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Planning Reliable Paths with Pose SLAM

Rafael Valencia, Martı́ Morta,

Juan Andrade-Cetto, and Josep M. Porta

Abstract—The maps built by standard feature-based SLAM methods

cannot be directly used to compute paths for navigation, unless enriched

with obstacle or traversability information with the consequent increase

in complexity. Here, we propose a method that directly uses the Pose

SLAM graph of constraints to determine the path between two robot

configurations with lowest accumulated pose uncertainty, i.e., the most

reliable path to the goal. The method shows improved navigation results

when compared to standard path planning strategies, both over datasets

and real world experiments.

Index Terms—SLAM, Path Planning, Autonomous Navigation

I. INTRODUCTION

Aside from applications such as the reconstruction of archaeo-

logical sites [1] or the inspection of dangerous areas [2], the final

objective for an autonomous robot is not to build a map of the

environment, but to use this map for navigation, i.e., to reach distant

locations in the environment efficiently and safely. In recent years, we

have witnessed an amazing advance in the field of simultaneous local-

ization and map building (SLAM), and state of the art approaches can

now build maps over several kilometers [3]. For efficiency reasons,

most SLAM algorithms represent the environment using a sparse

set of features. Unfortunately, this representation cannot be directly

used for collision-free path planning since it does not provide much

information about which routes in the map have been previously

traversed safely, or about the nature of the obstacles it represents.

Those sparse models could be somehow enriched with obstacle or

traversability related information [4]–[6], but at the expense of an

increase in complexity.

The problem of finding paths to reach distant locations is addressed

in the motion planning literature, and the most successful methods

are based on randomized sampling [7, 8], in which collision-free con-

figurations are stochastically drawn and where, if possible, neighbor

samples are connected forming a roadmap. This roadmap is later used

to find a path between any two given configurations. Some approaches

have addressed the problem of optimizing the quality of this path,

mainly focusing on reducing the path length [9, 10]. In any case, the

research in motion planning typically assumes deterministic setups

where a perfect model of the environment is available and where the

configuration of the robot is perfectly known too.

Some extensions have been introduced recently to deal with

uncertainties in the model of the environment [11], in the robot

configuration [12], in the effect of robot actions [13], or in the

effect of actions and measurements [14]. The extension that best

matches the stochastic nature of SLAM is the Belief Roadmap

(BRM) [15, 16]. In this approach, the edges defining the roadmap

include information about the uncertainty change when traversing
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such an edge. However, the main drawback of the BRM is that

it still assumes a known model of the environment, which is in

general not available in real applications. In this paper, we aim to

overcome the limitation of BRMs noting that the map generated by

Pose SLAM [17], or any other delayed-state SLAM method [18]–

[20], can be directly used as a belief roadmap.

Pose SLAM is the variant of SLAM where only the robot path is

estimated and where landmarks are only used to produce relative

constraints between robot poses. In a semi-autonomous scenario

where a human initially drives the robot through a set of interest

way points, the outcome of Pose SLAM is a graph of obstacle-free

paths in the area where the robot has been operated. Using this graph

for navigation allows to have an infrastructure-free automated guided

vehicle, as those widely used for material distribution in factories,

or for drug delivery in hospitals [21, 22]. An added advantage is

that Pose SLAM is agnostic with respect to the sensor modalities

used, which facilitates its application in different environments and

robots. Moreover, the paths stored in the map satisfy constraints

not easy to model in the robot controller, such as the existence of

restricted regions, or the right of way along paths. Deviations from

these paths might result in an inconvenience for other operations

carried out in the factory or hospital. Thus, a robot that can adequately

choose the correct path from a set of previously traversed ones, or

their combination, is desirable for such applications. However, in

those scenarios, the use of a robot is only practical if it is able to

autonomously navigate without becoming lost.

In this paper, we show that, using the information stored in the Pose

SLAM graph, we can plan in the belief space to obtain paths with the

least probability of becoming lost. The key idea behind our method

is that, in Pose SLAM, highly informative areas of the environment

result in poses in the graph with low uncertainty. In these areas,

sensor matching is more reliable, and there is less risk of deviating

from the path during execution. We first introduced this idea in [23],

and here, we a) simplify the computation of the path cost showing that

the uncertainty of the localization estimate can be evaluated without

explicitly maintaining a localization filter, b) propose alternatives to

efficiently deal with large-scale problems by approximating marginal

covariances, and c) thoroughly evaluate the approach in simulated

and real datasets and with a real robot in outdoor experiments.

