
ARTIFICIAL INTELLIGENCE 1 1 $

Planning in a Hierarchy of Abstraction
Spaces*

Earl D. Sacerdoti

Stanford Research Institute, Arti f icial Intelligence Center,

Menlo Park~ Calif. 94025, U .S .A .

Recommended by P. Winston

ABSTRACT

A problem domain can be represented as a hierarchy o f abstraction spaces in which successively
finer levels o f detail are introduced. The problem sotver ABSTRIPS, a modification o f STRIPS,
can define an abstraction space hierarchy from the STRIPS representatien o f a problem
domain, and it can utilize the hierarchy in solving problems. Examples of the system's per-
formance are presented that demonstrate the significant increases in problem-solving power
that this approach provides. Then some further implications of the hierarchical planning
approach are explored.

1, Introduction

General purpose problem solvers, such as STRIPS [3, 4] or GPS [2], must

do their work using general purpose search heuristics. Unfortunately, by

using such heuristics, it is not possible to solve any reasonably complex set

of problems in a reasonably complex domain. Regardless of how good such

heuristics are at directing search, attempts to traverse a complex problem

space can be caught in a combinatorial quagmire.

This paper presents an approach to augmenting the power of the heuristic

search process. The essence of this approach is to utilize a means for dis-

criminating between important information and details in the problem space.

By planning in a hierarchy of abstraction spaces in which successive levels of

detail are introduced, significant increases in problem-solving power have

been achieved.

* The work reported herein was sponsored by the Advanced Research Projects Agency
of the Department of Defense under Comract DAHC04-72-C-0008 with the U.S. Army
Research Office.

Artificial Intelligence $ (1974), 115-135

Copyright © 1974 by North-Holland Publishing Company

116 E. D. SACERDOTI

Section 2 sketches the hierarchical planning approach and gives motivation

for its use. Sections 3 and 4 describe the definition and use of abstraction

spaces by ABSTRIPS (Abstraction-Based STRIPS), a modification of the

STRIPS problem-solving system that incorporates this approach. Section 5
describes the performance of the system. Section 6 discusses the implications

of this approach for problem solving and for robotics.

2. The Motivation for Using Abstraction Spaces in Problem

Solving

It was not quite fair to assert in the previous section that a complex problem

domain is beyond the combinatorial capability of general purpose problem
solvers. A problem solver deals not with the problem domain itself, but with

some representation of that domain. So it would be more correct to state that
a complex representation exceeds the scope of general purpose problem

solvers.

Unfortunately, a straightforward transcription of a complex problem

domain will yield a complex representation. However, a well-chosen tran-

scription can lead to a simpler representation. By choosing such a simplifying

represemation, one can have the problem solver do its work in a context

that is simple enough for some useful problem solving to take place.
In other words, the heuristic search through the s;mplifying representation

will be of sufficiently short duration that a goal state in the problem space

can be reached. Such a representation displays what McCarthy and Hayes [7]
term "'heuristic adequacy".

Attempts to achieve simplifying representations, such as the "'macro
operator", or MACROP, of the STRIPS problem solver [3], have heretofore

tried to preserve, in McCarthy and Hayes' terminology, "'epistemological

adequacy"; that is, the simplifying representations had to preserve all the
detail that was needed to solve the problem at hand. A MACROP simplifies

the representation of a problem domain by providing a means of selecting

at one time an entire sequence of primitive operators, linked in a semantically

sensible manner. But it preserves every detail of the preconditions and effects
of its constituent operators.

Such sithplifying representations can provide only limited enhancement

to the poweI, of a problem-solving system because of a somewhat dismaying

fact: For a sufficiently complex problem domain, no epistemologically
adequate representation can be heuristically adequate.

Epistemological a d e q ~ c y implies that every relevant detail is properly

deal; with. But attention to detail is precisely what defeats heuristic adequacy.

A go¢;d heuristic evaluation function will enable a problem solver to reject

most of the possible paths in a situation space. But if all the details are

Artificial lntelligen:e 5 (t974), 115-135

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES 117

attended to, the evaluation function must be applied at all the nodes at which

the details are affected. The combinatorics of the expanding search space

will enable the p'¢'oblem solver to solve only rather simple problems.

A superior approach to problem solving would be to search first through

an abstraction space, a simplifying representation of the problem space in

which unimportant details are ignored. When a solution to the problem in

the abstraction space is discovered, all that remains is to account for the

details of the linkup between the steps of the solution. This can be regarded

as a sequence of subproblems in the original problem space. If they can be

solved, a solution to the overall problem will have been achieved. I f they

cannot be solved, more planning in the abstraction space is requi, ed to

discover an alternative solution.
P61ya [9] cites the importance of this approach for human problem

solving. It ha~ been used by computer programs to find proofs in symbolic

logic [8] (ignoring the nature of the connectives and the ordering of symbols

as details) and to detect edges in scenes [6] (using a shrunken picture with

less detail).
The concept can readily be extended to a hierarchy of spaces, each dealing

with fewer details than the ground space below it and with more details

than the abstraction space above it. By considering details only when a

successful plan in a higher level space gives strong evidence of their importance,

a heuristic search process will investigate a greatly reduced portion of the

search space.
The process of abstraction defined in Section 3 is general in that it is not

domain-dependent. But it is highly structured and very dependent on the

syntax of the problem domain. It is a first step, providing no capability for a

"representational shift" that would restate a difficult problem in terms that

render its solution markedly easier. Rather, it employs a series of repre~nta-

tional nudges that increase the power of ahe heuristic search process over

a problem space.

3. Automated Definition of Abstraction Spaces

The following sections describe the ABSTRIPS system, a modification of

the STRIPS problem solver [3, 4]. A brief description of the aspects of

STRIPS that are relevant to the discussion to follow is presented below. ~

The reader is 'encouraged to see [3, Section 2] for a brief but thorough

summary of the operation of STRIPS or [4] for a full description.

In the interests of bre~,ity and clarity, no further mention will be made of the M A C R O P s
in the STRIPS system. A M A C R O P is the result of generalizing a previously completed

plan. Most of its valid subsequence.s of operators ¢a-a be extracted for use in further plan-

r~,ing. Each such subsequence could be treated by ABSTRIPS like a primitive operator.

