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ABSTRACT 

A problem domain can be represented as a hierarchy o f  abstraction spaces in which successively 
finer levels o f  detail are introduced. The problem sotver ABSTRIPS,  a modification o f  STRIPS, 
can define an abstraction space hierarchy from the STRIPS representatien o f  a problem 
domain, and it can utilize the hierarchy in solving problems. Examples of  the system's per- 
formance are presented that demonstrate the significant increases in problem-solving power 
that this approach provides. Then some further implications of  the hierarchical planning 
approach are explored. 

1, Introduction 

General purpose problem solvers, such as STRIPS [3, 4] or GPS [2], must 

do their work using general purpose search heuristics. Unfortunately, by 

using such heuristics, it is not possible to solve any reasonably complex set 

of  problems in a reasonably complex domain. Regardless of how good such 

heuristics are at directing search, attempts to traverse a complex problem 

space can be caught in a combinatorial quagmire. 

This paper presents an approach to augmenting the power of  the heuristic 

search process. The essence of  this approach is to utilize a means for dis- 

criminating between important information and details in the problem space. 

By planning in a hierarchy of  abstraction spaces in which successive levels of 

detail are introduced, significant increases in problem-solving power have 

been achieved. 

* The work reported herein was sponsored by the Advanced Research Projects Agency 
of the Department of Defense under Comract DAHC04-72-C-0008 with the U.S. Army 
Research Office. 

Artificial Intelligence $ (1974), 115-135 

Copyright © 1974 by North-Holland Publishing Company 



116 E. D. SACERDOTI 

Section 2 sketches the hierarchical planning approach and gives motivation 

for its use. Sections 3 and 4 describe the definition and use of abstraction 

spaces by ABSTRIPS (Abstraction-Based STRIPS), a modification of  the 

STRIPS problem-solving system that incorporates this approach. Section 5 
describes the performance of  the system. Section 6 discusses the implications 

of this approach for problem solving and for robotics. 

2. The Motivation for Using Abstraction Spaces in Problem 

Solving 

It was not quite fair to assert in the previous section that a complex problem 

domain is beyond the combinatorial capability of  general purpose problem 
solvers. A problem solver deals not with the problem domain itself, but with 

some representation of that domain. So it would be more correct to state that 
a complex representation exceeds the scope of general purpose problem 

solvers. 

Unfortunately, a straightforward transcription of  a complex problem 

domain will yield a complex representation. However, a well-chosen tran- 

scription can lead to a simpler representation. By choosing such a simplifying 

represemation, one can have the problem solver do its work in a context 

that is simple enough for some useful problem solving to take place. 
In other words, the heuristic search through the s;mplifying representation 

will be of sufficiently short duration that a goal state in the problem space 

can be reached. Such a representation displays what McCarthy and Hayes [7] 
term "'heuristic adequacy". 

Attempts to achieve simplifying representations, such as the "'macro 
operator", or MACROP, of  the STRIPS problem solver [3], have heretofore 

tried to preserve, in McCarthy and Hayes' terminology, "'epistemological 

adequacy"; that is, the simplifying representations had to preserve all the 
detail that was needed to solve the problem at hand. A MACROP simplifies 

the representation of a problem domain by providing a means of  selecting 

at one time an entire sequence of  primitive operators, linked in a semantically 

sensible manner. But it preserves every detail of the preconditions and effects 
of its constituent operators. 

Such sithplifying representations can provide only limited enhancement 

to the poweI, of a problem-solving system because of a somewhat dismaying 

fact: For a sufficiently complex problem domain,  no epistemologically 
adequate representation can be heuristically adequate. 

Epistemological a d e q ~ c y  implies that every relevant detail is properly 

deal; with. But attention to detail is precisely what defeats heuristic adequacy. 

A go¢;d heuristic evaluation function will enable a problem solver to reject 

most of  the possible paths in a situation space. But if all the details are 
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attended to, the evaluation function must be applied at all the nodes at  which 

the details are affected. The combinatorics of  the expanding search space 

will enable the p'¢'oblem solver to solve only rather simple problems. 

A superior approach to problem solving would be to search first through 

an abstraction space, a simplifying representation of  the problem space in 

which unimportant  details are ignored. When a solution to the problem in 

the abstraction space is discovered, all that remains is to account for the 

details of  the linkup between the steps of the solution. This can be regarded 

as a sequence of  subproblems in the original problem space. If  they can be 

solved, a solution to the overall problem will have been achieved. I f  they 

cannot be solved, more planning in the abstraction space is requi, ed to 

discover an alternative solution. 
P61ya [9] cites the importance of  this approach for human problem 

solving. It ha~ been used by computer  programs to find proofs in symbolic 

logic [8] (ignoring the nature of  the connectives and the ordering of  symbols 

as details) and to detect edges in scenes [6] (using a shrunken picture with 

less detail). 
The concept can readily be extended to a hierarchy of spaces, each dealing 

with fewer details than the ground space below it and with more details 

than the abstraction space above it. By considering details only when a 

successful plan in a higher level space gives strong evidence of  their importance, 

a heuristic search process will investigate a greatly reduced portion of  the 

search space. 
The process of  abstraction defined in Section 3 is general in that it is not 

domain-dependent. But it is highly structured and very dependent on the 

syntax of the problem domain. It is a first step, providing no capability for a 

"representational shift" that would restate a difficult problem in terms that 

render its solution markedly easier. Rather, it employs a series of repre~nta-  

tional nudges that increase the power of ahe heuristic search process over 

a problem space. 