From the point of view of SLAM, this paper constitutes a step

forward to actually use the output of the mapping process for path

planning. From the point of view of motion planning, this paper con-

tributes with a method to generate belief roadmaps without resorting

to stochastic sampling on a pre-defined environment model. Note

however that the proposed method limits the planning only to those

areas already covered by the Pose SLAM graph. The exploration of

novel paths is out of the scope of this work. We address the issue

in [34].

After a review of the state of the art in Section II, the rest of the

paper details the proposed extensions to Pose SLAM to determine

reliable paths. Section III summarizes Pose SLAM and reinterpret its

map as a set of samples in belief space, and Section IV describes

how to plan using a roadmap defined on these samples. In Section V,

this new planning approach is tested with datasets and real world

experiments and, finally, Section VI gives some concluding remarks.

II. RELATED WORK

Initial work in SLAM represented the environment using a sparse

set of features. However, this representation needs to be enriched with

obstacles or traversability related information before it can be used

for collision-free path planning. For instance, in [4], the map of the

environment is enriched with virtual free-space markers connected

defining a graph of traversable regions. A robot would navigate first
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to the nearest free-space marker and then follow the free-space graph

to the goal. Alternatively, the hybrid metric maps (HYMMs) in [5]

split the environment in local triangular regions (LTR) whose corners

are features in the map. Each LTR has local paths that traverse it and

an associated cost for each of these local paths so that a planner

can find the lowest cost path from any point to the goal through

a sequence of LTRs. HYMMs were improved to include a scalar

evaluation of the potential information that the robot can obtain from

the environment at each LTR [6]. This is relevant information for

path planning, but comes at the expense of a significant increase in

complexity and in memory use.

Instead of enriching feature-based maps, other approaches build

grid maps out of volumetric representations of 3D point clouds [24,

25]. These techniques, typically use the 3D map to extract a 2D map

of traversable regions from which a graph-like roadmap is derived.

Such graph is then used for path planning relying on standard graph

search algorithms. Those approaches, however, also come at the

expense of increased complexity and high memory cost. Moreover,

traversability is typically computed over the mean estimate of the

map, disregarding map uncertainty.

An alternative is to compute a lighter representation of the en-

vironment such as a topological map [26]–[28] and to use it for

path planning [29]. However, since topological maps are not accurate

enough to localize the robot in all cases, they are sometimes combined

with local grid maps [30, 32]. In these approaches, the topological

map is used as a roadmap to devise a path to the goal using graph

search techniques, and the local grid map associated with each node

in the topological map is used to compute a path from one node to

the next, considering local obstacle avoidance and path smoothing.

Although the use of hybrid metric-topological maps improves the

efficiency of path planning when compared to the use of a global

grid map, these approaches still require a considerable effort to

maintain the coherence between both representations, especially at

loop closure. As with the traversability maps, the computed routes

on topological maps also ignore the sources of uncertainty included

in the map.

In this paper we observe that the maps computed with Pose SLAM

can be directly used as belief roadmaps and, thus, used for planning

reliable paths without further processing the map nor enriching it

with additional information. Moreover, since we rely on Pose SLAM

which marginalizes out the sensor readings, the approach can be used

with any type of sensors. In [3] it is suggested to use the graph

of poses built with bundle adjustment for path planning, but the

uncertainty information in the map is not exploited in the computation

of the optimal path. In contrast, we use the maps computed with Pose

SLAM to plan in the belief space obtaining paths to remote locations

that take into account the uncertainty balance along them.

The approach is devised to autonomously guide the robot in

scenarios where the robot had already built a map. This mapping

session need not be exhaustive as long as it traverses all areas the

robot is intended to visit in normal operations. Note however that

the technique could be extended to plan routes in a partially built

scenario during autonomous exploration [34], but this extension is

out of the scope of this paper.

III. ENVIRONMENT SAMPLING WITH POSE SLAM

Pose SLAM produces a directed graph, in which the nodes are

poses or waypoints, and the edges are established from odometry

or sensor registration. Assuming Gaussian distributions, a proba-

bilistic estimate of the pose nodes, x = {x1, . . . , xk}, is main-

tained using an information filter with a canonical parametrization

p(x) = N−1(η,Λ), with information vector η, and information

matrix Λ. This parametrization, compared to the traditional Kalman

form, with mean µ = Λ−1
η and covariance Σ = Λ−1, has the

advantage of being exactly sparse [17].

In Pose SLAM, state transitions result from the composition of a

motion command uk to the previous pose,

xk = f(xk−1, uk) = xk−1 ⊕ uk, (1)

where ⊕ is the operator used to add the relative displacement uk to

pose xk−1, as described in [35].

Augmenting the state in information form introduces shared in-

formation only between the new robot pose xk and the previous

one xk−1, resulting in an information matrix with a tridiagonal

block structure. If the state mean is available, this operation can be

performed in constant time.

