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Abstract

This paper is about planning in stochastic domains by means of partially observable
Markov decision processes �POMDPs�	 POMDPs are di
cult to solve and approxima�
tion is a must in real�world applications	 Approximation methods can be classi�ed into
those that solve a POMDP directly and those that approximate a POMDP model by a
simpler model	 Only one previous method falls into the second category	 It approximates
POMDPs by using �fully observable� Markov decision processes �MDPs�	 We propose to
approximate POMDPs by using what we call region observable POMDPs	 Region ob�
servable POMDPs are more complex than MDPs and yet still solvable	 They have been
empirically shown to yield signi�cantly better approximate policies than MDPs	
In the process of designing an algorithm for solving region observable POMDPs� we also

propose a new method for attacking the core problem� known as dynamic�programming
updates� that one has to face in solving POMDPs	 We have shown elsewhere that the
new method is signi�cantly more e
cient that the best previous method	

Keywords� planning under uncertainty� partially observable Markov decision processes�
problem characteristics� policy trees� parsimonious coverings	



� Introduction

To plan is to �nd a policy that will lead an agent to achieve a goal in the fewest number
of steps possible	 When the environment of the agent� henceforth referred to as the world�
is completely observable and the e�ects of actions are deterministic� planning is reduced
to �nding the shortest sequence of actions that leads the agent to the goal	
In real�world applications� however� the world is rarely completely observable and

e�ects of actions are almost always nondeterministic	 For this reason� a growing number
of researchers concern themselves with planning in stochastic domains �e	g	 Dean and
Wellman ����� Cassandra et al ���� Parr and Russell �����	 Partially observable Markov
decision processes �POMDPs� can be used as a model for planning in such domains	 In
this model� nondeterminism in e�ects of actions is encoded by transition probabilities�
partial observability of the world by observation probabilities� and goals and criteria for
good plans by reward functions �see Section � for details�	
POMDPs are classi�ed into �nite horizon POMDPs and in�nite horizon POMDPs

depending on the number of time points considered	 In�nite horizon POMDPs are usually
used for planning since one typically does not know beforehand the number of steps it
takes to achieve a goal	 This paper is concerned with how to solve an in�nite horizon
POMDP	

��� Previous work

It is well known that in�nite horizon POMDPs can be approximated by �nite horizon
POMDPs to arbitrary precision �Section ��	 Discussions in rest of this introduction is
restricted to �nite horizon POMDPs	
When the world is fully observable� a POMDP reduces to a Markov decision process

�MDP�	 MDPs have been studied extensively in the dynamic�programming literature �e	g	
Puterman ����� Bertsekas ����� White �����	 Recent works have been concentrated on
how to deal with applications where the world can be in a large number of states �Dean
et al ����� Boutillier et al �����	
We are concerned with the partially observable case	 This case is considerably more

di
cult than the fully observable case for two related reasons	 Firstly� when the agent
knows exactly which state the world is currently in� information from the past � past
observations and actions � is irrelevant to the current decision	 This is the Markov
property	 On the other hand� when the agent does not fully observe the state of the
world� past information becomes relevant because it can help the agent to better estimate
the true current state of the world	 The problem is that the number of possible states of
past information increases exponentially with time	
Secondly� in MDPs the e�ects of an action are fully observed at the next time point	

In POMDPs� on the other hand� the e�ects of an action are not fully observed at the
next time point	 Hence the e�ects of the action is not separable from those of the agent�s
future behaviors	 To properly evaluate the e�ects of an action� one needs to consider the
agent�s possible future behaviors	 The problem is that the number of ways the agent can
behave in the future is exponential in the length of the remaining of the planning horizon	
Previous methods for solving �nite horizon POMDPs are usually classi�ed into exact
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methods and approximate methods �Lovejoy ����a�	 They can also be classi�ed according
to which of the above two di
culties they directly address	 Most previous methods address
the di
culty of exponential number of future behaviors and rely on the idea of selecting a
minimal subset of future behaviors to cover the set of all future behaviors in the following
sense� No matter what is known about the current true state of the world� there exists at
least one behavior in the subset that is optimal �Section �	 We call this class of methods
policy�oriented methods and they include the approaches by Sondik ������� Sondik and
Mendelssohn ������ see Lovejoy ����a�� Monahan ������� Cheng ������� Lovejoy �����b��
and Cassandra et al �����	 Other methods such as those by Platzman ������ see Lovejoy
����a�� and White and Schere ����� approximates the exponential set of past information
states by a subset and we call them information�oriented methods	
All the methods mentioned above solve POMDPs directly	 A recent approach by

Cassandar et al ������ approximates a POMDP by using an MDP and constructs an
approximate solution to the POMDP from the solution of the MDP	
All the methods that solve POMDPs directly quickly break down when the problem

size becomes large	 And MDPs are usually not good approximations of POMDPs	

��� Our idea

We make the following assumption about problem characteristics	 Even though an agent
who acts in a stochastic domain does not know the true state of the world� he should
often has a good idea about it	 When the agent get confused about the state of the world
sometimes� several information gathering steps should disambiguate the uncertainty	
Philosophically� one could not expect an agent to achieve any goal if the agent was

constantly lost about the state of the world and could not rectify the situation by gath�
ering information	 To justify the assumption by examples� consider robot path planning	
Observing a landmark� a room number for instance� would imply that the robot is at the
proximity of that landmark	 Observing a feature about the world� a corridor T�junction
for instance� might imply the robot is in one of several regions	 Taking history into ac�
count� the robot might be able to determine a unique region for its current location	 Also�
an action usually moves the true state of the world to only a few �nearby� states	 Thus
if the robot has an good idea about the current state of world� it should continue to have
a good idea about it in the next few steps	
To exploit such problem characteristics� we transform a POMDP by assuming that in

addition to the observations obtained by himself� the agent also receives a report from an
oracle who knows the true state of the world	 The oracle does not report the true state
itself	 Rather he reports that the true state is a certain region	 The transformed POMDP
is said to be region observable for obvious reasons	 If the agent already knows that the
true state is roughly in a region and the oracle reports that region� then not much extra
information is provided	 In this case� the region observable POMDP should be a good
approximation of the original POMDP	
When the oracle is allowed to only report singleton regions� he reports the true state

of the world	 In this case� the region observable POMDP is actually an MDP and hence
is easy to solve	 One would expect that the region observable POMDP to be solvable
when the oracle is allowed to report only small regions	
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Our proposal to approximate POMDPs by using region observable POMDPs is a
generalization of the idea of approximating POMDPs by MDPs	 It is orthogonal to all
methods that solve POMDPs directly� all those methods can be used to solve region
observable POMDPs	

��� Organization

The rest of this paper is organized as follows	 We shall �rst brie�y show how POMDPs
can be used as a model for planning �Section �� and give a new and concise account of
the theory of POMDPs �Sections � and �	 We shall then formally introduce the concept
of region observable PODMPs �Section ��	 Thereafter� we shall describe an algorithm
for solving region observable POMDPs �Sections �� �� and ��	 Along the way� we shall
propose a new method for solving the core problem� known as dynamic�programming
updates� that one has to face in solving POMDPs �Section ��	 Section � will discuss a
couple of di�erent ways of making decisions based on the solutions of region observable
POMDPs and present a way for information gathering	 Finally� empirical results will be
reported in Section �� and conclusion will be provided in Section ��	

