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CHAPTER I

INTRODUCTION

Freight transportation operations are quite often complex dynamic processes. Typically,

large freight carriers must manage multiple fleets of heterogeneous resources in order to

serve customer demands. However, even relatively small transportation service providers

may face challenges managing resources. The focus of this dissertation is problems of fleet

management in freight transportation systems. Fleet management problems may take a

variety of forms, and the “fleet” may represent many types of resources. For example,

truckload trucking firms manage fleets of drivers, tractors, and trailers to serve point-to-

point full truckload demand of customers. Railroads also serve point-to-point full carload

traffic, but face additional complexity since railcars are usually transferred between mul-

tiple locomotives and operating crews en route from origin to destination. Container fleet

operators, such as those that own tank containers for chemical transport, must manage the

global transportation (both loaded and empty) of fleets of various container types to again

serve point-to-point customer demands, relying on third parties (such as ocean carriers,

railroads, and drayage carriers) to actually move the equipment. Consolidation carriers,

such as less-than-truckload (LTL) trucking and parcel express companies, usually manage

multiple fleets for different transportation roles. For example, an LTL company will utilize

fleets of drivers, tractors, and trailers for long-haul services between terminals, as well as

for local pickup and delivery services from terminals.

Fleet management in freight transportation leads to difficult problems of resource allo-

cation and scheduling. There are three primary challenges:

1. Geography : Unlike many resource allocation and scheduling problems found in other

domains, geography is an essential complicating factor of the problems faced in transporta-

tion. Of course, freight transportation systems only exist to overcome the geographical

separation of points of production and points of consumption. In today’s global economy,
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production facilities and consumption markets are often separated by vast distances. Inter-

national trade agreements, combined with an evolving world economy increasingly fueled by

emerging regions with low-cost production capability, has led to many freight transportation

systems with global operational scope.

In the context of fleet management, vast system geographies complicate matters since it

is not only important when resources will be available, but also where they will be available,

or when they might be made available (at some cost) where they are needed. Thus, one

of the primary challenges faced by large fleet managers operating systems that serve large

geographic spaces is how to schedule the movement of empty resources (i.e., those moving

without customer freight).

2. Dynamics: System dynamics is another fundamental challenge faced by freight trans-

portation managers, although all scheduling problems by nature are problems with an im-

portant time component. From one perspective, freight transportation systems are in a

constant state of change. A dynamic flow of events, some exogenous and others driven by

fleet management decisions, change the state of the system over time. Fleet managers must

monitor these exogenous events and make decisions triggering other events to ensure that

the system provides an appropriate level of service to customers at a low operating cost.

Since few, if any, freight transportation systems evolve in a completely predictable way,

fleet management almost always involves continual updating of decisions. Importantly, the

information that is used to make decisions at any point in time (the information state)

also evolves dynamically. For example, information regarding the characteristics of the

demand request of an individual customer may not be available until a few hours prior

to the expected commencement of service. In some local pickup or delivery examples, all

characteristics of a customer’s demand (including its physical quantity or size) may not

be available until a resource arrives on site to service the demand. Recent advances in

communication technology, such as Global Positioning Systems (GPS) or Radio Frequency

Identification (RFID), allow real-time visibility of freight operations, thus offering carriers

the opportunity to have better information to update decisions.
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3. Uncertainty : As mentioned above, the dynamic evolution of the state of a freight trans-

portation system is usually not completely predictable. In some cases, the level of uncer-

tainty is minor and can be ignored when making decisions without compromising service or

generating excessive cost. In many systems, however, improper or inadequate consideration

of uncertainty during decision-making may lead to substantial adverse impacts.

One key source of uncertainty in many freight transportation systems is customer de-

mand. In most systems, customers provide a notice of intent to ship freight in advance,

although the “lead time” of such information may be quite short (for example, a few hours).

Even when customers book transportation weeks or months in advance, there is still likely

to be some uncertainty about precisely what will require execution and when. Thus, in-

formation about customer locations, demand quantities, and demand timing may all be

uncertain to some degree in advance of execution. The key to effective fleet management

is to make decisions with the best information available at the times when decisions must

be made, and to appropriately account for the uncertainty of the parameters that comprise

this available information state.

1.1 Freight transportation planning and control

Effective fleet management for freight transportation requires both effective planning and

control decisions. In this thesis, planning decisions will refer to those made in advance of

execution. Effective plans should prepare the system appropriately for the conditions to be

faced during future operations. However, since the state of many systems does not evolve

predictably, planned decisions often require modification. Control decisions refer to the

decisions made during execution, and represent an implementation of planned decisions,

potentially modified to adapt to the current system state.

Plans are important for freight transportation systems for many different reasons. In

some examples, it may be important to develop a plan so that resources can be committed

or procured in advance, which often reduces cost or provides some guarantee of service level.

For example, in the context of global container management, a fleet manager who books

space in advance for the transport of loaded and empty containers may receive a lower
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price than those who make last-minute requests. The existence of plans usually reduces the

complexity of control, since managers can more easily coordinate resources. Furthermore,

when plans are communicated to shippers (for example, in the form of schedules), they too

can coordinate their activities with those of the carriers from which they receive service.

This thesis will focus on developing methodologies for improving fleet management plan-

ning decisions. Better planning decisions lead to more effective system control, where control

is effective when the system can provide appropriate levels of customer service at low cost.

At any given time, planning decisions should be made considering the following two key

elements:

1. Current system information state, including known and stochastic parameters; and

2. Future control decisions.

It is important to recognize that if plans are to be effective, they should be decided upon

using some knowledge of how control decisions will be made in future operating periods.

It is often challenging to develop appropriate means for representing the control decision

process within a quantitative model for generating planning decisions.

Clearly, system dynamics and uncertainty complicate decision-making for planning. If

the system state were only to evolve dynamically but purely deterministically, the chal-

lenge of proper representation of control decisions during planning lies only in the potential

complexity of operations, which may require that a solution approach utilize appropriate

approximations for tractability. Uncertain dynamics, however, leads to additional compli-

cations. The three important questions that need to be considered are:

• What control policies are most appropriate?

• How should control policies be modeled during the planning phase?

• How should uncertainty be incorporated into models for planning?

Given a control policy, fleet planning under uncertainty essentially includes resource al-

location and scheduling decisions that generate flexibility for the control phase. Flexibility
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in control implies that additional decision options are available that enable service commit-

ments to be met and with low cost; flexibility is thus a buffer or hedge against uncertainty.

If the control phase is not provided enough options, service or cost will be sacrificed under

specific outcomes. Since control flexibility almost always comes at cost, planning decisions

must balance the cost of planning flexibility with the subsequent effectiveness of control.

1.2 Fleet management planning for effective control

The primary objective of this thesis is to develop a methodological approach to generate fleet

management plans that enable effective control of transportation systems with uncertain

dynamics. In practice, plans are often generated using estimates of how the system will

evolve in the future; during execution, control decisions need to be made to account for

differences between actual realizations and estimates. Although such decisions are necessary,

they may come with a high cost. The benefits of plans designed to satisfy customer demands

at minimum cost can be negated by performing costly adjustments during the operational

phase. Stochastic models must be used to develop plans that explicitly address uncertainty.

Stochastic planning models proposed for fleet management have focused primarily on

expectation minimization, which typically results in dynamic programming models that are

hard to solve for problems of realistic size. In some stochastic planning models, uncertainty

is incorporated using random variables for which probability distribution functions must

be assumed. To use such models in practice, it is thus necessary to choose a probability

distribution and estimate its corresponding parameters for each random variable in the

model. This can be an overwhelming task when planning real-life freight transportation

operations, and can often limit the applicability of these traditional models. Some reasons

for this are listed below:

• Making plans for freight transportation systems often requires the consideration of

long planning horizons. This is especially important for systems that handle long haul

movements. Long planning horizons might imply fitting a large number of distribution

functions.

• Demand for freight transportation typically has a strong seasonal pattern, and this
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fact can make the process of fitting probability functions more difficult. Assuming

independent and identically distributed random variables can be an oversimplifying

assumption.

• Modern transportation systems change rapidly in order to adapt to customer needs, as

well as to react to fierce competition. Transportation schedules and business practices

are altered periodically, and thus it may become difficult to collect a statistically

significant sample of observations in order to fit a probability distribution function

and estimate its parameters.

In this research we consider alternative approaches for incorporating stochasticity into

planning models, inspired by recent work in robust optimization. This research area has

been very active in the past few years, and provides the flexibility to explicitly incorporate

uncertainty in a manner that may be easier for practitioners to understand and implement

within planning models. In the approaches we develop, uncertainty is often characterized in

part by using intervals around nominal forecasted values. Such intervals can be calculated

using both point forecasts of quantities and the historical errors of such forecasts, as well

as by using the knowledge of experienced fleet managers.

Another feature of the approaches we consider is that risk aversion can be addressed

relatively simply. In many decision contexts, it is not adequate to assume that decision

makers are risk neutral; clearly, different transportation industries and different decision

makers within organizations may not show the same propensity toward taking risks. The

approaches applied in this thesis are designed to allow planners to manage solution conser-

vatism with relatively simple controls that restrict both individual and joint realizations of

the uncertain parameters considered during solution.

Finally, like most stochastic planning approaches, the methods considered herein may

limit the set of allowable control decisions during planning. In cases where the likely cost

(or disutility) of operational modifications to plans may be difficult to quantify a priori,

limitations on the control decision space can be used to build cost-effective plans by forcing
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the planning phase to generate adequate buffers against uncertainty. Thus, costly mod-

ifications to plans can be contained, and random fluctuations can be absorbed by these

preplanned buffers.

