r���

�
r2���
� dr

d�
�2
��� d�

� � �2
�1

1

a�eb��
	
1
 b�2aeb�� d�

� � �2
�1

	
1
 b�2 d� �	1
 b�2��2 � �1�

� 	��2 � �1�2 
 �ln r2 � ln r1�2� (5)

3.2. A Single Line Segment Obstacle

Let us now consider an environment that consists of a single
line segment obstacle, which is arbitrarily long. Without loss
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of generality, let us assume that the segment is supported by
the vertical line x � 0, such that the clearance of a point along
the path � �t� � �x�t�� y�t�� simply equals c�� �t�� � �x�t��.
To analyze the optimal path � between two points s and g

(see Figure 2(b)), we begin by approximating this path using a
polyline. Assume that � �t� passes through a point p0 � �x0� 0�
and forms an angle �0 with the line y � 0 perpendicular to
the obstacle. For some small �x � 0 we can define the lines
x � x0� x � x0 
 �x� x � x0 
 2�x� � � �, where each pair
of neighboring lines define a vertical slab. Since �x is small
we assume that the distance of all points in the slab from the
obstacle is constant and equal to x0 
 k�x . We can now use
Equation (2) with � � 1 and write

sin�1 � x0 
�x

x0
sin�0�

sin�2 � x0 
 2�x

x0 
�x
sin�1 � x0 
 2�x

x0
sin�0�

���

sin�k � x0 
 k�x

x0
sin�0�

If we examine the kth slab we can write x � x0 
 k�x , so we
have

�yk � �x tan�k � �x � sin�k	
1� sin2 �k

� �x � x sin�0

x20 � x2 sin2 �0

� (6)

Letting �x tend to zero we obtain a smooth curve. We can
use Equation (6) to express the derivative of the curve and we
obtain

y��x� � lim�x��0
�yk

�x
� x sin�0


x20 � x2 sin2 �0
�

y�x� � � 1

sin�0



x20 � x2 sin2 �0 
 K � (7)

As the point �x0� 0� lies on the curve we can express the con-
stant K :

K � 0
 1

sin�0



x20 � x20 sin
2 �0

�
	
1� sin2 �0
sin�0 x0 � x0 cot�0�

Observe that y�x� is defined only for x � x0
 sin�0. When
x � x0
 sin�0 the path is reflected from the vertical wall and

starts approaching the obstacle. Indeed, by squaring and rear-
ranging Equation (7) we obtain

x2 
 �y � x0 cot�0�2 �
�

x0

sin�0
�2
�

thus we conclude that � is a circular arc, whose supporting
circle is centered at �0� x0 cot�0� and its radius is x0
 sin�0.

Proposition 6. Given a start position s � �xs� ys� and a goal

position g � �xg� yg� in the vicinity of a line segment obsta-

cle supported by x � 0, the optimal path between these two

endpoints is a circular arc supported by the a circle of radius

r� that is centered at �0� y��, where (we assume that ys �� yg,

otherwise the optimal path is simply the line segment sg):

y� � ys 
 yg

2

 x2g � x2s

2�yg � ys� � (8)

r� �
�
1

2
�x2s 
 x2g�
 14 �yg � ys�2 
 �x2g � x2s �2

4�yg � ys�2 � (9)

Proposition 7. Given a line segment obstacle supported by

the line x � 0, a start position s � r�ei�1 and a goal position

g � r�ei�2 in polar coordinates relative to the center �0� y��
of the circle supporting the optimal path � between s and g,

the weighted length of the circular arc � is given by (note that

r��� � r�)

L��� � � � �2
�1

1

r� cos �
�

r2���
 � dr

d�
�2
��� d�

� � �2
�1

1

cos � d� � ln 1
 sin �
cos �
����
�2

�1

� ln tan
�2
2
� ln tan �1

2
� (10)

(The last transition is due to the half-angle formula

tan��
2� � �1
 sin��
 cos �.)
3.3. Polygonal Obstacles

For the general case of multiple polygonal obstacles, we first
construct � , the Voronoi diagram of the obstacle polygons. �
consists of Voronoi arcs that are equidistant to two different
polygon features. A Voronoi arc may be induced by two poly-
gon vertices, by two polygon edges, or by a polygon vertex
and a polygon edge that are adjacent on the same polygon, in
which case it is a line segment, or by a polygon vertex and a
polygon edge of different polygons, in which case it is a par-
abolic arc. See, e.g., Lee and Drysdale (1981) for more details.
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Fig. 3. The Voronoi diagram of four polygonal obstacles.
Voronoi arcs separating between Voronoi cells of features of
different polygons are drawn as solid lines and those separat-
ing cells of features of the same polygon are dashed lines. The
region denoted � 1 is the Voronoi cell of a polygon vertex and
� 2 is the Voronoi cell of a polygon edge.

The Voronoi arcs partition the plane into two-dimensional
Voronoi cells, where all points in a cell share the same closest
polygon feature. The closest polygon feature is either a poly-
gon vertex, or a polygon edge. See Figure 3 for an illustration.
Given two points s � and g� that belong to the same Voronoi

cell � , we know the following facts.
� If � is a Voronoi cell of a polygon vertex, the optimal
path between s � and g� is a spiral arc � that connects
them as in Proposition 4, provided that � does not inter-
sect any Voronoi arc of � . The weighted length of � can
be computed according to Proposition 5.

� If � is a Voronoi cell of a polygon edge, the optimal path
between s� and g� is a circular arc � that connects them
as in Proposition 6, provided that � does not intersect
any Voronoi arc of � . The weighted length of � can be
computed according to Proposition 7.

In addition, the Voronoi arcs of � are also locally optimal,
namely they can serve as optimal paths. Given s � and g� on the
same Voronoi arc, the optimal path that connects them is sim-
ply the piece of the Voronoi arc between s � and g�. In the case
of a Voronoi arc that is induced by two polygon vertices or
by two polygon edges, this is easy to prove: the Voronoi arcs
are straight-line segments and the clearance function is locally
maximal on the Voronoi arcs. The case of a Voronoi arc in-
duced by a polygon vertex and a polygon edge that are adja-
cent on the same polygon reduces to the case in Proposition 4
where � s� � � g� or, equivalently, to the case in Proposition 6
where ys� � yg� . Hence, these arcs are locally optimal as well.

