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Abstract

Many current and potential Al applications are in-
tended to operate in dynamic environments, including
those with multiple agents. As a result, standard Al
plan-generation technology must be augmented with
mechanisms for managing changing information, for
focusing attention when multiple events occur, and
for coordinating with other planning processes. The
DIPART testbed (Distributed, Interactive Planner’s
Assistant for Real-time Transportation planning) was
developed to serve as an experimental platform for an-
alyzing a variety of such mechanisms. In this paper,
we present an overview both of the DIPART system
and of some of the methods for planning in dynamic
environments that we have been investigating using
DIPART. Many of these methods derive from theoret-
ical work in real-time AI and in related fields, such as
real-time operating systems.

Introduction

Many current and potential AI applications are in-
tended to operate in dynamic environments, including
those with multiple agents. An important example is
crisis action planning, which is typically a distributed
process, involving multiple planners each tasked with
forming plans to meet some subset of the overall mis-
sion objectives. During planning, changes that occur in
the world can affect the quality of the plans being cre-
ated. When planning and execution are interleaved, as
they often must be in crisis situations, changes can also
affect the quality of plans whose execution has already
begun. To operate in such environments, standard Al
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plan-generation technology must be augmented with
mechanisms for managing changing information, for fo-
cusing attention when multiple events occur, and for
coordinating with other planning processes. In the DI-
PART project, we have been concerned with the de-
velopment and analysis of such techniques. Many of
the techniques we have explored derive from theoreti-
cal work in real-time Al and in related fields, such as
real-time operating systems.

To support our research on plan generation in dy-
namic, multi-agent environments, we built DIPART—
the Distributed, Interactive Planner’s Assistant for
Real-time Transportation planning. DIPART is a pro-
totype simulation system that includes a network of
agents, each of which assists a human planner, and
a simulated dynamic environment, which implements
the Pacifica NEO scenario (Reece et al. 1993). In this
paper, we present an overview both of the DIPART
system and of some of the methods for planning in
dynamic environments that we have been investigat-
ing using DIPART. Due to space limitations, we can
only provide a brief introduction to each piece of re-
search; however, we include pointers to more detailed
references throughout this paper.

The DIPART System
System Overview

The DIPART system consists of a network of commu-
nicating nodes each assisting a human planner, plus a
simulated environment. The underlying idea is that
each planner has responsibility for forming and over-
seeing the execution of some set of plans that are car-
ried out in the (simulated) environment. Each planner
may have only a restricted view of the environment
and of the activities of the other planners; although
cooperation among the planners may be desirable, it
is not antomatic. Figure 1 illustrates the overall sys-
tem architecture, highlighting the internal architecture
of a single node. Because each node performs the role
of an intelligent assistant, we sometimes refer to the
nodes as “agent processes”.

The internal architecture of each DIPART node is
based on a generic model of process scheduling, similar
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Figure 1: DIPART Arxchitecture

to those found in the literature on operating systems
(Tannenbaum 1992). Incoming messages are stored on
a Message Quene (MQ), and indicate events that may
require attention. Often the value of responding to a
particular message is time dependent. Thus, a mech-
anism is needed to determine what processes should
be invoked in response to each message, and to sched-
ule the selected processes. In our model, the module
that makes these decisions is the Locus of Meta-Level
Control (LMC); it is responsible for invoking various
(object-level) processes, which we call Reasoning Mod-
ules (RMs). The RMs include a resource estimator,
which estimates the amount of computational and ex-
ternal resources required for a given task, a planner,
which computes plans to achieve specified goals, and
an execution monitor, which tracks the performance of
plans.

As shown in the figure, the LMC performs its task by
posting entries in a Schedule of Computation (SOC).
These entries include information about which RM to
invoke, the input to that process, the invocation dead-
line (i.e., the time after which the system should no
longer bother to invoke the process), and, in some cir-
cumstances, the amount of time to allocate to the pro-
cess in question. A process controller, called the Rea-
soning Modules Manage (RMM) reads entries from the
SOC and then invokes the appropriate process. Indi-
vidual processes may also generate messages if foliow-
on computation is needed. A global database stores
information that can be used by both the LMC and
the object-level processes.