1.3 Dissertation Outline and Contributions

A planning approach that permits effective fleet control during plan execution is proposed

in this dissertation. We develop concepts and methodologies that are applied in two fun-

damental problem areas: (i) dynamic asset management and (ii) vehicle routing. Three

specific and self-contained problems are studied in this dissertation. The first two relate

to dynamic asset management, while the third addresses vehicle routing problems with

stochastic demands.

Chapter 2 presents the first problem to be addressed, intermodal fleet management in

the context of tank containers. Tank containers, also referred to as ISO tanks, are used

to transport liquid chemicals. In today’s global economy where production facilities and

consumption markets are separated over vast distances, a reliable and cost effective way to

transport goods is of key importance. Intermodal transportation offers these characteristics,

and this explains its phenomenal growth during the past years. The Intermodal Associa-

tion of North America (IANA) reported that ISO container (20-ft, 40-ft, and 45-ft boxes)

international traffic moves increased by 10.7% and 10.8% in 2004 and 2005 respectively.

Managing intermodal fleets is hard because global trades are generally not balanced in

both space and time, and transport requires a coordinated set of activities to be performed

by multiple carriers. Furthermore, transportation plans need to consider long planning hori-

zons to account for lengthy transit times typically found in worldwide freight transportation.

In practice, the fleet management planning and control problem is usually decomposed in

two parts; the problem of repositioning empty units to account for flow imbalances, and the

problem of allocating units to customer demands and handling the corresponding loaded

moves. In Chapter 2, an alternative integrated dynamic model for the tank container

management problem is formulated as large-scale multicommodity flow problem on a time-

discretized network. The model uses both known customer demands and point forecasts of
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future demands, and serves joint planning and control roles when implemented in a rolling

horizon setting. A computational study shows that with state of the art optimization soft-

ware, empty and loaded movement decisions can be addressed in an integrated model for

fleets of reasonable size. Furthermore, the study provides evidence that by making deci-

sions using an integrated approach, fleet operating costs and fleet sizes may be significantly

reduced. However, the results also illustrate clearly how a model that does not consider

the inherent uncertainty of forecasted quantities will generate plans without buffers. Such

plans are fragile, and may lead to situations in which serving realized customer demands is

either impossible or very costly.

Addressing these limitations, Chapter 3 proposes a dynamic and stochastic planning

approach for empty repositioning problems. Motivated by the importance of systematic

consideration of forecast uncertainty, as illustrated in Chapter 2, this chapter builds the

theoretical groundwork of a methodological approach for generating robust repositioning

plans that permit effective control. Specifically, the chapter proposes a robust optimization

framework for dynamic empty repositioning problems modeled using time-space networks.

A repositioning plan is said to be robust with respect to a deviation from forecasted nominal

values if there exists a set of feasible control decisions drawn from a restricted control space.

The proposed planning approach incorporates demand and supply uncertainty at every

period of the planning horizon using intervals around nominal forecasted parameters. The

intervals define the uncertainty space for which buffers need to be built into the plan in

order to make it a robust plan. No probability distributions for the parameters are assumed.

Risk aversion is also considered; the model user can specify the level of conservatism of the

resulting plan using input parameters. More conservative plans are robust with respect to

a larger set of joint uncertain parameter realizations than less conservative plans.

There is a key difference between a dynamic model and a model being applied dynami-

cally. As pointed out in Powell et al. [45], “a model is dynamic if it incorporates explicitly

the interaction of activities over time”. On the other hand, a model is applied dynamically

if the “model is solved repeatedly as new information is received”. In our methodological

approach, the model is applied dynamically using a rolling horizon framework. A plan is
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generated over a finite planning horizon and only the decisions of the first period(s) are

implemented. As demand realizations are observed and potentially some dynamic adjust-

ments are made, demand and supply forecasts might need to be reevaluated and the system

status changes. The plan must then be updated to incorporate the new information.

The main contributions of this thesis to dynamic asset management can be summarized

as follows. This thesis:

• develops a robust optimization framework for integer programming problems with

equality constraints and right-hand side uncertainty, a common feature of many logis-

tics planning problems. The framework explicitly incorporates the notion of control

decisions to dynamically respond to realizations of the uncertain parameters, trans-

forming initial planned solutions into feasible solutions;

• provides implementations of the proposed robust optimization framework in the con-

text of empty repositioning problems faced by many freight transportation service

providers for different sets of allowable recovery actions;

• demonstrates that for the sets of control decisions considered for the empty reposition-

ing problem, the size of the resulting optimization problem does not depend on the

size of the uncertain outcome space, and that for the simplest set of recovery actions

the resulting optimization problem can be solved in polynomial time; and

• presents a computational study illustrating the value of robust optimization in the

context of empty repositioning problems and demonstrating the computational via-

bility of the proposed framework.

In Chapter 4, a fleet management setting with a much smaller geographical scope is

considered; a problem faced by fleets performing local delivery or pickup operations. Again,

demand uncertainty plays an important role because vehicles may need to restock at the

depot if total realized demand exceeds the vehicle capacity. The Vehicle Routing Problem

with Stochastic Demands (VRPSD) has received considerable attention from the research

community. Our work in this area combines basic ideas and concepts found in the literature
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on robust optimization and stochastic programming with recourse. This rich framework

allows the study of control adjustments and dynamic policies, two key components of this

research. Our approach focuses on two specific versions of this problem:

1. The Robust Vehicle Routing Problem with Stochastic Demands (RVRPSD). The tradi-

tional approach to address the VRPSD is through expectation minimization of the cost

function. Although this approach is useful for building fixed routes with low expected cost,

it does not directly consider the maximum potential cost that a vehicle might incur when

traversing the tour; that is, the cost associated with the worst-case demand realization. A

computational study included in this dissertation shows that there can be a significant dif-

ference between the maximum and average cost of a solution of the VRPSD. Our approach

aims at minimizing the maximum cost.

2. The Vehicle Routing Problem with Stochastic Demands and Duration Constraints (VRPS-

DDC). In many real-life applications, a fleet of vehicles performs local pickups that are then

sorted at a regional terminal for the purpose of performing long-haul transporting of goods

between multiple terminals in a network. In this context, duration constraints are very

important to ensure that all goods are picked-up and sorted before the long-haul vehicle de-

parts the regional terminal. In this section, we study the traditional VRPSD where duration

constraints are enforced on a per tour basis.

Customer demand is assumed to take integer values within closed intervals. We show

that the problem of identifying the worst-case demand realization for the tour of a single

vehicle can be solved as a longest path problem on an acyclic network. Furthermore, we

establish that although in general this problem is solvable in pseudo-polynomial time (as

a function of the vehicle capacity), for a family of dynamic policies, referred to as history-

independent policies, this problem is polynomially solvable.

A great deal of work is devoted to studying recourse policies. We study a broad spectrum

of policies along two dimensions:

1. Customer demand visibility: ranging from observed only when the vehicle arrives at

the customer’s location, to total demand visibility before the vehicle departs from the

depot.
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2. Information considered by the dynamic policy: ranging from completely myopic, in

which dynamic adjustments are based only on observed demand of the currently vis-

ited customer and on-board inventory, to anticipatory policies, in which more infor-

mation, such as travel times, demand intervals, and even demand estimates, are used

to decide when a recourse action needs to take place.

Some relations about the performance of these policies are derived and interesting para-

doxes are identified regarding the amount of information considered by a policy and its

corresponding cost. We show that the intuitive idea that more information leads to better

decisions is not always true in the context of the two problems considered in this section.

Finally, a tabu search heuristic is proposed to solve both the RVRPSD and VRPSDDC.

Two computational studies are then conducted using this heuristic; the first aims at un-

derstanding the differences between tours generated to minimize expected cost and those

generated to minimize maximum cost. The second computational study assesses the effects

and implications of including duration constraints in the VRPSD.

The results from the first experiment show that the mean-max gap, defined as the per-

centage difference between the maximum and the expected cost of a tour, can be substantial.

In our experiments, the average mean-max gap for tours obtained through the traditional

expectation minimization approach was 37%, and cases with gaps of over 100% where iden-

tified for a simple myopic recourse policy. Such results point clearly to the potential need

for alternative approaches that focus on worst-case performance.

Furthermore, the results in this thesis show that the expected cost of mini-max tours is

on average only 3% more expensive than the expected cost of tours obtained using expecta-

tion minimization. However, when using a myopic recourse policy, the average mean-max

gap of these tours is 30%, a 19% reduction of the gaps generated by expectation minimiza-

tion tours. While such a reduction is significant, the average mean-max gap of 30% is still

quite high. Surprisingly, when we consider anticipatory policies with the robust approach,

the tours also show good performance in terms of their expected cost, and the average

mean-max gap is reduced to less than 15%. Such results point not only to the value of our

approach, but also to the importance of considering non-myopic recourse policies for the
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VRPSD.

The main contributions of the research on the vehicle routing problem with stochastic

demands can be summarized as follows. This thesis:

• develops a robust optimization approach for the VRPSD, and shows via computational

results that the approach may lead to substantial reductions in the mean-max gap.

The approach is applied to the VRPSD with duration constraints, a problem variant

particularly relevant in practice, which, to our knowledge, has not been previously

addressed;

• develops analytical results for non-myopic recourse policies and demonstrates their

value over myopic policies, which are the basis of almost all published research on the

VRPSD; and

• provides implementations of the proposed approach and presents computational stud-

ies that illustrate its value, and also provides insights on how some factors (e.g.,

number of customers, vehicle capacity and demand variability) affect solution cost.