Fig. 4. A parabolic Voronoi arc a induced by a polygon vertex
� and an edge e of another polygon, with p1 and p2 two points
on a.

The case of a parabolic Voronoi arc induced by a polygon
vertex and a polygon edge of different polygons is less triv-
ial. To prove local optimality, we show that it is not possible
to shortcut a piece of the arc between two points on the par-
abolic arc by choosing a shorter route that is closer to one of
the polygons, as such a route always has a greater weighted
length.
Consider a parabolic Voronoi arc a induced by a polygon

vertex � and an edge e of another polygon, and let p1 and p2
be two points on a. Assume that it is possible to shortcut the
portion of a defined by p1 and p2 by penetrating the Voronoi
cell of e. In this case, the shortcut is a circular arc � centered
at some point on e� this arc clearly penetrates the Voronoi cell
of the vertex � , as can be seen in Figure 4. On the other hand,
if we try to create a shortcut contained in the Voronoi cell of
� , we end up with a spiral arc � centered at � . As p1 and p2
are equidistant from � , � is a circular arc, whose curvature is
greater than that of the parabolic edge, hence it penetrates the
Voronoi cell of e. Either way, we reach a contradiction, and we
conclude that the parabolic arc is locally optimal.

Corollary 8. The optimal path between two points s � and g�
on a Voronoi arc a of any kind is the piece of a between s� and

g�.
The weighted length of these paths is computed as follows.

� Vertex–vertex arc. Without loss of generality, let the
two polygon vertices inducing the Voronoi arc a be the
points �0� y�� and �0��y��. Then, the Voronoi arc a

is supported by the line y � 0, and the clearance for
any point �x� 0� along a is equal to

	
x2 
 y�2. The

weighted length of the optimal path � between to points
�x1� 0� and �x2� 0� on a is equal to

L��� � � � x2

x1

1	
x2 
 y�2

dx
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� ln
�

x 
	x2 
 y�2
���x2

x1

� ln
x2 
	x22 
 y� 2

x1 
	x21 
 y� 2
� (11)

� Edge–edge arc. Without loss of generality, let the two
polygon edges inducing the Voronoi arc a intersect the
line y � 0 at the origin with angles � and ��. Then,
the Voronoi arc a is supported by the line y � 0, and
the clearance for any point �x� 0� along a equals x sin�.
The weighted length of the optimal path � between to
points �x1� 0� and �x2� 0� on a is equal to

L��� � � � x2

x1

1

x sin� dx

� ln x

sin�
����

x2

x1

� 1

sin� � ln x2

x1
� (12)

� Same polygon vertex–edge arc. Without loss of general-
ity, let the polygon vertex and the polygon edge inducing
the Voronoi arc a be the origin and the line x � 0, re-
spectively. Then, the Voronoi arc a is supported by the
line y � 0, and the clearance for any point �x� 0� along
a is equal to x . The weighted length of the optimal path
� between to points �x1� 0� and �x2� 0� on a is equal to

L��� � � � x2

x1

1

x
dx � ln x �x2x1

� ln x2

x1
� (13)

� Different polygon vertex–edge arc. Without loss of gen-
erality, let the polygon vertex and the polygon edge in-
ducing the Voronoi arc a be the point �0� y�� and the line
y � �y� , respectively. Then, the Voronoi arc a is sup-
ported by the parabola y�x� � x2
4y� , and the clearance
for any point �x� y�x�� along a is equal to y�x�
 y� . The
weighted length of the optimal path � between to points
�x1� 0� and �x2� 0� on a is equal to

L��� � � � x2

x1

	
1
 �dy
dx�2�x�

y�x�
 y�
dx (14)

� � x2

x1

	
1
 x2
4y�2
�x2
4y��
 y�

dx (15)

� � x2

x1

2	
x2 
 4y�2

dx (16)

� 2 ln
�

x 
	x2 
 4y�2
���x2

x1

� 2 ln
x2 
	x22 
 4y� 2

x1 
	x12 
 4y� 2
� (17)

We conclude that an optimal path � � between a start po-
sition s and a goal position g amidst polygonal obstacles in
the plane consists of segments of different types: spiral arcs in
Voronoi cells of a polygon vertex, circular arcs in Voronoi cells
of a polygon edge and pieces of Voronoi arcs on the Voronoi
diagram itself. We refer to them asmaximal path segments. We
have already seen how we can compute the weighted length
of each of these maximal segments. In addition, according
to Lemma 2 we know that these segments are smoothly con-
nected.
We next show that the number of maximal segments in an

optimal path is linear in the complexity of the obstacles.

Lemma 9. An optimal path � � consists of at most 12n maxi-

mal segments, where n is the total number of polygon vertices.

Proof. We have already seen that the arcs of the Voronoi di-
agram are locally optimal paths. Hence, if there are two points
on an arc of � belonging to � �, these points are connected by
a piece of the diagram arc. For each arc a in � , one of the fol-
lowing holds: (i) the optimal path � � does not intersect a at all�
or (ii) � � crosses a exactly once� or (iii) � � contains one con-
tinuous piece of a. At the same time, the endpoints of spiral
segments and circular segments must coincide with � (or with
s or g), as they are the transition points between two segments
of different types.
Using the Euler formula, it is possible to show that the num-

ber of Voronoi arcs in � is bounded by 6�n�1�, where n is the
total number of polygon vertices n. Note that every Voronoi
arc can account for at most two maximal path segments: one
path segment on the arc and one segment arriving on the arc
(the path segment leaving the arc is accounted for by the arc
on which it arrives). The complexity of � � is therefore at most
12n. �

So far we covered the case of a point moving amidst polyg-
onal obstacles in the plane. If this is not the case, we can
still view the moving entity as a point if we consider the
configuration-space obstacles. If the robot is polygonal and
can only translate, but not rotate, the configuration-space ob-
stacles are the Minkowski sums of the original obstacles with
the robot rotated by � , and are also straight-edge polygons in
this case.
In the case of a disk robot of radius � moving amidst polyg-

onal obstacles, we should dilate each obstacle by �, namely
compute the Minkowski sum of each polygon with the disk,
and obtain a set of polygonal configuration-space obstacles,
whose boundaries comprise line segments and circular arcs.
The analysis we performed in this section also applies for the
case of moving amidst such dilated polygons. Note that in the
general case the arcs of the Voronoi diagram of a set of line
segments and circular arcs consists of line segments (equidis-
tant from a pair of line segments), parabolic arcs (equidistant
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Fig. 5. Adding shortcut curves in the Voronoi diagram of point obstacles. (a) The spiral arc connecting q1 and q2 (dashed) crosses
the Voronoi edge �1�2� the optimal backbone path between q1 and q2 therefore comprises two spiral arcs that shortcut �1 and
�2 (solid arrows) and portions of Voronoi edges. (b) Shortcutting two adjacent Voronoi vertices �1 and �2 by a single spiral arc.
(c) Shortcutting two Voronoi vertices by a cross-cell curve obtained from the smooth concatenation of two spiral arcs. Both arcs
have a common tangent y � �x 
 b, which crosses the Voronoi edge �1�2 at q �.

from a line segment and a circular arc) and hyperbolic arcs
(equidistant from a pair of circular arcs). However, as all cir-
cular arcs of the dilated obstacles have the same radius in our
case, the hyperbolic arcs degenerate into line segments, hence
all Voronoi edges are locally optimal. The Voronoi edges sub-
divide the plane into cells that can either be associated with
a closest dilated polygon edge (a line segment) or with a di-
lated polygon vertex (a circular arc). It is possible to express
the optimal path between two points in a cell � of the latter
type in a closed analytic form, using calculus of variations� see
Appendix A.3 for the details.
If we have a robot of an arbitrary shape that is able to trans-

late and rotate, namely has three degrees of motion freedom, it
is sufficient in some cases to produce a conservative solution
by considering a bounding disk of the robot, and planning a
path for this disk, as described above.
Having characterized various segments of an optimal path

amidst polygonal obstacles, we would like to construct such
paths. We know that an optimal path contains portions of
the Voronoi diagram, but it cannot totally overlap with the
Voronoi diagram: a path retracted to a Voronoi diagram may
pass through Voronoi vertices, hence it may contain sharp
turns, in contradiction to Lemma 2. One may try to rectify this
problem by introducing a shortcut curve between each pair of
Voronoi edges that are incident to a common Voronoi vertex.
Figure 5(a) and (b) show how we introduce shortcut curves in
the Voronoi diagram of point obstacles� these simple shortcut
curves pass through a single Voronoi cell of a polygon ver-
tex, hence they are arcs of a logarithmic spiral. At the same
time, a shortcut curve may cross a Voronoi edge� thus, it may
comprise two spiral arcs that are smoothly joined together (see
Figure 5(c)).
We should also continue to examine the possibility of short-

cutting k � 2 Voronoi vertices by considering sequences of

�k 
 1� contiguous Voronoi edges. This operation is not triv-
ial, and requires solving a system of low-degree polynomial
equations with 2�c 
 1� unknowns, where c is the number of
crossings between the shortcut curve and the Voronoi diagram.
In some scenarios it may be possible to construct shortcuts
to ��n� Voronoi vertices by considering sequences of ��n�
contiguous Voronoi edges, thus the process of smoothing the
path retracted from the Voronoi diagram may blow up expo-
nentially. We therefore devise an approximation algorithm that
computes paths that are arbitrarily close to the optimal path be-
tween a pair of given endpoints.

4. An � Approximation Algorithm for Optimal

Paths

Based on the results of the previous section, we show in this
section how we construct an algorithm that computes an ap-
proximately optimal path between any given start and goal
points amidst any given set of polygonal obstacles. We show
that our algorithm produces paths which are at most � longer
(in terms of weighted length) than an optimal path, and prove
efficient running time bounds expressed in terms of the value
of �.

4.1. The Algorithm

We devise an approximation algorithm to compute a near-
optimal path between two endpoints s and g based on the
structure of the Voronoi diagram � and the planar partition it
induces. Given � � 0, we subdivide the Voronoi arcs of � into
small intervals of length c�I ��: as � is small, we consider the
clearance of an interval I to be constant and denote it by c�I �.
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Fig. 6. The local clearance minimum cannot be attained on a
Voronoi edge that separates two Voronoi cells of features of
the same polygon.

Note that the intervals are shorter in regions where the clear-
ance is smaller, and that each interval has weighted length �.
Hence, if � is the total weighted length of the Voronoi

arcs of � , then there are �
� intervals in total. However, the
Voronoi arcs induced by two features of the same polygon have
zero clearance in one of their endpoints, which would make the
intervals arbitrarily small as c�I � approaches zero. At the same
time, � , the total weighted length of � , becomes infinity.
Fortunately, we can prove that the minimal clearance of an

optimal path � � between a start position s and a goal posi-
tion g is never smaller than the minimum of the clearances
attained at s, g and the Voronoi arcs of � induced by features
of different polygons. As a consequence, we only need to sub-
divide the portions of the Voronoi diagram that have clearance
greater than the minimum value, disregarding portions that are
induced by features of the same obstacles and lie too close to
this obstacle.

Lemma 10. The minimal clearance of an optimal path � �
between start position s and goal position g is greater than

(or equal to) the minimum of the clearances attained at s, g,

and the Voronoi arcs of V induced by features of different poly-

gons.

Proof. First we observe that for each of the spiral segments
and circular segments of the optimal path � � (recall that such
segments correspond to pieces of the path that are contained
within a Voronoi cell of a polygon vertex or a polygon edge,
respectively) the minimal clearance is attained at one of its
endpoints. This means that local clearance minima along � �
can be attained at s, g, a point where it crosses an arc of � and
where � � consists of a piece of a Voronoi arc.
However, a local clearance minimum of � � cannot be at-

tained at a Voronoi edge separating two Voronoi cells of fea-
tures of the same polygon. Consider the scenario depicted in
Figure 6, and suppose that the optimal path � � goes through
point p on a Voronoi arc separating a Voronoi cell of a poly-
gon vertex � and a Voronoi cell of a polygon edge e incident
to this vertex. We assume, without loss of generality, that e is

supported by some horizontal line. If p is a local minimum of
� � in terms of clearance, the path should not go closer to the
polygon than the dotted curve in the vicinity of p. As we know
that � � is smooth, it has a well-defined slope at p. This slope
should be strictly negative, otherwise the circular segment of
� � on the left-hand side of p goes below the dotted line. How-
ever, this means that the spiral segment of � � on the right-hand
side of p will go below the dotted circular arc, whose slope at
p is exactly zero. Thus, p cannot be a local clearance mini-
mum of � �.
We conclude that local clearance minima can only be at-

tained at Voronoi arcs induced by features of different poly-
gons, at s and at g. The clearance obtained along � � is there-
fore never smaller than the minimum of the clearances attained
at s, g, and the Voronoi arcs of � induced by features of dif-
ferent polygons. �

Let us now define a graph � whose set of nodes is equal to
the set of intervals � plus the endpoints s and g. Each interval
is incident to two of the cells defined by the Voronoi diagram,
and we connect I1� I2 � � by an edge if and only if they are
incident to a common cell. This edge is a spiral arc in a Voronoi
cell of one of the polygon vertices, a circular arc in a Voronoi
cell of one of the polygon edges, and a straight-line segment
or a parabolic arc on a Voronoi arc (depending on the type). In
addition, an edge of � should not cross any of the arcs of � .
The endpoints s and g are connected to the graph in a similar
fashion.
Having constructed �, it is now possible to use Dijkstra’s

algorithm to compute a near-optimal path connecting s and
g. The complete algorithm is given in pseudo-code in Algo-
rithm 1.

4.2. Near-optimal Paths

We show that the algorithm described above indeed gives a
near-optimal path. Let � � be the optimal path between s and
g, which comprises k � 12n maximal segments � 1� � � � � � k

(a path segment may be a spiral arc, a circular arc or a piece
of a Voronoi arc). We next show that each such segment is
approximated by an edge in the graph � we have constructed.

Lemma 11. For each maximal segment � i of the optimal

path � �, there exists an edge �� i in � such that L�� �� i � �
L��� i �
 2�.
Proof. Let us denote the endpoints of the path segment � i by
q1 and q2, and let I1 and I2 be the intervals that contain these
endpoints, respectively.
An edge �� i connects the intervals I1 and I2 in �, which is

the optimal path connecting two endpoints �q1 � I1 and �q2 � I2.
In particular, the weighted length of this edge is less than the
weighted length of the path comprising the segment �q1q1 on
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Algorithm 1 NEAROPTIMALPATH�s� g��� ��
1: Construct Voronoi diagram � of polygonal obstacles �.
2: Subdivide all portions of the Voronoi arcs of � whose
clearance is larger than the minimum clearance attained
at s, g and the Voronoi arcs of � induced by features of
different polygons into intervals I of length c�I ��.

3: Let � be the set of all intervals I , plus s and g.
4: Construct graph � by connecting all pairs of intervals ad-
jacent to a common Voronoi cell by an edge of the appro-
priate type if the edge does not intersect any features of
� .

5: for all I � � do

6: d�I ���.
7: d�s�� 0.
8: Insert s into priority queue �.
9: while � is not empty do

10: Pop element I with minimal d�I � from the queue �.
11: if I � g then

12: Path has been found. Follow backpointers b�I � to ex-
tract the path. Terminate.

13: else

14: for all edges �I� I �� incident to I in � do

15: if d�I �� � d�I �
 L���I� I ��� then

16: d�I ��� d�I �
 L���I� I ���.
17: b�I ��� I .
18: Insert (or update) I � in �.
19: Path does not exist.

a Voronoi arc, the segment � i of the optimal path � �, and the
segment q2 �q2 on a Voronoi arc. Since q j and �q j (for j � 1� 2)
lie on the same interval I j , and the length of I j is c�I j ��, we
therefore obtain

L�� �� i � � L�� �q1q1�
 L��� i �
 L��q2 �q2�
	 ��q1 � q1�

c�I1� 
 L��� i �
 �q2 � �q2�
c�I2�

	 L��� i �
 2��
The weighted length of the approximated segment �� i con-
tained in � can therefore be at most L��� i �
 2�. �

Since two consecutive segments � i and � j of the optimal
path both have an endpoint in a common interval, we know that
the edges from � approximating � i and � j are connected in a
common vertex of�. Hence, the series of edges approximating
each of the optimal path segments form a continuous path �� .
This path is near-optimal.

Corollary 12. Given a set of polygonal obstacles having n

vertices in total, and given � � 0, it is possible for any pair of

endpoints s and g with c�s�� c�g� � 0, to construct a graph �

and compute a near-optimal path �� connecting s and g, such

that L�� �� � � L��� ��
 24n�.
Alternatively, we can choose the length of the intervals to be

c�I ���
24n�. In this case, a near-optimal path �� can be found
such that L�� �� � � L��� ��
 �.
4.3. Running Time Analysis

Let us now analyze the running time of our algorithm. The
Voronoi diagram � of the polygonal obstacles can be con-
structed in O�n log n� time. Second, we need to construct the
graph �. Using a brute-force algorithm that checks each can-
didate edge versus the O�n� diagram arcs, � can be con-
structed in O���2
�2�n� time, where � is the total weighted
length of the Voronoi diagram � , ignoring pieces of the dia-
gram having clearance less than the minimal value of c�s� and
c�g� and of the clearance attained at the Voronoi arcs of �
induced by features of different polygons. However, it is pos-
sible to reduce the construction time by using the ray-shooting
data-structure devised by Agarwal et al. (1993): We construct
the ray-shooting data-structure on top of the Voronoi diagram
in O�n log n� time. Each time we consider a candidate edge
pq for �, we shoot a ray from p in the direction of q, and
add pq to � only if the query result is further than q. As
each query takes O��n log n� time, we can construct � in
O���2
�2��n log n� time.
Next, we execute Dijkstra’s algorithm, whose running time

is well known to be O�E 
 N log N�, where E is the number
of edges in the graph, and N the number of nodes. As in our
case,

N � �� and E � �2�2 �
Dijkstra’s algorithm takes O��2
�2� time.

Corollary 13. Given a set of polygonal obstacles having n

vertices in total, and given � � 0, it is possible for any pair

of endpoints s and g with c�s�� c�g� � 0, to compute a near-

optimal path �� connecting s and g with L�� �� � � L��� �� 

24n� in O����2
�2��n 
 n� log n� time.

Alternatively, when we choose the length of the intervals to
be c�I ���
24n�, a near-optimal path �� with L�� �� � � L��� ��

� can be found in O���2
�2�n5
2 log n� time.
To give an illustration of how optimal paths for varying �

values look, we implemented a brute-force algorithm that per-
forms an A�-search on a dense grid. Figure 7 shows the opti-
mal paths between a pair of points for different � values.

