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Abstract— In this paper, we present an algorithm for generat-
ing complex dynamically-feasible maneuvers for autonomous ve-
hicles traveling at high speeds over large distances. Our approach
is based on performing anytime incremental search on a multi-
resolution, dynamically-feasible lattice state space. The resulting
planner provides real-time performance and guarantees on and
control of the suboptimality of its solution. We provide theoretical
properties and experimental results from an implementation on
an autonomous passenger vehicle that competed in, and won, the
Urban Challenge competition.

I. INTRODUCTION

Autonomous vehicles navigating through cluttered, unstruc-

tured environments or parking in parking lots often need to

perform complex maneuvers and reason over large distances.

Furthermore, this reasoning usually needs to be performed

very quickly so that the resulting maneuvers can be executed in

a timely manner, particularly if the environment is inhabited,

dynamic, or dangerous. In particular, our current focus is

planning for autonomous urban driving including both off-road

scenarios and large unstructured parking lots such as the ones

in front of malls and large stores (on the order of 200 × 200
meters). Maneuvering at human driving speeds (∽ 15 mph)

through such areas requires very efficient planning, especially

if they contain static obstacles or other moving vehicles.

Roboticists have concentrated on the problem of mobile

robot navigation for several decades, providing a large body

of research. Early approaches concentrated on local planning,

where very short term reasoning is performed to generate

the next action for the vehicle. These include potential field-

based techniques, where obstacles exert repulsive forces on the

vehicle while the goal exerts an attractive force [1], and the

curvature velocity [2] and dynamic window [3] approaches,

where planning is performed in control space to generate

dynamically-feasible actions. One major limitation of these

purely local approaches was their capacity to get the vehicle

stuck in local minima en route to the goal (for instance, cul-de-

sacs). Further, these approaches are unable to perform complex

multi-stage maneuvers, such as three-point turns, as these

maneuvers are not within the set of local actions considered

by the planner.

To reduce the susceptibility to local minima of these ap-

proaches, algorithms were developed that incorporated global

as well as local information [4, 5, 6, 7]. Typically, these

approaches generate a set of candidate simple local actions

and evaluate each based on both their local traversability

cost and the desirability of their endpoints based on a global

value function (e.g. the expected distance to the goal based

on known obstacle information). Although these approaches

perform better with respect to local minima, their simple

local planning can still cause the vehicle to get stuck or take

highly suboptimal paths. Subsequent approaches have focused

on improving this local planning by using more sophisticated

local action sets that better follow the global value function [8,

9], and by generating sequences of actions to perform more

complex local maneuvers [10, 11, 12]. The most complex

of these approaches are able to perform very precise local

maneuvering but are limited by the mismatch between their

powerful local planning and their approximate global planning,

resulting once more in a susceptibility to local minima.

Recognizing this mismatch, other researchers have concen-

trated on improving the quality of global planning, so that a

global path can be easily tracked by the vehicle [13, 14, 15,

16, 17]. However, the computational expense of generating

complex global plans over large distances has remained very

challenging, and these approaches are restricted to either small

distances, fairly simple environments, or highly suboptimal

solutions.

In this paper, we present an efficient, global planning

approach that attempts to overcome these challenges. First,

we employ a multi-resolution lattice search space to reduce the

complexity of the global search while still providing extremely

high-quality solutions. Second, we use an efficient anytime,

incremental search to quickly generate bounded suboptimal

solutions, then improve these solutions while deliberation time

allows and repair them when new information is received.

The resulting approach is able to plan complex, dynamically-

feasible maneuvers over hundreds of meters and improve and

repair them in real-time for vehicles traveling at high (∽ 15
mph) speeds.

We first describe the key ideas and components of our

approach, then provide key theoretical properties and results

from both simulation and the Urban Challenge competition.



(a) high-resolution (b) low-resolution

Fig. 1. High- and low-resolution action spaces.

II. MULTI-RESOLUTION LATTICE STATE-SPACE

A state lattice [18] is a discretization of the configuration

space into a set of states, representing configurations, and

connections between these states, where every connection

represents a feasible path. As such, lattices provide a method

for motion planning problems to be formulated as graph

searches. However, in contrast to many graph-based repre-

sentations (such as 4-connected or 8-connected grids), the

feasibility requirement of lattice connections guarantees that

any solutions found using a lattice will also be feasible. This

makes them very well suited to planning for non-holonomic

and highly-constrained robotic systems, such as passenger

vehicles.