� Planning in stochastic domains and POMDPs

To specify a planning problem� one needs to give a set S of possible states of the world�
a set O of possible observations� and a set A of possible actions	 In this paper� all those
three sets are assumed to be �nite	 One needs also to give an observation model� which
describes the relationship between an observation and the state of the world� and an action
model� which describes the e�ects of each action	 Furthermore� one needs to specify the
initial state of the world and a goal state	
As a background example� consider path planning for a robot who acts in an o
ce

environment	 Here S is the set of all location�orientation pairs� O is the set of possible
sensor readings� and A consists of actions move�forward� turn�left� turn�right� and
declare�goal	
The current observation o depends on the current state of the world s	 Due to sensor

noise� this dependency is uncertain in nature	 The observation o sometimes also depends
on the action that the robot has just taken a

�

	 The minus sign in the subscript indicates
the previous time point	 In the POMDP model� the dependency of o upon s and a

�

is
numerically characterized by a conditional probability P �ojs� a

�

�� which is usually referred
to as the observation probability	 It is the observation model	
In a region observable POMDP� the current observation also depends on the previous

state of the world s
�

	 The observation probability for this case can be written P �ojs� a
�

� s
�

�	
The state s� the world will be in after taking an action a depends on the action and

on the current state s	 The plus sign in the subscript indicates the next time point	
This dependency is again uncertain in nature due to uncertainty in the actuator	 In
the POMDP model� the dependency of s� upon s and a is numerically characterized by a
conditional probability P �s�js� a�� which is usually referred to as the transition probability	
It is the action model	
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Onmany occasions� we will need to consider the joint conditional probability P �s�� o�js� a�
of the next state of the world and the next observation given the current state and the
current action	 It is given by

P �s�� o�js� a� � P �s�js� a�P �o�js�� a� s���

The POMDP model encodes the starting state by a probability mass function P� over
S	 The planning goal is encoded by a reward function such as the following�

r�s� a� �

�
� if a�delcare�goal and s�goal�
� otherwise	

���

The preference for short plans is encoded by discounting future rewards with respect the
current reward �see the next section�	

� Basics of POMDPs

��� Belief states

In a POMDP� an agent chooses and executes an action at each time point	 The choice is
to be made based on information from past � past observations and past actions � and
the current observation	 The amount of memory required to store past observations and
actions increases linearly with time	 This makes it di
cult to maintain past information
after a long period of time	
The standard way to overcome this di
culty is to maintain� instead of past informa�

tion� the agent�s belief state� the probability distribution of the current state of the world
given past information and the current observation P �stjot� at��� ot��� � � � � a�� o�� P��	 It is
well known that the belief state is a su�cient statistic in the sense that it captures all
the information contained in past information and the current observation that is useful
for action selection	 Hence the agent can base its decision solely on the belief state	
Compared with maintaining past information� maintaining the belief state is desirable

because the number of possible states of the world is �nite	 Consequently� one needs only
to maintain a �xed and �nite number of probability values	
The initial belief state is P�	 A question is how the agent should update its belief state

as time goes by	 Following Littman ������ we use b to denote a belief state	 For any
state s� b�s� is the probability that the world is in state s	 The set of all possible belief
states will be denoted by B	
Suppose b is the current belief state� and a is the current action	 If the observation

o� is obtained at the next time point� then the agent should update its belief state from
b to b�� where b� is given by

b��s�� � k
X
s

P �s�� o�js� a�b�s�� ���

where k���
P

s�s�
P �s�� o�js� a�b�s� is the normalization constant	 To signify the depen�

dence of b� upon b� a� and o�� we shall sometimes write it as b���jb� a� o��	





��� POMDPs as MDPs

For any belief state b and any action a� de�ne

r�b� a� �
X
s

b�s�r�s� a�� ���

It is the expected immediate reward for taking action in belief state b	
For any belief state b� any action a� and any observation o�� de�ne

P �o�jb� a� �
X
s�s�

P �s�� o�js� a�b�s�� ��

It is the probability of observing o� at the next time point given that the current belief
state is b and the current action is a	 It can also be understood as the probability of the
next belief state being b���jb� a� o��	
A POMDP over world state space S can be viewed as an MDP over the belief state

space B� with reward function and transition probability given by equations ��� and ��
respectively	

��� Optimal policies

At each time point� the agent consults its belief state and chooses an action	 A policy �
prescribes an action for each possible belief state	 Formally it is a mapping from B to A	
For each belief state b� ��b� is the action prescribed by � for b	
Suppose b� is the current belief state	 If an agent follows a policy �� then his current

action is ��b�� and the immediate reward is r��b� ��b���� with probability P �o�jb�� ��b����
the agent�s next belief state b� will be b���jb�� ��b��� o��� the next action will be ��b��� and
the next reward will be r��b�� ��b���� and so on and so forth	
The quality of a policy is measured by the expected discounted rewards it garners	

Formally the expected discounted reward of policy � is de�ned for each belief sate b� to be
the following expectation�

V ��b�� � Eb��
�X
i��

�iri�bi� ��bi���� ���

where ����� is the discount factor	
A policy �� is dominates another policy �� if for each belief state b�B

V ���b� � V ���b�� ���

Domination is a partial ordering among policies	 It is well known that there exist policies
that dominates all other policies	 Such a policy is called an optimal policy	 The expected
discounted reward for an optimal policy will be denoted by V �	
Consider two POMDPs that are the same except that their reward functions di�er

by a constant	 Then the domination relationships among policies are the same in both
POMDPs	 For this reason� one can assume the reward function r�s� a� be non�negative�
which we do in the rest of this paper	
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��� Value iteration

Value iteration is a standard way for solving MDPs	 It begins with an arbitrary initial
function V �

� �b� and iterates by using the following equation

V �

t �b� � maxa�r�b� a� � �
X
o�

P �o�jb� a�V
�

t���b���� ���

where b� is a shorthand for b���jb� a� o��	 If V �
� ��� V

�
t is called the t�step optimal value

function	
The following theorem �Puterman ����� page ���� tells one when to stop and how to

construct �good enough� policy	

Theorem � Let � the policy given by

��b� � arg maxa�r�b� a� � �
X
o�

P �o�jb� a�V
�

t���b���� ���

If maxb�BjV �
t �b�� V �

t���b�j � �� then

maxb�BjV
��b�� V ��b�j �

���

� � �
� ���

The quantity maxb�BjV �
t �b� � V �

t���b�j is sometimes called the Bellman residual and
the policy � is called the greedy policy based on V �

t��	

� Piecewise linearity and implicit value iteration

Since there are uncountably in�nite many belief states� value iteration cannot to carried
out explicitly	 Fortunately� it can be carried out implicitly due to the piecewise linearity
of the t�step optimal value function	 To explain piecewise linearity� we need the concept
of policy trees	