5. Planning Near-optimal Corridors

In this section, we apply the results of the previous sections
to corridors. We first formally define a corridor, and then
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Fig. 7. Optimal paths between two locations s and g for differ-
ent � values. The thick dashed curve traces the optimal path for
� � 1

8 and the thick dash-dotted curve is the optimal path for� � 1. Note that as we increase the value of �, the optimal path
becomes more like that obtained from the Voronoi diagram of
the obstacles (dotted).

show how we can characterize and compute optimal corridors.
We also show how we can take into account curvature in the
weighted length measure of corridors.

5.1. Corridors

A corridor C � �� �t�� ��t�� �max� in a d-dimensional
workspace (typically d � 2 or 3) is defined as the union of
a set of d-dimensional balls whose center points lie along the
backbone path of the corridor, which is given by the continu-
ous function � : [0� L] �� �d . The radii of the balls along
the backbone path are given by the function � : [0� L] ��
�0� �max]. Both � and � are parameterized by the length of the
backbone path. In the following, we refer to ��t� as the width

of the corridor at point t . The width is positive at any point
along the corridor, and does not exceed �max, a prescribed de-

sired width of the corridor.
Given a corridor C � �� �t�� ��t�� �max� of length

L in �d , the interior of the corridor is thus defined
by
�

t�[0�L] B�� �t�� ��t��, where B�p� r� is an open d-
dimensional ball with radius r that is centered at p. The in-
terior of the corridor should be disjoint from the interior of a
given set � of obstacles� otherwise, it is an invalid corridor. In
what follows we consider only valid corridors.
Note that if we examine the intersection of the corridor

C � �� �t�� ��t�� �max�with a �d�1�-dimensional hyperplane
through � �t�, whose normal is tangent to � at � �t�, the volume
of the cut is proportional to�d�1�t�, allowing the entities mov-
ing along the corridor less space to maneuver than in a max-

imally wide corridor. Thus, we wish to penalize corridor por-
tions whose width is less than �max. We do this by defining the
weighted length L��C� of a corridor C � �� �t�� ��t�� �max�
to be

L��C� � �
�

��max
��t�
�d�1

dt � (18)

We wish to minimize the weighted length by either short-
ening the backbone path or by extending the corridor’s width
up to �max. Given a start position s � �d and a goal position
g � �d , a corridor C � �� �t�� ��t�� �max� satisfying � �0� �
s and � �L� � g is optimal if for any other valid corridor C �
connecting the two endpoints we have L��C� 	 L��C ��.
It is straightforward to observe that if for some portion

of the backbone path � of a corridor C , we have ��t� �
min�c�� �t��� �max� for t � [t0� t0 
 � ] (� � 0), we can
improve the quality of the corridor by letting ��t� ��
min�c�� �t��� �max� for each t � [t0� t0 
 � ]. Given a set of
obstacles and a �max value, we can associate the bounded

clearance measure c�p� with each point p � �d , wherec�p� � min�c�p�� �max�. Using the observation above, it is
clear that the width function of an optimal corridor C ��� �t�� ��t�� �max� is simply given by ��t� � c�� �t��. We
conclude that in order to plan an optimal corridor amidst a set
of obstacles � we have to compute an optimal backbone path
amidst the obstacles with respect to the clearance measure c���
bounded by the preferred corridor width �max. Note that the
bounded clearance function is also continuous and satisfies the
Lipschitz condition, hence Lemma 2 also holds for the case of
corridors, namely the backbone path � of an optimal corridor
must be smooth.

5.2. Characterizing Optimal Corridors

Let us begin by considering an environment with a single point
obstacle. We already know that if we are given two endpoints
whose clearance is less than �max, then the optimal corridor
connecting them is characterized by a backbone path sup-
ported by a logarithmic spiral (see Section 3.1). Let us ana-
lyze the case where the clearance of the two endpoints exceeds
�max, namely the two endpoints of our path lie outside the clo-
sure of the disk B�p� �max�. There are two possible scenarios:
(i) the straight line segment sg does not intersect B�p� �max�—
in this case, this segment is the backbone of the optimal cor-
ridor� (ii) sg intersects B�p� �max�—in this case the optimal
backbone path is a bit more involved. Consider some backbone
path � connecting s and g. It is clear that the intersection of �
with B�p� �max� comprises a single component (otherwise we
have a segment of the backbone path lying outside B�p� �max�,
which we can shortcut be traversing the circular arc that con-
nects its endpoints), so we denote the point where the path
enters the disk by s � and the point where it leaves the disk by
g� (see Figure 8). As s� and g� lie on the disk boundary, their
polar representation is s� � �maxei� s� and g� � �maxei�g� , so
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Fig. 8. The point where the path enters the disk, s�, and the
point where it leaves the disk, g�.

we use (3) and (4) and obtain that a� � �max and b� � 0. The
optimal path between s� and g� therefore lies on the degener-
ate spiral r � �max, namely the circle that forms the boundary
of B�p� �max�. We conclude that the optimal backbone path
between s and g must contain a circular arc on the boundary
of B�p� �max�. Since, according to Lemma 2, this path must
be smooth, it should consist of two line segments ss� and g�g
that are tangent to the disk and a circular arc that connects the
two tangency points s� and g� (see the dashed path in Fig-
ure 8). Note that as there are two possible tangents emanating
from each endpoint, we should consider the four possible paths
and select the shortest. Similarly, in cases where one endpoint
(say g) is located inside B�p� �max� and the other outside this
disk, the optimal backbone path consists of a line segment em-
anating from s that connects smoothly, on some point on the
boundary of B�p� �max�, to an arc of a logarithmic spiral that
reaches g.
Using similar arguments it is not difficult to show that if we

have a single convex polygonal obstacle P , we should exam-
ine whether the line segment sg intersects the dilated obstacle
P � B��max�. If it does, the optimal corridor consists of two
tangents emanating from s and g to the circular arcs of the
dilated polygon, with the tangency point connected by a por-
tion of the dilated polygon boundary. In cases where P is not
convex, then the optimal path contains a portion of the dilated
boundary of its convex hull.
Let us now examine the more general scenarios of an en-