Registration of sensory data also introduces shared information,

but now between non-consecutive poses. These relative constraints

can be modeled as

zki = h(xk, xi) = ⊖xk ⊕ xi, (2)

that is, the tail-to-tail operation defined in [35], which computes the

relative displacement from xk to xi in the frame of reference of xk.

When establishing such a link, the update operation only modifies the

diagonal blocks i and k of the information matrix Λ and introduces

new off-diagonal blocks at locations ik, and ki. This operation is also

executed in constant time, assuming the state mean to be available.

These links enforce graph connectivity, or loop closure in SLAM

parlance, and revise the entire path state estimate, reducing the overall

uncertainty. The result is that the marginal uncertainty at each node in

the graph results from the fusion of the uncertainties for all possible

paths from the origin of the map to that node.

From the point of view of planning, it seems reasonable to

distribute poses uniformly in the space where the plan is to be

defined. In classical motion planning algorithms, the plan is built in

the configuration space, but when taking into account the uncertainty,

the plan must be defined in the belief space.

During map building, the distance in belief space from a new pose

to any pose already in the map can be measured by the amount of

information encoded in the link that connects those poses. Formally,

the information gain of a link, i.e., the difference in entropy on the

entire map before and after the link is established, can be evaluated

as [17]

Iki =
1

2
ln

|Λ+∆Λ|
|Λ| =

1

2
ln

|Ski|
|Σy|

, (3)

where ∆Λ is the information provided by the new link, Σy is the

sensor registration error, Ski is the innovation covariance

Ski = Σy + [Hk Hi]

[

Σkk Σki

Σ⊤
ki Σii

]

[Hk Hi]
⊤
, (4)

Hk, Hi are the Jacobians of h with respect to poses k and i

evaluated at the state means µk and µi, Σkk and Σii are the

marginal covariances of poses k and i, respectively, and Σki is

the cross correlation between these two poses. If none of the links

with neighboring poses is informative enough (above a threshold γ),

there is no need to include such new pose in the map as it is too

close to other poses in belief space. Note that the Pose SLAM

system maintains the marginal covariances and cross correlations

in amortized constant time during mapping [36], but when using a

general delayed-state SLAM algorithm their computation requires to

invert the information matrix, which is computationally expensive.

In Pose SLAM, nodes are added to the graph as a function of the

information content in their connecting links, as measured by Eq. (3).

Thus, we can say that the sampling methodology is aware of the

uncertainty in both the motion and sensor models. Note, however,

that the information content separating two nodes is only lower
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bounded by γ, but there is no upper bound. Actually, information

content between neighbor nodes varies depending on the quality of

sensor registration, the speed of the robot, and the density of loop

closures in that region. For this reason, different paths from a given

start configuration to a goal node would entail different uncertainty

profiles.

IV. PATH PLANNING WITH POSE SLAM

We are in the quest for a path p = r1:T that would drive the robot

from its current configuration s = r1 to a goal configuration g = rT ,

that, for the applications considered in this paper, is always included

in the Pose SLAM graph. In this quest, we assume that the robot

is equipped with a local planner able to drive the robot to nearby

configurations. Moreover, we assume maximum likelihood actions

and measurements, as it is usual when planning in belief space [37].

With this, when tracking a path on the graph, the uncertainty

estimate would evolve according to the motion uncertainty and sensor

registration, but the mean estimate will lie at the mean of a node in

the graph, and the observation previously obtained at that position

will be repeated. In consequence, the proposed planning approach

only needs to consider poses in the graph, which are guaranteed to

be collision free.

Given that candidate paths lie on top of this graph, after path

execution the final robot uncertainty will be close to the original

marginal at that node. Thus, a cost function that only evaluates the

belief state at the goal is unsuitable and we are interested instead

in determining reliable paths, i.e., paths where the robot has low

probability of becoming lost. Herein, we assume that the probability

of becoming lost is directly related with the increments in the

uncertainty in robot positioning since uncertainty decrements can

only result in a better track of the path.

To identify the most reliable path we follow these steps. First,

we increase the connectivity of the Pose SLAM graph so that

paths combining different exploration sequences can be considered.

Next, we propose a principled way to evaluate the changes in the

uncertainty of the transitions between nodes, and use this uncertainty

measure to define the cost of a path as its mechanical work in the

uncertainty surface. Finally, this cost function is used to search the

minimum uncertainty path to the goal.

A. Increasing Graph Connectivity

The graph used for path planning is initialized with the odometry

edges of the Pose SLAM graph. However, we allow the local planner

to attempt connections to other neighboring poses. In this way, the

global planner can switch among different exploration sequences in

the quest for an optimal path.