��� T �step policy trees

A t�step policy tree pt �Littman ���� prescribes an action for the current time point
and an action for each possible information scenario �o�� � � � � oi� a�� � � � � ai��� at each of
the next t�� time points i	 Figure � shows ��step policy tree	 The tree reads as follows	
Move�forward at the current time point	 At the next time point� if o��� is observed then
turn�left	 Thereafter if o��� is observed then turn�left again� else if o��� is observed
then declar�goal� else if o��� is observed then move�forward	 And so on and so forth	
To relate back to the introduction� a t�step policy tree prescribes a way the agent might
behave at the current and the next t�� time points	
When t��� the subtree rooted at the o� node will be called a o�rooted t���step policy

tree� and will be denoted by 	t��	 It is a mapping from O to the set of all possible t���step
policy trees and it prescribes a t�� step policy tree 	t���o� for each possible observation
o	 In our example� 	��o���� is the ��step policy tree rooted at the upper most a� node	
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Figure �� A ��step policy tree	

So a t�step policy tree pt consists of two components when t��� an action a for the
current time point and an o�rooted t���step policy tree 	t�� for the next t�� time points	
For this reason� we shall sometimes write pt as a pair �a� 	t��� and call a the �rst action
of pt	
By altering the actions on the edges out of the a�nodes� one obtains di�erent t�step

policy trees	 The set of all possible t�step policy trees will be denoted by Pt	 A ��step
policy tree is simply an action� and hence P� is same as the set of possible actions A	

��� State value functions of t�step policy trees

For any state s and any t�step policy tree pt��a� 	
t���� recursively de�ne

Vpt�s� � r�s� a� � �
X
o��s�

V�t���o���s��P �s�� o�js� a�� ����

where the second term is to be understood as � when t��	 Called the state value function
of the t�step policy tree pt� Vpt�s� is the expected discounted total rewards the agent
receives at the current time and during the next t�� time points if the world is currently
in state s and the agent behaves according to the policy tree pt	
Without mentioning the policy tree� we shall sometimes call Vpt a t�step state value

function	 The collection of all t�step state value functions will be denoted by Vt� i	e	

Vt � fVptjpt�Ptg�

For convenience� we let V� consist of one single function of s that is zero for all s	

��� S�functions and b�functions

A function of s will be called an s�function� while a function of b will be called a b�function	
The t�step state value function is an s�function� while the t�step optimal value function is
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a b�function	
An s�function V �s� induces a b�function through

V �b� �
X
s

V �s�b�s��

Regarding b is a vector with one component b�s� for each s� the induced b�function is
linear in the components of b	 For convenience� we simply say that V �b� is linear in b	
A collection V of s�functions induces a b�function through

V�b� � maxV�VV �b��

Note that we are using V to denote both a set of s�functions and the b�function it induces	
The induced b�function V�b� is piecewise linear in b in the sense that it is linear in b

in each of the regions fbjV �b��V ��b� for any otherV ��Vg of the belief space B for each
V �V	

��� Piecewise linearity of the t�step optimal value function

The following theorem was �rst proved by Sondik ������	 It �rst appeared in its present
form in Littman �����	

Theorem � �Piecewise Linearity� The t�step optimal value function V �
t is the same

as the b�function induced by the collection of all t�step state value functions Vt� That is
for any belief state b

V �

t �b� � Vt�b���

Intuitively the theorem is true for the following reasons	 V �
t �b� is the reward the agent

gets if he behaves optimally and for any policy tree pt� Vpt�b� is the reward the agent gets
if he behaves according to pt	 Since one of the policy trees must be optimal� V �

t �b� �
maxptVpt�b��Vt�b�	
Because of this theorem� we shall say that the collection Vt of state value functions is

a representation of V �
t 	

The theorem gives us an implicit way for carrying out value iteration	 Instead of
iteratively and explicitly computing the t�step optimal value function V �

t and determining
the Bellman residual from V �

t and V �
t��� one iteratively computes the set Vt of all t�step

state value functions and determines the Bellman residual from Vt and Vt��	 When the
Bellman residual falls below a predetermined threshold �� one stops and passes Vt�� to
the agent	 The agent keeps Vt��	 When he needs to make a decision� he consults his belief
state b and �nds an action using equation ��� with V �

t���b�� replaced by Vt���b��	

��� Parsimonious representations

Implicit value iteration� as described above� is unrealistic in practice because the size of
Vt increases exponentially with t	 As a matter of fact� the total number of t�step policy
trees is
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jPtj � jAj
jOjt��
jOj�� �

There are potentially the same number of t�step state value functions	
Fortunately� many of the state value functions in Vt can be pruned without a�ecting

the induced b�function	 Most algorithms for solving POMDPs exploit this property	 Let
us make the property more explicit	
A set V � of s�functions is a covering of another set V of s�functions if it induces the

same b�function as V does	 A parsimonious covering of V is a covering of V such that
none of its proper subsets are coverings of V	 We shall use V� to denote a parsimonious
covering of V	

Theorem � All parsimonious coverings of a set of s�functions consist of the same number
of s�functions�

Proof of this theorem can be found in Appendix A	 Because of this theorem� one can
also de�ne a parsimonious covering as a covering that contains the minimum number of
s�functions	
Suppose the Bellman residual falls below � at iteration t	 Let V�t�� be a parsimonious

covering of Vt��	 It represents the t���step optimal value function V �
t�� in the sense that

for any belief state b� V�t���b��V
�
t���b�	 It is a parsimonious representation because it

consists of the fewest number of s�functions possible	 It is the solution to the POMDP
under discussion	

��� Dynamic�programming updates

Dynamic�programming updates �Cassandra et al ����� refer to the problem of computing
a parsimonious covering of Vt from a parsimonious covering of Vt��	 A solution to this
problem� together with the fact that V� is a parsimonious covering of itself� allows one
to compute the parsimonious covering of Vt for any t� and hence leads to a parsimonious
way of carrying out implicit value iteration	
Several algorithms for dynamic�programming updates have been proposed� including

the enumeration and pruning algorithms by Monahan ������� Eagle ������ and Larke
�White ����a�� the one�pass algorithm by Sondik ������� the linear support and relaxed
region algorithms by Cheng ������� and the witness algorithm by Cassandra et al �����
and Littman �����	 The witness algorithm has been proved to be the most e
cient
among all those algorithms �Littman et al �����	

Even though the size of a parsimonious covering of Vt is much smaller than that of
Vt� it is still large except for small toy problems	 Approximation is a must for real�world
problems	
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� Region�based approximations