vironment cluttered with polygonal obstacles � � �P1� � � � �
Pm�. We consider the dilated obstacles Pi � B��max�. In cases
where the polygons are well separated, that is, for each i �� j

the dilated obstacles Pi � B��max� and Pj � B��max� are dis-
joint in their interiors (implying that the distance between the
two obstacles is at least 2�max), we can follow the same ar-
guments used above for a single obstacle and conclude that
the optimal backbone path between two points s and g with
c�s�� c�g� � �max is contained in the visibility graph of the
dilated obstacles and of s and g.
The visibility graph of the set of dilated obstacles can be

constructed in O�n2 log n� time, n being the total complexity
of the obstacles, by performing a radial sweep from each di-

lated vertex. If all polygonal obstacles are convex, it is possible
to compute their visibility graph in O�n log n
E� time, where
E is the number of visibility edges in the graph (Pocchiola and
Vegter 1996). Given a path-planning query, namely two end-
points s and g, we first check whether the straight line segment
sg is free. If it is, it should serve as the backbone of the corridor
connecting s and g. Otherwise, we treat s and g as graph ver-
tices and add all free tangents from s and from g to the disks
as graph edges. We then perform Dijkstra’s algorithm from s

to find the shortest path to g in the resulting graph. Note that
all edges in the graph represent line segments or circular arcs
that have clearance of at least �max, so their weighted length is
proportional to their Euclidean length.

Proposition 14. Given a set � of polygonal obstacles in the

plane that are well separated with respect to �max, and two

endpoints s and g with clearance at least �max, it is possible to

compute an optimal corridor connecting s and g in O�E log n�
time using the visibility graph of the dilated obstacles, where

n is the total number of obstacle vertices and E is the number

of visibility edges in this graph.

In cases where the endpoints s and g have arbitrary clear-
ance, and the dilated obstacles are not necessarily pairwise
disjoint in their interiors, let us consider the union of the di-
lated obstacles� � �m

i�1 �Pi � B��max��. The boundary of
� consists of straight-line segments (dilated obstacle edges)
and circular arcs (dilated vertices). We now construct � , the
Voronoi diagram of the original obstacles, and compute the in-
tersection � ��, namely the portions of the Voronoi edges
contained within the union of the dilated obstacles� see Fig-
ure 9 for an illustration. The Voronoi edges, together with the
arcs that form the boundary of �, constitute the bounded

Voronoi diagram of the obstacle set � � �P1� � � � � Pm�, which
we denote by ����. We refer to a point where a portion of the
Voronoi edge connects to the boundary of� as a connection

point of ����.
Note that ���� partitions the plane into two-dimensional

cells of two types: bounded Voronoi regions of the obstacle
features, and regions where the clearance is greater than �max.
We know that if we have two endpoints s � and g� in a cell �
whose clearance is greater than �max, the optimal backbone
path between these endpoints is a straight-line segment, pro-
vided that s�g� does not intersect any feature of ����. The
weighted length of this segment is proportional to the Euclid-
ean distance �g� � s��. On the other hand, if � is a bounded
Voronoi cell, then the optimal backbone path between s� and
g� is either a spiral arc or a circular arc, provided that this arc
does not intersect ���� (see the discussion in Section 3.3). In
addition, the edges of the bounded Voronoi diagram are locally
optimal.
Trying to generalize the construction of the visibility graph,

it is possible to add visibility edges to the bounded Voronoi
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Fig. 9. The bounded Voronoi diagram of four polygons en-
closed in a rectangular room. The boundary of�, the union
of the dilated obstacles, is drawn in solid lines and the Voronoi
edges are dotted.

diagram, namely to consider every free bitangent of two cir-
cular arcs, every free line segment from a connection point
tangent to a circular arc and every free line segment between
two connection points. The resulting construct is the visibility–
Voronoi diagram of the obstacles for clearance �max� see Wein
et al. (2007) for more details. However, a path extracted from
such a graph may pass through Voronoi vertices and connec-
tion points, thus it may contain sharp turns. As explained in
Section 3.3, adding shortcut curves to the diagram is not feasi-
ble in many cases.
We therefore generalize the approximation algorithm pre-

sented in Section 4 to the case of planning optimal backbone
paths for corridors. Instead of considering small intervals of
the Voronoi diagram, we subdivide the bounded Voronoi di-
agram into intervals of length �c�I �
�max��. We connect two
intervals I1 and I2 in a similar fashion to what is described in
Section 4. We note, however, that (i) if I1 and I2 are both in-
cident to a cell where the clearance is greater than �max, we
connect them by a straight line segment, and that (ii) inter-
vals on the boundary of a dilated obstacle are connected by
a line segment, or by a circular arc. In any case, it is easy to
verify that Lemma 11 also holds for path segments of these
types.

Corollary 15. Given a set of polygonal obstacles 	 having

n vertices in total, where dmin is the minimal distance between

a pair of polygons in 	 (namely minP�Q�� dist�P� Q�). Let �
be the total weighted length of the bounded Voronoi diagram��	� with respect to a given �max value, ignoring portions of

the diagram having clearance less than 1
2dmin. Given � � 0,

we can construct a graph � over the intervals of ��	� in

O����2
�2��n 
 n� log n� time, such that for each two end-

points s and g with c�s�� c�g� � 1
2dmin, it is possible use �

and compute a near-optimal backbone of a corridor C con-

necting s and g in �O��2
�2 
 n� time. Here L��C� is at most

O�n�� more than the weighted length of the optimal corridor

connecting s and g.

Figure 10 shows a near-optimal backbone path in an en-
vironment cluttered with polygonal obstacles. The path was
computed using a brute-force approximation algorithm, per-
forming an A�-search on a fine grid discretizing the environ-
ment. It can also be observed that a very similar path can be
extracted from the visibility graph of the bounded Voronoi dia-
gram of the obstacles. Such a path can be efficiently computed
using the software described by Wein et al. (2007).

5.3. Accounting for the Corridor Curvature

In some applications having a winding backbone path de-
creases the quality of the corridor (see, e.g., Mitchell and Pol-
ishchuk (2007)). In the group-motion application (Kamphuis
and Overmars 2004), for example, when the entities move
along a straight line, they can all move at the maximal pos-
sible speed. Assume that the backbone path is a circular arc
and the corridor width is � , such that it is bounded by two
concentric circular arcs. The entities moving along the outer
arc in this case have to take a longer route, so even if we let
them move at maximal speed, the other entities have to move
at a lower speed and the time it takes the group to traverse such
a path increases.