3. Automated Definition of Abstraction Spaces 

The following sections describe the ABSTRIPS system, a modification of 

the STRIPS problem solver [3, 4]. A brief description of the aspects of  

STRIPS that are relevant to the discussion to follow is presented below. ~ 

The reader is 'encouraged to see [3, Section 2] for a brief but thorough 

summary of  the operation of STRIPS or [4] for a full description. 

In the interests of  bre~,ity and clarity, no further mention will be made of  the M A C R O P s  
in the STRIPS system. A M A C R O P  is the result of  generalizing a previously completed 

plan. Most of  its valid subsequence.s of  operators ¢a-a be extracted for use in further plan- 

r~,ing. Each such subsequence could be treated by ABSTRIPS like a primitive operator.  
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Briefly, the resp,,esentation of  a problem domain with which STRIPS 

deals consists of: 
(1) A world model The world model is a set of  wffs in the predicate 

calculus, describing facts (e.g., CONNECTS(DOORI ,  ROOM i, ROOM2)) 
or laws (e.g., (VRx, Ry, Dx) CONNECTS(Dx,  Rx, R y ) ~ ' - C O N N E C T S  

(Dx, Ry, Rx)) of  the problem domain. 
(2) ~. set of operator descript(ons. E~:h action in the problem domain is 

represented by an "operator" for changing one model into another. An 

operator is defined by a precondition wff, an add list, and a delete list. For 

an operator to be applicable in a given model, its precondition wff i~mst be 

satisfied. The add ~nd delete lists describe which coifs are changed when an 

application of the operator transforms the world model. 
A problem is stated to STRIPS as a goal wff. STRIPS must develop a 

sequence of  operator applications that will lead to a world model in which 
~the goal wff is true. A GPS-like means-ends analysis strategy [2] is employed 

to generate the operator sequence. 
A "difference" between the initial model and the goal model is extracted. 

STRIPS determines which instances of which operators would reduce the 

difference; the instance that most reduces the difference is selected. 
If it is applicable in the initial state (i.e., its precondition wff is true in the 
initial world model), the operator is applied, and a new world model created. 

If  the goal wff is true in the new model, STRIPS is done. If  not, the difference 

between the new state and the goal state is extracted, and the process 
continues. 

If  the operator instance that most reduced the difference is not .applicable 
in the initial state (i.e., its precondition wff is not provable in the world 

model), the precondition is set up as a subgoal wiT. STRIPS will then try 

to develop a sequence of operator applications that will lead to a world 

model in which the subgoal wff is true. If the subgoai is achieved, the operator 

instance can be applied as before. If  not, another operator instance is selected, 

and the process continues as before. 

3.1.  Abstract ion spaces  in the STRIPS context  

For a practical problem-solving system, one would like to have an abstraction 

space differ from its ground space enough to achieve a significant improve- 

ment in problem-solving efficiency, but yet not so much as to make the 

mapping from abstraction space to ground space complex and time-con- 
suming. 

For the STRIPS system, this criterion is met by having the abstraction 

spaces differ from their ground spaces only in the level of detail used to 

specify the preconditions of  operators. Although the change in representation 

provided by this choice may seem intuitively insufficient, it satisfies the 
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criterion well. The world model can remain unchanged; there is no need 

to delete unimportant details from it because they can simply be ignored. 

No operators need be deleted in their entirety; if all they do is achieve details, 

they will never be selected as relevant. Any change to the add or delete lists 

of  the operators would cause the operators'  effects to be very different in 

different spaces. Since the applicability of  a particular operator at some 

intermediate state might depend on any effects of  any previously applied 

operators, the mapping of plans among spaces would be rendered too 

complex. 

Thus, an abstraction space in the STRIPS context differs from its ground 

space only in the preconditions of  its operators. The precondition wits in an 

abstraction space, will have fewer literals than those in its ground space. 

The literals omitted will be those that are "details" in the sense that a simple 

plan can be found to achieve them once the more "critical" literals have 

been achieved. For  instance, consider a P U S H T H R U D R  operator, which 

describes the effects of a robot pushing a particular object through a doorway 

into an adjacent room. In a high level abstraction space, the operator would 

be applicable whenever the object was pushabte and a doorway into the 

desired room existed. In a lower level space, it would also be required that 

the robot and the object be in the room connected by the doorway with the 

target room. In a still lower abstraction space, the door would also have to 

be open. Finally, in the orig;nal representation of  the problem space., the 

robot would also have to be next to the box, and the box would have to be 

next to the door. 
For ABSTRIPS to be able to discriminate among various levels of  detail, 

each literal within the preconditions of  each operator in a problem domain is 

assigned a "'criticality" value at the time the domain is first defined. Only 

the most critical literals will be in the highest abstraction space, whereas 

in lower spaces less critical ones will also appear. 

3.2. Assigning criticality to the literals of a precondition 

There are many possible approaches to the assignment of  criticality values 

to the literals of  an operator 's precondition wff. They span a range from a 

manual assignment as part of the specification of  the problem domain to a 

completely automatic assignment of  criticalities. 