In addition to the agent nodes, DIPART includes
a simulator which has been tailored to Pacifica NEO
scenario, described below. It runs as a separate pro-
cess in the overall DIPART system. It represents the
“actual” state of the world; in contrast, the models of
the world kept by individuals agents may be limited or
may become out-of-date, as they are intended to rep-

resent the views that the agents currenily have, given
the information they have so far received. The simula-
tor is designed to allow modeling of resource allocation
to agents.

The DIPART system has been implemented on
DECStation 5000 workstations, under Ultrix 4.3, us-
ing Allegro Common Lisp and the Garnet interface-
development system. Each of the agent nodes runs on
its own processor, as does the simulated environment.
Within each node, the LMC runs in one thread, and
the RMs in another. A communication package based
on UDP has also been implemented to support inter-
node communication.

The Pacifica Scenario

To ground our research, we employ the Pacifica
NEO scenario, developed by Reece and Tate for the
RL/ARPA Planning Initiative as part of the PRECIS
environment (Reece et al. 1993). This scenario in-
volves the fictional island nation of Pacifica, on which a
number of U.S. citizens are located. The island has var-
ious natural and man-made features, including cities,
an airport, bridges, roads, and a volcano. Because of
an expected uprising, the citizens need to be evacuated.
For this, they must first be brought by truck to the cap-
ital city, where the airport is located. Evacuation can
be complicated by unexpected road or bridge closings,
either as a result of natural forces, e.g., a volcano, or
hostile human forces; it can also be complicated by the
fact that the citizens may be scattered around the is-
land, and must themselves get to major cities before
being taken by truck to the capital.

We assume that the NEO is to be planned and over-
seen by several human planners (typically, we run DI-
PART with between 2 and 6 planning nodes). Each
human planner is responsible for a different component
of the cperation; although the task may be divided in
various ways, we generally assign each planner the task
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of moving citizens from one city to the capital. The ex-
act number of citizens and their current location may
not be fully known to each planner. Each human plan-
ner is assisted by a DIPART node; the human submits
goals to the node, and can query the node for current
status information. The nodes are then responsible for
forming plans to satisfy the user’s goals, for coordinat-
ing communication with other planners, and for alert-
ing the user to reports from agents in the (simulated)
world.

Approaches to Planning

The key task performed by DIPART nodes is plan gen-
eration: human users input goals, such as evacuating
a certain number of citizens from some city, and the
DIPART node generates, dispatches, and monitors the
execution of a plan to carry out that goal. Conse-
quently, a central focus of our research has concerned
the development of efficient planning algorithms.

Control during Planning

Many current state-of-the-art planners make use
of partial-order causal link (POCL) algorithms
(McAllester & Rosenblitt 1991; Penberthy & Weld
1992). POCL planning involves searching through a
space of partial plans, where the successors of a node
representing partial plan P are defined to be the re-
finments of P. As with any search process, POCL
planning requires effective control; in POCL planning,
search control has two components. The first, node se-
lection, involves choosing which partial plan to refine
next. Most POCL algorithms use best-first search to
perform node selection. Once a partial plan has been
selected, the planner must then perform flaw selection,
which involves choosing either a threat to resolve (typ-
ically, by promotion, demotion, or separation) or an
open condition to establish (by adding a new step to
the plan or adding a new causal link to an existing
step). Unless it is impossible to repair the selected
flaw, new nodes representing the possible repairs are
added to the search space.