5.3.1. Augmenting the Weighted-length Measure

Assume that the backbone path � is smooth and let ��t� be
the curvature of � at time t . We can subdivide the path into
infinitesimally small segments, such that the length of the i th
path segment is 	i (with �i 	i � L), the width of each seg-
ment, denoted by � i , is assumed constant and the curvature is
also assumed constant and denoted by � i � see Figure 11 for an
illustration. Hence, each path segment can be considered as a
circular arc whose radius is ri � 1
� i and defined by the angle
�i � 	i
ri . The length of the outer boundary of the corridor
along the i th path segment is given by �i �ri 
� i �, and we can
thus bound the length of each of the corridor boundary curves
by

�
i

�i �ri 
 � i � � �
i

	i
ri

�ri 
 � i �

� �
i

	i 
�
i

� i

ri

	i � L 
�
i

� i� i	i �

We therefore wish to augment the weighted length function by
adding a penalty for the extra length induced by the curvature
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Fig. 10. (a) A near-optimal backbone path (dashed) amidst polygonal obstacles, overlayed on top of the bounded Voronoi diagram
of the obstacles. Boundary edges are drawn in light solid lines, Voronoi chains between polygons are dotted, and Voronoi edges
that separate cells of adjacent polygon features are drawn with a light dashed line. (b) Zooming in on a portion of the path� note
the shortcuts the path takes.

Fig. 11. Subdivision of the path into infinitesimally small seg-
ments, such that the length of the i th path segment is 	i (with�

i 	i � L), the width of each segment, denoted by � i , is as-
sumed constant and the curvature is also assumed constant and
denoted by � i .

of the backbone path, which is equal to
�

i � i� i	i . However,
as we can make our path segments infinitesimally small, and
as � is parameterized by its length, we can simply redefine our
weighted length function for C � �� �t�� ��t�� �max� to be

L���C� �
�
�

��max
��t�
�d�1

dt 
 ��
�
��t���t� dt� (19)

where � � 0 is the weight we give to the curvature measure.
Typically, � 	 1 as we do not wish to give more weight to the
curvature than to the length or to the clearance of the backbone
path.

Fig. 12. Replacing a sharp turn in the backbone path by a
smooth circular arc.

We also wish to account for backbone paths that contain
sharp turns, and are only piecewise �2-continuous� thus, the
curvature of � is not defined at a finite number of points. Let
p � � �t� be such a point, and let � be the angle between�� �t�� and �� �t
�. Let us replace the sharp turn with a cir-
cular arc a of a small radius r . The arc is defined by the angle
� (see Figure 12), so its length is �r (� is measured in radi-
ans). If r is small enough, we can assume that the corridor has
a fixed width � p � ��t� over the circular arc, so we have
lim
r�0
�

a

��t���t� dt � lim
r�0
�

a

� p

r
dt � lim

r�0 �r � � p

r
� �� p�

We can thus abuse the curvature-integral notation, as ap-
pears in (19), and account for sharp turns by adding the dis-
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crete weight as explained above. We note, however, that back-
bone paths of optimal corridors with respect to the augmented
weighted-length measure, as defined in (19), should be smooth
and cannot contain sharp turns. To see why, we can follow
the proof of Lemma 2, and assume that we have an optimal
backbone path � � that contains a sharp turn, defined by the
angle � . In the original proof we show that it is always possi-
ble to shortcut the sharp turn by a circular arc that decreases
the weighted length of the path. While the original path makes
a sharp turn of � radians, the shortcut also makes the same
turn, but “spreads” it over the entire arc, which contains points
with less clearance. The curvature penalty we give the circular
shortcut is thus smaller than the penalty of the original path, so
our circular shortcut decreases the augmented weighted length
of the path. We conclude that a sharp turn is not possible in an
optimal corridor also when we take the curvature into account.

5.3.2. Moving Amidst Well-separated Obstacles

We are given a set 	 of obstacles (point obstacles or polygonal
obstacles) in the plane, and preferred width �max, such that the
obstacles of 	 are well separated with respect to �max. Given
two query points s� g � �2 whose clearance value is at least
�max, we would like to compute the backbone path connecting
s and g that induces an optimal corridor with respect to the
augmented measure L��.
In Section 5.2 we showed that such an optimal path is con-

tained in the visibility graph of the dilated obstacles for the
special case where � � 0. We next show that the same holds
also for any � � 0.
Recall that a path extracted from the visibility graph of the

dilated obstacles consists of line segments and circular arcs
of radius �max. Path segments of the former type do not con-
tribute to the curvature measure of the backbone path, where a
circular arc supported by an angle � has a constant curvature of
1
�max. The contribution of such an arc to the curvature com-
ponent of the weighted length of the path is therefore ���max.
If we try to shortcut the circular arc by a curve that lies closer
to the obstacle, the curvature component of such a shortcut
will be at least ���max, as we make an overall turn of � radi-
ans, and the weighted length of this curve will necessarily be
larger than that of the original circular arc (which we know to
be locally optimal in the case of � � 0). We conclude that we
cannot shortcut the circular arcs.
At the same time, it is not recommended to take wider turns.

Consider the example depicted in Figure 13, where the cor-
ridor C � has a longer backbone path than the corridor C ex-
tracted from the visibility graph of the dilated polygons. Since
both corridors are of maximal width, it is clear that its width
integral is also greater. However, the curvature integral of each
the corridors is proportional to the sum of the angles defining
the circular arcs, so it is obvious that the curvature integral of
C � is greater than that ofC , as ��1
��2 � �1
�2. It is therefore
clear that L���C� � L���C �� for each � � 0.

Fig. 13. The weighted length of the corridorC is larger than the
weighted length of the corridor C extracted from the visibility
graph of the dilated polygons.