1.4 Literature Review

In this dissertation, we apply some recently developed ideas on robust optimization to the

problem of planning and controlling freight transportation operations. Robust optimization

is emerging as a viable alternative approach for modeling and solving decision optimization

problems given uncertainty. Soyster [49] is the first work to consider coefficient uncertainty

in linear programming formulations, and shows that such uncertainty can be handled by an

equivalent linear programming model. The approach, however, is very conservative since

it protects feasibility against all potential uncertain outcomes. More recently, Ben-Tal and

Nemirovski [6] develops a general framework for robust optimization over a convex cone;

also, Ben-Tal and Nemirovski [7] specifically considers linear programs with coefficient un-

certainty. To control the conservatism of the robust approach, these references propose the

use of an ellipsoidal uncertain outcome space that protects feasibility less conservatively by

12



ignoring very unlikely joint outcomes; for linear programming, the resultant robust opti-

mization problem requires solution of a convex optimization problem over a second-order

cone. To avoid the necessity of a nonlinear optimization solution method, Bertsimas and

Sim [11] considers robust linear programming with coefficient uncertainty using a uncer-

tainty set with budgets. In this model, each coefficient is assumed to take a value in a

symmetric interval around a nominal value, and a budget parameter for each constraint

limits the number of coefficient values that can simultaneously take their worst-case value.

For this characterization of uncertainty, the resulting robust optimization is still a linear

optimization problem. Extending this work, Bertsimas et al. [9] develops robust versions

of linear programming problems with coefficient uncertainty sets described by an arbitrary

norm.

Robust versions of discrete optimization problems have also received attention. Kouvelis

and Yu [37] develops robust versions of many traditional discrete optimization problems with

two different objective functions, one which minimizes the maximum absolute cost under any

potential outcome, and another which minimizes the maximum cost difference (or regret)

between the robust solution and a reoptimized solution for each outcome. The reference

shows that robust versions of many polynomial discrete optimization problems become

NP -hard. Bertsimas and Sim [10] considers robust discrete optimization and network flow

problems where parameter uncertainty occurs only in the objective function, and shows

that many polynomially-solvable (or polynomially-approximatable) problems remain so in

this case.

Closely related to our work, Atamturk and Zhang [3] considers network flow and de-

sign problems with right-hand-side uncertainty using a robust approach. Similar to our

approach, this paper develops and analyzes a two-stage approach similar in spirit to the

adjustable robust counterpart approach for linear programming developed in Ben-Tal et

al. [5]. Also related to our research, Bertsimas and Thiele [13] and Bertsimas and Thiele

[14] use a robust optimization framework to address traditional inventory control problems

for single point and tree-network supply chain networks that are typically addressed with

dynamic programming techniques.
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Fleet management is a field of study that in the past years has received considerable

attention from the research community. Although first papers in this are date back to

the 70s, most of them dealt with static and deterministic models. Recent advances on

information technology has created a platform that allows companies to handle real-time

information about fleet status. At a touch of a button, carriers and shippers can identify

with a high level of accuracy the location of their equipment. Other attributes, such as

whether it is loaded or empty, clean or under repair are also available. This high level of

visibility, together with a higher degree of flexibility to make and communicate decisions,

has raised a new challenge for researchers and practitioners: How can this information be

used to make better decisions during the planning and execution phases?

Research on fleet management has been very active in the past few years. For excellent

surveys on models for freight transportation operations see Crainic [22] and Powell [43].

First fleet management models were static and deterministic. One of the earliest contribu-

tions to this area is Misra [40], which proposes a fleet management model in the contexts

of railcar distribution. This paper proposes the application of a well known linear pro-

gramming problem, the transportation problem, to match railcars to customer demands.

Although the model captures important aspects of the problem, the approach fails to con-

sider the dynamic and stochastic nature of the problem. It completely ignores the time

dimension of fleet management; it just takes a snapshot of the current availability of rail-

cars and of the set of current requests, and matches them in order to minimize the total

cost of moving cars in the railroad network. Further, the model assumes deterministic de-

mands. Surprisingly, this type of technology is still used by some railroad companies in

North America (see Powell and Topaloglu [46]).

White [54] proposes one of the first dynamic, still deterministic, models in fleet man-

agement in the context of repositioning empty containers. This model considers a fixed

planning horizon which allows developing empty repositioning plans over several days. The

model is a minimum cost flow problem on a time-space network. Recent extensions of this

approach also in the context of container management are Abrache et al. [1] and Erera et

al. [28], interest is focused on handling large fleets of containers.
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Jordan and Turnquist [36] opened a line of research that guided most of the subsequent

work on fleet management. They propose a stochastic and dynamic approach to model

the distribution of empty freight cars in the railroad industry. This is one of the earliest

contributions in the area of stochastic dynamic optimization in freight transportation. In

this model the objective is to maximize the expected profit over a finite planning horizon.

The objective function considers the cost of not being able to satisfy demands that randomly

show-up in various part of the railroad network, the cost of holding empty cars, as well as the

cost of repositioning empty units across the network. The result is a dynamic programming

model that is hard to solve for realistic instances. A heuristic solution is proposed based on

Frank-Wolfe algorithm, which iteratively makes linear approximations to the the nonlinear

function solving linear programming subproblems.

An important contribution in the area of stochastic and dynamic models for fleet man-

agements is Powell [41]. A time-space network, where candidate loaded and empty move-

ments are considered, is used to track and make decisions on equipment movements over a

finite planing horizon. Features of this model are motivated by the truck allocation prob-

lem for truckload carriers. Equipment requests for different OD pairs in the network is

uncertain, and each unit is assumed to be able to handle several loads during the planning

horizon under consideration. The model is solved using Frank-Wolfe algorithm because the

linearized objective function allows the solution of simple subproblems at each node in the

network. Computational results suggest an acceptable computational efficiency. Further,

these results illustrate the benefit of the stochastic approach over a deterministic approach.

Powell [42] is the first reference that aside from considering the stochastic and dynamic

nature of transportation operations, further explicitly considers demand forecasts in the

model. This model combines an assignment model that assigns specific drivers to spe-

cific loads in the first time periods of the planning horizon, and a dynamic network that

accounts for forecasted demands. The resulting model, called hybrid model, is computation-

ally intractable; therefore, techniques to approximate the recourse function, like scenario

aggregation, stochastic gradient methods, successive linear and convex approximation pro-

cedures among other are considered. Numerical experiments show that the hybrid model
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outperforms standard myopic models.

In general, work with stochastic models has focused primarily on expectation mini-

mization. Modelling approaches for stochastic problems, focusing specifically on empty

container management, are provided in Crainic et al. [25]. Most computational work in

this area has focused on suboptimal solution procedures, developing results for improving

value function approximations in iterative dynamic programming solution methods (see,

e.g., Frantzeskakis and Powell [29], Cheung and Powell [17], and Powell and Carvalho [44]).

More recently, adaptive approaches to approximating nonlinear value functions have been

successfully applied to both single commodity and multicommodity problems (see, e.g.,

Godfrey et al. [33], Godfrey and Powell [34], and Topaloglu and Powell [53]). Topaloglu

and Powell [52] provides theoretical justification for this approach, proving the optimality

of a particular variant of the general sampling method developed first in Godfrey et al. [33].

The vehicle routing problem with stochastic demands (VRPSD) is a well studied prob-

lem. For excellent surveys on this topic see Dror et al. [26] and Gendreau et al. [31]. Most

efforts have addressed this problem using three different methodological approaches:

1. Chance constrained models.

2. Stochastic programming with recourse models.

3. Markov decision models.

One of the first chance constrained models is proposed in Stewart and Golden [50], which

in its objective function contains the cost of the tours (no expected cost is considered).

This model aims at identifying minimum cost tours subject to a threshold constraint on

the probability of a route failure. A similar approach is found in Laporte et al. [39], which

proposes a model that uses fewer variables but requiters a homogeneous fleet of vehicles. In

both cases, the model can be transformed into a deterministic vehicle routing problem. The

major shortfall in these models is that, although they control the probability of a failure,

the location of the failure is ignored and hence does not take the corresponding costs into

account. Tours with the same cost and same failure probability can have quite different

expected costs, depending on the possible failure locations.
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Stochastic programming with recourse models minimize the cost of the tours plus the

expected cost of recourse actions that must be taken when failures occur. Most of the

literature on VRPSD follows this approach. Dror and Trudeau [27] propose a model that

takes into consideration the location of a failure, where recourse actions take the form of

back-and-forth trips to the depot. This type of model has a more meaningful objective

function than their chance constrained counterparts, but also becomes harder to solve.

Significant efforts have been devoted to the development of heuristic algorithms for

solving recourse models. Stewart and Golden [50] as well as Dror and Trudeau [27] propose

algorithms inspired on the ideas of the savings heuristic of Clarke and Wright [19] for

deterministic VRPs. An efficient local search heuristic approach for solving this type of

problems is presented in Savelsbergh and Goetschalckx [47], a numerical study shows that

this approach compares favorably with respect to the other two algorithms. An important

contribution is Gendreau et al. [32], which proposes a local search algorithm embedded

in tabu search approach. The benefit of this approach is assessed by comparing results

obtained with the heuristic algorithm to optimal solutions. The heuristic provided the

optimal solution in 89.45% of the cases. Further, only an average deviation from optimal

cost of 0.38% was found.

Solving the VRPSD to optimality is very hard. First exact approach that we are aware

of is Gendreau et al. [30], where an integer L-shaped method capable of solving small

instances is proposed. Laporte et al. [38] presents an improved integer L-shape approach

capable of handling larger instances. An important element of their approach is the use

of lower bounds at the root node which helps speedup solution times. These bounds are

calculated under the assumption that the expected value of demand on any tour is less than

or equal to the vehicle capacity.

It is worthwhile to mention that most of the research on stochastic programming with

recourse around the VRPSD focuses on simple myopic recourse policies (see for instance

Bertsimas [8] and Bertsimas and Simchi-Levi [12]). Markov decision models offer the po-

tential for making optimal decisions every time new information is revealed; the drawback

is that these models involve a very large number of states, making it intractable even for
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modest size instances. Dror et al. [26] considers a single vehicle model where a decision

epoch corresponds to the moment the vehicle arrives at a customer location and its demand

is realized. At that point two possible decisions can be made prior to the start of the

service: (i) not to serve the customer and then move to another location, or (ii) serve the

customer and then move to another location. No solution approach or computational study

is presented in this paper.