We classify approximation methods into two categories	 Value function approximation
methods refer to those that approximate the optimal value functions of a POMDP di�
rectly	 Methods in the category include those by Sondik and Mendelssohn ������ see
Lovejoy ����a�� Cheng ������� Lovejoy �����b�� and Parr and Russell ������	 Model
approximation methods refer to those that approximate a POMDP model itself by an
simpler model and use the solution of the simpler model as an approximate solution to
the POMDP	 The method by Cassandra et al ������ approximates POMDPs by using
MDPs and is hence a model approximation method	
This paper proposes another model approximation method which approximates POMDPs

by using what we call region observable POMDPs	

��� The basic idea

In a POMDPM� the agent typically does not know the true state of the world	 However�
he often has a good idea about it in real�world applications	 Take robot path planning for
example	 Observing a landmark� a room number for instance� would imply that the robot
is in the proximity of that landmark	 Observing an environment feature� a corridor T�
junction for instance� would enable the robot to conclude from a map of the environment
that it is in one of a few regions	 Taking history into account� the robot might be able to
determine a unique region for its current location	 Furthermore� if the robot has a good
idea about its current location and there is not much uncertainty in the e�ects of actions�
then it should have a pretty good idea about its location after a few actions� even when
no more informative observations are obtained	
Now consider another POMDPM� which is the same as M except that in addition

to the observation made by himself� the agent also receives a report from an oracle who
knows the true state of the world	 The oracle does not report the true state itself	 Rather
he reports that the true state is in a certain region � a subset of possible states of the
world	
More information is available to the agent in M� than in M� extra information is

provided by the oracle	 Since in M the agent already has a good idea about the true
state of the world� the oracle might not provides much extra information	 Consequently�
M� could be a good approximation ofM	
In M�� the agent knows for sure that the true state of the world is in the region

reported by the oracle	 For this reason� we say that it is region observable	 The region
observable POMDP M� can be much easier to solve thanM when the oracle is allowed
to report only small regions	 For example� if the oracle is allowed to report only singleton
regions� then he actually reports the true state of the world and henceM� is an MDP	
MDPs are much easier the solve than POMDPs	

��� Spectrum of approximations

If the region reported by the oracle is always the set of all possible states� then no extra
information is provided	 Because the report that the true state of the world is one of the
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possible states of the world has no information content	 In this case� M� has the same
solution as M and solving M� is equivalent to solvingM directly	 This is one extreme
of the spectrum	
At the other extreme� the oracle is allowed to report only singleton regions	 In other

words� he always reports the true state of the world	 In this case� maximum amount of
extra information is provided	 M� is actually an MDP	 It might not be a good approxi�
mation ofM but it is much easier to solve thanM	
Previous methods for solving a POMDP either solve it directly or approximate it by

using a MDP	 By allowing the oracle to report regions that are neither singletons nor the
set of all possible states� this paper opens up the possibility of exploring the spectrum
between those two extremes	

We now set out to make the idea more concrete	 Let us begin with the concept of
region systems	

��� Region systems

A region is simply a subset of states of the world	 A region system is a collection of
regions such that no region is a subset of other regions in the collection and the union of
all regions equals the set of all possible states of the world	 We shall use R to denote a
region and R to denote a region system	
Region systems are to be used to restrict the regions that the oracle can choose to

report	
There are many possible ways to construct a region system	 A natural way is to create

a region for each state by including its �nearby� states	 Let us make this more precise	
Each action has an intended e�ect	 The intended e�ect of move�forward� for instance� is
to move one step forward	 We say a state s is reachable in one step from another state s�

if there is an action whose intended e�ect is� when the world is currently in state s�� to
take the world into state s	 A state sk is reachable in k steps from another state s� if there
are state s�� � � � � sk�� such that si�� is reachable from si in one step for all ��i�k��	
Any state is reachable from itself in � step	
For any non�negative integer k� the radius�k region for a state s is the set of states

that are reachable from s in k or less steps	 A radius�k region system is the one obtained
by creating a radius�k region for each state and then removing� one after another� regions
that are subsets of others	
When k is �� the radius�k region system consists of singleton regions	 On the other

hand� if the k is large enough so that any state is reachable from any other state in k
or less steps� there is only one region in the radius�k region system� which the set of all
possible states	
For any non�negative s�function f�s� and any regionR� we call the quantity supp�f�R��P

s�R f�s��
P

s�S f�s� the degree of support of f by R	 If R supports f to degree �� we say
that R fully supports f 	

��



��� Region observable POMDPs

Given a region system R and a POMDP M� we construct a region observable POMDP
M� by assuming that at each time point the agent not only obtains an observation by
himself but also receives a report from an oracle who knows the true state of the world	
The oracle does not report the true state itself	 Rather he chooses from R one region
that contains the true state and reports that region	
The amount of extra information provided by the oracle depends not only on the region

system used but also on the way the oracle chooses regions	 We suggest the following rule	
Let s� be the previous true state of the world� a� be the previous action� and o be the
current observation	 The oracle should choose� among all the regions inR that contain the
true state of the world� one that supports the function P �s� ojs�� a�� of s to the maximum
degree	 Where there is more than one such regions� choose the one that comes �rst in a
predetermined ordering among the regions	
Here are the intuitions	 If the previous world state s� were known to the agent� then

his current belief state b�s� would be proportional to P �s� ojs�� a��	 In this case� the rule
minimizes extra information in the sense that it supports the current belief state to the
maximumdegree	 Also if the current observation is informative enough� being a landmark
for instance� to ensure that the world state is in a certain region� then region chosen using
the rule fully supports the current belief state	 In such a case� no extra information is
provided	
The probability P �Rjs� o� s�� a�� of a region R being chosen under the above scheme is

given by

P �Rjs� o� s�� a�� �

���
��
� if R is the �rst region s	t	 s�R and for any other region R�P

s��R P �s
�� ojs�� a���

P
s��R� P �s

�� ojs�� a��
� otherwise	

The region observable POMDPM� di�ers from the original POMDPM only in terms
of observation� in addition to the observation o made by himself� the agent also receives a
report R from the oracle	 We shall denote an observation inM� by z and write z��o�R�	
Observation model ofM� is given by

P �zjs� a�� s�� � P �o�Rjs� a�� s�� � P �ojs� a��P �Rjs� o� s�� a���

� Solving region observable POMDPs

For any region R� let BR be the set of belief states that are fully supported by R	 For any
region system R� let BR � �R�RBR	
Given the region system R� a set V � of s�functions is an R�covering of another set V

of s�functions if their induced b�functions are the same over BR� i	e	 if

V ��b� � V�b� for all b � BR�

An R�covering of V is parsimonious if none of its proper subsets are R�coverings of V	

��



��� Restricted value iteration

Let R be the region system used in the de�nition of the region observable POMDPM�	
It is easy to see that no matter what the current belief state b is� the next belief state b�
must be in BR	 We assume that inM� the initial belief state is in BR	 Then all possible
belief states the agent might have are in BR	 This implies that policies forM� need only
be de�ned over BR and value iteration forM� can restricted to the subset BR of B	
We shall restrict value iteration for M� to BR for the sake of e
ciency	 Doing so

implies that the t�step optimal value function V
��
t ofM� is de�ned only over BR and the

Bellman residual is now maxb�BRjV
��
t �b� � V

��
t���b�j	 To avoid confusion� we shall call it

the restricted Bellman residual	
Since V

��
t is de�ned only over BR� it is represented by a parsimonious R�covering VRt

of Vt in the sense that for any b�BR�

V
��

t �b� � Vt�b� � V
R

t �b��

Consequently� we can carry out value iteration forM� implicitly by inductively computing
parsimonious R�coverings� instead of parsimonious coverings� of the Vt�s	 Parsimonious
R�coverings of Vt usually contains much less s�functions than parsimonious coverings of
Vt	

��� Regional coverings

Given a region R� a set V � of s�functions is an R�covering of another set V of s�functions
if