6. Conclusions and Future Work

In this paper we have laid some theoretical foundations for
measuring the quality of paths and corridors. Having intro-
duced a measure for the quality of motion paths and studying
the structure of optimal paths amidst polygonal obstacles in the
plane, we show how a backbone path for an optimal corridor
must look. We have also devised an approximation algorithm
for computing near-optimal paths and corridors amidst obsta-
cles.
We are currently investigating methods to speed up our

approximation algorithm, as well as design simple practical
methods to compute high-quality corridors.
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Appendix A. Using Calculus of Variations for

Computing Optimal Paths

We can solve the problem of computing an optimal path in
the vicinity of a single obstacle using tools available from the
theory of calculus of variations3 , a field of mathematics that
deals with functionals, namely functions of functions, aiming

3. See, e.g., http://en.wikipedia.org/wiki/Calculus_of_variations.
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to minimize the integrals of such functionals. Recall that we
wish to minimize the weighted length of a path � , which is the
unknown function in this case. The weighted length is given
by

L���� � �
�
�

�
1

c�� �t��
��

dt � � L

0

�� ��t��
c��� �t�� dt � (20)

In other words, L���� � � � L

0 F�t� � � � �� dt , where the func-
tional F is defined as �� ��t��
c��� �t��. We know that the path
must be smooth, hence it has two continuous derivatives. A
function � that minimizes the integral of F must therefore sat-
isfy the Euler–Lagrange equation:

d

dt

�F
�� � � �F�� � (21)

For background material, the reader is referred to one of the
numerous textbooks on the calculus of variations, for exam-
ple Gelfand and Fomin (2000).
We already know that the optimal path comprises maximal

segments, where each path segment lies inside a Voronoi cell.
We next show how we use the Euler–Lagrange equation to ex-
press the optimal path in the vicinity of a single obstacle.

A.1. Moving Near a Point Obstacle

Let us imagine we are located in a Voronoi cell of a point ob-
stacle (or a polygon vertex for that matter), which, without loss
of generality, is located at the origin. We express our path us-
ing polar representation, so the clearance of each point along
the path from s � rsei� s to g � rgei�g is simply its distance
from the origin. We therefore look for r � r��� minimizing

L���� � �
� �g
� s

1

r ����

�
r2���
� dr

d�
�2
��� d�� (22)

If we let r � � dr
d� we obtain that our functional is of the
form F��� r� r �� � �1
r ��	r2 
 �r ��2. We can therefore de-
rive this functional and obtain the following:

�F
�r � � �r �
1

	
r2 
 �r ��2 
 2r

2r �
	

r2 
 �r ��2
� �1� ��r2 � ��r ��2

r �
1	r2 
 �r ��2 �
�F
�r � � r �

r �
	

r2 
 �r ��2 �
d

d�
�F
�r � � �r ��r����r ��2r��1��r2
�r ��2��r �r��rr �
r �r ���

r2��r2
�r ��2�3
2 �

Applying the Euler–Lagrange equation on the above, we ob-
tain that r��� is the solution of the following regular differen-
tial equation:

r �����r���� �r ��2��� � �1� ���r���
 �r ��2����� (23)

Note that in the special case of � � 1, the equation above
reduces to the form r �����r��� � �r ��2���. Indeed, the logarith-
mic spiral r��� � aeb� satisfies this equation for constants a

and b, that depend on the path endpoints s and g.
The solution of (23) in the general case of � �� 1 is given

by
r��� � a cos1
���1���� � 1�� 
 ��� (24)

for constants a and �. These constants can be computed by
applying the constraint that the endpoints s � rsei� s and g �
rgei�g both satisfy (24). We also note that in the special case of
� � 2 we obtain the equation of the limaçon4 r��� � a cos��

��, which is a circle passing through the origin.

A.2. Moving Near a Line Obstacle

In cases where our path segment is in a Voronoi cell of a poly-
gon edge, we can assume, without loss of generality, that this
edge is supported by the line y � 0. In this case, if we ex-
press our path using Cartesian coordinates, the clearance of
each point along the path from s � �xs� ys� to g � �xg� yg�
is given by its y-coordinate. We therefore look for y � y�x�
minimizing

L���� � �
� xg

xs

1

y��x�

�
1
�dy

dx

�2
�x� dx � (25)

If we let y� � dy
dx we obtain that our functional is of the
form F�x� y� y�� � �1
y��	1
 �y��2. Deriving this func-
tional we obtain

�F
�y � � �y�
1

	
1
 �y��2�

�F
�y� � y�

y�
	
1
 �y��2 �

d

dx

�F
�y� � y��y� � ��y��2y��1�1
 �y��2�

y2��1
 �y��2�3
2 �
Applying the Euler–Lagrange equation on the above, we ob-
tain that y�x� is the solution of the following regular differen-
tial equation:

y���x�y�x�
 ��y��2�x�
 � � 0� (26)

It is not difficult to verify that the equation of a circular arc
whose center �x0� 0� lies on the line obstacle, namely y�x� �	

R2 � �x � x0�2, satisfies (26) above for the special case of
� � 1.
4. See, e.g., http://mathworld.wolfram.com/Limacon.html.
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A.3. Moving Near a Circular Obstacle

Using similar methods, it is also possible to compute the op-
timal path in the vicinity of a circular obstacle of a given ra-
dius �. As mentioned in Section 3.3, this problem is not only
interesting in its own right, but also important for computing
optimal paths for a disk robot of radius �, where we consider
a path for a point robot amidst dilated obstacles.
As we did in Section A.1, we seek a polar representation of

the path. To simplify our analysis, we focus on the case of � �
1� the analysis for other � values is quite similar. Assuming
that the circular obstacle is centered at the origin, we have

L���� � �
� �g
�s

1

r���� �
	

r2���
 �r ��2��� d�� (27)

We now derive F��� r� r �� � 1
�r ���	r2 
 �r ��2 and obtain
�F
�r � � �r ��2 
 �r

�r � ��2	r2 
 �r ��2 �
�F
�r � � r �

�r � ��	r2 
 �r ��2 �
d

d�
�F
�r � � �r ���r�����r ��2��r2
�r ��2���r ��2�r����r
r ���

�r���2�r2
�r ��2�3
2 �
Applying the Euler–Lagrange equation on the above, we ob-
tain that r��� is the solution of the following regular differen-
tial equation:

�r �����r���� �r ��2�����r���� �� � ��r���
 �r ��2����� (28)
A solution to (28) is given by (a and b are constants, deter-
mined by the endpoints of the curve):

r��� � aeb� 
 b2 
 1
b2

�
1
 �

4ab2
e�b�
 � �� (29)

We note that for � � 0, namely a point obstacle, we obtain the
well known logarithmic spiral r��� � aeb� .
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