State-space. The two key considerations in constructing a

lattice are the discretization (or sampling) strategy used for

representing the states in the lattice, and the action space

(or control set) used for the inter-state connections. For our

application we employ a four dimensional (x, y, θ, v) state

representation, where (x, y) represent the position of the center

of the vehicle in the world, θ represents the orientation of

the vehicle, and v represents its translational velocity. The

(x, y, θ) coordinates are important for computing the validity

of the poses of the vehicle in the world and making sure

that no path in the lattice requires an instantaneous change in

the orientation of the vehicle. For the velocity v we use two

possible values: maximum forwards velocity and maximum

reverse velocity. We take velocity into account because the

time involved in switching between forward and backward di-

rections is substantial so reasoning about this cost is important

for generating fast, smooth paths1.

Action Space. The action space for each state in the lattice

is intended to be dense enough that every possible feasible path

through the lattice can be constructed by combining sequences

of these actions. However, because this action space represents

the branching factor of the subsequent graph search, in practice

it must be carefully constructed to provide flexibility in path

selection while maintaining computational tractability.

The offline construction of our action space is based on

work by Pivtoraiko and Kelly [18] that attempts to create near-

minimal spanning action spaces. Given a state s, we compute

the action space by first calculating a subset of states within

a distance d of s that are reachable via some feasible action.

1We do not reason about curvature (the orientation of wheels) because we
found this to be less critical for the speeds we are interested in traveling at,
as discussed in the results section.

To generate the feasible actions we use a trajectory generation

algorithm originally developed by Howard and Kelly [9]. This

algorithm employs an accurate vehicle model to produce feasi-

ble, directly-executable actions and an optimization technique

to minimize the endpoint error of these actions with respect

to a desired endpoint state. We use this approach to ‘snap’

the actions to the lattice so that the endpoint of each action

lands on a lattice state. Next, we look at this set of actions

and calculate whether any single action can be approximately

recomposed out of a combination of other, shorter actions.

If so, these longer actions are discarded from our set. This

provides us with a compact set of actions that approximate

the full reachable space. However, in contrast to the approach

in [18], we maintain multiple straight segments of varying

lengths to improve the speed of the subsequent search, as we

will discuss in Section III-A. Figure 1(a) illustrates the action

space for a single state (oriented to the right) in our lattice.

Multi-resolution Lattice. Even with a compact action

space, planning long complex maneuvers over lattices can

be expensive in terms of both computation and memory. An

important observation, however, is that usually, there exists a

wide spectrum of smooth, dynamically-feasible paths between

the vehicle and goal configurations and it is waste of time and

memory to explore all of them. On the other hand, all of these

paths start and end at the exact same configurations, and the

challenge is in finding a path that satisfies the current vehicle

configuration and the specific goal configuration precisely.

This motivated us to take a novel, multi-resolution approach,

where we use a high-resolution action space in the vicinity

of the robot and the goal, and a low-resolution action space

elsewhere. We call the resulting combination a multi-resolution

lattice. With this approach, we can harness most of the benefit

of the high-resolution representation without paying anything

near the full computational cost. The trick is making sure that

the high-resolution and low-resolution lattices connect together

smoothly.

Our multi-resolution approach maintains the same dimen-

sionality (x, y, θ, v) for both resolutions, but the action space

for the low-resolution lattice is a strict subset of the action

space for the high-resolution lattice. Figure 1(a) shows the

action space used in the high-resolution lattice and Figure

1(b) shows the action space used in the low-resolution lattice2.

Using this method ensures that the low-resolution lattice is

utilized fully and that paths in the multi-resolution lattice are

guaranteed to be feasible, which is a strong advantage over

existing combined local and global approaches for navigation.

Theorem 1: Every path in a lattice that uses only a low-

resolution action space is also a valid path in our multi-

resolution lattice. Further, every path in the multi-resolution

lattice is a valid path in a lattice that uses only the high-

resolution action space.

Proof. The proof of the first claim follows trivially from

the fact that any action in the low-resolution lattice is a valid

2In practice, choosing the appropriate set can be achieved with a basic
check: if the (x, y) location of a state is not within some distance d of the
vehicle or goal, its action set is the low-resolution set.



action in both the low-resolution and high-resolution lattices,

and therefore is a valid action in the multi-resolution lattice.

A similar argument applies for the second claim.