Ar¢ificial Intelligence 5 (1974), 115-135

118 E. D. SACERDOTI

Briefly, the resp,,esentation of a problem domain with which STRIPS

deals consists of:
(1) A world model The world model is a set of wffs in the predicate

calculus, describing facts (e.g., CONNECTS(DOORI , ROOM i, ROOM2))
or laws (e.g., (VRx, Ry, Dx) CONNECTS(Dx, Rx, R y) ~ ' - C O N N E C T S

(Dx, Ry, Rx)) of the problem domain.
(2) ~. set of operator descript(ons. E~:h action in the problem domain is

represented by an "operator" for changing one model into another. An

operator is defined by a precondition wff, an add list, and a delete list. For

an operator to be applicable in a given model, its precondition wff i~mst be

satisfied. The add ~nd delete lists describe which coifs are changed when an

application of the operator transforms the world model.
A problem is stated to STRIPS as a goal wff. STRIPS must develop a

sequence of operator applications that will lead to a world model in which
~the goal wff is true. A GPS-like means-ends analysis strategy [2] is employed

to generate the operator sequence.
A "difference" between the initial model and the goal model is extracted.

STRIPS determines which instances of which operators would reduce the

difference; the instance that most reduces the difference is selected.
If it is applicable in the initial state (i.e., its precondition wff is true in the
initial world model), the operator is applied, and a new world model created.

If the goal wff is true in the new model, STRIPS is done. If not, the difference

between the new state and the goal state is extracted, and the process
continues.

If the operator instance that most reduced the difference is not .applicable
in the initial state (i.e., its precondition wff is not provable in the world

model), the precondition is set up as a subgoal wiT. STRIPS will then try

to develop a sequence of operator applications that will lead to a world

model in which the subgoal wff is true. If the subgoai is achieved, the operator

instance can be applied as before. If not, another operator instance is selected,

and the process continues as before.

3.1. Abstract ion spaces in the STRIPS context

For a practical problem-solving system, one would like to have an abstraction

space differ from its ground space enough to achieve a significant improve-

ment in problem-solving efficiency, but yet not so much as to make the

mapping from abstraction space to ground space complex and time-con-
suming.

For the STRIPS system, this criterion is met by having the abstraction

spaces differ from their ground spaces only in the level of detail used to

specify the preconditions of operators. Although the change in representation

provided by this choice may seem intuitively insufficient, it satisfies the

Artificial Intelligence 5 (1974), ! 15-135

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES 119

criterion well. The world model can remain unchanged; there is no need

to delete unimportant details from it because they can simply be ignored.

No operators need be deleted in their entirety; if all they do is achieve details,

they will never be selected as relevant. Any change to the add or delete lists

of the operators would cause the operators' effects to be very different in

different spaces. Since the applicability of a particular operator at some

intermediate state might depend on any effects of any previously applied

operators, the mapping of plans among spaces would be rendered too

complex.

Thus, an abstraction space in the STRIPS context differs from its ground

space only in the preconditions of its operators. The precondition wits in an

abstraction space, will have fewer literals than those in its ground space.

The literals omitted will be those that are "details" in the sense that a simple

plan can be found to achieve them once the more "critical" literals have

been achieved. For instance, consider a P U S H T H R U D R operator, which

describes the effects of a robot pushing a particular object through a doorway

into an adjacent room. In a high level abstraction space, the operator would

be applicable whenever the object was pushabte and a doorway into the

desired room existed. In a lower level space, it would also be required that

the robot and the object be in the room connected by the doorway with the

target room. In a still lower abstraction space, the door would also have to

be open. Finally, in the orig;nal representation of the problem space., the

robot would also have to be next to the box, and the box would have to be

next to the door.
For ABSTRIPS to be able to discriminate among various levels of detail,

each literal within the preconditions of each operator in a problem domain is

assigned a "'criticality" value at the time the domain is first defined. Only

the most critical literals will be in the highest abstraction space, whereas

in lower spaces less critical ones will also appear.

3.2. Assigning criticality to the literals of a precondition

There are many possible approaches to the assignment of criticality values

to the literals of an operator 's precondition wff. They span a range from a

manual assignment as part of the specification of the problem domain to a

completely automatic assignment of criticalities.

At one extreme, the definition of a problem domain could include an

explicit specification of criticalities, reflecting the definer's intuition about the

domain. For example, if one were to define a "Turn on the lamp(?')" operator,

he might say it was essential that C be a lamp. He might say it was very

important to be in the room with the lamp, less important that the lamp's

cord be plugged in, and still less important to be next to the lamp. Specifying

Artificial Intelligence $ (1974), 115--135

120 E.D. SACERDOTI

the criticality value of a literal by a number preceding it in braces, one might

define the precondition wff of the "'Turn on the lamp" operator as

{4}TYPE(t,lamp) ^ (:lrx)({3}lNROOM(Me,rx) ^ {3}INROOM((,rx))
A {2}PLUGGED-IN(g)A {I}NEXTTO(Me,~.

At the other extreme, a scheme can be developed to perform an exhaustive

analysis of the nI possible orderings of the n literals in a precondition in
order to determine which literals can be achieved once other literais are

assumed to be true. The results of this analysis can be used to specify the

criticality values for literals of the precondition.
For ABSTRIPS, an intermediate approach to criticality assignment was

adopted. A predetermined (partial) erda.ring of all the predicates used in

describing the problem domain was used to specify an order for examining

the literals of the precondition wffs of all the operators in the domain.

First, all literals whose truth value could not be changed by any operator in
the domain were assigned a maximum criticality value. Then, each remaining

literal was examined in an order determined by the partial ordering. If a

short plan could be found to achieve a literal from a state in which all

previously processed literals were assumed to be true, then the literal in

question was said to be a detail and was assigned a criticality equal to its
rank in the partial ordering. If no such plan could be found, the literal was
assigned a criticality greater than the highest rank in the partial order.