V ��b� � V�b� for all b � BR� and

V ��b� � V�b� for all b �� BR�

We shall sometimes refer to an R�covering simply as a regional covering where there is
no need to refer to the region	 An R�covering of V is parsimonious if none of its proper
subsets are R�coverings of V	
If for each region R in a region system R� VR

t is an R�covering of Vt� then the union
�R�RVR

t is R�covering of Vt	 Parsimonious R�coverings are easier to compute than par�
simonious R�coverings because they are �local�	 We propose to carry out implicit value
iteration for the region observable POMDPM� by inductively computing R�coverings of
Vt�s	 To be more speci�c� let updating be a procedure that computes a parsimonious
R�covering of Vt from parsimonious regional coverings of Vt�� and let stop be a proce�
dure that determines� from parsimonious regional coverings of Vt�� and Vt� whether the
restricted Bellman residual has fallen below a predetermined threshold	 Value iteration
forM� can be implicitly carried out as follows	

��



Procedure solvePomdp�M�� ��

� Input� M� � A region observable POMDP�
� � A positive number	

� Output� A set of s�functions	

�	 t � �	

�	 �Let R be the region system used in the de�nition of M�	� For R�R�
let VR

� consist of the only s�function �	

�	 Do

� t�t��	

� For each R�R�

VR
t � updating�R� fVR

t��jR�Rg��

while stop�fVR
t jR�Rg� fV

R
t��jR�Rg� �� � no	

	 Return �RVR
t��	

The next two sections show how to implement the procedures updating and stop	

� Dynamic�programming updates

Previous algorithms� such as the witness algorithm �Cassandra et al ����� for computing
a parsimonious covering of Vt from a parsimonious covering of Vt�� can be adapted to
compute parsimonious regional coverings of Vt from parsimonious regional coverings of
Vt��	 This section develops a simpler algorithm called incremental pruning	 We have
empirically shown elsewhere that incremental pruning is more e
cient than the witness
algorithm �Cassandra et al �����	

	�� Operations on sets of s�functions

Suppose V� and V� are two sets of s�functions	 The cross sum V��V� of V� and V� is
de�ned to be the following set of s�functions�

fV� � V�jV��V�� V��V�g�

It is evident that the cross sum operation is commutative and associative	 Hence one can
talk about the cross sum of more than two sets of s�functions	
The product �V of of a constant � and and a set of s�functions V is de�ned by

�V � f�V jV �Vg�

For any function f�s�� s�� the matrix product V�f of V and f is de�ned by

V�f � f
X
s�

V �s��f�s�� s�jV �Vg�

�



	�� Relationship between Vt and Vt��

For any action a and any observation z�� regard P �s�� z�js� a� as a function of s� and s	
De�ne

Va�z��t � ��Vt���P �s�� z�js� a��� ����

Enumerate all possible values of z� as �� �� � � � � N 	 De�ne

Va�t � fr�s� a�g� Va���t� Va���t � � � �� Va�N�t�

One can easily see from equation ���� that this set consists of state value functions of all
those t�step policy trees pt whose �rst actions are a	 Consequently�

Vt � �aVa�t

	�� Inductive computation of parsimonious regional coverings

Suppose a parsimonious R�covering VR
t�� of Vt�� has been obtained for each region R�R	

For any action a and observation z���o�� R��� de�ne

�Va�z��t � ��VR�

t���P �s�� z�js� a��� ����

Also de�ne

�Va�t � fr�s� a�g� �Va���t � �Va���t� � � �� �Va�N�t�

�Vt � �a
�Va�t�

Lemma � The set �Va�z��t is a covering of Va�z��t� Hence it is an R�covering of Va�z��t for
any region R�

Proof� For any belief state b�B�

Va�z��t�b� � maxV�Va�z��t

X
s

V �s�b�s�

� � maxV�Vt��
X
s

�
X
s�

V �s��P �s�� z�js� a��b�s�

� �k maxV�Vt��
X
s�

V �s��b��s���

where b��s���
P

s P �s�� z�js� a�b�s��k and k�
P

s�s�
P �s�� z�js� a�b�s�	 If z���o�R��� then

b� is a belief state in BR�
	 Since VR�

t�� is an R��covering of Vt��� we have

Va�z��t�b� � �k max
V�V

R�
t��

X
s�

V �s��b��s��

� � max
V�V

R�
t��

X
s

�
X
s�

V �s��P �s�� z�js� a��b�s�

� �Va�z��t�b���
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Lemma � Let R be a region� If V �� and V �� are R�coverings of V� and V� respectively�
then

�� V ���V
�
� is an R�covering of V��V��

	� V ���V
�
� is an R�covering of V��V�� �

Lemma � Let R be a region� If V� is a parsimonious R�covering of V� and V� is an
R�covering of V�� then V� is a parsimonious R�covering of V�� �

Those three lemmas tell us that �Va�t is an R�covering of Va�t and �Vt is an R�covering

of Vt	 Moreover� a parsimonious R�covering of �Vt is also a parsimonious R�covering of Vt	
Let purge�V� R� be a procedure that returns a parsimonious R�covering of V	 One

implementation of the procedure will be given in Appendix B	 An R�covering of �Vt can
be found by

purge��apurge� �Va�t� R�� R��

Both the witness algorithm and incremental pruning make use of this fact	

	�� Incremental pruning

Incremental pruning and the witness algorithm di�er in their ways of computing purge� �Va�t� R�	
Incremental pruning computes it by interleaving purging and cross sum as follows�

purge�� � � �purge�purge�fr�s� a�g� �Va���t� �Va���t� R� � �Va���t� R� � � � �� �Va�N�t� R��

The correctness of incremental pruning is guaranteed by lemmas � and �	
An e
ciency consideration	 For any region R and any action a� de�ne set

ZR�a � fz�jmaxs�R�s�P �s�� z�js� a� � �g�

It is the set of possible next observations given that the current true state of the world is in
R and that the current action is a	 Let Ra be the set of world states that one can possibly
reach from some states in R by performing action a� i	e	 Ra�fs�jmaxs�RP �s�js� a� � �g�
An observation z���o�� R�� is outside ZR�a if R� and Ra do not intersect	

Lemma � Enumerate all the elements of the set ZR�a as �� �� � � � �M � Then

fr�s� a�g� �Va���t� �Va���t � � � �� �Va�M�t

is an R�covering of �Va�t�

Proof� Let z� be outside the set ZR�a	 Then P �s�� z�js� a��� for all s�R	 Hence for any

V ��Va�z��t� V �s��� for all s�R	 The lemma follows	 �

According to this lemma� a parsimonious R�covering of �Va�t can be computed by

purge�� � � �purge�purge�fr�s� a�g� �Va���t� �Va���t� R� � �Va���t� R� � � � �� �Va�M�t� R��

��



	�� An algorithm

The forgoing discussions lead to the following procedure for computing parsimonious
regional coverings of Vt from parsimonious regional coverings of Vt��	