Enforcing the low-resolution action space to be a subset of

the high-resolution action space decreases the branching factor

of the graph constructed by the search, which is certainly

important, but it does not necessarily decrease the size of the

graph. However, it is also possible to decrease the size of the

graph as follows. Suppose Ah is an action space used in the

high-resolution space, and Al is an action space used in the

low-resolution space. Thus, Al ⊂ Ah. Then, we can construct

Al by picking only the actions from Ah that end at states with

a coarser discretization than the end states of actions in Ah. For

example, we can choose for Al only those actions whose end

states have θ equal to one of 16 possible angles, while actions

in Ah can connect states with 32 possible values of θ. (This

is precisely what we used in our system.) Mathematically,

the construction of the action space Al can be expressed as

follows in terms of a high-resolution discretization Qh and

a lower-resolution discretization Ql of variables x, y, θ, v: an

action a connecting states s1 = (x1, y1, θ1, v1) and s2 =
(x2, y2, θ2, v2) belongs to Al if and only if a ∈ Ah and

(x2, y2, θ2, v2) ∈ Ql.

Restricting Ql to a coarser discretization for (x, y) or θ

corresponds to using a discretization that adapts based on the

vehicle and goal configurations. This technique can also be

used to explicitly constrain the behavior of the vehicle in the

different areas. For instance, restricting Ql to contain only

positive v-values prevents the vehicle from moving backward

when far from the initial and goal configurations. This general

approach allows for an arbitrarily-reduced state and action

space in the low-resolution portion of the lattice, and can also

be trivially extended to more than two levels of resolution if

desired.

III. ANYTIME, INCREMENTAL SEARCH

Given a search space (in our case, in the form of a multi-

resolution lattice) and a cost function associated with each

action, we need an efficient method for searching through

this space for a solution path. A* search is perhaps one

of the most popular methods for doing this [19]. It utilises

a heuristic to focus the search towards the most promising

areas of the search space. While highly efficient, A* aims to

find an optimal path which may not be feasible given time

constraints and the size of environments autonomous vehicles

need to operate in. To cope with very limited deliberation

time, anytime variants of A* search have been developed [20,

15]. These algorithms generate an initial, possibly highly-

suboptimal solution very quickly and then concentrate on

improving this solution while deliberation time allows. Fur-

thermore, these anytime algorithms are able to provide bounds

on the suboptimality of the solution at any point of time during

the search.

A* and its anytime variants work best when the search

space, and thus environment, is mostly known a priori. In

Fig. 2. Pre-planning a path into a parking spot and improving this path in
an anytime fashion.

robotic path planning this is rarely the case, and the robot

typically receives updated environmental information through

onboard and/or offboard sensors during execution. To cope

with imperfect initial information and dynamic environments,

efficient incremental variants of A* search have been devel-

oped that update previous solutions based on new information

(e.g. from sensors) [21, 22, 23]. These algorithms repair

existing solutions for a fraction of the computation required

to generate such solutions from scratch.

When faced with limited deliberation time and imperfectly-

known or dynamic environments, it is extremely useful to have

a search algorithm that is both anytime and incremental. The

Anytime Dynamic A* algorithm developed by Likhachev et al.

is a version of A* search that combines these two properties

into a single approach and has been shown to be very effective

for a range of robotic planning tasks [16]. We employ this

algorithm for planning and re-planning paths in our multi-

resolution lattice.

A. Anytime Dynamic A*

Anytime Dynamic A* (AD*) exploits a property of A* that

can result in much faster generation of solutions, namely that

if consistent heuristics are used and multiplied by an inflation

factor ǫ > 1, then A* can often generate a solution much

faster than if no inflation factor is used [24], and the cost of

the solution generated by A* will be at most ǫ times the cost

of an optimal solution [25]. AD* operates by performing a

series of these inflated A* searches with decreasing inflation

factors, where each search reuses information from previous

searches. By doing so, it is able to provide suboptimality

bounds on all solutions generated and allows for control of

these bounds, since the user can decide how much the inflation

factor is decreased between searches. To cope with updated

information, AD* also borrows ideas from the D* and D* Lite

algorithms [21, 22] and only propagates updated information

through the affected and relevant (given the current search)

portions of the search space.

To enable efficient anytime planning and replanning as the

vehicle moves, we use AD* to search backwards from the goal



configuration towards the current configuration of the vehicle.

The heuristic used thus needs to estimate the cost of a shortest

path from the vehicle configuration (rather than goal) to each

state in question.