For fhe domain including the "Turn on the lamp(C)" operator, the partial

ordering might look like the following:

TYPE(

PLUGGED-IN(

) COLOR() (Rank 4)
\ /

l N R O O M () (Rank 3)
/ \

) U N P L U G G E D () (Rank 2)
\ /

NEXTTO() (Rank 1)

The TYPE((,Iamp) literal could not be changed by any operator in the

domain, and so it would be assigned a maximum criticality (6, in this case).

The two I N R O O M iiterals would be examined next (an arbitrary order can

be chosen for literals whose predicates have equal rank in the partial ordering).

They cannot be achieved from a state in which TYPE(6,1amp) is asserted,

and so they would be assigned a criticality greater than the highest rank in

the partial order, in this case 5. PLUGGED-IN(g) can be achieved from

a state in which the I N R O O M literals and the TYPE literal are true. It can

be achieved by a plan to go to the lamp cord, pick it up, bring it to a socket,

and plug it in. So it would be assigned a criticality equal to its rank in the

partial ordering, namely, 2. Similarly, a plan can be found to achieve

Artificial Intelligence 5 (1974), 115-135

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES 121

NEXTTO(Me,d) from a state in which the previously processed literals are

true, and so it would be assigned a criticality of 1.

Regardless of the method used to determine the criticality values, they
define a hierarchy of abstraction spaces. The next section shows how such
a hierarchy can be used to aid the planning process.

4. Utilization of Abstraction Spaces in Planning

To take advantage of the hierarchical planning approach offered by the

use of abstraction spaces, the ABSTRIPS system--whose flow of control is

shown in Fig. l m h a s a recursive executive r,~'ograrn. This program accepts
two parameters. The first is a criticality value indicating the abstraction

space in which planning is to occur. The second is a list of nodes from the

search tree in the higher space, representing a skeleton plan. When a new

problem is posed to ABSTRIPS, the external interface program sets the
preconditions of a dummy operator to the goal wiT. The domain's maximum

criticality, which was determined when criticalities were assigned, is retrieved.

The executive !s called with the criticality set to the maximum and the skeleton
consisting of the dummy operator.

Within the highest abstraction space, the executive plans to achieve the

preconditions of the dummy step in the skeleton plan, i.e,, the main goal.

When a plan is found, the executive computes the criticality of the next

lowest space in which planning is needed, and it builds a skeleton of nodes

along the path of the successful plan. The executive then invokes itself
recursively. The new invocation solves in turn the subproblems of bridging

the gaps between steps in the skeleton plan and of ensuring that the steps

in the skeleton plan are still applicable at the appropriate points in the new

plan. The final steo in the skeleton is always the dummy operator, and so the

final applicability check ensures that the orig';nal goal has been reached.

When all subproblems have been solved, the executive invokes itself for

planning in a still lower space. This recursion continues until a complete

plan is built up in the problem space itself.
This search strategy might be termed a "length-first" search. It pushes

the planning process in each abstraction space all the way to the original

goal state before beginning to plan in a lower space. This enables the system

to recognize as early as possible the steps that would lead to dead ends or

very inefficient plans.
If any subproblem in a particular space cannot be solved, control is

returned to the process in its abstraction space. The search tree is restored to

its state prior to the selection of the node that led to failure in the ground

space. That node is eliminated from consideration, and the search for a

successful plan at the higher level continues.

Artificial Intelligence 5 (1974), ! 15-135

122 e .D . SACERDOTI

i EXECUTIVE

I
I
!

I
I
I
I
I
I
I
I
i
I
i

Wff

~ . . A , ~-- I
TERFACE i

",- Maxvmum I

I ~ I
I I 1 oooo oo.,

" ~ I
I - Oum~ I

~ $ ~ to Initlll I
World Model

+
"Skeleton Plan"

"Skeleton Plan" ~- Rest Yes i
of -Skelaton Plan"

, f

| p,a~, ,o Ao~,M. S~,. , I ! ~ r ~ i 1 in which Pre~,~:~diticms of | I
| the Operator t ~ t was I "C
IApp, fi~l in "Step" a r e a l True] t " '

. . . / co.ec~ Step,
~ W a , ' \ . "'Re'--~e Process in % l Along Successful

J P:Annlnn "~ _ [Higher AbstractiOn | ~ Path into New
~_ _¢~,~;~'f:~l . , ,~ . ~ S~r~'~e, Forbidding 1he . ~ . r¢.o '~ Choice of"Step'.',.." "Sk:let.. o ~ l a n ~ °

t~ Yes Invoke Process [i , in Lower Space J
Apply "Step's" Operator "~" - - "

i

L u m m m m m ! w m i

FIG. 1. Flow of control of ABSTRIPS.

'Generate iuccessful [
Plan, Budd MACROP,
Exit Through all Leve!s,,,

-I-
(,oo)

This failure mechanism is analogous to the automatic backtracking

feature of the PLANNER language [5]. It has the major defect that when

a failure of a lower level process is reported, the process and the context

in which the failure occurred are no longer around for analysis. Sc, ABSTR!PS

relies heavily on beiag able to produce good plans at the highest level.

This requirement has led to two modifications to the sean:h algorithm

originally employed by STRIPS. The first is an alteration of t~ e evaluation

function used to select which node in the search tree to expand r.ext. STRIPS

emphasizes the estiwated cost of achieving the goal from the given node and

Artificial Intelligence $ (I974), 115-135

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES 123

de-e'-.~phasizes the cost of arriving at the node from the initial state. Thus,

it has a tendenc~ to find a slightly longer plan quickly, rather than the cheapest

plan more slowly. But each extra step in a high abstraction space is likely

to lead to many extra steps in the corresponding plan in the problem space.
Thus, for ABSTRIPS, the evaluation function has itself been made a function
of the level of abstraction. At the highest level, ABSTRIPS gives equal weight

to the cost of reaching a given node and to the estimated cost of reaching
the goal from that node. This evaluation function changes incrementally as

the level of abstraction decreases, until it reaches the old STRIPS functf, on

at the level of the problem space.