Procedure updating�R� fVR�

t��jR
��Rg��

� Inputs� R � A region	 And for any region R��
VR�

t�� � A parsimonious R��covering of Vt��	

� Output� A parsimonious R�covering of Vt	

�	 For each action a�

VR
a�t � incremental�pruning�R� a� fVR�

t��jR
��Rg��

�	 Return purge��aVR
a�t� R�	

Subprocedure incremental�pruning�R� a� fVR�

t��jR
��Rg��

�	 Compute the set ZR�a and enumerate its members as �� �� � � � �M 	

�	 For i�� to M � compute the set �Va�i�t from fVR�

t��jR
��Rg and

�Vi � purge� �Va�i�t� R��

�	 Let V�fr�s� a�g� �V�	

	 For i�� to M �

� V�V��Vi	

� V�purge�V� R�	 Endfor

�	 Return V	

	 The stopping condition

This section shows how to determine if the restricted Bellman residual falls below a
predetermined threshold � from regional coverings VR

t of Vt and regional coverings V
R
t��

of Vt��	

Proposition � In a POMDP if the reward function r�s� a� is non�negative� then the
t�step optimal value function V �

t �b� in non�decreasing with t�

Proof� For any belief state b� let pt�� be a t���step policy tree such that Vpt���b� �
V �
t���b�	 Grow pt�� at the end by attaching an arbitrary o�rooted ��step policy tree to
each leaf node of pt��	 What results in is a t�step policy tree	 Denote it by pt	 Since the
reward function is non�negative� Vpt�b��Vpt���b�	 Hence

V �

t �b� � Vpt�b� � Vpt���b� � V �

t���b��

��



The proposition is proved	 �
As explained in Section �	�� one can assume always that the reward function is no�

negative without losing any generality	 This assumption enables us to make use of the
above proposition and rewrite the restricted Bellman residual as

maxb�BR�V
�

t �b�� V �

t���b���

For any two s�functions V and V �� we say V ��dominates V � at a belief state b if
V �b��V ��b���	 Let V be a set of s�functions	 V ��dominates V at a belief state b is
if either V is empty or V ��dominates each member of V at b	 The following lemmas is
obvious	

Lemma � The restricted Bellman residual is larger than � if and only if there exists a
region R and an s�function V �VR

t such that V ��dominates VR
t�� at some belief state in

BR� �

Let dominate�V�V� R� �� be a procedure that returns a belief state in BR at which V
��dominates V if one exists and nil if not	 One implementation of this procedure can
be found in Appendix B	 The following procedure returns yes is the restricted Bellman
residual falls below � and no otherwise	

Procedure stop�fVR
t jR�Rg� fV

R
t��jR�Rg� ��

� Inputs� � � A positive number� and for any region R
VR
t � An R�covering of Vt�
VR
t�� � An R�covering of Vt��	

� Outputs� yes � If the restricted Bellman residual � ��
no � Otherwise	

�	 For� each region R�

For� each V �VR
t �

Return no if dominate�V�VR
t��� R� �� �� nil�

Endfor�

EndFor�

�	 Return yes	


 Making decisions

Solving the region observable POMDP M� gives us a list of s�functions� which will be
henceforth denoted by V �t��	 It represents the t���step value function V

��
t���b� of M

� in
the sense that V

��
t���b��V

R
t���b� for any b�BR and hence enables us to compute the greedy

policy �� forM� based on V
��
t��	

��



A policy � for the original POMDP M can be obtained through either value ap�
proximation or policy approximation	 Value approximation means to approximate the
t���step optimal value function V �

t���b� ofM by using V �t���b� and use the greedy policy
based on V �t���b�	 Under this scheme� the action for any belief state b is given by

��b� � arg maxa�r�b� a� � �
X
o�

P �o�jb� a�V
�

t���b����

where b� is a shorthand for b���jo�� b� a�	
Policy approximation means to directly use the policy �� for M� as a policy for M	

One issue here is that �� is de�ned only over BR	 For each belief state b in BR� we can set
��b�����b�	 What about belief states outside BR� A natural solution is as follows	 For
any belief state b��BR� project it onto R� i	e	 �nd a region R in R that supports b to the
largest degree and restrict b onto R to get another belief state b� as follows�

b��s� �

��
�

b�s�P
s�R

b�s�
if s � R

� otherwise	

Then set ��b�����b��	


�� Information gathering

Simulation experiments have shown that the two approximate policies given above are
close to optimal when the agent has a good idea about the true state of the world at
all times �see Subsection ��	��	 However� they can be arbitrarily bad when the agent is
confused about the true state of the world	 In general� they should be used together with
some information gathering scheme which takes over when the agent is confused about
the true state of the world	
Two questions arise	 When information gathering should take over� How information

gathering should be carried out�
De�ne the degree of support of a belief state b by a region system R to be suppR�b��

maxR�RsuppR�b�	 In our experiments� information gathering took over when the degree
of support of the current belief state by the radius�� region system fall below a certain
threshold� which was set at ���	
For any belief state b� its entropy is given by EN�b�� �

P
s b�s�log�b�s��	 The larger

the entropy� the more uncertain the agent is about the true state of the world	 Let b be
the current belief state	 If action a is executed� the the expected entropy of the next belief
state is given by

EN�b� a� �
X
o�

EN�b��P �o�jb� a��

where b� is a shorthand for b���jo�� b� a�	 One approach to information gathering is to
execute the action that minimizes the expected entropy of the next belief state �Cassandra
et al �����	
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Figure �� Synthetic O
ce Environments	

�� Simulation experiments

Simulation experiments have been carried out with synthetic o
ce environments bor�
rowed from Cassandra et al ������	 POMDPs for those environments were previously
approximated by using MDPs �Cassandra et al �����	 We transformed the POMDPs into
region observable POMDPs by using the radius�� region systems and solved the region
observable POMDPs	 We found that control policies produced by the region observable
POMDPs are signi�cantly better than those produced the MDPs	 This section describes
the experiment setups and reports the comparisons	

���� Synthetic o�ce environments

Two synthetic o
ce environments were used in our experiments	 Their layouts are shown
in Figure �� where squares represent locations	 Each location is represented as four states
in the POMDP model� one for each orientation	 The dark locations are rooms connected
to corridors by doorways	
In each environment� a robot needs to reach the goal location with the correct orienta�

tion	 At each time point� the robot can execute one of the following actions� move�forward�
turn�left� turn�right� and declare�goal	 The two sets of action models given in the
following table were used	

Action Standard outcomes Noisy outcomes
move�forward N ��	���� F ��	���� F�F ��	��� N ��	��� F ��	��� F�F ��	��
turn�left N ��	���� L ��	��� L�L ��	��� N ��	���� L ��	��� L�L ��	���
turn�right N ��	���� R ��	��� R�R ��	��� N ��	���� R ��	��� R�R ��	���
declare�goal N ��	�� N ��	��

For the action move�forward� the term F�F ��	��� means than with probability �	��
the robot actually moves two steps forward	 The other terms are to be interpreted simi�
larly	 If an outcome cannot occur in a certain state of the world� then the robot is left in
the last state before the impossible outcome	
In each state� the robot is able to perceive in each of three nominal directions �front�

��



left� and right� whether there is a doorway� wall� open� or it is undetermined	 The
following two sets of observation models were used�

Actual case Standard observations Noisy observations
wall wall ��	���� open ��	��� doorway

��	��� undetermined ��	���
wall ��	���� open ��	���� doorway
��	���� undetermined ��	���

open wall ��	���� open ��	���� doorway
��	���� undetermined ��	���

wall ��	���� open ��	���� doorway
��	���� undetermined ��	���

doorway wall ��	���� open ��	���� doorway
��	���� undetermined ��	���

wall ��	���� open ��	���� doorway
��	���� undetermined ��	���

���� Approximations in solving region observable POMDPs

Approximations were made when solving the region observable POMDPM�	 Let R be a
region and 
 be a positive number	 A set V � of s�functions is an �R�
��covering of another
set V of s�functions if