In (Joslin & Pollack 1994), we explored a flaw-
selection strategy, the Least-Cost Flaw Repair (LCFR)
strategy, which can be seen as a generalization of the
DUnf strategy that had been proposed by Peot and
Smith (1993). In LCFR, we define the repair cost of
any flaw—either threat or open condition—to be the
number of nodes generated as possible repairs. LCFR
is the strategy of always selecting a flaw with the low-
est possible repair cost at a given node. LCFR will
delay any threat that is unforced (repair cost > 1) in
favor of a threat that is forced (repair cost <= 1.) By
treating all flaws uniformly, LCFR also applies a sim-
ilar strategy to open conditions, preferring to handle
open conditions that are forced over open conditions,
or threats, that are not. Similarly, LCFR handles the
case in which all that remain are unforced threats: the
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Figure 2: Comparison of planner search spaces

LCFR strategy will select a threat with minimal repair
cost.

Our experimental assessment of LCFR demon-
strated that the power of DUnf does not come from
delaying threat repairs per se, but rather from that
fact that this delay has the effect of imposing a par-
tial preference for least-cost flaw selection. Our exper-
iments also showed that extending this to a complete
preference for least-cost selection, as in LCFR, reduces
search-space size even further. Details of the experi-
ments can be found in (Joslin & Pollack 1994). Here
we simply present the results of a key experiment, in
which we compared 5 search strategies on 49 test prob-
lems from a variety of domains. Figure 2 plots the per-
centage of test problems solved by each planner with
a fixed number of nodes examined. (Each point (z,y)
denotes that 2% of the 49 test problems were solved
by examining no more than y nodes.) As can be seen,
the LCFR-based planner outperforms any of the oth-
ers, including the two based on Peot and Smith’s DUnf
strategy.

As might be expected, the benefit of the LCFR
strategy is not without a cost: specifically, performing
least-cost flaw selection can incur a significant compu-
tational overhead. We therefore developed QLCFR,
which reduces this overhead by approximating repair
costs, and we demonstrated its effectiveness experi-
mentally. Again, complete details can be found in
(Joslin & Pollack 1994); subsequent work that builds
on the LCFR approach includes (Srinivasan & Howe
1995; Schubert & Gerevini 1995).

Cost-Directed Planning

The LCFR strategy described above is quite effective
for planning problems in which alternative solutions
to a planning problem are considered to be roughly
equal—an assumption that is, in fact, made in much of
the plan generation literature. In many domains, how-
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ever, this assumption is not warranted: for any given
planning problem, some solutions have lower execu-
tion cost, some are more likely to succeed, and so on.
To handle such cases, we developed a “cost-directed”
heuristic planner, which is capable of finding low-cost
plans.! The algorithm performs POCL planning, using
an A* strategy for node selection. The heuristic eval-
uation function is computed by a deep lookahead that
calculates the cost of complete plans for a set of pre-
defined top-level subgoals, under the (generally false)
assumption that those subgoals do not interact. In our
work so far, we have assumed that flaw selection is per-
formed randomly, leaving it to future work to explore
the question of which flaw selection strategies can best
be integrated into our approach.

In (Ephrati, Pollack, & Milshtein 1996), we show
that the cost-directed planning algorithm not only
leads to finding lower-cost plans, but in many circum-
stances it does this without negatively impacting the
efficiency of planning: in fact, it can lead to a sig-
nificant decrease in total planning time. This result
is due in part to the fact that generating plans for a
set of independent subgoals is exponentially less costly
than generating a complete plan taking interactions
into account(Korf 1987). At least in the limit, the cost
of forming plans for subgoals treated independently
does not significantly effect the computational com-
plexity of the complete planning problem. Moreover,
while focusing on lower-cost plans, the heuristic func-
tion effectively prunes the search space. Thus, the use
of the deep evaluation in node selection can outweigh
the marginal additional complexity. Our experiments
demonstrate that the advantages of cost-directed plan-
ning increase with the complexity of the planning prob-
lem, where this is measured in terms of the amount of
subgoal interdependence, the heterogeneity of the cost
of actions, the average branching factor, and the num-
ber of subgoals and length of the minimal-cost plan.