The second modification involves postponing the selection of one among
several equivalent instances of a relevant operator. During the process of

selecting relevant operators to reduce a particular difference, a oartial

instantiation of the operators' parameters may occur. For example, i f the

difference were that the robot was not in Room 3, then the operator "Go
through a door into a room" might be selected and ins~antiate, d to "Go,

through a door into Room 3". The preconditions of this operator would

then be analyzed by the theorem prover to determine which door to choose.
If several choices seem equally good to STRIPS (inC., the states in which the

various choices can be applied are equally difficult to reach), then it would
arbitrarily pick a door.

For ABSTRIPS, alternative instantiations in an abstraction space might

appear equivalent, and yet one choice might be substantially superior when

further details are considered. So ABSTRIPS defers its decision when more

than one equivalent "best choice" of a r,,~levant operator is found. The

partially instantiated rele:~ant operator (e,.g., "Go throJgh a door into
Room 3") is used in planning. When subsequent analysis irt a lower abstrac-

tion space reveals a preferred instantiation, that instantiatlon is then choser...

If this selection should eventually lead to failure, "the ether insta.ntiations
can still be chosen through the backtracking mechanism.

In summary, hierarchical planning using abstraction spaces in a "length-

first" search technique postpones exte~lding the search tree through the levels

concerned with the detailed preconditions of an operator until it knows that

doing so will be highly effectual in reaching the goal (b.'.cause the operator

lies along an almost certainly successful path). By avoiding work en fruitless

branches of the search tree, the technique achieves significant efficiencies in

the formulation of complex plans.

5. Examples of ABSTRIPS' Performance

To clarify the issues raised and tb~ way in which the AF~STRIPS system works,

the system's performance is traced thro=~gh some examples below. The

Artificial Inteil(:,ence 5 (1974), 115-135

9

124 E. D. SACERDOTI

ABSTRIPS system consists of some 370 INTERLISP functions, which run
as compiled code on a PDP-10 computer. All the examples presented were
drawn from the environment of the Stanford Research Institute mobile
robot. The domain consists of seven rooms interconnected by doorways.
Operators have been defined that model the robot's ability to navigate to
any object or location within a room, to push boxes within a room or through
a doorway, to navigate through.a doorway, to block a doorway using a box,
and to unblock a doorway. In addition, fictitious operators have been defined
to model the opening and closing of doors; these actions are beyond the
robot's capabilities. In all, 167 predicate calculus wffs have been defined as
axioms to model the robot domain.

The definition of the domain is essentially identical to the one used for
the examples in the latest report on the STRIPS system [3].

5.1. Definition of abstraction spaces

To enable the system to assign criticality values properly to the literals of the
preconditions of the operators, two additional axioms, representing laws
about the world, were included in the world model:

(Vx)PUSHABLE(x) ~ TYPE(x, OBJECT)
and

0/x)STATUS(x, CLOSED) - 7STATUS(x, OPEN).

The criticality determination algorithm required approxih~,a~.=.i: five
minutes of running time. The resulting operator descriptions ::re listed
below. The number in braces preceding each literal in the precondition wffs
represents the criticality of the literal. The literal will appear in the pre-
condition in abstraction spaces of cciticality less than or equal to the number
in braces.

GOTOB(bx) Go to object bx.

Preconditions: {6}TYPE(bx, OBJECT),(3rx)[{5 }lNROOM(bx, rx) ^
{ 5 }INROOM(ROBOT,rx)]

Deletions: AT(ROBOT,$1,92),NEXTTO(ROBOT,$ i)
Additions: *NEXTTO(ROBOT, bx)

GOTO(dx) Go te door dx.

Preconditions: { 6 } TYPE(dx, DOOR),(3rx)(3ry) [{5}INROOM(ROBOT,rx)

^ {6}CONNECTS(dx, rx, ry)]
Deletions: AT~ROBOT, $1, $2),NEXTTO(ROBOT, $!)
Additions: *NEXTTO(ROBOT, dx)

GOTOL(x,y) Go to coordinate location (x,y).

Preconditions: (3rx)[{5}INROOM(ROBOT,rx) ^

{6}LOCINROOM(x,y,rx)]

drtificial ll~telligence 5 (1974), 115-135

P L A N N I N G IN A HIERARCHY GF ABSTRACTION SPACES 125

Deletions: AT(ROBOT,$ I, $2),NEXTTO(ROBOT, $1)
Additions: *AT(ROBOT,x,y)

PUSHB(bx,by) Push bx to object by.

Preconditions: {6 }TYPE(by,OBJECT),{6~/PUSHABLE(bx),
{ l }NEXTTO(ROBOT,bx) , (3rx)[{5IINROOM(bx, rx) ^

{5}lNROOM(by,rx) ^ {5}INROOM(ROBOT, rx)]
Deletions: AT(ROBOT,$1,$2),NEXTTO(ROBOT, $1),

AT(bx, $1,82),N EXTTO(bx, $1),N EXTTO($ I ,bx)
Additions: *NEXTTO(by ,bx) ,*NEXTTO(bx , by) ,NEXTTO(ROBOT~bx)

PUSHD(bx,dx) Push bx to door dx.

Preconditions: {6} PUSHABLE(bx),{6}TYPE(dx,DOOR),
{ 1 }NEXTTO(ROBOT,bx),
(3rx)(3ry)[{5 }INROOM(ROBOT,rx) A
{5}lNROOM(bx,rx) A {6}CONNECTS(dx,rx , ry)]

Deletions: AT(ROBOT,$1,$2),NEXTTO(ROBOT,$1),
AT(bx, $1,82) ,N EXTTO(bx, $1),N EXTTO($1 ,bx)

Additions: *N EXTTO(bx ,dx) ,NEXTTO(ROBOT,bx)

PUSHL(bx,x,y) Push bx to coordinate location (x,y).