V ��b� � 
 � V�b� for all b � BR� and

V ��b� � V�b� for all b �� BR�

In all the algorithms� we replaced the procedure purge�V� R� with another procedure
purge�V� R� 
� that returns an �R�
��covering of V	 And 
 was set to be �	���	
The POMDPs for both environments were solved by using a SUN SPARC��	 The

threshold for the restricted Bellman residual was set at �����	 The POMDP for environ�
ment A took ��� CPU seconds to solve� that the POMDP for environment B took ����
seconds	

���� Initialization schemes

Three initialization schemes were used in the experiments	 In the �rst scheme� a starting
state was randomly generated and the robot was informed of state	 In the second scheme�
a pair of states was �rst randomly generated and the robot was informed of the pair	
Then one of the two states was randomly picked to be the starting state and the robot
was not informed of which	 In the third scheme� a starting state was randomly generated
and the robot was not informed of state	
For each scheme� ���� trials were conducted and each trial was allowed to run a

maximum number of ��� steps	 Statistics were summarized by a function g�n�� which
stands for the number of trials successfully completed in n or less steps	

���� Omniscient agents

Statistics were also collected for an omniscient agent who knows the true state of the
world at all times	 This enables us to tell that a policy is close to optimal in some cases	
More speci�cally� the performance of any policy can be no better than that of an optimal
policy� which in turn can be no better than the performance of the omniscient agent	 If
the performance of an policy is close to that of the omniscient agent� then it must be close
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Figure �� Statistics for experiment �	

to optimal	 It should be noted� however� that a policy might still be close optimal even
when its performance is signi�cantly worse that of the omniscient agent	

���� Value approximation vs policy approximation

Let M be a POMDP and let Mk be the region observable POMDP obtained fromM
by using the radius�k region system	 As pointed out in Section �� a policy forM can be
obtained from the solution ofMk through either value approximation or policy approxi�
mation	 Our experiments with the synthetic o
ce environments have shown that� at least
for k�� or �� the policy obtained through value approximation is never signi�cantly better
than the one obtained through policy approximation and is often signi�cantly worse	
In the following� we shall only compare policies obtained through policy approxima�

tion	 Let us introduce several notations	 When k���Mk is an MDP	 The policy forM
obtained from the solution ofM� through policy approximation will be denoted by �m	
On the other hand� the policy obtained from the solution ofM� through policy approxi�
mation will be denoted by �r	 The g�function for the omniscient agent will be denoted by
o	 The g�functions for �m and �r under the three initialization schemes should be denoted
by mi and ri �i � �� �� �� respectively	

���� Experiment �

In the �rst experiment� standard action and observation models were used and trials were
initialized by using the �rst two schemes	 Statistics are summarized in Figure �	
The success rates for both �m and �r are high and roughly the same in both envi�

ronments	 Among all the trials successfully completed� �r took on average about � steps
less than �m in environment A and about �	� steps less in environment B	 There is about
�� improvement in both environments	 The improvement is signi�cant considering the
fact that the performance of �r is close to that of the omniscient agent and hence close
to optimal	
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Figure � Statistics for experiment �	

A couple of other facts are also worth mentioning	 Firstly� both �m and �r perfor�
manced worse under the second initialization scheme than under the �rst	 This is expected
since the robot had less information about the starting state under the second scheme	
Secondly� we have found that information gathering did not a�ect the performances of
the two policies either way	 This is because the robot had an good idea about the true
state of the world at all times and information gathering was never really needed	

���	 Experiment �

In the second experiment� standard action and observation models were used and trials
were initialized by using the third scheme	 In this case� the robot was completely ignorant
about the starting state	 Hence the polices �r and �m were augmented with information
gathering	 The statistics are shown in Figure 	
As one would expect� the robot took on average many more steps to achieve a goal

than in the previous experiment� while the success rate of �r remained roughly the same	
The success rate of �r is higher than that of �m in environment A and it is the same

as that of �m in environment B	 In both environments� �r took on average less steps to
achieve a goal than �m	
It is worthwhile to point out that both �r and �m performed considerably worse

without information gathering	

��� Experiment �

In the third experiment� noisy action and observation models were used	 In this case�
the robot could easily get confused about the state of world even under the �rst and
the second initialization schemes	 So� the policies �r and �m were augmented with in�
formation gathering for all cases	 Statistics are shown in Figure �	 For clarity� data for
environment A with the �rst initialization scheme and data for environment B with the
second initialization scheme are not included	
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Figure �� Statistics for experiment �	

We see that �r enjoyed a much higher success rate than �m� especially under the third
initialization scheme	 It also took on average much less steps to achieve a goal than �m�
especially when the goal is �di
cult�	
Again both �r and �m performed considerably worse without information gathering	

�� Conclusions and future directions

An agent who acts in a partially observable stochastic domain typically does not know
the true state of the world	 However� he often has a good idea about it	 This paper has
proposed a way to exploit such problem characteristics in solving POMDPs approximately	
The basic idea is to transform a POMDP into a region observable POMDP by assuming
an oracle who reports that the true state is in a certain region	 If the agent already knows
that the state is roughly in a region and the oracle reports that region� then not much
extra information is provided	 In such a case� the region observable POMDP should be a
good approximation of the original POMDP	
The region observable POMDP is easier to solve than the original POMDP due to

the fact that the state of the world is always known to be in some region	 We have
developed an algorithm for solving region observable POMDPs� alongside a new algorithm
for dynamic�programming updates	
POMDPs were previously approximated by using MDPs	 It has been empirically

shown that region observable POMDPs lead to signi�cantly better policies than MDPs	
Even though much easier then general POMDPs� region observable POMDPs are still

di
cult to solve	 The region observable POMDPs for the two synthetic o
ce environments
took about ��� and ���� seconds CPU time respectively	 Speedup is necessary	 We
are currently exploring the following idea	 For regions R far away from the goal� the
parsimonious R�coverings of Vt remain unchanged when t is small and for regions close to
the goal� the coverings remain unchanged when t becomes large	 Preliminary experiments
with MDPs have shown that this idea can speed up the solution process substantially	
As it stands� the method proposed in this paper computes policies without considering

�



the costs of information gathering and then uses the policies together with information
gathering	 Better policies can be obtained by taking the costs of information gathering
into consideration when computing the policies	
Finally� the information gathering scheme described in Section �	� is basically a greedy

approach	 It recommends the action that would reveal the maximum amount of informa�
tion for one step	 A global approach would lead to better performances	

Acknowledgement

The paper has bene�ted from discussions with Anthony R	 Cassandra and Michael Littman	
Research was supported by Hong Kong Research Council under grants HKUST ���!��E
and Hong Kong University of Science and Technology under grant DAG��!��	EG���RI�	

References

��� D	 P	 Bertsekas ������� Dynamic Programming
 Deterministic and Stochastic Models�
Prentice�Hall	

��� C	 Boutillier� R	 Dearden and M	 Goldszmidt ������� Exploiting structures in policy
construction� In Proceedings of IJCAI��	 pp	 ��������	