Constraint-Based Planning

Both of the strategies for controlling planning de-
scribed above build directly on a traditional POCL
style of planning. To a large extent, POCL planning
was originally motivated by an observation of the ad-
vantages of taking a “least-commitment” approach to
planning. Least-commitment planning involves post-
poning decisions until constraints force them to be
made. Any decision made when it is not forced is an
“early commitment.” POCL planning, as opposed to
the earlier, state-spaced planning, made it possible to
take a least-commitment approach to some decisions,
particularly to the ordering of plan steps. However,
POCL planners continue to rely to some degree on

1More generally, the algorithm could be applied to find
plans that satisfy any measure of quality, but for simplicity
we equated the quality of any plan with the sum of the
costs of the actions it includes.

early commitments for other decisions, including vari-
able binding, threat resolution, and choice of an oper-
ator to satisfy open conditions.

Because the least-commitment approach has, by and
large, been successful where it has been tried, an ob-
vious question is whether the least-commitment ap-
proach should be applied to every planning decision;
in other words, is early commitment ever a good idea?
An obstacle to addressing this question experimentally
arises from the way in which POCL planners man-
age decision-making. They take what we call a pas-
sive posiponement approach, choosing one decision at
a time to focus on, and keeping all the other, postponed
decisions (about how to achieve certain goals and how
to resolve threats) on an “agenda,” where they play
no role in the plan generation process until they are
selected for consideration. The items on the agenda
may in fact impose constraints on the plan being gen-
erated, but these constraints are not available to the
planning algorithm so long as the items remain on the
agenda. The fact that consiraints exist but are not al-
ways accessible makes it difficult if not impossible for a
POCL planner to be made more “least commitment”.
Postponing decisions until they are forced implies be-
ing able to recognize whether any decision is forced,
and this in turn implies that all the constraints that
might affect a decision must be available to (and must
be used by) the planning algorithm.

In response to these difficulties, we developed a new
approach to planning, called active posiponement, in
which even postponed decisions play a role by con-
straining the plan being generated. This technique has
been implemented in the Descartes system. The key
idea in Descartes is to transform planning problems
into Constraint Satisfaction Problems (CSPs) which
can then be solved by applying both planning and CSP
techniques. In general, a planning problem cannot be
transformed into a single static CSP, however; instead
it must be transformed into a dynamic CSP to which
new constraints and variables can be added during the
solution process. The dynamic CSP is then solved by
breaking it down into static CSPs, to which standard
CSP techniques may be applied.

As with the approaches discussed above, we have
conducted a number of experiments to explore the
power of constraint-based planning. These experi-
ments demonstrate that passive postponement—even
“smart” passive postponement, using a selection strat-
egy like LCFR—can result in significant performance
penalties. Further experiments show that it is worth-
while to extend the least-commitment approach much
further than has been done in prior work. These results
also suggest, however, that there are some fundamen-
tal limits to the effectiveness of the least-commitment
approach, and that sometimes early commitments can
increase planning efficiency. We have proposed a prin-
cipled approach to deciding when to make early com-
mitments in planning, based on an analysis of the on-
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going constraint processing: specifically, early commit-
ment is needed when the planning process is forced to
make what we call unrestricted expansions. Details
of the constraint-based planning approach, its imple-
mentation in Descartes, and the results of experiments
using Descartes can be found in (Joslin & Pollack 1995;
1996; Joslin 1996).

Meta-Level Control of Reasoning

As noted in the Introduction, planning in DIPART oc-
curs in a dynamic environment; often, one planning
problem will have to be interrupted so that attention
can be given to another planning problem. A cen-
tral focus of the DIPART project has thus been the
development and assessment of alternative strategies
for meta-level reasoning, i.e. deciding how to allocate
computational resources. Within the DIPART system
this task is performed by the LMC. The LMC must
decide what to do from messages that can arrive from
four different sources:

1. the human user, who posts a new goal to the system
or tells the system a new fact.

2. other nodes, which may be seeking information, or
may have information to share, or may have goals
that they would prefer to be handled by someone
else.