Preconditions: {6}PUSHABLE(bx),{ I } NEXTTO(ROBOT,bx),
(3rx)[{ 5} INROOM(ROBOT,rx) ^

{5}INROOM(bx, rx) A {6}LOCINROOM(x,y,rx)]
Deletions: AT(ROBOT, $1, $2),N EXTTO(ROBOT, $17,

AT(b:,:, g 1, $2),NEXTTO(bx, $1), NEXTTO($1 ,bx)
Additions: * AT(bx, x , y) ,NEXTTO(ROBOT, bx)

GOTHRUDR(dx, rx) Go through door dx into room rx.

Preconditions: {6}TYPE(dx, DOOR), {6}TYPE(rx, ROOM),
{2 }STATUS(dx, OPEN),(3ry)[{5} INROOM(ROBOT,o9 ^
{6 }CONNECTS(dx,ry,rx)]

Deletions: AT(ROBOT, $1, $2),NEXTTO(ROBOT, $1),
INROOM(ROBOT,$1)

Additions: *INROOM(ROBOT,rx)

P U S H T H R U D R (b x , dx, rx) Push bx through door dx into room rx.

Preconditions: {6} PUSHABLE(bx),{6 }TYPE(dx, DOOR),
{ 6 } TYPE(rx, ROOM), { 2 } STATUS(dx, OPEN),
{ 1 }NEXTTO(bx,dx), { 1 }NEXTTO(ROBOT,bx),
(3ry)[{5}INROOM(bx, ry) A {5}INROOM(ROBOT,ry) A
{6 }CONNECTS(dx,ry, rx)]

Deletions: AT(ROBOT, $1, $2),NEXTTO(ROBOT,$!),
AT(bx, $1, $2),NEXTTO(bx, $ I),NEXTTO($1 ,bx),
]NROOM(ROBOT,$1)JNROOM(bx, $1)

A rtifieial Intelligence 5 (! 974), ! 15 - 135

126 E. D. SACERDOTI

Additions: *INROOM(bx, rx),INROOM(ROBOT, rx),
NEXTTO(ROBOT, bx)

OPEN(dx) Open door dx.
Preconditions: {6}TYPE(dx, DOOR),{5}STATUS(dx, CLOSED),

{5 }NEXTFO(ROBOT,dx)
Deletions: STATUS(dx, CLOSED)
Additions: *STATUS(dx,OPEN)

CLOSE(dx) Close door dx.
Preconditions: {6 }TYPE(dx, DOOR),{ 5 } STATUS(dx,OPEN),

{ 5 } NEXTTO(ROBOT,dx)
Deletions: STATUS(dx, OPEN)

Additions: *STATUS(dx,CLOSED)

Note: The addition clauses preceded by an asterisk are the primary additions
of the operator. When STRIPS or ABSTRIPS searches for a relevant
operator, it considers only primary addition clauses.

5.2. A detailed sample problem

Fig. 2 depicts the initial model that was defined for this problem. The robot

is in Room RRIL. The door between RRIL and RCLK is closed. BOXI

DMYSRAM
MYS - ORAMHAL

l DMYSPDP][DRAMCLK

RPDP DPDPCLK [t
n BOX3 II

RHAL

OBOT

RRIL

FIG. 2. Initial state for the sample problem.

MYs I R I
I ROBOT DMYSRAM
] DUNIMYS DRAMHAL

, ~DMYSPDP = = ~ A M C L K

T
| l J DCLKRIL

I:;:: f'--I ,. ,., BOX3 [[

RHAL

RRIL

Fro. 3. A state in which the goal of the
sample problem is satisfied.

and BOX2 are both in RPDP. The problem is for the system to plan to

achieve a state in which the two boxes are next to one another and the robot
is in Room RUNI, as in Fig. 3. The goal wfffor this problem is:

NEXTTO(BOXI,BOX2) ^ INROOM(ROBOT, RUNI).

STRIPS was able to solve this problem without using abstraction spaces.

However, its solution required the exploration of 119 nodes in the search

tree, only 23 of which were on the successful path. This exploration took
over 30 minutes of computer time. Fig. 4(a) depicts the search tree.
Artificial Intelligence 5 (1974), 115-135

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES 127

(a) STRIPS SEARCH TREE FOR THE SAMPLE PROBLEM Ib) ABSTRIPS SEARCH TREE iN THE SPACE OF
CRITICALITY 6

/ /

(C~ ABSTRIPS SEARCH TREES (d~ ABSTRIPS SEARCH TREES (e) ABSTRIPS SEARCH TREES
IN THE SPACE OF IN THF. SPACE OF IN THE PROBLEM SPACE
CRITICALITY 5 CRITICALITY 2

FiG. 4. Search trees for the sample problem.

ABSTRIPS first examined the problem in an abstraction space in which

the only precondition clauses considered wele those whose truth value could

never be altered by the robot. The difference between the initial state and

the goal state was computed. The difference was the goal wff itself. Five

relevant operator instances were computed. The first c f these, PUSHB(flOX2,

BOX l), was examined. Its precondition wff in this abstraction space was true

in the initial state; so the operator was applied. This resulted in a new state

in which the robot, BOX l, av.:' BOX2 were next to each other. The difference

between this state and the goal state was computed and found to be

INROOM(ROBOT, RUNI). Two relevant operator instances were found,

and the first, G O T H R U D R (P a r l 2 , R U N I) , was examined. (Par l2 is an

uninstantiated parameter.) Its precono~tion wff in this abstraction space,

T Y P E (R U N I , R O O M) ^ TYPE(Par I2 ,DOOR)

^ (3ry)CONNECTS(Parl 2,ry, RUN i),

Artificial Intelligence 5 (1974), I 15-135

128 E. D. SACERDOTI

was satisfied when Par l2 was instantiated to D U N I M Y S . So

G O T H R U D R (D U N 1 M Y S , R U N I)

was applied, and this generated a state in which the goal wff was true.

Fig. 4(b) depicts the search tree in the highest abstraction space. The posi-

tioning of the nodes suggests the correspondence to the nodes in the STRIPS

search tree.

A skeleton plan was built consisting of the nodes at which the two operators

were applied. The plan was:

PUSHB(BOX2,BOX1), G O T H R U D R (D U N I M YS,RUNI).

Planning then began in the space of criticality 5.