The effectiveness of Anytime Dynamic A* is highly depen-

dent on its use of an informed heuristic to focus its search. An

accurate heuristic can reduce the time and memory required

to generate a solution by orders of magnitude, while a poor

heuristic can diminish the benefits of the algorithm. It is thus

important to devote careful consideration to the heuristic used

for a given search space. Further, because we are inflating

heuristic values, it is useful to have long actions that can

skip over several nodes and reduce the number of states in

the search. It is for this reason we add several straight line

actions of varying length in both the forwards and backwards

directions to our action set (see Section II).

B. Informative Heuristics

The purpose of a heuristic is to improve the efficiency of

the search by guiding it in promising directions. A common

approach for constructing a heuristic is to use the results from

a simplified search problem (e.g. from a lower-dimensional

search problem where some of the original constraints have

been relaxed). In selecting appropriate heuristics, it is im-

portant to analyze the original search problem and determine

the key factors contributing to its complexity. In robotic path

planning these are typically the complexity inherited from the

constraints of the mechanism and the complexity inherited

from the nature of the environment.

To cope with the complexity inherited from the mechanism

constraints, a very useful general heuristic is the cost of

an optimal solution through the search space assuming a

completely empty environment. This can be computed offline

and stored as a heuristic lookup table, and several efficiencies

can be used to reduce the required memory for this table

[17]. This is a very well informed heuristic for operating in

sparse environments and is guaranteed to be an optimistic (or

admissible) approximation of the actual path cost.

To cope with the complexity inherited from the nature of the

environment, it is not practical to pre-compute heuristic values

for all possible environment configurations, as there are an

effectively infinite number of possibilities for any reasonably-

sized environment. However, in this case it is beneficial to

solve online a simplified search problem given the actual

environment and use the result of this search as a heuristic to

guide the original, complex search. In particular, we solve a 2D

((x, y)) version of the problem by running a single Dijkstra’s

search starting at the cell that corresponds to the center of

the current vehicle position. The search computes the costs of

shortest paths to all other cells in the environment3.

AD* requires the heuristics to be admissible and consistent.

This holds if h(sstart) = 0 and for every pair of states s, s′

such that s′ is an end state of a single action executed at state

3However, even though it is very fast, we still restrict this search to only
compute the states that are no more than twice as far (in terms of path cost)
from the vehicle cell as the goal cell.

(a) (b)

Fig. 3. Mechanism-constrained (solid) and environment-constrained (dashed)
heuristic paths. In each case, the initial and desired vehicle poses are shown
as blue and red rectangles, respectively (with the interior triangles specifying
the headings). (a) The mechanism-constrained heuristic is perfectly informed
when no obstacles are present in the environment. (b) The environment-
constrained 2D heuristic can provide significant benefit when obstacles exist.
Here, an obstacle (shown in black) resides over the direct path to the desired
pose.

s, h(s)+ c(s, s′) ≥ h(s′), where h(s) is a heuristic of state s,

sstart is a state that corresponds to the vehicle configuration

and c(s, s′) is the cost of the action that connects s to s′. The

cost c(s, s′) of the action is typically computed as the length of

the action times the average of the costs of the cells covered by

the vehicle when moving from state s to state s′. The heuristic

based on the 2D search, however, may overestimate these costs

since it estimates the cost of moving the center of the vehicle

only. To resolve this, the cost of each cell in the 2D grid used

for computing the 2D heuristic is set to the average of cells

covered by the largest circle than can be inscribed into the

vehicle perimeter. The cost of each transition c(s, s′) is then

computed as the length of the transition times the maximum

of two quantities: (a) the average value of the costs of the cells

covered by the vehicle when moving from state s to state s′

(as before), and (b) the maximum of the 2D grid cell costs,

used to compute heuristics, traversed through by the center of

the vehicle when moving from s to s′. Intuitively, this cost

function penalizes slightly more when vehicle traverses high-

cost areas (e.g., obstacles) residing right under the center of

the vehicle. In addition, the heuristics are scaled down by a

factor of 1.08 to compensate for the suboptimality of optimal

paths in 8-connected grids. It can be then shown that our 2D

heuristic function is admissible and consistent with respect to

this cost function.