Extra edges are included for nodes with high probability of being

close to each other and, thus, likely to be reachable using the

local planner. To determine such poses, we estimate the relative

displacement, d, from any robot pose xk to any other pose xi as

a Gaussian with parameters

µd = h(µk, µi), and (5)

Σd = [Hi Hk]

[

Σii Σik

Σ⊤
ik Σkk

]

[Hi Hk]
⊤
. (6)

Marginalizing the distribution of the displacement, d, along each one

of its dimensions, t, we get a one-dimensional Gaussian distribution

N (µt, σ
2
t ), which can be used to compute the probability of pose xi

being closer than vt to pose xk along such dimension

pt =

∫

+vt

−vt

N (µt, σ
2
t )

=
1

2

[

erf

(

vt − µt

σt

√
2

)

− erf

(−vt − µt

σt

√
2

)]

. (7)

If for all dimensions, pt is above a given threshold s, then con-

figuration xi is considered close enough to configuration xk. Pose

SLAM [17] computes the set of neighbors for each pose during

mapping in logarithmic time, organizing the poses in a tree. For

other delayed-state systems, though, the computation of the set of

neighbors requires to compute the marginal covariances and the cross

correlations between all pairs of poses, which is a costly operation.

Observe that the proposed approach remains agnostic about the

properties of the local planner and, thus, neighboring poses are

searched in a rectangular box around the current pose in configuration

space. If we had information about the kinematic constraints of the

robot, or about the distribution of obstacles around the robot, we

could reduce the search for neighboring poses to smaller areas. For

instance, for a car-like robot, we could focus the search for neighbors

into triangular areas on the xy plane, in front of and behind the

robot, since these are the regions including the kinematically-feasible

neighboring poses. Also, for a robot that can only safely move

forward due to the arrangement of its obstacle detection sensors, only

neighboring poses in front of the robot need to be detected. In all

cases, the size of the area where to look for neighbors is limited by

the accuracy of the local planner, which typically relies in odometry

readings.

Independently of the location and size of the area used to search for

neighbors, an edge is added to the path planning graph only if the

kinematic constraints enforced by the local planner allow reaching

the nearby node. Despite this verification, the local path might be

still unfeasible during path execution, mainly due to the presence of

obstacles. In this case, the problematic edge can be removed from

the graph and a re-planning process can be triggered.

B. Uncertainty Change of a Path Step

Every pair of poses in a planned path, say rk−1 and rk, would

match two poses in the Pose SLAM graph, say xi and xj . The

command uk that drives the robot from rk−1 to rk and the associated

motion noise Σu are provided by the local planner. Since, during the

planning process the actual sensor readings are not available, the

update of this estimate is made assuming that rk and xj will be

coincident and, thus, zkj = rk − xj ∼ N (0,Σjj) where Σjj is the

marginal covariance of the pose xj .

To evaluate the uncertainty change introduced by the motion

from rk−1 to rk, we must look at the dispersion of the conditional

distribution p(rk|rk−1, uk, zkj) that is obtained from the estimate

of the joint state (rk−1, rk). This estimate can be computed using,

for instance, an EKF as in [23]. We show next how this uncertainty

change can be more elegantly evaluated using an EIF parametriza-

tion instead, i.e., p(rk−1, rk) = N−1(η̄, Λ̄), but without actually

computing such pose estimate.

In the prediction step the joint information matrix on these two

states would be updated with [19]
[

Λ̄k−1k−1 + FQ−1 F⊤ −F⊤Q−1

−Q−1 F Q−1

]

, (8)

where Q = WΣuW
⊤, F and W are the Jacobians of f with

respect to rk−1 and uk evaluated at the means, and where Λ̄k−1k−1

is obtained marginalizing from the previous Λ̄. In the correction step

the measurement zkj is used to update the information matrix as

Λ̄ =

[

Λ̄k−1k−1 + FQ−1 F⊤ −F⊤Q−1

−Q−1 F Q−1 +Σ−1

jj

]

. (9)

With this, the uncertainty change of rk given full confidence

about rk−1 can be evaluated as

Uk =
1

|Λ̄k|k−1|
, (10)
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where Λ̄k|k−1 is the information matrix for the conditional

p(rk|rk−1, uk, zkj) obtained from Λ̄.