The first subgoal was the precondition wff in this abstraction space of the

first operator, PUSHB(BOXI,BOX2). The difference between the initial

state and the one in which the wff was true was INROOM(ROBOT, RPDP).

Operator instances relevant to reducing this difference were

G O T H R U D R (P a r i 7 , R P D P) and P U S H T H R U D R (R O B O T , Par20,RPDP).

The precondition wffof the first was tested, but it was not completely satisfied.

There were still differences INROOM(ROBOT, RMYS) or I N R O O M

(ROBOT, RCLK) before G O T H R U D R (P a r I 7 , R P D P) could be applied

(i.e., the robot was not yet in a room adjoining RPDP). The P U S H T H R U D R

operator was completely inapplicable because the robot is not a pushable
object.

Then ABSTRIPS tried to reduce th, differences that would render

G O T H R U D R (P a r I 7 , R P D P) applicable. Four relevant operators were

found. The first was GOTHRUDR(Par22 ,RMYS) , and its precondition wff

was not satisfied either (the robot was not in a room adjoining RMYS). The

second relevant operator was GOTHRUDR(Par22 ,RCLK) , and its pre-

condition wff was satisfied when Par22 was instantiated to DCLKRIL. So

G O T H R U D R (D C L K R I L , R C L K) was applied, producing a state in which

G O T H R U D R (D P D P C L K , R P D P) was applicable. That operator was

applied, producing a state in which the initial subgoal, the precondition wf fo f

PUSHB(BOX2,DOXI), was true. The PUSHB operator was then applied.

Then a new subgoal was set up, i~1 which the preconditions of

G O T H R U D R (D U N I M Y S , R U N I) in this space were true. The difference

between the current state and the subgoal state was INROOM(ROBOT,

RMYS). GOTHRUDR(Par27 ,RMYS) was selected as a relevant operator,

and its preconditions were satisfied when Par27 was bound to DMYSPDP.

So G O T H R U D R (D M Y S P D P , RMYS) was applied, producing a state in

which the subgoal was satified. The operator assocmted with this subgoal,

G O T H R U D R (D U N I M Y S , R U N I) , was applied, and the goal state was

again reached. Fig. 4(c) shows the search trees in this space.

Artificial Intelligence 5 (1974), I ! 5-135

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES 129

The following new skeleton plan was built up:

G O T H R U D R (D C L K R I L , R C L K) ; GOTH R UDR (DPDPC L K,R PDP) ;

PUSHB(BOX2,BOXI); G O T H R U DR(DMYSPDP, RMYS);

GOTHRUDR(DUNIMYS,RUNI) .

The planning process was then reinvoked in an abstraction space of criticality
2.

The first subgoal, the precondition wff of the first step in the skeleton plan,

G O T H R U D R (D C L K R I L , R C L K) , was not satisfied in the initial model.
The difference was STATUS(DCLKRIL,OPEN). An analysis showed that

it could be eliminated by applying GOTOD(DCLKRIL) and then OPEN

(DCLKRIL). This resulted in a state that satisfied the first subgoal. So

G O T H R U D R (D C L K R I L , R C L K) was applied.

Each of the remaining subgoals of the process in this abstraction space

were immediately satisfiable, and so each step of the skeleton plan was
applied in turn, resulting in a state in which the original goal was satisfied.

The skeleton plan produced was GOTOD(DCLKRIL) ; OPEN(DCLKRIL) ,

followed by all the steps of the previous skeleton plan. Fig. 4(d) shows the
search trees in this space.

Finally, planning took place in the ground space, the space including

!iterals of criticality 1. The first three steps of the skeleton plan were applied
in turn. But the preconditions of GOT HR UDR (DPDPC L K,R PDP) were

not satisfiable in a state in which the robot had just come through DCLKRIL.

The difference was NEXTTO(ROBOT, DPDPCLK), and analysis indicated
that it could be eliminated by applying GOTOD(DPDPCLK), enabling

G O T H R U D R (D P D P C L K , R P D P) to be applied.

The next subgoal, the preconditions of PUSHB(BOX2,BOXI), was not
satisfied at this point. The difference was NEXTTOCROBOT,BOX2), which

could be elimir,~v.~.,:d by an application of the first relevant operator selected,
GOTOB(BOX2). After PUSHB(BOX2,BOXI) was applied, the next two

subgoals failed because the robot was not next to the appropriate door. An

analysis similar to the one that occurred with DPDPCLK was performed,

enabling ABSTRIPS to finish the plan with an operator to go to and an

operator to go through DMYSPDP and DUNIMYS.
Note that the planning in this space is just as if STRIPS were given seven

small problems to solve consecLtively, without the benefit of MACROPS.

qhe search trees for the sround space are shown in Fig. 4(e). "l'he entire
planning process for ABSTRIPS produced 60 nodes, 54 of which were on

the successful path in one space or another. This process required 5 : 28 of

computer time. This is less than one-fifth of the time required by the non-

hierarchical STRIPS.

Artificial lraelligence 5 (1974), 115-135

~.
~

T
A

B
LE

 !

C
o

m
p

ar
is

o
n

 o
f

p
la

n
n

in
g

 t
im

es
 a

n
d

 s
ea

rc
h

 t
re

es
 P
R

O
B

L
E

M

I
P

R
O

B
L

E
M

2

P
R

O
B

L
E

M

3

P
R

O
B

L
E

M

4
P

R
O

B
L

E
M

5

k
,t

m

t~

o

,-
.

A
B

S
T

R
IP

S

t~
t ,o

T
im

e
to

 f
in

d
 p

la
n

 g
m

in
u

te
s)

T
o

ta
l

n
o

d
es

 i
n

 s
ea

rc
h

 t
re

es

=

--
b

y
 s

p
ac

es
a

N
o

d
es

 o
n

 s
o

lu
ti

o
n

 p
at

h

L
o

--
b

y
 s

p
ac

es
a

O
p

er
at

o
rs

 i
n

 p
la

n

I
:

5
4

2

:5
5

2

:2
4

2

:3
0

6

:4
1

25

34

30

33

63

5,
 5

,
5,

 I
0

5,

 7
,

7,
 1

5
3,

 4
.