An interesting approach, based on Markov decision models, is presented in Yang et al.

[55]. Instead of considering the myopic recourse action of returning to the depot whenever

the vehicle runs out of inventory, this paper aims at developing an optimal restocking policy

in conjunction with the routing decisions. Under this policy the vehicle might restock at

the depot before a stockout actually occurs. For a given tour, they show that the optimal

restocking policy has a simple form: after serving a customer if on-board inventory drops

below a threshold then take a recourse action (i.e., restock at the depot), else continue to the

next customer in the tour. The threshold might be different for each customer. Although

the optimal policy is quite simple, solving a model that further considers routing decisions

is difficult, so heuristics approaches are considered. Two heuristic algorithms are proposed,

one falls under the category of route-first-cluster-second, while the other is a cluster-first-

route-second algorithm. A computational study is used to benchmark the results of these

two algorithms, and to show the superiority of their approach over deterministic methods

with simple recourse actions. Unfortunately, the paper fails to compare the results of their

approach to those obtained using algorithms that assume stochastic demands with myopic

recourse actions.
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CHAPTER II

GLOBAL INTERMODAL TANK CONTAINER MANAGEMENT

The chemical industry is growing steadily, especially in China, where chemical consumption

is growing at a rate of 8% annually (China is projected to become the third largest consumer

by 2010). The value of global chemical production exceeded US$1.7 trillion in 2003. World

trade in chemicals continues to surge as well. In 2002, chemicals led all product groups in

global trade growth at over 10%, with total world export value reaching US$660 billion. As

a consequence, transport of chemicals represents a significant portion of worldwide transport

of goods.

Long-distance, international transportation of liquid chemicals is conducted using one

of five modes: pipeline, bulk tankers, parcel tankers, tank containers, or drums. Pipeline

and bulk tankers are used primarily in the petrochemical industry for the transport of

large quantities of a single product. Parcel tankers are smaller vessels with up to 42 tank

compartments and are used to simultaneously transport multiple cargoes. Tank containers,

also referred to as ISO tanks, intermodal tanks, or IMO portable tanks, are designed for

intermodal transportation by road, rail, and ship. Tank containers have many advantages

for the international transport of liquid chemicals:

• They are environment-friendly, since they are less prone to spillage during filling and

unloading, as well as leakage during transportation.

• They permit a higher payload when compared to drums stowed in dry containers (43%

more volume).

• They can be handled mechanically, which results in cost savings, but also ensures

safety when handling hazardous commodities.

• They provide secure door-to-door multi-modal transportation (by road, rail, sea or

inland waterways), and do not require specialized port-side infrastructure.
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• They are safe and durable, with a design life of 20-30 years.

• They can be cleaned and placed into alternate commodity service with minimum

downtime.

• They can be used as temporary storage for customers with limited space or high-cost

permanent storage.

A tank container operator manages a fleet of tanks to transport liquid cargo for a variety

of customers between essentially any two points in the world. Typically, 60% to 70% of the

fleet is owned by the operator; the remaining tanks are leased, usually for periods of 5 to 10

years. To serve a standard customer order, a tank container operator would provide a tank

(or multiple tanks) at the customer’s origin plant and arrange transportation for the tank

across multiple modes to the destination plant. Transportation will usually include a truck

leg at origin and destination and a steamship leg between a port near the origin to another

port close to the destination. It may also include rail or barge legs at each end. Operators

use depots for temporary storage, cleaning, and repair of empty containers.

In this chapter, we consider the management problems faced by tank container operators.

Specifically, we are interested in the difficult task of cost-effectively managing a fleet of tank

containers, given imbalanced global trade flows. Given the high cost of tanks, high loaded

container utilization is very important in this industry.

2.1 Tank container management

Tank container operators do not typically own or manage any of the underlying transporta-

tion services used to move a container from origin to destination. Instead, they enter into

contracts for transportation service with a number of providers. Tank container operators

maintain contracts with trucking companies, railroads, and port drayage companies for in-

land transportation, and with container steamship lines and nonvessel operating common

carriers (NVOCCs) for port-to-port ocean transportation. Each transport service contract

specifies transport legs that are available to the operator, and their costs. Operators com-

bine these legs into itineraries to provide origin-to-destination service for customers.
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The typical service offering provided by a tank operator to a shipper customer is a one-

way trip. To obtain service, customers first place a request for a price quote for a given

origin-destination pair, and then subsequently make a booking or multiple bookings under

the quote. We will call these steps the quotation and booking processes respectively. With

the exception of certain ancillary charges, the tank container operator charges the customer

a fixed price for transportation, and pays the transportation service providers directly out

of this fee. Therefore, it is in the operator’s interest to minimize the transportation costs

for most shipments. However, there must be a level of “reasonableness” in transit times,

and some customers may be willing to pay a premium for faster service.

To develop price quotes for customers, container operators currently rely on a port-

to-port methodology for developing and pricing itineraries. In this process, the operator

associates both the origin and destination customer locations with an appropriate export

port and import port. Then, using a database of available ocean carrier contracts and the

scheduled sailings for each carrier, at most two or three potential ocean carrier services be-

tween these ports are selected. Each such service forms the basis for an itinerary. The price

of each itinerary is then determined by adding an inland transportation cost (if necessary),

a profit component, and possibly an overhead cost allocation (for example, to account for

asset repositioning costs) to the ocean service cost. The itinerary transit time is computed

by adding inland transport times if necessary and schedule delays to the transit time of the

scheduled ocean service. These identified itineraries now likely provide different combina-

tions of price and transit time. Typically, the low-price itinerary is first presented to the

customer, and if the transit time is unacceptable a higher-price shorter-duration option is

presented. Once the customer selects an itinerary, the quote is formalized.

Price quotes to customers are usually valid anywhere from 30 to 90 days (and sometimes

longer), and one or many bookings may be made over the duration of the quote. When

booking, the customer specifies the number and type of tank containers needed, and service

time windows at the origin and destination. Minimally, the time window information will

include the earliest time containers may be loaded at the origin, and the latest time con-

tainers should be delivered to the destination. Given these requirements, the tank operator
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must verify that the quoted itinerary is feasible. Since ocean sailings are scheduled and

service is not provided each day, the sailing used to generate the quote may or may not

allow a feasible routing satisfying the time windows. The operator must also verify that the

quoted sailings have available space. If all components of the quoted service offering are not

available, the operator must determine an alternative best itinerary that meets customer

requirements.

Empty repositioning is a critical component of tank container management. Since fleet

operators provide global service and loaded flow patterns are not balanced geographically,

some regions tend to be net sources of empty tanks and others net sinks. Additionally,

loaded flow demands exhibit seasonal patterns. Operators correct geographic and temporal

imbalances in container supply and demand by repositioning empty containers between

depots.

Some tank container operators have recently begun using decision support tools based

on mathematical programming for dynamic operational planning of reposition moves. One

method that we are aware of determines weekly repositioning moves using a deterministic

multi-commodity network flow model to minimize empty move cost given forecasts of loaded

arrivals and departures in each port area. Such models typically use a planning horizon

of several months discretized into weeks, and are solved each week with only the first

week’s decisions implemented in the standard rolling-horizon approach. Empty container

repositioning has received a fair amount of research attention since it is an integral part of

many freight transportation problems (see, e.g., [23, 48, 16, 18]). Repositioning decisions

have also been treated directly in large-scale tactical planning models. Recent work by

Bourbeau et al. [15], for example, develops parallel solution techniques for large-scale static

container network design problems that explicitly consider repositioning decisions.

Many opportunities exist to provide improved operational decision support technology

to tank container operators. However, we believe that the most significant opportunity lies

in integrating container booking and routing decisions with repositioning decisions. When a

tank container is booked, an appropriate empty is assigned to the load, moved from its depot

to the customer, loaded and transported via multiple modes to the destination meeting
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customer requirements, moved back to a depot for cleaning, and then stored or repositioned

for future use. An operator making these decisions centrally for a global system via an

integrated management model may indeed be able to reduce costs and improve equipment

utilization. Such an integrated approach would differ substantially from current practice.

Although optimization models are used for repositioning, the inputs to current models

are forecasts of weekly loaded flow imbalances at depots; thus, container routings that

may improve flow balance without repositioning are ignored. This approach to container

management, i.e., breaking up the problem into an empty container allocation phase and

a container booking and routing phase, resembles the one proposed about a decade ago by

Crainic et al. [23]. They argue that “one would like to develop a single mathematical model

to optimize short-term land operations of the company to fully account for the interaction

between the various decisions to be made, but given the intrinsic complexity of the problem

at-hand and the current state-of-the-art in OR, this is not feasible.” We will show that even

though such integrated models will indeed be substantially larger than existing repositioning

models, recent advances in linear and integer programming technology and in computer

hardware technology are able to absorb the increased computational requirements.

It is interesting to note that in a recent article discussing the successful implementa-

tion of an optimization-based decision support system for the operational management of

Danzas Euronet, the typical decomposition approach, in which repositioning decisions are

considered separately from customer order planning, is followed (Jansen et al. [35]). One

reason for choosing a decomposition approach may be due to the fact that Danzas manages

2,000-6,000 customer container orders daily, and would like to handle a planning horizon of

up to three days for order planning decisions.

2.2 An integrated container management model

This section describes an integrated fleet planning and control model for tank container

operators providing decision support for routing booked containers and repositioning emp-

ties. For simplicity of exposition, we assume that the operator manages a homogeneous

fleet of containers. The problem is formulated as a deterministic multicommodity network
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flow over a time-expanded network. This type of formulation is often used to model freight

transportation problems (see Crainic and Laporte [24] and Crainic [21]).