3. agents sitnated in the simulated world, who may
transmit a message to their supervising agent (i.e.
DIPART node) to report an unexpected change in
the environment.

4. reasoning modules within the node itself, which post
messages identifying information about tasks that
are in need of further processing by other RMs.

The problem of allocating reasoning resources is
sometimes called the deliberation-scheduling problem.
Previous approaches to deliberation scheduling in Al
include the use of off-line allocation of on-line de-
liberation time for tasks with known computational
demands (Greenwald & Dean 1994; Boddy & Dean
1989; Zilberstein & Russell 1996), and the application
of decision-theoretic estimations of optimal computa-
tional sequences (Russell & Wefald 1991). Heuristic
strategies have been proposed as well (Pollack 1992).

The deliberation-scheduling problem bears a strong
similarity to the problems of process scheduling
in real-time operating systems (Tannenbaum 1992),
job scheduling in operations research (Pinedo 1995),
and transmission scheduling in local area networks
(Nassehi & Tobagi 1987). Not all process- or job-
or transmission-scheduling algorithms are applicable to
deliberation scheduling, however. In particular, we re-
quire scheduling algorithms that are:

e on-line, i.e., construct schedules at run time;
e dynamic, i.e., support the random arrival of tasks;

e stochaslic, i.e., support tasks with random compu-
tation times; and
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o soft real-time, i.e., support the scheduling of tasks
that yield less than maximal value if completed after
some critical period.

Two simple and well-researched scheduling algo-
rithms are Earliest Deadline First (EDF) and Least
Slack First (LSF). These both incorporate deadline
information and consequently achieve better results
than algorithms that do not, such as First-in-first-out
(FIFO) and Round-robin (Jensen, Locke, & Tokuda
1985; Nassehi & Tobagi 1987). It is known that, for
a schedulable set of processes, i.e., one for which there
exists an opfimal schedule where all deadlines can be
met, EDF and LSF produce a schedule that meets all
deadlines, and hence performs optimally (Baker 1974).
However, the performance of these two algorithms de-
grades sharply when the system is saturated, i.e., it has
to deal with a non-schedulable set of tasks.

To schedule saturated job sets effectively, schedul-
ing algorithms must take into account the cost of
missing a deadline. This is particularly true when
there are trade-offs in the acceptance rate and the
deadline miss rate of tasks in the system. The en-
vironments of autonomous agents typically present
such trade-offs: it may well be worth missing the
deadlines for some tasks in order to achieve higher-
quality performance on other tasks. Such trade-offs
can be evaluated with the aid of value-density assess-
ment tools. The value density of any task % is de-
fined to be the value to the system of completing ¢
divided by its remaining computation time. Value-
density assessments are included in scheduling algo-
rithms such as Best-Effort (BE) and Dynamic-priority
(DP); previous research has shown that these algo-
rithms perform better than EDF and LSF in satu-
rated environments (Jensen, Locke, & Tokuda 1985;
Nassehi & Tobagi 1987).

We have explored the usefulness for deliberation
scheduling of the value-density measure and the algo-
rithms that rely on it. Specifically, we identified ap-
propriate candidate algorithms, conducted preliminary
experiments to compare their performance of these al-
gorithms, demonstrated a proof-of-concept use of these
algorithms for deliberation scheduling in the DIPART
system, and analyzed current limitations of the proof-
of-concept system, i.e., identified certain assumptions
that are made in the existing algorithms that must be
relaxed to support full-fledged deliberation scheduling.
In addition, we developed a modification of the Best
Effort algorithm that results in improved performance
for the DIPART job mix. Details can be found in (Ro-
nen 1995; Ronen, Mossé, & Pollack 1996).

Agent Communication
One addition research topic that centrally concerns
us is the specification of appropriate communication
and coordination strategies for multi-agent, dynamic
planning. We first briefly describe the communica-
tion package we have implemented to support com-
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munication among DIPART nodes, and then sketch
approaches to multi-agent planning that we have been
investigating.