1
I,

 1
2

5,
 7

,
7,

 1
4

5,
 1

7,
 1

6,
 2

5

24

32

28

32

54

5
,5

,5
,9

5,

 7
,

7,
 1

3
3

.4
,

10
,

I!

5,
 7

,
7,

 !
]

5,
 I

!,
 1

5
,2

3

4
6

5
6

II

S
T

R
IP

S

T
im

e
to

 f
in

d
 p

la
n

 (
m

in
u

te
s)

T
o

ta
l

n
o

d
es

 i
n

 s
ea

rc
h

 t
re

e

N
o

d
es

 o
n

 s
o

lu
ti

o
n

 p
at

h

O
p

er
at

o
rs

 i
n

p
la

n

1
:4

0

5
:4

4

4
:3

4

9
:4

7

>
2

0
:0

0
b

10

33

22

51

9
13

II

15

4
6

5
7

--

S
T

R
IP

S
 w

it
h

 M
A

C
R

O
P

s

T
im

e
to

 f
in

d
 p

la
n

 (
m

in
u

te
s~

T
o

la
l

n
o

d
es

 i
n

 s
ea

rc
h

 t
re

e

N
o

d
es

 o
n

 s
o

lu
ti

o
n

 p
at

h

O
p

er
at

o
rs

 i
n

 p
la

n

1
:4

0

2
:0

6

5
:1

8

3
:0

0

5
:4

9

!0

9

14

9

14

9

9

9

9

14

4

6

5

6

II

.m

.=

a
T

h
e

n
u

m
b

er
 o

f
n

o
d

es
 f

ro
m

 t
h

e
se

ar
ch

 t
re

e
in

 e
ac

h
 s

p
ac

e,
 f

ro
m

 t
h

e
o

n
e

o
f

h
ig

h
es

t
cr

it
ic

al
it

y
 t

o
 t

h
e

p
ro

b
le

m
 s

p
ac

e
it

se
lf

.
b

S
T

R
IP

S
 h

ad
 n

o
t

so
lv

ed
 P

ro
b

le
m

 5
 a

ft
er

 2
0

m
in

u
te

s.

r.
n),

('1

rr
l

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES 131

0

<

0

a.

0
I-

i
28 STRIPS

ABSTRIPS

24

2o - _ i
1 6 -

12 - --I

8 -

0

/

I
!

I
!

I

I

I

I
I

t

I

2 4 6 8 10

NUMBER OF OPERATORS IN THE PLAN

FiG. 5. Planning t ime as a funct ion o f plan length.

5.3. Other examples

The set of tasks from the most recent report on STRIPS [3] was run on

ABSTRIPS. The running times and the search trees are compared with those

from the STRIPS system in Table 1. Fig. 5 plots the planning time as a

function of plan length for STRIPS and ABSTRIPS on an extended set of

problems from the robot domain.

6. Further Implications of the Use of Abstraction Spaces in

Planning

This paper has shown how the representation ~f a problem domain as a

hierarchy o f abstraction spaces dramatically improved the performance of

a problem solver. This section briefly considers the implications o f such a

hierarchical represc at ion for some other problem areas in robotics and

problem solving.

6.1. Learning task-specific knowledge

General-purpose problem solvers have tended to be weak problem solvers.

Because the heuristics they use to guide the scarch through the problem

space must be generally applicable, they are not especially powerful in any

particular task domain. On the other hand, special purpose programs to

solve problems in a particular domain have be~n notably successful. The

HEURISTIC D E N D R A L program [I] and the game playing programs

display far more problem-solving power in their particular domains of

competence than a general purpose problem solver could muster. This

competence is derived to a largc degree from the great amount o f task-

specific knowledge that has been incorporated into their search heuristics.

Art{ficial Intelligence 5 (1974), ! ! 5 -135

132 E. D. SACERDOTI

Unfortunately, whi!e these special purpose programs display intelligent

behavior within their limited domain, they are worth little in any other

domain. Can a more generally intelligent system be constructed that, when

presented with task-specific knowledge (basic to which is the description

of the problem domain), can incorporate that knowledge into its search

heuristics ?

The process of automated definition of abstraction space offers a possible

approach. By applying a general purpose problem solver to a particular

domain in the most general manner described in Section 3, a task-specific

detail hierarchy can be built up. The ability of a system to discriminate

important considerations from mere details is an important aspect of task-

specific knowledge.

A further aspect of task-specific knowledge is the facility for negotiating

those areas of the search space that are easily traversible, in the hierarchical

representation framework, easily traversible areas correspond to sub-

problems of achieving details, once the more critical aspects of a problem
have been solved.

The ABSTRIPS system determines that a given literal is a detail when it

has built a small plan to achieve a state in which it is true. That smal' alan

can be saved as a MACROP, to be used as the first-choice relevant operator

whenever the detail needs to be achieved. The relatively small number of

MACROPs formed in this way, when added to the set of basic operators,

constitute a basic body of knowledge about how to solve problems in a
particular task domain.

6.2 Planning with multiple outcome operators

The use of a hierarchical representation can greatly simp!ify the process of

creating conditional plans, plans with information gathering operators, and

plans with loops. This is because the outcomes of these operators are un-

ce.'tain only to a particular level of detail. Thus, in a higher abstraction space

a simple specification can adequately model the preconditions and effects

of the operators, although some of the effects may have to be described in

terms of uninstantiated parameters. A drawback to this approach is that,

as noted in Section 3, the mapping of plans among spaces becomes difficult

when the effects of operators are abstracted. Nevertheless, the simplicity

of representation of these rather complex operators renders this scheme
attractive.

As an example, in planning to drive to the airport to catch a plane, one

would use a "Park the car" operator. Such an operator might have the

effect of " 'If Lot A is not full, park inside Lot A. Else if Lot B is not full,

park inside Lot B. Else drive around, and then park the car." If one plans

at a high level of abstraction to drive to the airport, he does not consider the

Artificial Intelligence 5 (1974), ! ! 5-135

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES 133

"Park the car" operator in its full complexity. Rather. he considers an

image of the operator in an abstraction space in which no uncertainties exist.