2.2.1 Problem Definition

Consider an operator managing a global tank fleet. Let D represent the set of container

depots used to store and clean containers, and let P be the set of seaports through which

the operator maintains ocean transportation service contracts.

Suppose that the operator is making decisions at time t = 0 by planning movements

for a fixed horizon [0, tmax]. In a rolling horizon approach, container movement decisions

in some subinterval [0, tR], tR ≤ tmax are implemented. Let T be the ordered set of time

periods to be considered, T = {0, ..., tmax}.
At time t = 0, a set of containers are empty, clean, and available (ECA) for assignment

at depot locations. Other containers are in transit and will become ECA at specific depots

at future time periods. Additionally, new purchased or leased containers may come into

the system at depots at future times, and existing containers may leave the system in the

future due to retires or lease returns. If we assume homogeneity, container availabilities can

be summarized by net ECA container inflows at depots at specific points in time. For each

depot d ∈ D and time t ∈ T , let bdt be the net ECA container inflow, where a negative

number indicates a net outflow. Of course, this modeling convention does not track specific

individual container numbers which may be important if modeling lease returns.

During T , the operator must must serve a set of origin-destination customer demands

∆ which we assume to be known with certainty. Let L be the set of all customer locations

(origin and destination). Each demand δ ∈ ∆ may represent booked containers or forecasted

future container bookings, and minimally has the following characteristics:
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oδ ∈ L origin customer location

dδ ∈ L destination customer location

nδ number of containers to be transported

eδ ∈ T earliest time empty containers can be delivered to origin

lδ ∈ T latest time loaded containers can begin unloading at destination

τL
δ time required to load all containers at origin

τU
δ time required to unload all containers at destination

This representation simplifies the customer time windows. If more detailed information

such as the latest time loaded containers can depart the origin customer or the earliest time

loaded containers can be delivered to the destination were available, it could be used to

restrict the problem further.

Operators contract with providers for two types of transportation service. Scheduled

service is provided by ocean carriers between seaport pairs in P × P . Let Φ be the set of

scheduled service contracts, where φ ∈ Φ minimally has the following attributes:

oφ ∈ P origin port of the service

dφ ∈ P destination port

τφ total sailing time

TD
φ ⊆ T time periods at which service departs origin port

TA
φ ⊆ T time periods at which service arrives destination port

cφ cost per container

Sets TD
φ and TA

φ describe the schedule of any service over the planning horizon. For now,

we ignore service commitments or capacities.

Unscheduled services are available every time period. Unscheduled service may represent

local or long-haul trucking, rail service, and barge feeder service. Let Θ be the set of

unscheduled service contracts, where θ ∈ Θ minimally has the following attributes:
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oθ ∈ D ∪ L ∪ P origin depot, customer, or port

dθ ∈ D ∪ L ∪ P destination depot, customer, or port

τθ total transport time

cθ cost per container

Containers may be repositioned empty between all depot pairs using both scheduled ser-

vices Φ and unscheduled services Θ. Suppose that all depot-to-depot repositioning options

are specified by set Γ. Each γ ∈ Γ specifies:

oγ ∈ D origin depot

dγ ∈ D destination depot

TD
γ ⊆ T time periods at which option departs origin depot

TA
γ ⊆ T time periods at which option arrives destination depot

τγ total travel time

cγ total cost per container

We assume that each γ ∈ Γ is generated by transportation service contracts. When reposi-

tioning for a depot-depot pair can be conducted directly via an unscheduled service θ ∈ Θ,

we create a repositioning option which departs the origin depot at all time periods. When

repositioning between depots i and j uses a scheduled service φ ∈ Φ (i.e., needs to be routed

through a seaport), we create an option combining the costs and times of an unscheduled

service to connect i to oφ, the scheduled service connecting oφ to dφ, and then an unsched-

uled service to connect dφ to j. Such composite options depart the origin depot at time

periods appropriate for the container to meet the scheduled service sailings without delay.

Finally, we consider important container processing steps at depots and customers. It

is assumed that customers return containers to the depot that is closest in distance to the

customer location, and that this transportation requires only unscheduled transportation

service. After a container is returned to a depot, it must undergo cleaning before they can

be stored or reused. Let τC
d represent the duration of the cleaning process at depot d ∈ D,

which may vary due to available equipment; in fact, some depots must send containers out

for cleaning. In this initial problem, however, we assume that depot cleaning times are

independent of the previous commodity transported. Let cd represent the per container
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cleaning cost at d. Furthermore, suppose there are no capacity restrictions for cleaning or

storage at the depots.

At customer locations, arriving empty containers must immediately begin loading and

must depart once loaded. On the other end of the move, suppose that loaded containers

arriving at a destination customer must immediately begin unloading, and once unloaded

must be immediately dispatched to a depot.

Given this description, the goal of the tank container operator is to route loaded con-

tainers and reposition empty containers to serve all customer demands according to time

window requirements, while minimizing total transportation and depot costs incurred.

2.2.2 Multi-commodity network flow model

The optimization problem outlined in the previous section can be formulated as a deter-

ministic multi-commodity network flow on a time-expanded network. For simplicity of

exposition, suppose that T is a uniform discretization, where each time period represents a

day: T = {0, 1, 2, ..., tmax}.

Decision variables Each variable represents integer flows of containers, both loaded and

empty, through different stages of routing.

Container flow variables

xδ
φ(t) = containers of demand δ transported by scheduled option φ at time t

yδ
θ(t) = containers transported by unscheduled option θ at time t associated with demand

δ, either empty or loaded

uδ(t) = containers of demand δ beginning unloading at time t

vδ(t) = containers of demand δ beginning loading at time t

zγ(t) = containers transported with repositioning option γ at time t

sd(t) = inventory of ECA containers carried at depot d from time t to t + 1

wd(t) = containers beginning cleaning at depot d at time t

Of course, each of these flow variables need not be present at each time period of the model.

For example, we can exclude loaded flows xδ
φ and yδ

θ for time periods t < eδ + τL
δ and t > lδ.
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Instance-specific preprocessing may be able to further tighten the time windows for which

certain flow variables require definition.

The model description to follow does not prevent a customer demand of more than

one container to be split as it is routed through the network, as long as each container in

the demand reaches the destination by the customer deadline. If demands are unsplittable

in the sense that they should be loaded and unloaded simultaneously and use the same

transportation options, an alternative formulation is required.

Constraints The decision variables must satisfy constraints of three general types: (a) flow

balance, (b) time-window demand satisfaction, and (c) integrality and non-negativity.

Port nodes

In the model, each port p ∈ P only explicitly handles loaded container flows, strictly

assigned to some demand δ. (Empty repositioning flows between depots that require the use

of scheduled services through ports are handled independently using set Γ, as explained in

the previous section.) We require flow balance constraints for both containers to be loaded

onto scheduled services (export), and containers to be unloaded from scheduled services

(import):

Port export flow balance

∑

φ∈Φ|oφ=p, t∈T D
φ

xδ
φ(t)−

∑

θ∈Θ|oθ=oδ, dθ=p

yδ
θ(t− τθ) = 0 ∀ p ∈ P, t, δ (1)

Port import flow balance

∑

θ∈Θ|oθ=p, dθ=dδ

yδ
θ(t)−

∑

φ∈Φ|dφ=p, t∈T A
φ

xδ
φ(t− τφ) = 0 ∀ p ∈ P, t, δ (2)

Depot nodes

Each depot d ∈ D is treated as two nodes at each point in time. One node allows for

the consolidation of arrivals of dirty empty containers from destination customer locations,

while the other models flow balance of ECA containers. Thus, we need two sets of flow

balance constraints for each depot at each point in time.
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Depot dirty flow balance

wd(t) −
∑

θ∈Θ|dθ=d

∑

δ∈∆|dδ=oθ

yδ
θ(t− τθ) = 0 ∀ d ∈ D, t (3)

Depot ECA flow balance

∑

θ∈Θ|oθ=d

∑

δ∈∆|oδ=dθ

yδ
θ(t) +

∑

γ∈Γ|oγ=d, t∈T D
γ

zγ(t) + sd(t)− (4)

∑

γ∈Γ|dγ=d, t∈T A
γ

zγ(t− τγ) − wd(t− τC
d )− sd(t− 1) = bdt ∀ d ∈ D, t (5)

Customer locations

Customer locations ` ∈ L during the planning horizon may be origins of freight, desti-

nations of freight, or both. In the absence of capacity restrictions on loading and unloading

demands, constraints at customers can be separated by demand. Constraints (6) and (7)

model loading operations, where arriving empty containers begin loading and upon loading

completion are immediately dispatched:

Demand loading flow balance

vδ(t)−
∑

θ∈Θ|dθ=oδ

yδ
θ(t− τθ) = 0 ∀ δ ∈ ∆, eδ ≤ t ≤ lδ (6)

Demand outbound flow balance

∑

θ∈Θ|oθ=oδ

yδ
θ(t)− vδ(t− τL

δ ) = 0 ∀ δ ∈ ∆, eδ + τL
δ ≤ t ≤ lδ (7)

Similarly, constraints (8) and (9) model the arrival of loaded containers to their desti-

nation. These tanks are immediately unloaded, and then dispatched dirty to a container

depot:

Demand inbound flow balance

uδ(t)−
∑

θ∈Θ|dθ=dδ

yδ
θ(t− τθ) = 0 ∀ δ ∈ ∆, eδ + τL

δ ≤ t ≤ lδ (8)

Demand unloading flow balance

∑

θ∈Θ|oθ=dδ

yδ
θ(t)− uδ(t− τU

δ ) = 0 ∀ δ ∈ ∆, eδ + τU
δ ≤ t ≤ lδ + τU

δ (9)
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In addition to flow balance, we must also ensure that all containers in each demand

are loaded and unloaded during the appropriate customer time window. The following

constraints are used:

Loading demand time windows

∑

eδ≤t≤lδ

vδ(t) = nδ ∀ δ ∈ ∆ (10)

Unloading demand time windows

∑

eδ≤t≤lδ

uδ(t) = nδ ∀ δ ∈ ∆ (11)

We note that constraints (10) and (11) introduce difficulty into this problem model, since

they bundle and constrain flow for multiple demands.