Each of these heuristic generation approaches, mechanism-

relative and environment-relative, have strong and complemen-

tary benefits (see Figure 3). Rather than selecting one, it is

possible to combine the two. We do this by constructing a

new heuristic that, for each state s, returns the value h(s) =
max(hfsh(s), h2D(s)), where hfsh(s) is the heuristic value

of state s according to the mechanism-constrained heuristic

(freespace heuristic), and h2D(s) is the value according to the

environment-constrained heuristic (2D heuristic). As shown

in the experimental results, this combined heuristic function

can be an order of magnitude more effective than either of

the component heuristic functions. Since both hfsh(s) and



h2D(s) are admissible and consistent, the combined heuristic

is also admissible and consistent [26]. This property implies

the bounds on the suboptimality of the paths returned by

AD* [16]:

Theorem 2: The cost of a path returned by Anytime Dy-

namic A* is no more than ǫ times the cost of a least-cost path

from the vehicle configuration to the goal configuration using

actions in the multi-resolution lattice, where ǫ is the current

value by which Anytime Dynamic A* inflates heuristics.

IV. OPTIMIZATIONS

Typically, one of the most computationally expensive parts

of planning for vehicles is computing the cost of actions, as

this involves convolving the geometric footprint of the vehicle

for a given action with a map from perception. In our applica-

tion, we used a 0.25m resolution 2D perception map and the

(x, y) dimensions of our vehicle were 5.5m × 2.25m. Thus,

even a short 1m action requires collision checking roughly 300
cells. Further, the specific cells need to be calculated based on

the action and the initial pose of the vehicle.

To reduce the processing required for this convolution, we

performed two optimization steps. First, for each action a we

pre-computed the cells covered by the vehicle when executing

this action. During online planning, these cells are quickly

extracted and translated to the appropriate position when

needed. Second, we generated two configuration space maps

to be used by the planner to avoid performing convolutions.

The first of these maps expanded all obstacles in the perception

map by the inner radius of the robot; this map corresponded to

an optimistic approximation of the actual configuration space.

Given a specific action a, if any of the cells through which the

center of the robot executing action a passes are obstacles in

this inner map, then a is guaranteed to collide with an obstacle.

The second map expanded all obstacles in the perception map

by the outer radius of the robot and therefore corresponded

to a pessimistic approximation of the configuration space. If

all of the cells through which the center of the vehicle passes

when executing action a are obstacle-free in this map, then a is

guaranteed to be collision-free. Only those actions that do not

produce a conclusive result from these simple tests need to be

convolved with the perception map. Typically, this is a severely

reduced percentage, thus saving considerable computation. To

create these auxiliary maps efficiently, we performed a single

distance transform on the perception map and then thresholded

the distances using the corresponding radii of the robot for

each map.

V. EXPERIMENTAL RESULTS

We have implemented our approach on an autonomous pas-

senger vehicle (lower-left image in Figure 5) where it has been

used to drive over 3000 kilometers in urban environments,

including competing in the DARPA Urban Challenge. The

multi-resolution lattice planner was used for planning through

parking lots and into parking spots, as well as for geometric

road following in off-road areas, and in error recovery sce-

narios. During these scenarios, the vehicle traveled speeds of

(a) anytime behavior

lattice states time

expanded (secs)

high-res 2,933 0.19

multi-res 1,228 0.06

heuristic states time

expanded (secs)

h 2,019 0.06

h2D 26,108 1.30

hfsh 124,794 3.49

(b) effect of multi-res lattice (c) effect of heuristic

Fig. 4. An example highlighting our approach’s anytime behavior and the
benefits of the multi-resolution lattice and the combined heuristic function.

up to 15 miles per hour while performing complex maneuvers

and avoiding static and dynamic obstacles.

In all cases, the multi-resolution lattice planner searches

backwards out from the goal pose (or set of goal poses) and

generates a path consisting of a sequence of feasible high-

fidelity maneuvers that are collision-free with respect to the

static obstacles observed in the environment. This path is also

biased away using cost function from undesirable areas such

as curbs and locations in the vicinity of dynamic obstacles.

When new information concerning the environment is re-

ceived (for instance, a new static or dynamic obstacle is

observed), the planner is able to incrementally repair its

existing solution to account for the new information. This

repair process is expedited by performing the search in a

backwards direction, as in such a scenario updated information

in the vicinity of the vehicle affects a smaller portion of the

search space and so less repair is required. The lattice plan is

typically updated once per second, however in trivial or very

difficult scenarios this time may vary.