Fortunately enough, conditioning in information form is dual to

marginalization in covariance form, thus Eq. (10) simply evaluates to

Uk =
1

|Q−1 +Σ−1

jj | , (11)

which saves us from explicitly maintaining a localization filter as

done in [23]. Furthermore, we can safely assume Q to be non-

degenerate and, thus, the determinant in Eq. (11) would never be null

and Uk will be always well-defined. Note that we use a measure of

uncertainty change derived from the determinant of the covariance

matrix which is related to the entropy of p(rk|rk−1, uk, zkj), and

ultimately, to the uncertainty hyperellipsoid defined by this matrix.

A trace-based uncertainty measure [15] can be used as well, without

affecting the overall planning algorithm.

As said, this measure of uncertainty change is computed indepen-

dently of the estimation of the robot pose at each step and, thus, this

formulation saves us from actually implementing the EIF to track

the path. This does not imply that the robot must have an identical

belief to a pre-existing node in the optimized Pose SLAM graph.

What it implies is that the computation of the information gain is

independent of the current belief, as long as maximum likelihood

actions and measurements are considered. This is especially relevant

to marginalize the effects of the initial belief in the planning.

Moreover, as long as the graph does not change, the uncertainty

measure for all transitions can be precomputed from the Pose SLAM

graph and re-used to plan different paths. This is similar to what is

done in [15], factorizing the covariance update, but simplified thanks

to the use of the information form.

C. Minimum Uncertainty along a Path

Next, we propose a cost function that considers the cumulative

probability of becoming lost for a given path. Assuming that this

probability for a given path step is directly related with the increments

in uncertainty, determining optimal paths can be seen as searching

for a path of minimal mechanical work [38] in an uncertainty change

surface [39] over the space of robot poses, where the uncertainty

change of a path step is computed using the criterion described in

Section IV-B.

Given a discrete path p = r1:T , we define its mechanical work in

the uncertainty surface as the sum of positive increments of individual

step costs

W (r1:T ) =
T
∑

k=2

∆U
+

k , (12)

with

∆U
+

k =

{

∆Uk ∆Uk > 0,

0 ∆Uk ≤ 0,
(13)

and

∆Uk = Uk − Uk−1 (14)

and where, by convention, U1 = 0, to include the uncertainty of the

first step of the path in W . Note that, the initial uncertainty of the

robot is not included in W since it would result in a constant offset

for the cost of all alternative paths. Moreover, since the costs are

non-negative, there is always an acyclic minimum cost path to each

reachable node in the map.

This strategy prefers short paths with possibly steep uncertainty

changes over longer paths with gentle oscillations of uncertainty, thus

avoiding the accumulation of small chances of becoming lost over

large trajectories.

Algorithm 1: Path planning with Pose SLAM.

PoseSLAMPathPlanning(M ,g)

input : M : The graph computed by Pose SLAM.
g: The goal pose.

output: p: The most reliable path to g.

1 Q← POSES(M)
2 forall the n ∈ Q do

3 W [n]←∞
4 V [n]← 0

5 s← CURRENTPOSE(M)
6 W [s]← 0
7 U [s]← 0
8 repeat

9 i← EXTRACTMIN(Q,W )
10 if i 6= g and W [i] 6=∞ then

11 N ← NEIGHBORS(M, i)
12 forall the j ∈ N do

13 (u,Q)← LOCALPLANNER(xi,xj)
14 if u 6= ∅ then

15 Σjj ← MARGINALCOVARIANCE(M, j)

16 U = 1/|Q−1 + Σ
−1

jj |
17 ∆U = U − U [i]
18 if ∆U > 0 then

19 W ′ = W [i] + ∆U

20 else

21 W ′ = W [i]

22 if W ′ < W [j] then

23 W [j]←W ′

24 V [j]← i
25 U [j]← U

26 until i = g or W [i] =∞ or Q = ∅;
27 p← ∅
28 if i = g then

29 c← g
30 while c 6= 0 do

31 p← {c} ∪ p
32 c← V [c]

33 RETURN p

D. The Pose SLAM Path Planning Algorithm

The path planning algorithm introduced in this paper is formally

described in Algorithm 1. It searches for the path to the goal with

the least probability of becoming lost during path execution. The

algorithm takes as inputs the Pose SLAM graph M and the goal

pose, g, which is assumed in M . Should this not be the case, the

closest pose in the graph to g (in configuration space) is used as a

goal. We first initialize a set Q with all the nodes in the graph (Line 1)

and establish an initial cost W for the path to each node (Line 3) and

a fake predecessor V for each node (Line 4). Then, the cost to reach

the starting configuration is set to 0 (Lines 5 to 7). At this point the

algorithm enters in a loop until the goal is reached or the reachable

region from the start configuration is fully explored (Lines 8 to 26).