Integrality and non-negativity

xδ
φ(t), yδ

θ(t), u
δ(t), vδ(t), zγ(t), sd(t), wd(t) ≥ 0 and integer (12)

Objective Function The objective is to minimize the total cost of all empty and loaded

transportation, and depot costs:

minEC + LC + DC (13)

where the empty cost is given by

EC =
∑

t

∑

δ∈∆

∑

θ∈Θ|(dθ=oδ)||(oθ=dδ)

cθ yδ
θ(t) +

∑
t

∑

γ∈Γ

cγ zγ(t),

the loaded cost by

LC =
∑

t

∑

δ∈∆

∑

φ∈Φ

cφ xδ
φ(t) +

∑
t

∑

δ∈∆

∑

θ∈Θ|(oθ=oδ)||(dθ=dδ)

cθ yδ
θ(t)

and the depot cost by

DC =
∑

t

∑

d∈D

cd wd(t).

Each of the sums above is assumed to only include time periods t ∈ T during which the

corresponding variable is defined.
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2.3 A Computational Study

As mentioned earlier, we believe that substantial benefits can be derived from integrating

container booking and routing decisions with repositioning decisions. We have conducted

a small computational study to (1) demonstrate that it is now computationally feasible to

solve realistic instances of an integrated model using commercially available integer pro-

gramming software on a high-end personal computer, and (2) assess the magnitude of the

benefits of an integrated model in terms of reduced repositioning costs and increased asset

utilization.

2.3.1 Instance Generation

We consider container management problems with a planning horizon of six months, dis-

cretized in days. To create representative global problems, we build instances around 10

ports of global importance: Singapore, Hong Kong, Shanghai, Kobe, Hamburg, Rotterdam,

Southampton, Seattle, Los Angeles, and Savannah. Each port is paired with a nearby con-

tainer depot. The ports are grouped together to form six regions as described in Table

1.

Table 1: Region characteristics for the computational study.

Region Ports # customer locations
Singapore Singapore 5
Asia Hong Kong, Shanghai 30
Japan Kobe 5
UK Southampton 5
Continental Europe Hamburg, Rotterdam 25
America Seattle, Los Angeles, Savannah 30

Fixed customer locations were generated within each region according to a uniform

distribution on a rectangular geographical zone representing the region (see Figure 1 for a

depiction of the instance geography).

Transportation between locations in the same region is assumed to be land-based and

therefore available whenever desired. Transportation between locations in different regions

involves at least one sea leg and therefore depends on available sailings between ports. To

determine a representative set of sailings between the ports, we use a published schedule
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Figure 1: Geographic regions for the computational instances.

(available online) for a large ocean carrier. For the six-month planning period, over 8,000

port-to-port sailings are considered.

A set of 900 customer booking demands is generated for the six-month horizon, with

each booking requesting between 1 and 5 containers. To reflect geographic trade imbalances,

the origin region and destination region for each booking are selected according to the

probabilities given in Table 2.

Table 2: Distributions of origin-destination customer locations for computational study.

Region Probability Conditional Conditional Conditional Conditional Conditional Conditional
of demand probability probability probability probability probability probability
originating destination destination destination destination destination destination

at region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6
1 0.15 0 0.10 0.05 0.10 0.25 0.50
2 0.40 0.10 0 0.05 0.10 0.25 0.50
3 0.10 0.05 0.10 0 0.10 0.25 0.50
4 0.05 0.15 0.30 0.15 0 0.30 0.10
5 0.15 0.15 0.30 0.15 0.30 0 0.10
6 0.15 0.15 0.40 0.10 0.10 0.25 0

Within the origin and destination regions, the actual origin and destination customer

32



locations are chosen from the set of available locations randomly with equal probability.

For this study, no demands are generated with origin and destination locations in the same

region.

For each booking demand δ, the earliest available day eδ is generated using a discrete

uniform distribution over the planning horizon days. To capture the possibility that different

bookings may have varying travel time requirements, we determine the latest delivery day lδ

for booking δ as follows. Let τ δ be the average transportation time (in days) from the origin

customer to the destination customer, where the average is computed over all itineraries in

the planning horizon. Then,

lδ = eδ + dτ δe+ DiscUniform(b−0.2 · τ δc, d0.2 · τ δe).

We further ensure that at least one feasible transport itinerary connects the origin

customer to the destination customer by simply discarding any booking demand generated

during the construction of the instance for which no feasible transport itinerary exist.

The final component of an instance is the number of available tank containers b̂. For

simplicity, we assume that the fleet is initially distributed over the depots according to the

demand destination probabilities implied by Table 2. We consider three fleet scenarios in

the computational experiments that follow. The first scenario models an excess capacity

environment with b̂ = 1000; the system contains many more containers than necessary to

handle all demand. The second scenario models an adequate capacity environment with

b̂ = 800. Finally, the third scenario represents a tight capacity environment with b̂ = 600.

In the tight environment, there are certain times during the planning horizon when nearly

all containers are in use (either traveling loaded with a demand, repositioning, or traveling

empty between a customer and a depot).

2.3.2 Repositioning Strategies

We model several repositioning strategies in this study, including a base strategy designed

to emulate current state-of-the-practice in tank container management, and three strategies

representing different options for deploying an integrated model.
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In the base strategy, we consider an environment in which a centralized decision maker

determines repositioning decisions independently from routing decisions. We assume as

in practice that these decisions are made once per week using estimates of weekly inflows

and outflows of containers at depots. We call this the 2-phase strategy. To emulate this

strategy with our model for a given instance, we consider each booking demand δ and first

label the closest container depot to the origin customer location as the origin depot, and the

closest depot to the destination customer as the destination depot. Next, we consider all

transportation itineraries (combinations of unscheduled and scheduled services) that can be

used to feasibly cover δ within the time window defined by eδ and lδ, and for each itinerary,

determine the day that containers would depart the origin depot and be returned to the

destination depot. We then assume that containers will depart the origin depot on its

modal day, and be returned to the destination depot on its modal day. Aggregating across

all bookings, we compute for each depot the expected weekly inflow and outflow of empty

containers. These counts are converted to weekly external container inflows and outflows

at depots by assuming that the inflow occurs on the final day of the week, and that the

outflow occurs on the first day of the week. Next, the integrated model is solved without any

demands to determine the weekly repositioning decisions. Finally, the external container

inflows and outflows at depots are removed, the repositioning decisions are fixed, and the

integrated model is solved with the booking demands to determine the routing decisions.

The three alternative strategies for deploying the integrated container management

model also assume a centralized decision-maker, but determine routing and repositioning de-

cisions simultaneously. The three strategies impose different restrictions on the availability

of repositioning options, as follows:

• Weekly Repositioning (WR): Depot-to-depot repositioning is allowed only on the first

day of each week. Further, for a given pair of depots, only the minimum cost reposi-

tioning option γ is included in the model.

• Bounded Daily Repositioning (BDR): Depot-to-depot repositioning is allowed every
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day, and all repositioning options are included in the model. However, if a reposi-

tioning move is initiated on a given day, a lower bound on the number of containers

repositioned is imposed to avoid repeatedly sending small numbers of containers.

• Unbounded Daily Repositioning (UDR): Depot-to-depot repositioning is allowed every

day with all repositioning options. No lower bounds are imposed.

2.3.3 Computational Results

The integrated container management model was implemented using ILOG’s OPL Studio

3.6.1 and instances were solved using ILOG’s CPLEX 8.1. All computational experiments

were conducted on a PC with a 1.6 GHz processor and 1 Gb of memory. Given a reposi-

tioning strategy and a container fleet size, we solved many instances representing different

realizations of customer request demand over the six-month planning horizon. Since the

variations between the results was relatively small for problems with the same character-

istics, we have chosen to present results for a representative six-month demand realization

generated with a particular seed rather than averaging results over many instances.

First, we compare the repositioning costs determined under the 2-phase strategy to

those determined when using the integrated model with the unbounded daily repositioning

(UDR) strategy. Table 3 presents the results

Table 3: Comparison of repositioning costs between 2-phase approach and integrated UDR
approach.

Container Repositioning Repositioning Percent CPU Time:
Fleet Size Costs: Costs: Improvement Integrated

2-phase Integrated UDR
UDR (seconds)

1000 125,969 113,286 10.0 81.46
800 152,174 131,489 13.5 68.42
600 - 165,546 - 174.53

Note that all instances were solved within 3 minutes of CPU time and that no feasible

solution was found by the 2-phase strategy in the tight capacity scenario.

The results in Table 3 demonstrate the value of integrated container management since

empty repositioning costs are substantially reduced (by 10.0% in the overcapacity scenario
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and by 13.5% in the adequate capacity scenario). However, perhaps even more interesting is

the fact that the integrated model is able to produce a feasible schedule in an environment

with far fewer containers in the system (the 2-phase strategy was also unable to find a

feasible solution with 700 containers in the system). The integrated container management

model is able to fully exploit any routing flexibility offered by the service time windows

for each booking. This indicates that it may be very beneficial for container operators to

try to collaborate with their customers to obtain timely and accurate information about

bookings, since it may allow the container operator to free up capital that is otherwise tied

up in expensive tank containers.

In the next experiment, we investigate the relative performance of the three alternative

deployment strategies for the integrated model. We first compare the costs determined

by the UDR, BDR, and WR strategies in Table 4. Note that for the BDR strategy, we

assume that a lower bound of 4 containers must be transported whenever a depot-to-depot

repositioning move is initiated.