Software Support for Communication

Communication among nodes in DIPART is built on
a group management model (Cheriton & Zwaenpoel
1985). Groups of processes (or, in our case, agents)
cluster into a single logical entity such that all commu-
nications sent by a member of the group are received by
all members of the group. Thus multi-process commu-
nication is achieved by a single operation rather than
by a series of operations to a (potentially unknown or
partially known) set of individual agents. Group op-
erations can take advantage of network-multicast ca-
pability, thus reducing communication overhead and
increasing concurrency.

Using a group management model, we have imple-
mented a set of communication primitives that enable
the basic group operations (e.g., form a group, dissolve
a group, join a group, leave a group, invite to a group,
and exclude from a group) and communication actions
(e.8., send, send and block, receive, group-cast, group-
cast and block, receive any, receive any and block).
Groups may have different structures, which determine
the relationship among group members. In a coord:-
nated group, the owner of the group must approve any
new members, while in peer groups, all new members
are accepted. There are also different group types: in
a private group, communication is restricted only to
the members of the group, while non-members may
send messages to public groups. We have also imple-
mented a group server, which maintains information
about the status and membership of each group, and
is responsible for synchronizing group actions. Addi-
tional details can be found in (Znati & Pollack 1994;
Lanzac 1993).

Load Balancing for Distributed Planning

The communications package can be used to support a
process of load balancing among the DIPART agents,
so that no agent falls behind as a result of having too
many responsibilities, while other agents sit idle. We
have investigated a range of load-balancing techniques
developed in the distributed operating-systems litera-
ture, focusing in particular on those that use dynamic
thresholds.

The purpose of dynamic thresholds is to give the
agent more flexibility to adapt itself to a changing en-
vironment. Consider a gift shop as an example: if
the shop receives a hundred customers in a regular
week day it is a busy day. However, if the shop re-
ceives a hundred customers just before Christmas, it
is not a busy day. Similarly, in a military applica-
tion, one wonld expect higher processing loads during
crisis situations than during routine, peacetime oper-
ations. Instead of determining e priori what is a high
load, dynamic load balancing evaluates the load of an

agent at running time according to the partial infor-
mation it possesses about the environment. As a con-
sequence, given the same amount of tasks to perform
the same agent may consider itself highly loaded or
lightly loaded depending on its estimation of the sys-
tem load. Dynamic thresholds are suitable in dynamic
environments when a system must avoid unnecessary
communications that would add an extra overhead to
an already overloaded system.

Another way to lessen communication laod is to em-
ploy selective unicasting. In load balancing, one faces
a trade-off between the cost of exchanging messages
and the necessity of having an information accurate
enough to provide efficient load balancing. When ini-
tiating load balancing an agent could send a message
to every other agent asking information about their
loads and wait for the answers before selecting the best
agent to balance with. However this classical scheme
has two drawbacks: it requires many messages to be
exchanged, and it is not fault-tolerant—it does not
include provisions for the case in which one or more
agents is unable to respond. In contrast, in selective
unicasting the messages concerning the exchange of
information about the load of the system are piggy-
backed to task balancing messages and therefore in-
duce almost no overhead. Also, the scheme is non-
blocking, and will not collapse should one or more
agents fail. However, selective unicasting with pig-
gybacking results in the agent being unable to access
complete information about the system’s current load.
Thus, each agent must estimate this information by
using data about the previous load history.

The load-balancirg algorithms we constructed were
implemented and subjected to experimentation to as-
sess their performance relative to a variety of al-
ternatives, including a broadcasting scheme; we also
studied the relative effectives of client-driven, server-
driven, and hybrid variants. We measnred two things:
throughput and efficiency, both of which were de-
fined in terms of the Pacifica scenario. For instance,
throughput was taken to be the ratio p/d, where p is
the number of passengers for whom tramsportation has
been requested, and d is the delay between the time of
the first goal submitted and the completion of the last
request. The throughput is given by the ratio p/d.