At each iteration of the loop, we extract the node i with minimum cost

from Q (Line 9). If this is not the goal (Line 10), we perform breadth

first search on the neighbor nodes to i (Line 11). The neighboring

nodes are determined using the procedure given in Section IV-A

that takes into account the uncertainty in the pose estimates. For

each one of the possible transitions to neighbors, we use the local

planner to determine if the transition is possible and to compute the

expected motion uncertainty (Line 13). Using this uncertainty and

the marginal covariance for the target pose (Line 15) we compute

the step uncertainty as described in Section IV-B (Line 16). Then,

Line 17 computes the uncertainty increment for a motion from node i
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(a) Pose SLAM map.
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(c) Plan in belief space.

Fig. 1. Path planning over the Intel dataset. (a) Pose SLAM map built with encoder odometry and laser scans. The blue arrow indicates the final pose of the
robot and the black ellipse the associated covariance at a 95% confidence level. (b) Planning in configuration space we obtain the shortest path to the goal
on the underlying Pose SLAM graph. (c) Planning in belief space we obtain the most reliable path to the goal.

to node j. If this increment is positive, it is added to the path cost

(Line 19). Otherwise, this step does not contribute to the overall path

cost. If the cost of the new path to j is lower than the best known

until that moment, the cost to reach j is updated (Line 23), we set i

as the predecessor of j (Line 24), and we store the cost for the step

reaching the node (Line 25). In the case of paths with equal cost,

shorter ones are preferred and, since the costs of individual steps are

non-negative, the considered paths never include cycles. If the goal

is reached, the most reliable path to the goal is reconstructed using

the chains to predecessor nodes stored in V (Lines 30 to 32). If the

goal is determined to be non-reachable from the start configuration,

an empty path is returned.

Without considering the cost of recovering the marginal covari-

ances, the asymptotic cost of the algorithm is O(e log2 n) with e

the number of edges in the graph (i.e., the number of neighboring

pose pairs) and n the number of nodes in the graph. This cost assumes

that the nodes in Q are organized into a heap where the extraction of

the minimum element is constant time and the update of the cost of

an element is logarithmic. Moreover, it also assumes that poses are

organized into a tree so that neighboring poses can be determined

logarithmically [17]. If this search is performed linearly the cost

increases to O(e n log n).

Note that, when planning we do not need to maintain a local-

ization estimate, but still we need to simulate registration with the

map, for which the diagonal blocks of the covariance matrix are

needed (Line 16). When using the Pose SLAM algorithm [17], these

diagonal blocks are directly available [36], but this is not the case

in other approaches [18]–[20]. In such cases, the most efficient

way to compute the marginals is to invert the whole information

matrix before starting to plan. One can efficiently invert it taking

advantage of its sparsity using, for instance, sparse supernodal

Cholesky decomposition [40]. For large-scale problems, however,

this strategy becomes prohibitively expensive and we have to resort

to approximations of the marginal covariances obtained using, for

instance, Markov blankets [41]. Finally, should the map change

significantly during path execution (i.e., a new highly informative

loop closure is found), the Pose SLAM algorithm performs a full

state update and re-planning is enforced.
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Fig. 2. Accumulated cost versus path length for the shortest path (red) and
the most reliable path (blue) in the Intel experiment.

V. EXPERIMENTAL RESULTS

In order to evaluate the planning strategy introduced in this paper

we show results with two data sets and in a real robot navigation

experiment. The results for the first two tests were obtained with

a Matlab implementation running on an Intel Core2 Quad system

at 3 GHz with 4 GB of memory. For the third case, the system

was implemented using the Robot Operating System (ROS) [42] on

our 4-wheel robot Teo, a Segway RMP 400 platform.

A. Indoor Experiment

To test the performance of the algorithm on a widely used data

set we choose data collected at the Intel Research Lab building

in Seattle [43]. The dataset includes 26915 odometry readings and

13631 laser scans. The laser readings were used to generate scan-

based odometry and to assert loop closures, by aligning them using

an incremental closest point (ICP) scan matching algorithm [18]. In

this case, only links between poses closer than ±1m in x and y,

and ±0.35 rad in orientation were considered reliable. These are also

the thresholds used to determine neighboring poses when planning

with s = 0.1. The robot odometry and the relative motion computed

from laser scan matches were modeled with average noise covariances
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(a) Execution time
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Fig. 3. Plots of execution time and memory footprint when planning
with different subsets of the Intel map and employing two different strate-
gies to recover marginals. (a) Execution time needed to recover only the
marginals (continuous line) and for the whole planning algorithm (dashed
line). (b) Memory footprint for marginal recovery.

Σu = diag(0.05m, 0.05m, 0.03 rad)2 and Σy = diag(0.05m,

0.05m, 0.009 rad)2, respectively and the minimum information gain

was γ =4.5 nats. Fig. 1(a) shows the path estimated by Pose SLAM

together with the laser scans associated to each of the stored poses

in light gray.