It might have the simple precondition AT(CAR,AIRPORT) and might

cause the clause PARKED-IN-LOT(CAR,Paramete r 37) to be added to

the model. Further planning could continue without considering as separate

cases states in which PARKED-IN-LOT(CAR,LOT A) or PARKED-IN-

LOT(CAR,LOT B) were true.

6.3. An integrated robot system

A primary motivation for building the STRIPS system, and its offspring

ABSTRIPS, was to build plans for a mobile robot. In the Stanford Research

Institute robot system, the operator descriptions are models for actions

that the robot can actually take. The actions modeled are termed "inter-

mediate level actions" (ILAs). When they are executed, they invoke "low

level actions" (LLAs), which are coi~cerned with initiating and monitoring

motion of the robot. These routines in turn pass commands to, and receive

information from, a program in a PDP-15 computer, which communicates

with the robot itself via a radio link.

The ground space as viewed by ABSTRIPS is in fact just another abstrac-

tion space from the point of view of plans built up from basic operations at

lower levels. The problem solver can be extended to handle successively

finer levels of detail until a ground space is reached in which the only remain-

ing details are to roll the robot around. This offers the enticing possibility

of a fully integrated planning and execution system. But the interaction of

planning and execution would require that the plans that such a system built

be different from the traditional form of plan ouilt by problem solvers.

For a system that deals with complex problems in a real world, as opposed

to a simulated one, it is undesirable to solve an entire problem with an

epistemoiogically adequate plan. There are too many reasonably likely

outcomes for each real-world operation. The number of hypothetically

possible states of the world attainable by a particular plan will grow exponen-

tially with the length of the plan. Most of the effort of such a system would be

spent reasoning about world states that ~,ould never be achieved, and very

little of it would be spent moving the robot toward its goals.

It is desired that the system's planning effort~" focus on reasoning about

states of the world that are likely to be traversed in the course of robot

execution. Thus, the overall plarming should be roughed out in an abstraction

space that ignores enough levels of detail so that the rough plan is fairly

certain to succeed.

A few steps of the plan can be used as a skeleton, to which more detailed

steps are added in a manner similar to ABSTRIPS. These new steps are fairly

certain to succeed at the level of detail to which they are specified. Even more

Artificial lmelligence 5 (1974), ! 15-135

134 E . D . SACERDOT!

detailed steps can be filled in for the beginning portion of this subplan, and

the process can continue until a short subplan of low-level robot commands

is built. These can be executed in sequence. Any deviations between the actual

state of the world and the hypothesized results of the subplan will hopefully

be mere details to the space that is an abstraction of the robot commands.

Thus, the remaining steps of the plan in this space, as well as all higher spaces,
are still on the solution path.

Further building and extending of the various subplans can then take

place, including a new bottom-level subplan to move the robot. This subplan

will accurately reflect the precise results of previous execution, and so it

will be fully appropriate for achieving the ultimate goal. The process of

altexnatively adding detailed steps to the plan and then actually executing

some steps can continue until the goal is achieved.

If a grievous failure occurs at some point in execution and nondetails in

higher models no longer reflect the actual state of the world, subplans at

affected levels of detail can propagate the failure up to an abstraction space

in which the deviation from the predicted world model was a detail. Re-

planning can be initiated from this level of abstraction, thus reusing the
results of as much as possible of the previous planning.

Therefore, by using a hierarchy of abstraction spaces to mask uncertainties

in the real world effects of planned operations, an effectively integrated robot

planning and executing system can be created. By dealing with a hierarchy

of short, simple plans, such a system will be able to cope effectively with
truly complex problems.

ACKNOWLEDG M ENTS

The author is indebted to Richard Fikes, Peter Hart, and Nils Nilsson for their enthusiastic
encouragement and intellectual support. The research reported in this paper was supported
by the Advanced Research Projects Agency of the Department of Defense under Contract
DAHC04-72-C-0008 with the U.S. Army Research Office.

REFERENCES

1. Buchanan. B.~ Sutherland, G,, and Feigenbaum, E. HEURISTIC DENDRAL: A pro-

gram for generatingexplanatory hypotheses in organic chemistry. Machine lnteili#ence
4, B. Meltzer and D. Michie (eds.), Americ~an Elsevier, New York (1969), 209-254.

2. Ernst, G., ~.nd Newelg, A. GPS: A Case Stl~dy in Generality and Problem Soh'4ng.
ACM Monograph Series, Academic Press, New -Cork (1969).

3. Fikcs, R. E., Hart, P. E., and Nilsson, N..L Learning and executing generalized robot
plans. Artificial intelligelwe 3 (1972), 251-288.

4. Fikcs, R. E., and Nilsson, N. J. STRIPS: A new approach to the application of theorem
pro~, ing to problem so lying. Artificial hatelliqence 2 (3 [4) (1971), ! 89-208.

5. Hewitt, C. Description and theoretical analysis (using schemata) of PLANNER:

A language for proving theorems and manipulating models in a robot. Ph.D. Thesis,
Dept. of Mathem~ttics, Massachusetts Inst. of Technol., Cambridge. Mass. 0972).

Artificial lnteliigenee • (197~), ! 15-135

PLANNING IN A HIERARCHY OF ABSTRACTION SPACES 135

6. Kelly, M. D. Edge detection in pictures by computer using planning. Machine intelli-
.qence 6, B. Meltzer and D. Michie (eds.), American Elsevier, New York 0971), 397-409.

7. McCarthy, J., and Hayes, P. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence 4, B. Meltzer and D. Michie (eds.), American
Elsevier, New York (1969), 463-502.

8. Newell, A., Shaw, J. C., and Simon, H. A. Report on a general problem solving pro-
gram. Proc. Intern. Conf. on Information Processing, UNESCO, Paris (1960), 256-264.

9. P61ya, G. How to .Soire It. Princeton Univ. Press, Princeton, N.J. (1945), 8.

R e c e i c e d Januar) ' 1974

Artificial Intelligence 5 (1974), 115-135