At one extreme, the definition of a problem domain could include an 

explicit specification of  criticalities, reflecting the definer's intuition about  the 

domain. For  example, if one were to define a "Turn  on the lamp(?')" operator,  

he might say it was essential that  C be a lamp. He might say it was very 

important to be in the room with the lamp, less important that the lamp's 

cord be plugged in, and still less important to be next to the lamp. Specifying 
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the criticality value of a literal by a number preceding it in braces, one might 

define the precondition wff of  the "'Turn on the lamp"  operator as 

{4}TYPE(t,lamp) ^ (:lrx)({3}lNROOM(Me,rx) ^ {3}INROOM((,rx)) 
A {2}PLUGGED-IN(g)A {I}NEXTTO(Me,~.  

At the other extreme, a scheme can be developed to perform an exhaustive 

analysis of  the nI possible orderings of the n literals in a precondition in 
order to determine which literals can be achieved once other literais are 

assumed to be true. The results of  this analysis can be used to specify the 

criticality values for literals of  the precondition. 
For ABSTRIPS, an intermediate approach to criticality assignment was 

adopted. A predetermined (partial) erda.ring of all the predicates used in 

describing the problem domain was used to specify an order for examining 

the literals of the precondition wffs of  all the operators in the domain. 

First, all literals whose truth value could not be changed by any operator in 
the domain were assigned a maximum criticality value. Then, each remaining 

literal was examined in an order determined by the partial ordering. If  a 

short plan could be found to achieve a literal from a state in which all 

previously processed literals were assumed to be true, then the literal in 

question was said to be a detail and was assigned a criticality equal to its 
rank in the partial ordering. If  no such plan could be found, the literal was 
assigned a criticality greater than the highest rank in the partial order. 

For fhe domain including the "Turn on the lamp(C)" operator, the partial 

ordering might look like the following: 

TYPE( 

PLUGGED-IN(  

) COLOR( ) (Rank 4) 
\ / 

l N R O O M (  ) (Rank 3) 
/ \ 

) U N P L U G G E D (  ) (Rank 2) 
\ / 

NEXTTO( ) (Rank 1) 

The TYPE((,Iamp) literal could not be changed by any operator in the 

domain, and so it would be assigned a maximum criticality (6, in this case). 

The two I N R O O M  iiterals would be examined next (an arbitrary order can 

be chosen for literals whose predicates have equal rank in the partial ordering). 

They cannot be achieved from a state in which TYPE(6,1amp) is asserted, 

and so they would be assigned a criticality greater than the highest rank in 

the partial order, in this case 5. PLUGGED-IN(g)  can be achieved from 

a state in which the I N R O O M  literals and the TYPE literal are true. It can 

be achieved by a plan to go to the lamp cord, pick it up, bring it to a socket, 

and plug it in. So it would be assigned a criticality equal to its rank in the 

partial ordering, namely, 2. Similarly, a plan can be found to achieve 
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NEXTTO(Me,d) from a state in which the previously processed literals are 

true, and so it would be assigned a criticality of 1. 

Regardless of  the method used to determine the criticality values, they 
define a hierarchy of abstraction spaces. The next section shows how such 
a hierarchy can be used to aid the planning process. 

4. Utilization of Abstraction Spaces in Planning 

To take advantage of the hierarchical planning approach offered by the 

use of abstraction spaces, the ABSTRIPS system--whose flow of control is 

shown in Fig. l m h a s  a recursive executive r,~'ograrn. This program accepts 
two parameters. The first is a criticality value indicating the abstraction 

space in which planning is to occur. The second is a list of nodes from the 

search tree in the higher space, representing a skeleton plan. When a new 

problem is posed to ABSTRIPS, the external interface program sets the 
preconditions of a dummy operator to the goal wiT. The domain's maximum 

criticality, which was determined when criticalities were assigned, is retrieved. 

The executive !s called with the criticality set to the maximum and the skeleton 
consisting of  the dummy operator. 

Within the highest abstraction space, the executive plans to achieve the 

preconditions of  the dummy step in the skeleton plan, i.e,, the main  goal. 

When a plan is found, the executive computes the criticality of  the next 

lowest space in which planning is needed, and it builds a skeleton of  nodes 

along the path of  the successful plan. The executive then invokes itself 
recursively. The new invocation solves in turn the subproblems of bridging 

the gaps between steps in the skeleton plan and of  ensuring that the steps 

in the skeleton plan are still applicable at the appropriate points in the new 

plan. The final steo in the skeleton is always the dummy operator, and so the 

final applicability check ensures that the orig';nal goal has been reached. 

When all subproblems have been solved, the executive invokes itself for 

planning in a still lower space. This recursion continues until a complete 

plan is built up in the problem space itself. 
This search strategy might be termed a "length-first" search. It pushes 

the planning process in each abstraction space all the way to the original 

goal state before beginning to plan in a lower space. This enables the system 

to recognize as early as possible the steps that would lead to dead ends or 

very inefficient plans. 
If any subproblem in a particular space cannot be solved, control is 

returned to the process in its abstraction space. The search tree is restored to 

its state prior to the selection of the node that led to failure in the ground 

space. That node is eliminated from consideration, and the search for a 

successful plan at the higher level continues. 
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This failure mechanism is analogous to the automatic backtracking 

feature of the PLANNER language [5]. It has the major defect that when 

a failure of a lower level process is reported, the process and the context 

in which the failure occurred are no longer around for analysis. Sc, ABSTR!PS 

relies heavily on beiag able to produce good plans at the highest level. 