This map is the departing point of the planning algorithm and

the goal is to connect two poses on opposite sides of the building.

Frames (b) and (c) in Fig. 1 show the shortest and most reliable paths

between the two poses. The apparent overshoot of the shortest path to

the goal is due to the fact that the robot has to execute a 180 deg turn

at the end of the path to align with the goal. Since sudden changes

in orientation are not allowed by the kinematic constraints assumed

for the robot, this rotation is only possible few meters away of the

goal, in front of a door where many poses with the robot at different

orientations accumulate.

Figure 2 shows the accumulated cost along the two paths. We can

note that the accumulated increment in uncertainty of the shortest path

is larger than that for the most reliable path. Therefore, following this

second path the robot has lower probability of becoming lost at the

cost of following a slightly larger path.

To test the efficiency of the method, Fig. 3 shows the execution

time and memory footprint for planning, varying the number of poses

in the Intel map. Since the most expensive step of the algorithm is

the recovery of the marginal covariances, we applied two different

strategies to recover them: recovering the whole Σ and recovering

it column-wise as needed during planning. The continuous lines in

Fig. 3(a) show the execution time needed to recover the marginals

as a function of problem size, whereas the dashed lines show the

execution time of the whole planning algorithm. The figure shows

that recovering the whole matrix is computationally more efficient

at the expense of increased memory space. On the contrary, on-the-

fly computation of matrix columns results in repeated computations

slowing down planner performance. The execution cost of re-planning

when a graph edge is found to be non-traversable is reduced to

the small difference between the continuous and the dashed lines

in Fig. 3(a) since the map does not change and, thus, the marginal

covariances do not need to be re-computed.

B. Large Scale Experiment

To demonstrate scalability, we tested our approach with a much

larger map, for which memory space is a constraint. To this end,

we planned paths using the simulated Manhattan data set [44] that

includes over 10000 poses. In this experiment, average noise covari-

ances for the robot odometry and the relative-pose measurements

were set to Σu = Σy = diag(0.05m, 0.05m, 0.03 rad)2, the

threshold to detect neighboring poses was s = 0.1 searching in a

(a) Plan in configuration space

(b) Plan in belief space.

Fig. 4. Path planning over the Manhattan dataset. (a) Planning in configu-
ration space we obtain the shortest path to the goal on the underlying Pose
SLAM graph. (b) Planning in belief space we obtain the most reliable path
to the goal.
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Fig. 5. Accumulated cost along the shortest (red) and the most reliable (blue)
paths in the Manhattan experiment.

rectangle around the robot given by ±8m in x, ±8m in y, and ±1 rad

in orientation. We only incorporated links between poses with an

information gain above γ =9 nats.
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(a) Plan in configuration space.

−80 −70 −60 −50 −40 −30 −20 −10 0 10

−60

−50

−40

−30

−20

−10

0

10

20

30

40

X(m)
Y

(m
)

START

GOAL

(b) Full covariance recovery.
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(c) Markov blanket approximation.

Fig. 6. Path planning over a section of the Manhattan dataset. (a) Planning in configuration space we obtain the shortest path to the goal on the underlying
Pose SLAM graph. (b) Planning in belief space we obtain the most reliable path to the goal. (c) The most reliable path to the goal computed when the
marginal covariances are recovered with Markov blankets.
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Fig. 7. Accumulated cost along the shortest (red) and along the most reliable
path computed with exact marginal covariances (blue) and with Markov
blankets (black).

Figure 4 shows the shortest and most reliable paths between the

chosen start and goal poses, with the corresponding accumulated costs

shown in Fig. 5.

With this dataset, full matrix recovery is not feasible with the

computing resources used, and column-wise marginal computation is

impractically slow. Therefore, marginal covariances are approximated

using Markov blankets [41]. In this method the marginal covariance

for a given pose is approximated considering only the subgraph of

poses directly connected to it, which is typically small. As expected,

the cost of the most reliable path obtained using Markov blankets is

significantly better than that of shortest path, with only a marginal

increase in path length. The planning time in this case is 122 s, which

is reasonable considering that the planner was implemented in Matlab

and that the problem includes more than 10000 poses. Thus, even

when computing resources are a constraint, the presented method can

still be used to plan a route for the robot to the best sensor registration

regions at the expense of a possible degradation in the quality of the

final path.