Details of the experiments, and complete results, can
be found in (Lauzac 1994; Lauzac & Znati 1995). The
most important result is that selective load balanc-
ing (hybrid) yields a good throughput, even compared
with load balancing with broadcast. When compared
with the lower bound, hybrid load balancing achieves a
performance 34% higher, client driven load balancing
achieves a performance 15% higher, and server driven
load balancing achieves a performance 11% higher.
Compared to the upper bound, selective load balanc-
ing performs only 7% worse, while using many fewer
messages. Thus it appears possible to achieve effective
load balancing by using dynamic thresholds, even if
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communication must be minimized.

Plan Merging The load-balancing work involves
agents sharing the work, but each individually forming
their own, more or less complete plans. Sometimes this
is feasible, but at other times, agents need to form par-
tial plans, which are then merged together. We iden-
tified four different types of situations in which some
merging may be needed. In the first, a group of agents
has to cooperatively achieve one common global goal.
In the second type of situation, due to time constraints,
execution of the plan is interleaved with the planning
process itself. In the third third, each agent has its
own private, individual goal. There is also a fourth
situation, in which planning and execution are inter-
leaved for a group of agents with private goals. The
DIPART scenario can be viewed either as an instance
of the second of the fourth type, depending on how
much knowledge each of the human planning agents
has about the plan for the overall mission.

For each of these situations, we described how a
global plan is constructed through the process of in-
crementally merging sub-plans. By making use of the
computational power of multiple agents working in
parallel, the process is able to reduce the total elapsed
time for planning as compared to a central planner. For
the case in which agents do not have complete knowl-
edge of the overall mission, we show how agents can
reach consensus about what multi-agent plan to carry
out using a voting procedure, without having to re-
veal full goals and preferences (unless that is actually
necessary for consensus to be reached). Our technique
also does away with the need to generate final alter-
natives ahead of time (instead, candidate states arise
at each step as a natural consequence of the emerg-
ing plan). The agents iteratively converge to a plan
that brings the group to a state maximizing the over-
all system utility. Details and experimental results can
be in (Ephrati, Pollack, & Rosenschein 1995; 1994;
Ephrati & Rosenschein 1994).

Multi-Agent Filtering In addition to plan merg-
ing, which involves explicit coordination among agents,
it is sometimes useful for agents to have a means of
achieving coordination implicitly. We have been in-
vestigating a strategy for implicit coordination called
maulti-agent fillering. It extends a single-agent strat-
egy, filtering, which was developed as a way of control-
ling reasoning in dynamic environments. The notion of
single-agent filtering derives from the work of Bratman
(Bratman 1987); it involves an agent committing to the
goals it has already adopted, and tending to bypass
(or “filter out”) new options that would conflict with
their successful completion (Bratman, Israel, & Pollack
1988; Pollack 1992; Pollack et al. 1994). We and oth-
ers have studied the effectiveness of filtering in domains
with various characteristics(Pollack & Ringuette 1990;
Kinny & Georgeff 1991; Pollack et al. 1994).
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Where single-agent filtering means tending to by-
pass options that are incompatible with an agent’s oun
goals, multi-agent filtering means tending to bypass op-
tions that are incompatible with any agent’s known or
presumed goals. We examined several forms of multi-
agent filtering, which range from purely implicit, in
which agents have rules of legal action that lead to
their avoiding conflict without ever reasoning explic-
itly about one another’s goals, to minimally explicit,
in which agents perform very shallow reasoning to as-
sess whether their actions are incompatible with the
likely intended actions of other agents. In no cases do
the agents engage in any explicit negotiation.

Our experimental results on the efficacy of multi-
agent filtering are presented in (Ephrati, Pollack, &
Ur 1995). The most interesting and surprising result
is that, at least for the simple, abstract environments
so far studied, multi-agent filtering is a dominant strat-
egy: no matter what proportion of the agents in some
environment choose not to filter, those that do filter
perform better,
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