This requirement has led to two modifications to the sean:h algorithm 

originally employed by STRIPS. The first is an alteration of t~ e evaluation 

function used to select which node in the search tree to expand r.ext. STRIPS 

emphasizes the estiwated cost of  achieving the goal from the given node and 
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de-e'-.~phasizes the cost of  arriving at the node from the initial state. Thus, 

it has a tendenc~ to find a slightly longer plan quickly, rather than the cheapest 

plan more slowly. But each extra step in a high abstraction space is likely 

to lead to many extra steps in the corresponding plan in the problem space. 
Thus, for ABSTRIPS, the evaluation function has itself been made a function 
of the level of  abstraction. At the highest level, ABSTRIPS gives equal weight 

to the cost of  reaching a given node and to the estimated cost of  reaching 
the goal from that node. This evaluation function changes incrementally as 

the level of abstraction decreases, until it reaches the old STRIPS functf, on 

at the level of  the problem space. 

The second modification involves postponing the selection of one among 
several equivalent instances of a relevant operator. During the process of  

selecting relevant operators to reduce a particular difference, a oartial 

instantiation of  the operators' parameters may occur. For example, i f  the 

difference were that the robot was not in Room 3, then the operator "Go  
through a door into a room" might be selected and ins~antiate, d to "Go, 

through a door into Room 3". The preconditions of  this operator would 

then be analyzed by the theorem prover to determine which door to choose. 
If  several choices seem equally good to STRIPS (inC., the states in which the 

various choices can be applied are equally difficult to reach), then it would 
arbitrarily pick a door. 

For ABSTRIPS, alternative instantiations in an abstraction space might 

appear equivalent, and yet one choice might be substantially superior when 

further details are considered. So ABSTRIPS defers its decision when more 

than one equivalent "best choice" of a r,,~levant operator is found. The 

partially instantiated rele:~ant operator (e,.g., "Go  throJgh a door into 
Room 3") is used in planning. When subsequent analysis irt a lower abstrac- 

tion space reveals a preferred instantiation, that instantiatlon is then choser... 

If this selection should eventually lead to failure, "the ether insta.ntiations 
can still be chosen through the backtracking mechanism. 

In summary, hierarchical planning using abstraction spaces in a "length- 

first" search technique postpones exte~lding the search tree through the levels 

concerned with the detailed preconditions of an operator until it knows that 

doing so will be highly effectual in reaching the goal (b.'.cause the operator 

lies along an almost certainly successful path). By avoiding work en fruitless 

branches of the search tree, the technique achieves significant efficiencies in 

the formulation of  complex plans. 

5. Examples of ABSTRIPS'  Performance 

To clarify the issues raised and tb~ way in which the AF~STRIPS system works, 

the system's performance is traced thro=~gh some examples below. The 
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ABSTRIPS system consists of some 370 INTERLISP functions, which run 
as compiled code on a PDP-10 computer. All the examples presented were 
drawn from the environment of the Stanford Research Institute mobile 
robot. The domain consists of seven rooms interconnected by doorways. 
Operators have been defined that model the robot's ability to navigate to 
any object or location within a room, to push boxes within a room or through 
a doorway, to navigate through.a doorway, to block a doorway using a box, 
and to unblock a doorway. In addition, fictitious operators have been defined 
to model the opening and closing of doors; these actions are beyond the 
robot's capabilities. In all, 167 predicate calculus wffs have been defined as 
axioms to model the robot domain. 

The definition of the domain is essentially identical to the one used for 
the examples in the latest report on the STRIPS system [3]. 

5.1. Definition of abstraction spaces 

To enable the system to assign criticality values properly to the literals of the 
preconditions of the operators, two additional axioms, representing laws 
about the world, were included in the world model: 

(Vx)PUSHABLE(x) ~ TYPE(x, OBJECT) 
and 

0/x)STATUS(x, CLOSED) - 7STATUS(x, OPEN). 

The criticality determination algorithm required approxih~,a~.=.i: five 
minutes of running time. The resulting operator descriptions ::re listed 
below. The number in braces preceding each literal in the precondition wffs 
represents the criticality of the literal. The literal will appear in the pre- 
condition in abstraction spaces of cciticality less than or equal to the number 
in braces. 

GOTOB(bx) Go to object bx. 

Preconditions: {6}TYPE(bx, OBJECT),(3rx)[{5 }lNROOM(bx, rx) ^ 
{ 5 }INROOM(ROBOT,rx)] 

Deletions: AT(ROBOT,$1,92),NEXTTO(ROBOT,$ i) 
Additions: *NEXTTO(ROBOT, bx) 

GOTO(dx) Go te door dx. 

Preconditions: { 6 } TYPE(dx,  DOOR ),(3rx)(3ry) [{5}INROOM(ROBOT,rx) 

^ {6}CONNECTS(dx,  rx, ry)] 
Deletions: AT~ROBOT, $1, $2),NEXTTO(ROBOT, $ !) 
Additions: *NEXTTO(ROBOT, dx) 

GOTOL(x,y) Go to coordinate location (x,y). 