To analyze the effect of using approximated marginal covariances,

the experiment with the Manhattan dataset was repeated, but this

time using only a subset with the first 2700 poses, only to be able to

compare the Markov blanket approximation with the computation of

exact covariances. Fig. 6 shows path planning results over this section

of the Manhattan dataset. The use of the Markov blankets reduces

the planning time by 50% but it hardly changes the obtained path,

validating the approximation. Fig. 7 shows the accumulated cost in

this experiment. As expected, the path length and cost when using the

Markov blanket approximation are a compromise between the ones

obtained with exact covariances and those of the shortest path.

C. Real Robot Navigation

To validate the planner in realistic conditions, we performed an

experiment with a Segway RMP 400 robotic platform in an outdoor

scenario with uneven and sandy terrain. We first acquired data to build

a Pose SLAM map using dead-reckoning readings and laser scans

over 350m. The laser readings were used to assert loop closures by

aligning them using an ICP algorithm. The Segway dead reckoning

readings and the laser pose constraints were modeled with average

noise covariances Σu = diag(0.0316m, 0.0158m, 0.1104 rad)2, and

Σy = diag(0.2m, 0.2m, 0.03 rad)2, respectively, the uncertainty

of the initial pose was set to Σ0 = diag(0.1m, 0.1m, 0.09 rad)2,

and the minimum information gain was set to γ =1.5 nats. The

local planner used was based on the dynamic window approach [45]

available in ROS. Fig. 8 shows the path estimated by Pose SLAM.

The red dots and lines represent the estimated path and the green lines

indicate loop closure constraints established by registering scans at

non-consecutive poses.

Using this map we computed the shortest and the most reliable

paths that connect two robot configurations on opposite sides of the

map, as shown in Fig. 9. For the planning, the thresholds to detect

nearby poses are set to ±4.5m in x, ±4.5m in y or ±1.04 rad in

orientation with s = 0.1.

The shortest path shown in Fig. 9(a), enters into an uneven and

sandy region. The rugged terrain caused the laser to occasionally

point to the soil which complicated the registration of the sensor

readings. Moreover, the sand caused some slip that affected wheel

odometry. Both effects contributed to produce a patch of the Pose

SLAM map with higher uncertainty. In contrast, the path computed

with our approach, shown in Fig. 9(b), avoids this region. This path

traverses an even region of the environment in which the map has

lower uncertainty, thanks to the better sensor registration and the

more reliable odometry.
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(a) Shortest path to the goal.
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(b) Most reliable path to the goal.

Fig. 9. Path planning over the map built with our mobile robot using encoder
odometry and laser data.

Figure 10 shows the accumulated cost along the two paths. Note

that the cost evaluation along the shortest path is actually underesti-

mated since the motion uncertainty for the steps in this path is larger

than the average noise used in the planning. In this case, the most

reliable path is only 9m longer than the shortest path and the total

time to compute the plan was 6.5 s, which is significantly smaller

than the 12 minutes required to execute it.

To verify that the assumptions taken in the planning hold in real

conditions, we executed both paths with the robot for five times and

the obtained trajectories are shown in Fig. 11. The supplementary

material associated with this paper includes a video of this navigation

experiment. The result of executing the shortest path are shown in

Fig. 11(a). In this case, the robot was not able to reach the goal for

any of the trials. On the contrary, the execution of the most reliable

path, shown in Fig. 11(b), resulted in the robot safely arriving to the
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Fig. 10. Accumulated cost along the shortest (red) and the most reliable
(blue) path in the real robot experiment.
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(a) 5 attempts to execute the shortest path.
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(b) 5 executions of the most reliable path.

Fig. 11. Real path execution of the shortest and most reliable paths to the goal
with our mobile robot. The green line shows the planned paths computed with
our method. The red lines represent the obtained trajectories when executing
each path five times. The execution is interrupted when the deviation with
respect to the intended plan is above a safety threshold.

goal in all trials, with an error in the interval of 0.5m to 1.7m.

VI. CONCLUSIONS

The work presented in this paper constitutes a step towards an

integrated framework for mapping and planning for autonomous

robots. We argue and show evidence that the poses of a Pose SLAM

map can be readily used as nodes of a belief roadmap and thus,

used for planning reliable routes. We also proposed a principled way

to evaluate the cost of a path taking into account the uncertainty

of traversing every edge in the map. The final path obtained is the

most reliable among all the possible paths to the goal, increasing

the chances to reach it. Three advantages of the proposed approach

are that it is defined in the belief space, that it considers only the
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uncertainty added when moving between poses, and that it scales

to large environments using approximated marginal covariances. The

presented approach is adequate for scenarios where a robot is initially

guided during map construction, but autonomous during execution.

For other scenarios in which more autonomy is required, the robot

should be able to explore the environment without any supervision.

We are currently working on this problem [34].
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