Table 4: Cost comparison for different integrated repositioning strategies.

Container Repositioning Minimum Repositioning Land-based Ocean-based Total
Fleet Size Strategy repositioning costs transportation transportation costs

quantity costs costs
1000 UDR 1 113,286 298,908 503,800 915,994
1000 WR 1 129,372 298,716 504,374 932,462
1000 BDR 4 113,668 298,668 503,920 916,256
600 UDR 1 165,546 294,372 524,589 984,507
600 WR 1 173,611 294,564 524,268 992,443
600 BDR 4 169,727 294,624 526,709 991,060

The results indicate that it is worthwhile to make repositioning decisions daily as op-

posed to weekly, especially in environments with overcapacity (a difference of about 12%

in repositioning costs, and of about 2% in total cost). It also appears that in the over-

capacity environment, deciding the proper timing of repositioning is more important than

deciding on the number of containers to reposition because imposing a lower bound on the

repositioning quantity has relatively little impact on cost. When capacity is tight, however,

imposing such a lower bound does lead to a slight cost increase.

The container utilization statistics associated with the schedules produced for these
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strategies are presented in Table 5. The final four columns in the table present the percent-

age of time containers were in inventory at a depot, the percentage of time containers were

being moved empty, the percentage of time containers were being moved loaded, and the

percentage of time containers were being moved.

Table 5: Utilization comparison for different integrated repositioning strategies.

Container Repositioning Minimum Inventory Empty Loaded Total
Fleet Size Strategy repositioning time transport transport transport

quantity time time time
1000 UDR 1 45.28% 18.28% 36.43% 54.72%
1000 WR 1 49.24% 14.43% 36.33% 50.76%
1000 BDR 4 44.95% 18.37% 36.68% 55.05%
600 UDR 1 18.66% 26.37% 54.97% 81.34%
600 WR 1 21.17% 23.60% 55.24% 78.83%
600 BDR 4 18.91% 26.15% 54.94% 81.09%

The results in Table 5 demonstrate the potential value of integrated container manage-

ment, since high levels of utilization can be realized, i.e., containers being transported over

80% of the time (when capacity is tight). In reality the utilization is even higher since the

results presented in the table include some start and end effects. In the four months in the

middle of the planning horizon, i.e., months two through five, total transport time reaches

95% when capacity is tight. High asset utilization is of key importance to container oper-

ators due to relatively high asset capital costs. By using integrated container management

models, operators may be able to increase their revenue (satisfying more demands) without

having to increase the number of containers under management and thus without requiring

additional capital investments.

An important limitation on the approach presented in this chapter is that it does not

consider demand uncertainty. Although dynamic, the model discussed in this section is not

stochastic; therefore, it fails to capture a very important component of the problem. It is

crucial to identify approaches to handle uncertainty in the input data, especially uncertainty

related to the forecasted demand. If the freight plan that results from solving the model

fails to consider discrepancies between forecasted and actual demand realizations, the tank

container operator may suffer substantial degradation of customer service levels, excessive

control costs, or both.
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Consider for instance Figure 2 where inventory levels for three depots, Los Angeles,

Shanghai and Hong Kong, are shown for a solution obtained by solving our integrated

model under the UDR strategy. It is clear that given the probability distributions in Table

2, empty containers need to be repositioned to Shanghai and Hong Kong in order to account

for trade imbalances. Observe that since demand uncertainty is not addressed, a solution

to the deterministic model repositions only the number of containers strictly necessary

to satisfy forecasted demands. This leads to inventory accumulating in Los Angeles, and

dangerously low inventory levels in Shanghai and Hong Kong. Since no buffers are included

in the plan, some depots are vulnerable to stockouts during execution. Furthermore, cost-

effective control is difficult; if either of the two depots in the Asia region requires additional

containers, they would most likely need to be repositioned from another region, representing

a potentially costly control decision. This example illustrates that it is imperative to identify

methods that generate cost-effective freight plans that hedge against demand uncertainty.
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Figure 2: Inventory levels in three depots for a solution of one instance of the problem.
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CHAPTER III

ROBUST OPTIMIZATION FOR EMPTY REPOSITIONING

PROBLEMS

In the previous chapter, a fleet management planning and control problem for global tank-

container operators was addressed. Problems of this type arise for many large freight

transportation service providers, and are typically decomposed in two parts: the empty

repositioning problem and the problem of allocating units to customer demands. In this

chapter we consider the former problem– the management of empty resources over time–

and propose a planning model that explicitly considers demand uncertainty.

Almost all freight transporters serve a set of load requests that is imbalanced in both

time and space. Thus, when a resource such as a container or truck driver arrives at the

destination location of a loaded move, there may not be an opportunity to match that

resource in a timely way with a new loaded move outbound from that location. To correct

imbalance, transporters move resources empty between locations; planning and executing

empty moves that enable future customer demands to be served at low cost is a primary

challenge.

Currently, the more sophisticated transporters address this planning problem using de-

terministic flow optimization models over time-space networks. Network nodes are defined

at relevant decision points, and connect forward in time with other nodes via arcs that rep-

resent management decisions (and their costs) such as holding inventory of empty resources,

or repositioning such resources between locations. Next, point forecasts are developed for

the net expected supply for resources at some or all of the time-space network nodes, and

initial and final resource states are specified. A feasible flow on such a network represents

a set of feasible empty management decisions, and network optimization algorithms can

be used to find an optimal flow. For problems that can be decomposed by resource, the

resulting problems are often single-commodity minimum cost network flow problems, which
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can be solved very efficiently. In practice, these models are used in a rolling horizon imple-

mentation where a solution is obtained for a long planning horizon, but only the decisions

in an initial set of time periods are implemented.

One major deficiency of this traditional approach is that there may be significant uncer-

tainty in the forecasts of resource net supply at each time-space node, especially towards the

end of the planning horizon. When realized demands differ from forecasts, the implemented

empty allocation plan may be far from optimal. Stochastic models for these problems

typically replace point forecasts of expected net supply with distribution forecasts, and at-

tempt to find solutions that minimize total expected cost over the planning horizon; in this

case, difficult-to-solve stochastic dynamic programming or stochastic integer programming

problems result.

In contrast to existing stochastic approaches that focus on expected cost minimization,

our research develops a robust optimization approach for repositioning problems. Our ap-

proach borrows ideas from both Ben-Tal et al. [5] and Bertsimas and Sim [10]. Since during

the execution of the plan, dynamic adjustments might need to be taken, we model the repo-

sitioning problem using a two-stage framework similar to the adjustable robust counterpart

(ARC) for linear programming problems (see Ben-Tal et al. [5]). To avoid requiring esti-

mates of probability distributions, we model forecast uncertainty using intervals about a

nominal expected net supply at each time-space node and limit system-wide deviations from

nominal values through an uncertainty budget (see Bertsimas and Sim [10]). Thus, our ro-

bust approach seeks to find minimum cost solutions that satisfy special feasibility conditions

for any demand realization in which (1) each time-space node demand lies within its forecast

interval, and (2) no more than k demands can simultaneously take their worst-case value.

Parameter k can be seen as a planner’s view on the accuracy of the nominal expected net

supply values: when k = 0, the planner has complete confidence in the nominal expected

net supply values and the problem reduces to the deterministic problem, and when k = ∞,

the planner has no confidence in the nominal expected net supply values and solutions must

satisfy the special feasibility conditions for all realizations. In other words, the planner’s

risk-aversion can be captured with the value of k.
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The special feasibility conditions require that a robust repositioning plan (1) satisfies

flow balance equalities and flow bounds with respect to the nominal expected net supply

values, and (2) is recoverable, that is, it can be transformed into a plan that satisfies flow

balance equalities and flow bounds for every demand realization using dynamic adjustments,

also referred to as recovery actions. Note that any solution feasible for a specific realization

of net supplies is necessarily infeasible for every other realization. Dynamic adjustments are

similar to recourse actions in two-stage stochastic programming models and in the adjustable

robust counterpart approach. In the simplest planning problem considered in this chapter,

dynamic policies allows recovery flow changes only on inventory arcs between the same space

point in consecutive time periods; this scenario, therefore, corresponds to the case where

each spatial location must hedge independently against uncertain future outcomes. We also

consider dynamic policies that allow limited reactive repositioning between locations.

The robust repositioning problem that allows only inventory recovery actions is shown

to be polynomially-solvable. For the robust repositioning problems that allow dynamic

adjustments that use reactive repositioning, we develop sets of feasibility conditions whose

sizes, while not polynomial, do not grow with the size of the uncertain outcome space. We

illustrate the application of the robust repositioning framework developed with a set of

computational experiments involving a global container repositioning problem of realistic

size. The results provide insight into how different levels of confidence in the nominal

expected net supply values, measured by parameter k, and different degrees of flexibility

for performing recovery actions affect the cost of a robust repositioning plan, and therefore

the price of robustness.

3.1 Robust Feasibility-Recovery Optimization Framework for Problems
with Right-hand-side Uncertainty

Before focusing specifically on empty repositioning flow problems, we first outline a general

approach for optimization problems with right-hand-side uncertainty that considers feasi-

bility recovery actions. The approach applies the adjustable robust counterpart approach

developed for uncertain linear programs in Ben-Tal et al. [5] to mixed-integer programming

problems in a specific way that is useful for rolling-horizon implementations of dynamic
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optimization models where ensuring the existence of future feasible solutions is important.

Consider first a nominal optimization problem:

NP min
x

{
cT x : Ax = b, x ∈ X

}
(14)

where c is an n-vector, A is an m by n matrix, b is a deterministic m-vector referred to as

the vector of nominal right-hand-side values, and x is an n-vector of decision variables. Set

X is used to describe any additional constraints on the components of x, such as lower and

upper bounds as well as integrality.