As mentioned earlier, the lattice used in this application does

not explicitly represent curvature. Theoretically, this means

that the paths produced over this lattice are guaranteed feasible

only if we allow the vehicle to stop at each lattice state

and re-orient its steering wheel. However, in practice we

reduce (by a small fraction) the maximum curvature used



Fig. 5. Replanning when new information is received

in generating connections between states and we reduce the

maximum speed at which we execute higher-curvature sections

of lattice paths (from 5 m/s down to 2 m/s) so that this

curvature discontinuity is not a critical issue. We also use

a lookahead during execution to slow down and stop when

switching velocity directions4. As a result, we don’t need to

stop during execution unless the path contains velocity sign

changes.

The lattice path is tracked using a local planner that employs

the same trajectory generation algorithm used to provide

the action space for the lattice. Although a simple, single-

trajectory tracker would suffice given the feasibility of the

lattice plan, multiple trajectories are produced to account for

dynamic obstacles and new observations that could require

immediate reaction (the local planner runs at 10 Hz).

To ensure that a high-quality path is available for the

vehicle as soon as it enters a parking lot, the lattice planner

begins planning for the desired goal pose while the vehicle

is still approaching the lot. By planning a path from the

entry point of the parking lot in advance, the vehicle can

seamlessly transition into the lot without needing to stop,

even for very large and complex lots. Further, the anytime

property of the search enables the solution to be improved

during the pre-planning stage and, depending on how much

time is available for pre-planning, the resulting path for the

vehicle can converge to a (provably) optimal solution.

As well as providing smooth navigation amongst partially-

known static objects, the efficiency of the multi-resolution

lattice planner makes it possible to intelligently interact with

several dynamic obstacles in the environment. In our appli-

cation, we were able to not only avoid such obstacles but

through updating regions of high cost as the obstacles moved,

we could stay well clear of them unless necessary and also

exhibit intelligent yielding behavior in unstructured areas (e.g.

keeping to the right when approaching oncoming vehicles).

4A maximum lookahead of 2m is required given our vehicle’s maximum
deceleration and the top speed used for following lattice paths, but we use a
slightly higher lookahead for smooth deceleration.

The multi-resolution lattice planner was also used for per-

forming complex maneuvers in error recovery scenarios during

on-road driving, such as when a lane or intersection is partially

blocked with vehicles or obstacles, or a road is fully blocked

and a u-turn is required. It was also used when there was some

uncertainty as to where the road was; in these scenarios it

uses the geometric perceptual information to bias the vehicle

towards the center of the road (when there are perceivable

curbs or berms).

We have included here a number of examples from the Ur-

ban Challenge and our testing to illustrate key characteristics

of the approach.

a) Pre-planning: Figure 2 illustrates the pre-planning

used by the lattice planner, as well as its anytime performance.

The left image shows our vehicle approaching a parking lot

(parking lot boundary shown in green, road lanes shown in

blue), with its intended parking spot indicated by the white

triangle. While the vehicle is still outside the parking lot it

begins planning a path from one of the parking lot entries

to the desired spot (path shown in red). Although the initial

path shown in this left image is feasible, it is not ideal as it

involves more turning than necessary. The right image shows

how this path is improved over time as the vehicle approaches.

This path is optimal with respect to our cost function and is

generated well before the vehicle enters the parking lot.

b) Anytime Planning: Figure 4 is intended to provide

insights into the benefits provided by each of the main com-

ponents of our approach. Figure 4(a) illustrates the anytime

behavior of the approach when planning between two parking

spots. We have included a plot of the cost of the solution

produced by Anytime D* as a function of computation time.

Here, the initial suboptimality bound ǫ was set to 3. The

upper image shows the first path Anytime D* finds. This

path was found in less than 100 msecs (and after 1, 715
state expansions). The cost of the path was 133, 736. Given

additional deliberation time, Anytime D* improves upon this

solution, and after 650 msecs, the search converges to an

optimal solution. This solution is significantly shorter than the



initial path (as seen in the bottom image) and has a cost of

77, 345.

c) Multi-resolution Planning: Figure 4(b) shows the ben-

efits of using our multi-resolution lattice approach on the

same simple example. The top row in the table represents

a uniformly high-resolution lattice, while the bottom row

represents our multi-resolution lattice (in both cases, ǫ = 2).