��� A	 R	 Cassandra� L	 P	 Kaelbling� and M	 L	 Littman ������ Acting optimally in par�
tially observable stochastic domains� AAAI Proc	� July ���August � Seattle� Wash�
ington� pp ���������	

�� A	 R	 Cassandra� L	 P	 Kaelbling� and J	 Kurien ������� Acting under uncertainty�
Discrete Bayesian models for mobile�robot navigation� TR CS������� Department of
Computer Science� Brown University� Providence� Rhode Island ������ USA	

��� A	 R	 Cassandra� M	 L	 Littman� and N	 L	 Zhang ������� Comparison of exact
algorithms for partially observable Markov decision processes� to be submitted	

��� H	 T	 Cheng ������� Algorithms for partially observable Markov decision processes�
PhD thesis� University of British Columbia� Vancouver� BC� Canada	

��� T	 L	 Dean� L	 P	 Kaelbling� J	 Kirman� and A	 Nicholson ������� Planning with
deadlines in stochastic domains� In Proceedings of the Eleventh National Conference
on Arti�cial Intelligence� Washington� DC	

��� T	 L	 Dean and M	 P	 Wellman ������� Planning and Control� Morgan Kaufmann	

��� J	 N	 Eagle ������ The optimal search for a moving target when the search path is
constrained� Operations Research� ������ pp	 ���������	

���� M	 L	 Littman ������ The witness algorithm� Solving partially observable Markov
decision processes� TR CS����� Department of Computer Science� Brown Univer�
sity� Providence� Rhode Island ������ USA	

��



���� M	 L	 Littman� A	 R	 Cassandra� and L	 P	 Kaelbling ������� E
cient dynamic�
programming updates in partially observable Markov decision processes� TR CS����
��� Department of Computer Science� Brown University� Providence� Rhode Island
������ USA	

���� W	 S	 Lovejoy �����a�� A survey of algorithmic methods for solving partially observ�
able Markov decision processes� Annals of Operations Research� �� ���� pp	 ����	

���� W	 S	 Lovejoy �����b�� Computationally feasible bounds for partially observed
Markov decision processes� Operations Research� �� ���� pp	 �������	

��� G	 E	 Monahan ������� A survey of partially observable Markov decision processes�
theory� models� and algorithms� Management Science� �� ���� pp	 ����	

���� R	 Parr and S	 Russell ������� Approximating optimal polices for partially observable
stochastic domains� In Proceedings of IJCAI��� pp	 ��������	

���� M	 L	 Puterman ������� Markov decision processes� in D	 P	 Heyman and M	 J	 Sobel
�eds	�� Handbooks in OR � MS�� Vol	 �� pp	 ������ Elsevier Science Publishers	

���� E	 J	 Sondik ������� The optimal control of partially observable Markov processes�
PhD thesis� Stanford University� Stanford� California� USA	

���� C	 C	 White III ������� Partially observed Markov decision processes� A survey	
Annals of Operations Research� ��	

���� D	 J	 White ������� Markov Decision Processes� John Wiley " Sons	

���� C	 C	 White III and W	 T	 Scherer ������ Finite�memory suboptimal design for
partially observed Markov decision processes� Operations Research� ����� pp	 ��
��	

��



Appendix A� Proof of Theorem �

Lemma � The b�function induced by a set V of s�functions is convex in the sense that
for any two belief states b� and b�� and any ������

V��b�������b�� � �V�b�� � �����V�b���

Proof�

V��b�������b�� � maxV�VV ��b�������b��

� maxV�V ��V �b�� � �����V �b���

� � maxV�VV �b�� � �����maxV�VV �b��

� �V�b�� � �����V�b����

Proof of Theorem �� Let V be a set of s�functions and let V� and U� be two di�erent
parsimonious representations of V	 It su
ces to show that U� cannot contain less members
than V�	
Since V� is a parsimonious representation of V� for any V �V�� there exists at least

one belief state b such that V �b��V ��b� for any other V ��V�	 Call such a belief state a
witness point of V 	 If b is a witness point of V � than V �b��V�b�	 Di�erent members of
V� have di�erent witness points	
If the cardinality of U� were smaller than that of V�� then there must be a U�U� and

two s�functions V�� V��V� such that U�b���V��b�� and U�b���V��b��� where bi is a witness
point Vi	 For any ������

V��b�������b�� � U��b�������b�� � �U�b��������U�b��

� �V��b��������V��b�� � �V�b��������V�b���

By the convexity of V� it must be the case that

V��b�������b�� � �V�b��������V�b�� � �V��b��������V��b���

Since b� is a witness point of V�� when ����� is close to � enough� V���b�������b�� �
V ���b�������b�� for any other V ��V�	 For such an �

V���b�������b�� � V��b�������b�� � �V��b��������V��b���

This implies that V��b���V��b��� contradicting the fact that b� is a witness point of V�	
The theorem is proved	 �
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Appendix B� Domination and Purging

This appendix describes implementations of the procedures dominate�V�V� R� �� and
purge�V�R�	 They were not given in the main text because they are minor adaptations
of existing algorithms	
The procedure dominate�V�V� R� �� is supposed to returns a belief state in BR at which

the s�function V ��dominates the set of s�functions V	 If such a belief state does not exist�
it is supposed to return nil	 It can be implemented as follows	

Procedure dominate�V�V�R� ��

� Inputs� V � An s�function� V � A set of s�functions�
R � A region� � � A nonnegative number	

� Output� A belief state in BR or nil	

�	 If V�	� return an arbitrary belief state in BR	

�	 Solve the following linear program�

Variables� x� b�s� for each s�R	

Maximize� x

Constraints�

X
s�R

V �s�b�s� � x�
X
s�R

V ��s�b�s� for all V ��V�

X
s�R

b�s� � �

b�s� � � for all s�R�

�	 If x��� return b� else return nil	

The procedure purge�V� R� is supposed to return a parsimonious R�covering of a set
of s�functions V	 To implement it� we need two subroutines	
An s�function V �s� pointwise dominates another s�function V ��s� in a region R if

V �s��V ��s� for all s�R	 The subroutine pointwisePurge�V�R� returns a minimal subset
V � of V such that each s�function in V is pointwise dominated in the region R by at least
one s�function in V �	 Implementation of this subroutine is straightforward	
The subroutine best�b�V� returns an s�function in V that dominates all other s�

functions in V at belief state b	 Implementation of the subroutine is straightforward
except for the issue of tie breaking	 Arbitrary tie breaking can lead purge�V� R� to yield
an R�representation of V that is not parsimonious	 A correct way to break ties is as
follows	 Fix an ordering among states in R	 This induces a lexicographic ordering among
all s�functions	 Among the tied s�functions� chose the one that is largest under the lexi�
cographic ordering �Littman ����	
The following implementation of purge is based on Lark�s algorithm �White �����	
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Procedure purge�V� R�

� Inputs� V � A set of s�functions�
R � A region	

� Output� A parsimonious R�covering of V	

�	 V � pointwisePurge�V�R�	

�	 VR�		

�	 While V��	�

� Pick an s�function V from V	

� b�dominate�V�VR� R� ��	

� If b �nil� remove V from V	

� Else remove best�b�V� from V and add it to VR	

Endwhile

	 Return VR	
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