Preconditions: (3rx)[{5}INROOM(ROBOT,rx) ^ 

{6}LOCINROOM(x,y,rx)] 

drtificial ll~telligence 5 (1974), 115-135 



P L A N N I N G  IN A HIERARCHY GF ABSTRACTION SPACES 125 

Deletions: AT(ROBOT,$ I, $2),NEXTTO(ROBOT, $1) 
Additions: *AT(ROBOT,x,y) 

PUSHB(bx,by) Push bx to object by. 

Preconditions: {6 }TYPE(by,OBJECT),{6~/PUSHABLE(bx), 
{ l }NEXTTO(ROBOT,bx) , (3rx)[{5IINROOM(bx,  rx) ^ 

{5}lNROOM(by,rx) ^ {5}INROOM(ROBOT, rx)] 
Deletions: AT(ROBOT,$1,$2),NEXTTO(ROBOT, $1), 

AT(bx, $1,82),N EXTTO(bx, $1 ),N EXTTO($ I ,bx) 
Additions: *NEXTTO(by ,bx) ,*NEXTTO(bx ,  by) ,NEXTTO(ROBOT~bx) 

PUSHD(bx,dx) Push bx to door dx. 

Preconditions: {6} PUSHABLE(bx),{6}TYPE(dx,DOOR), 
{ 1 }NEXTTO(ROBOT,bx), 
(3rx)(3ry)[{5 }INROOM(ROBOT,rx) A 
{5}lNROOM(bx,rx) A {6}CONNECTS(dx,rx ,  ry)] 

Deletions: AT(ROBOT,$1,$2),NEXTTO(ROBOT,$1), 
AT(bx, $1,82) ,N EXTTO(bx, $1 ),N EXTTO($1 ,bx) 

Additions: *N EXTTO(bx ,dx ) ,NEXTTO(ROBOT,bx)  

PUSHL(bx,x,y) Push bx to coordinate location (x,y). 

Preconditions: {6}PUSHABLE(bx),{ I } NEXTTO(ROBOT,bx), 
(3rx)[ { 5} INROOM(ROBOT,rx)  ^ 

{5}INROOM(bx, rx) A {6}LOCINROOM(x,y,rx)] 
Deletions: AT(ROBOT, $1, $2),N EXTTO(ROBOT, $17, 

AT(b:,:, g 1, $2),NEXTTO(bx, $1 ), NEXTTO($1 ,bx) 
Additions: * AT(bx,  x , y ) ,NEXTTO(ROBOT,  bx) 

GOTHRUDR(dx, rx) Go through door dx  into room rx. 

Preconditions: {6}TYPE(dx, DOOR), {6}TYPE(rx, ROOM), 
{2 }STATUS(dx, OPEN),(3ry)[{5} INROOM(ROBOT,o9 ^ 
{6 }CONNECTS(dx,ry,rx)] 

Deletions: AT(ROBOT, $1, $2),NEXTTO(ROBOT, $1), 
INROOM(ROBOT,$1) 

Additions: *INROOM(ROBOT,rx) 

P U S H T H R U D R ( b x ,  dx, rx) Push bx  through door dx  into room rx. 

Preconditions: {6} PUSHABLE(bx),{6 }TYPE(dx, DOOR), 
{ 6 } TYPE(rx, ROOM), { 2 } STATUS(dx, OPEN), 
{ 1 }NEXTTO(bx,dx), { 1 }NEXTTO(ROBOT,bx), 
(3ry)[{5}INROOM(bx, ry) A {5}INROOM(ROBOT,ry) A 
{6 }CONNECTS(dx,ry, rx)] 

Deletions: AT(ROBOT, $1, $2),NEXTTO(ROBOT,$ !), 
AT(bx, $1, $2),NEXTTO(bx, $ I),NEXTTO($1 ,bx), 
]NROOM(ROBOT,$1 )JNROOM(bx, $1) 
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Additions: *INROOM(bx, rx),INROOM(ROBOT, rx), 
NEXTTO(ROBOT, bx) 

OPEN(dx) Open door dx. 
Preconditions: {6}TYPE(dx, DOOR),{5}STATUS(dx, CLOSED), 

{5 }NEXTFO(ROBOT,dx) 
Deletions: STATUS(dx, CLOSED) 
Additions: *STATUS(dx,OPEN) 

CLOSE(dx) Close door dx. 
Preconditions: {6 }TYPE(dx, DOOR),{ 5 } STATUS(dx,OPEN), 

{ 5 } NEXTTO(ROBOT,dx) 
Deletions: STATUS(dx, OPEN) 

Additions: *STATUS(dx,CLOSED) 

Note: The addition clauses preceded by an asterisk are the primary additions 
of the operator. When STRIPS or ABSTRIPS searches for a relevant 
operator, it considers only primary addition clauses. 

5.2. A detailed sample problem 

Fig. 2 depicts the initial model that was defined for this problem. The robot 

is in Room RRIL. The door between RRIL and RCLK is closed. BOXI 

DMYSRAM 
MYS - ORAMHAL 

l DMYSPDP ][ DRAMCLK 

RPDP DPDPCLK [t 
n BOX3 II 

RHAL 

OBOT 

RRIL 

FIG. 2. Initial state for the sample problem. 