Planning with the multi-resolution lattice is more than three

times faster. Note that the improvement in states expanded is

less than a factor of three. This is because using a multi-

resolution lattice decreases not only the number of states

expanded but also the time spent expanding each state, since

the number of possible actions from each state is decreased.

d) Combining Mechanism-relative and Environment-

relative Heuristics: Figure 4(c) demonstrates the benefits of

using our combined heuristic function on a simple example.

The first row in the table represents our combined heuristic

function. It combines the 2D environment-constrained heuris-

tic (2nd row) and freespace mechanism-constrained heuristic

(3rd row). Using this combination is over 21 times faster than

using the 2D heuristic alone and over 58 times faster than

using the freespace heuristic alone.

e) Replanning: Figure 5 illustrates the replanning capa-

bility of the lattice planner. These images were taken from

a parking task performed during the National Qualification

Event. The top-left image shows the initial path planned for

the vehicle to enter the parking spot indicated by the white

triangle. Several of the other spots were occupied by other

vehicles (shown as rectangles of varying colors), with detected

obstacles shown as red areas. The trajectories generated to

follow the path are shown emanating from our vehicle (the

selected trajectory is shown in blue). As the vehicle gets closer

to its intended spot, it observes more of the vehicle parked

in the right-most parking spot (top, second image from left).

At this point, it realizes its current path is infeasible and

replans a new path that has the vehicle perform a loop and

pull in smoothly. This path was favored in terms of time over

stopping and backing up to re-position. The three right-most

photographs on the bottom row were taken by an onboard

camera during the run.

f) Long-range Planning: As with other teams participat-

ing in the Urban Challenge, our vehicle underwent extensive

testing before and during the competition. During the com-

petition, the planner was able to continuously plan and re-

plan without having the vehicle ever stop to wait for a plan.

The scenarios we used for testing before the competition were

numerous and included expansive obstacle-laden parking lots

as well as narrow, highly-constrained parking lots. An example

of the former is shown in Figure 6(a-b). This parking lot is

200m by 200m. Initially, it is unknown and as the robot

traverses the lot, it discovers a series of obstacles (shown

as white dots in the image on the right). The robot has to

replan in real-time to account for these obstacles. The time for

replanning in this scenario varied from a few milliseconds for

small re-planning adjustments to the path to a few seconds for

finding drastically different trajectories, such as the one shown

(a) initial planning (b) replanning

(c) initial planning (d) replanning

Fig. 6. Planning and replanning in large (a,b) and highly-constrained (c,d)
environments

in Figure 6(b).

g) Complex Maneuvering: An example of a testing sce-

nario involving a highly-constrained parking lot is shown

in Figure 6(c-d). The trajectory planned involves the robot

making an initial narrow U-turn and then making another

one immediately before pulling into the final parking spot.

While executing the trajectory, the robot discovers a series

of obstacles and has to re-plan as shown in Figure 6(d). The

new trajectory now requires the robot to backup a number of

times. Moreover, it requires the robot to enter the desired spot

in reverse since the discovered obstacles prohibit the robot

from pulling in.

h) Coping with Dynamic Obstacles: Figure 7 shows

the lattice planner being used to plan amongst several other

moving vehicles in simulation. In these images, the current

goal is shown as the white triangle and the inferred short-

term trajectories of the other vehicles are included as fading

polygons.

i) Coping with Static Obstacles: Figure 8 provides an

example testing scenario for our physical vehicle. The left

image shows the layout of the parking lot, the static obstacles

(initially unknown to the vehicle), and the parking spots to

be visited in order (1 through 5). The vehicle entered the lot

through the left entrance between spots 3 and 4. The other

images show snapshots from an onboard camera during the

vehicle’s traverse through this difficult environment.

VI. CONCLUSIONS

We have presented a general approach for complex plan-

ning involving large, high-dimensional search spaces. Our

approach employs a novel multi-resolution action and state

space that significantly reduces complexity while providing

a seamless interface between the resolutions, as well as

guarantees of solution feasibility. The approach also relies



Fig. 7. Planning amongst moving obstacles

Fig. 8. Planning in complex obstacle environments

on an anytime, incremental search algorithm for generating

solutions in partially-known or dynamic environments when

deliberation time is limited. This search exploits a low-

dimensional environment-dependent heuristic coupled with a

full-dimensional freespace heuristic for efficient focusing, a

powerful technique applicable to any high-dimensional plan-

ning problem. The resulting approach provides global, feasible

solutions to challenging navigation tasks, and all the core

techniques presented are applicable to a wide range of complex

planning problems.
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