MYs I R I 
I ROBOT DMYSRAM 
] DUNIMYS DRAMHAL 

, ~DMYSPDP = = ~ A M C L K  

T 
| l J  DCLKRIL 

I:;:: f'--I ,. ,., BOX3 [[ 

RHAL 

RRIL 

Fro. 3. A state in which the goal of the 
sample problem is satisfied. 

and BOX2 are both in RPDP. The problem is for the system to plan to 

achieve a state in which the two boxes are next to one another and the robot 
is in Room RUNI,  as in Fig. 3. The goal wfffor this problem is: 

NEXTTO(BOXI,BOX2) ^ INROOM(ROBOT,  RUNI). 

STRIPS was able to solve this problem without using abstraction spaces. 

However, its solution required the exploration of  119 nodes in the search 

tree, only 23 of  which were on the successful path. This exploration took 
over 30 minutes of  computer time. Fig. 4(a) depicts the search tree. 
Artificial Intelligence 5 (1974), 115-135 
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(a) STRIPS SEARCH TREE FOR THE SAMPLE PROBLEM Ib) ABSTRIPS SEARCH TREE iN THE SPACE OF 
CRITICALITY 6 

/ / 

(C~ ABSTRIPS SEARCH TREES (d~ ABSTRIPS SEARCH TREES (e) ABSTRIPS SEARCH TREES 
IN THE SPACE OF IN THF. SPACE OF IN THE PROBLEM SPACE 
CRITICALITY 5 CRITICALITY 2 

FiG. 4. Search trees for the sample problem. 

ABSTRIPS first examined the problem in an abstraction space in which 

the only precondition clauses considered wele those whose truth value could 

never be altered by the robot. The difference between the initial state and 

the goal state was computed. The difference was the goal wff itself. Five 

relevant operator instances were computed. The first c f  these, PUSHB(flOX2, 

BOX l), was examined. Its precondition wff in this abstraction space was true 

in the initial state; so the operator was applied. This resulted in a new state 

in which the robot, BOX l, av.:' BOX2 were next to each other. The difference 

between this state and the goal state was computed and found to be 

INROOM(ROBOT,  RUNI).  Two relevant operator instances were found, 

and the first, G O T H R U D R ( P a r l 2 , R U N I ) ,  was examined. (Par l2  is an 

uninstantiated parameter.) Its precono~tion wff in this abstraction space, 

T Y P E ( R U N I , R O O M )  ^ TYPE(Par I2 ,DOOR)  

^ (3ry)CONNECTS(Parl  2,ry, RUN i), 
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was satisfied when Par l2  was instantiated to D U N I M Y S .  So 

G O T H R U D R ( D U N 1 M Y S ,  R U N I )  

was applied, and this generated a state in which the goal wff was true. 

Fig. 4(b) depicts the search tree in the highest abstraction space. The posi- 

tioning of  the nodes suggests the correspondence to the nodes in the STRIPS 

search tree. 

A skeleton plan was built consisting of  the nodes at which the two operators 

were applied. The plan was: 

PUSHB(BOX2,BOX1), G O T H R U D R ( D U N I M  YS,RUNI).  

Planning then began in the space of  criticality 5. 

The first subgoal was the precondition wff in this abstraction space of  the 

first operator, PUSHB(BOXI,BOX2).  The difference between the initial 

state and the one in which the wff was true was INROOM(ROBOT,  RPDP).  

Operator instances relevant to reducing this difference were 

G O T H R U D R ( P a r i 7 , R P D P )  and P U S H T H R U D R ( R O B O T ,  Par20,RPDP).  

The precondition wffof the  first was tested, but it was not completely satisfied. 

There were still differences INROOM(ROBOT,  RMYS) or I N R O O M  

(ROBOT, RCLK)  before G O T H R U D R ( P a r I 7 , R P D P )  could be applied 

(i.e., the robot was not yet in a room adjoining RPDP). The P U S H T H R U D R  

operator was completely inapplicable because the robot is not a pushable 
object. 

Then ABSTRIPS tried to reduce th, differences that would render 

G O T H R U D R ( P a r I 7 , R P D P )  applicable. Four relevant operators were 

found. The first was GOTHRUDR(Par22 ,RMYS) ,  and its precondition wff 

was not satisfied either (the robot was not in a room adjoining RMYS). The 

second relevant operator was GOTHRUDR(Par22 ,RCLK) ,  and its pre- 

condition wff was satisfied when Par22 was instantiated to DCLKRIL.  So 

G O T H R U D R ( D C L K R I L , R C L K )  was applied, producing a state in which 

G O T H R U D R ( D P D P C L K , R P D P )  was applicable. That operator was 

applied, producing a state in which the initial subgoal, the precondition wf fo f  

PUSHB(BOX2,DOXI),  was true. The PUSHB operator  was then applied. 

Then a new subgoal was set up, i~1 which the preconditions of  

G O T H R U D R ( D U N I M Y S , R U N I )  in this space were true. The difference 

between the current state and the subgoal state was INROOM(ROBOT,  

RMYS). GOTHRUDR(Par27 ,RMYS)  was selected as a relevant operator,  

and its preconditions were satisfied when Par27 was bound to DMYSPDP.  

So G O T H R U D R ( D M Y S P D P ,  RMYS) was applied, producing a state in 

which the subgoal was satified. The operator assocmted with this subgoal, 

G O T H R U D R ( D U N I M Y S , R U N I ) ,  was applied, and the goal state was 

again reached. Fig. 4(c) shows the search trees in this space. 
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The following new skeleton plan was built up: 

G O T H R U D R ( D C L K R I L , R C L K ) ;  GOTH R UDR (DPDPC L K,R PDP) ;  

PUSHB(BOX2,BOXI); G O T H R  U DR(DMYSPDP,  RMYS); 

GOTHRUDR(DUNIMYS,RUNI) .  

The planning process was then reinvoked in an abstraction space of  criticality 
2. 

The first subgoal, the precondition wff of the first step in the skeleton plan, 

G O T H R U D R ( D C L K R I L , R C L K ) ,  was not satisfied in the initial model. 
The difference was STATUS(DCLKRIL,OPEN).  An analysis showed that 

it could be eliminated by applying GOTOD(DCLKRIL)  and then OPEN 

(DCLKRIL).  This resulted in a state that satisfied the first subgoal. So 

G O T H R U D R ( D C L K R I L , R C L K )  was applied. 

Each of  the remaining subgoals of  the process in this abstraction space 

were immediately satisfiable, and so each step of  the skeleton plan was 
applied in turn, resulting in a state in which the original goal was satisfied. 

The skeleton plan produced was GOTOD(DCLKRIL) ;  OPEN(DCLKRIL) ,  

followed by all the steps of  the previous skeleton plan. Fig. 4(d) shows the 
search trees in this space. 

Finally, planning took place in the ground space, the space including 

!iterals of criticality 1. The first three steps of the skeleton plan were applied 
in turn. But the preconditions of  GOT HR UDR (DPDPC L K,R PDP)  were 

not satisfiable in a state in which the robot had just come through DCLKRIL.  

The difference was NEXTTO(ROBOT, DPDPCLK),  and analysis indicated 
that it could be eliminated by applying GOTOD(DPDPCLK),  enabling 

G O T H R U D R ( D P D P C L K , R P D P )  to be applied. 

The next subgoal, the preconditions of PUSHB(BOX2,BOXI), was not 
satisfied at this point. The difference was NEXTTOCROBOT,BOX2), which 

could be elimir,~v.~.,:d by an application of the first relevant operator selected, 
GOTOB(BOX2). After PUSHB(BOX2,BOXI) was applied, the next two 

subgoals failed because the robot was not next to the appropriate door. An 

analysis similar to the one that occurred with DPDPCLK was performed, 

enabling ABSTRIPS to finish the plan with an operator to go to and an 

operator to go through DMYSPDP and DUNIMYS. 
Note that the planning in this space is just as if STRIPS were given seven 

small problems to solve consecLtively, without the benefit of MACROPS. 

qhe search trees for the sround space are shown in Fig. 4(e). "l'he entire 
planning process for ABSTRIPS produced 60 nodes, 54 of which were on 

the successful path in one space or another. This process required 5 : 28 of 

computer time. This is less than one-fifth of  the time required by the non- 

hierarchical STRIPS. 
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FiG. 5. Planning t ime as a funct ion  o f  plan length. 

5.3. Other examples 

The set of  tasks from the most recent report on STRIPS [3] was run on 

ABSTRIPS. The running times and the search trees are compared with those 

from the STRIPS system in Table 1. Fig. 5 plots the planning time as a 

function of  plan length for STRIPS and ABSTRIPS on an extended set of  

problems from the robot domain. 

6. Further Implications of the Use of Abstraction Spaces in 

Planning 

This paper has shown how the representation ~f a problem domain as a 

hierarchy o f  abstraction spaces dramatically improved the performance of  

a problem solver. This section briefly considers the implications o f  such a 

hierarchical represc at ion for some other problem areas in robotics and 

problem solving. 

6.1. Learning task-specific knowledge 

General-purpose problem solvers have tended to be weak problem solvers. 

Because the heuristics they use to guide the scarch through the problem 

space must be generally applicable, they are not especially powerful in any 

particular task domain. On the other hand, special purpose programs to 

solve problems in a particular domain have be~n notably successful. The 

HEURISTIC D E N D R A L  program [I] and the game playing programs 

display far more problem-solving power in their particular domains of  

competence than a general purpose problem solver could muster. This 

competence is derived to a largc degree from the great amount o f  task- 

specific knowledge that has been incorporated into their search heuristics. 
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Unfortunately, whi!e these special purpose programs display intelligent 

behavior within their limited domain, they are worth little in any other 

domain. Can a more generally intelligent system be constructed that,  when 

presented with task-specific knowledge (basic to which is the description 

of the problem domain), can incorporate that knowledge into its search 

heuristics ? 

The process of automated definition of abstraction space offers a possible 

approach. By applying a general purpose problem solver to a particular 

domain in the most general manner described in Section 3, a task-specific 

detail hierarchy can be built up. The ability of  a system to discriminate 

important considerations from mere details is an important aspect of  task- 

specific knowledge. 

A further aspect of task-specific knowledge is the facility for negotiating 

those areas of  the search space that are easily traversible, in the hierarchical 

representation framework, easily traversible areas correspond to sub- 

problems of achieving details, once the more critical aspects of a problem 
have been solved. 

The ABSTRIPS system determines that a given literal is a detail when it 

has built a small plan to achieve a state in which it is true. That smal'  alan 

can be saved as a MACROP,  to be used as the first-choice relevant operator  

whenever the detail needs to be achieved. The relatively small number  of  

MACROPs  formed in this way, when added to the set of  basic operators,  

constitute a basic body of knowledge about how to solve problems in a 
particular task domain. 

6.2 Planning with multiple outcome operators 

The use of  a hierarchical representation can greatly simp!ify the process of  

creating conditional plans, plans with information gathering operators, and 

plans with loops. This is because the outcomes of  these operators are un- 

ce.'tain only to a particular level of  detail. Thus, in a higher abstraction space 

a simple specification can adequately model the preconditions and effects 

of the operators, although some of the effects may have to be described in 

terms of  uninstantiated parameters. A drawback to this approach is that, 

as noted in Section 3, the mapping of  plans among spaces becomes difficult 

when the effects of  operators are abstracted. Nevertheless, the simplicity 

of  representation of  these rather complex operators renders this scheme 
attractive. 

As an example, in planning to drive to the airport to catch a plane, one 

would use a "Park  the car"  operator. Such an operator might have the 

effect of  " 'If Lot A is not full, park inside Lot A. Else if Lot B is not full, 

park inside Lot B. Else drive around, and then park the car."  If  one plans 

at a high level of  abstraction to drive to the airport, he does not consider the 
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"Park  the car"  operator in its full complexity. Rather. he considers an 

image of the operator in an abstraction space in which no uncertainties exist. 

It might have the simple precondition AT(CAR,AIRPORT)  and might 

cause the clause PARKED-IN-LOT(CAR,Paramete r  37) to be added to 

the model. Further planning could continue without considering as separate 

cases states in which PARKED-IN-LOT(CAR,LOT A) or PARKED-IN-  

LOT(CAR,LOT B) were true. 

6.3. An integrated robot system 

A primary motivation for building the STRIPS system, and its offspring 

ABSTRIPS, was to build plans for a mobile robot. In the Stanford Research 

Institute robot system, the operator descriptions are models for actions 

that the robot can actually take. The actions modeled are termed "inter- 

mediate level actions" (ILAs). When they are executed, they invoke "low 

level actions" (LLAs), which are coi~cerned with initiating and monitoring 

motion of  the robot. These routines in turn pass commands to, and receive 

information from, a program in a PDP-15 computer, which communicates 

with the robot itself via a radio link. 

The ground space as viewed by ABSTRIPS is in fact just another abstrac- 

tion space from the point of view of  plans built up from basic operations at 

lower levels. The problem solver can be extended to handle successively 

finer levels of  detail until a ground space is reached in which the only remain- 

ing details are to roll the robot around. This offers the enticing possibility 

of  a fully integrated planning and execution system. But the interaction of  

planning and execution would require that the plans that such a system built 

be different from the traditional form of plan ouilt by problem solvers. 

For a system that deals with complex problems in a real world, as opposed 

to a simulated one, it is undesirable to solve an entire problem with an 

epistemoiogically adequate plan. There are too many reasonably likely 

outcomes for each real-world operation. The number of hypothetically 

possible states of  the world attainable by a particular plan will grow exponen- 

tially with the length of the plan. Most of  the effort of  such a system would be 

spent reasoning about world states that ~,ould never be achieved, and very 

little of it would be spent moving the robot toward its goals. 

It is desired that the system's planning effort~" focus on reasoning about  

states of  the world that are likely to be traversed in the course of  robot 

execution. Thus, the overall plarming should be roughed out in an abstraction 

space that ignores enough levels of detail so that the rough plan is fairly 

certain to succeed. 

A few steps of  the plan can be used as a skeleton, to which more detailed 

steps are added in a manner similar to ABSTRIPS. These new steps are fairly 

certain to succeed at the level of  detail to which they are specified. Even more 
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detailed steps can be filled in for the beginning portion of this subplan, and 

the process can continue until a short subplan of  low-level robot commands 

is built. These can be executed in sequence. Any deviations between the actual 

state of  the world and the hypothesized results of  the subplan will hopefully 

be mere details to the space that is an abstraction of  the robot commands.  

Thus, the remaining steps of  the plan in this space, as well as all higher spaces, 
are still on the solution path. 

Further building and extending of  the various subplans can then take 

place, including a new bottom-level subplan to move the robot. This subplan 

will accurately reflect the precise results of  previous execution, and so it 

will be fully appropriate for achieving the ultimate goal. The process of  

altexnatively adding detailed steps to the plan and then actually executing 

some steps can continue until the goal is achieved. 

If a grievous failure occurs at some point in execution and nondetails in 

higher models no longer reflect the actual state of  the world, subplans at 

affected levels of  detail can propagate the failure up to an abstraction space 

in which the deviation from the predicted world model was a detail. Re- 

planning can be initiated from this level of  abstraction, thus reusing the 
results of  as much as possible of  the previous planning. 

Therefore, by using a hierarchy of abstraction spaces to mask uncertainties 

in the real world effects of  planned operations, an effectively integrated robot 

planning and executing system can be created. By dealing with a hierarchy 

of  short, simple plans, such a system will be able to cope effectively with 
truly complex problems. 
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