Now suppose that the right-hand side vector b may be uncertain, and further that

each potential realization is a realization of some random vector b̃. Given an assumed

distribution for b̃, stochastic approaches for extending NP include both chance-constrained

programming as well as two-stage stochastic programming with recourse. An alternative is

to use a robust optimization approach, planning for worst-case outcomes of b̃. Since it will

usually be overly-conservative to seek solutions that are robust with respect to all potential

realizations within the finite support of an appropriate distribution for b̃, robust approaches

typically instead consider only outcomes that are members of some smaller, user-defined

uncertainty set Z ⊂ IRm. Note that we assume that the nominal vector b is a member of Z.

In typical robust optimization problems, one searches for a solution x that remains

feasible given any uncertain outcome in Z. However, it is clear that any feasible solution

x to NP is infeasible given any non-zero perturbation δ ∈ IRm such that b + δ ∈ Z. An

alternative approach is to search for a solution x that can be made feasible using adjustable

variables w, following the approach developed in [5] for linear programs.

Consider then the following adjustable robust optimization problem:

ARP min
x

{
cT x : Ax = b, x ∈ X, ∀ b + δ ∈ Z ∃w ∈ W : Ax + Bw = b + δ

}
(15)

where B is an m by p matrix and w is a p-vector of adjustable decision variables that may

differ for each realization b + δ ∈ Z. Set W does not depend on δ, and represents a set

of feasibility recovery constraints that may place additional restrictions on the adjustable

decisions and should be developed in the context of the application problem. In the context
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of freight transportation operations, feasibility recovery constraints can be used to model

dynamic policies.

Formulation ARP is essentially a special case of the adjustable recourse counterpart

modeling framework developed in Ben-Tal et al. [5], but generalized to allow integer variable

restrictions through X. It is a special case since ARP considers only uncertainty in the

right-hand-side vector, and additionally limits x to solutions that are feasible with respect to

the nominal vector b. Note that ARP does not capture in its objective the potential costs of

adjustable decisions w, but rather only ensures that a feasible adjustment of x exists for all

realizations. However, by carefully choosing which decisions to make fixed versus adjustable

and by judiciously restricting the adjustable decisions using the constraints W , it is possible

in application to appropriately capture the dominant system costs in the objective function

cT x while ignoring the smaller costs of adjustable decisions w.

In this spirit, it may be useful in many dynamic applications of such a framework to link

an adjustable variable wa to each fixed variable xa, and to allow no others. If we treat x+w

as a transformation of the initial decisions x, we can set B = A and define a transformable

robust optimization problem as

TRP min
x

{
cT x : Ax = b, x ∈ X, ∀ b + δ ∈ Z ∃w ∈ W : Aw = δ, x + w ∈ X

}
. (16)

Note that in TRP, we explicitly provide an additional linkage between the initial decisions

and the adjustable decisions by forcing x + w ∈ X, which may be used to model bounds

that apply to both initial and transformed decisions. Again, while it may seem that such a

transformable formulation allows the model to change any fixed decision xa, the user can use

the bounding mechanism provided by W to ensure that only “low-cost” adjustments to the

initial plan are allowed. While it is natural, for example, to force wa = 0 for any decision

xa that is truly fixed when planning, it may also be useful to do so for any “high-cost”

decisions.

To simplify notation for the remainder of this chapter, if we define set H(W, δ) as

H(W, δ) = {x | ∃ w ∈ W : Aw = δ, x + w ∈ X} , (17)
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then we can write TRP as

TRP(W,ϕ) min
x



cx : Ax = b, x ∈ X, x ∈

⋂

δ∈ϕ

H(W, δ)



 , (18)

where ϕ = {δ : b + δ ∈ Z}. We can write (18) in an extended form as

TRP(W,ϕ) minimize c x

s.t. Ax = b

x ∈ X

Awδ = δ ∀ δ ∈ ϕ

x + wδ ∈ X ∀ δ ∈ ϕ

wδ ∈ W ∀ δ ∈ ϕ

where wδ is a transformation vector applied to x given uncertain outcome δ. Observe

that the number of decision variables and the number of constraints in the extended for-

mulation of (18) may dramatically increase from (14) when the size of the outcome space

ϕ is large.

3.2 Robust Empty Repositioning

We now consider the TRP (W,ϕ) problem framework in the context of developing empty

repositioning plans. Consider a transport operator managing a homogeneous fleet of reusable

resources using a centralized control. Such resources may represent for instance containers,

tank-containers, railroad cars or trucks. Further suppose that to manage these resources,

the decision-maker need only track two state attributes: location and empty/loaded status.

Other potential state attributes (e.g., those required for maintenance) are ignored.

To manage this system, the operator maintains a network of storage depots from which

all empty resources are sourced and to which all empty resources are returned. The empty

repositioning problem of the operator, then, is to determine a plan for repositioning empty

resources between these depots to satisfy loaded move requirements.
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In practice this problem arises naturally for tank container fleet operators. Such op-

erators move loads globally using ocean transportation, and face significant loaded flow

imbalance. One large operator in this industry manages its empty repositioning flows using

a deterministic time-space network flow formulation, considering a six-month planning hori-

zon discretized into weeks [51]. The operator develops point forecasts of the expected net

supply of containers at each depot during each week of the horizon; negative net supply cor-

responds to demand for containers. Using costs for repositioning containers between depots,

the operator determines an empty repositioning plan for the horizon and then implements

the decisions for the current week. The process is repeated weekly.

3.2.1 The Nominal Repositioning Problem

Suppose that b, the vector of nominal right-hand side values, is the vector of time-space net

supply forecasts in the container repositioning problem described above. The nominal empty

repositioning problem can then be modeled using a time-expanded network G = (N ,A).

Assume for simplicity that a planning horizon has been discretized into ρ + 1 periods,

{0, 1, 2, ..., ρ}. Let D be the set of depots in the system, and let V d
τ = {vd

0 , v
d
1 , ..., v

d
τ} for

each d ∈ D be the ordered set of nodes vd
t representing depot d at each time period t up

to time τ . Let V d = V d
ρ , the complete node set for depot d, and V = ∪d∈DV d. Let b(v)

represent the component of b corresponding to v ∈ V.

Containers can be held in inventory at a depot from one time period to the next.

Therefore, an inventory arc (vd
t , vd

t+1) exists for each d ∈ D and 0 ≤ t < ρ. Let I be the

set of all inventory arcs. A repositioning arc (vi
t, v

j
t+h) is defined between depots i and j at

time t when available, where h ≥ 1 is the travel time in periods along this arc. Let R be

the set of all repositioning arcs. To complete the network specification, we add to G a sink

node s with net supply b(s) = −∑
vd

t ∈V b(vd
t ) and an arc connecting vd

ρ to s for all d ∈ D.

For consistency we add these arcs to set I; for simplicity, node s can be labeled as vd
ρ+1 for

any d ∈ D. Let N = V ∪ {s} and A = I ∪R.

For each a ∈ A, let c(a) be the unit cost of flow on arc a. For a ∈ R, c(a) represents the

repositioning costs per unit transported, while for a ∈ I, c(a) represents per period holding
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costs per unit. In virtually all freight transportation settings, the (actual) cost of holding a

resource in inventory is much smaller than the cost of moving a resource. Furthermore, since

differences in per unit holding costs at different depots are also minor, in many applications

holding costs are assumed to be negligible.

The nominal repositioning problem may now be written as:

NP min
x

{
cx : Ax = b, x ∈ ZZ

|A|
+

}
(19)

where the decision vector x corresponds to the empty container flow on each arc and A

is the node-arc incidence matrix implied by G defining the typical network flow-balance

constraints Ax = b. Let x(a) represent the flow on arc a ∈ A. Note that this formulation is

equivalent to (14) where X = ZZ
|A|
+ .

It is well-known that problem (19) can be solved to optimality in polynomial time with

standard minimum cost network flow algorithms, or via linear programming. We note that a

feasible solution may not exist for this problem as posed; well-known techniques can address

this problem, but for clarity and simplicity we assume that a feasible solution to (19) exists.

3.2.2 Three Robust Repositioning Problems

Since the nominal estimate of the net supply b(v) at each node v ∈ V may be uncertain, we

now apply the robust framework TRP (W,ϕ) to this repositioning problem. Let b̃(v) ∈ ZZ

be the random variable representing net supply at v ∈ V. Now suppose that the decision-

maker is also able to estimate an interval around b(v) which contains all of the potential

outcomes of b̃(v) for which future feasibility should be protected. Assuming the interval is

symmetric around b(v), we represent it as

b̃(v) ∈ [b(v)− b̂(v), b(v) + b̂(v)] ∀ v ∈ V, (20)

where b̂ ≥ 0. We assume that the decision-maker always knows with certainty the net

supplies in the initial period, and therefore b̂(vi
0) = 0 for each i ∈ D.

To allow further control of the conservatism of our robust repositioning models, we adopt

the approach proposed in Bertsimas and Sim [10] to restrict the allowable joint realizations
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of b̃ using an uncertainty budget. To do so, we define a limited perturbation set ϕk as a

function of a budget parameter k as follows:

ϕk =

{
δ ∈ ZZ|N | : δ(v) = b̂(v)z(v),

∑

v∈V
|z(v)| ≤ k, |z(v)| ≤ 1 ∀ v ∈ V, δ(s) = −

∑

v∈V
δ(v)

}
,

(21)

and we assume that every realization of b̃ can be represented by b + δ for some δ ∈ ϕk.

Note that the constraint on δ(s) is a technical condition used only to preserve balance (for

this reason, we will ignore δ(s) for the majority of the discussion to follow). Parameter k

specifies the maximum number of net supplies that may simultaneously take on an extreme

value in a realization, and thus can be used to control the conservatism of the uncertainty

set used by the model. When k = 0, the decision-maker is most aggressive assuming that

every realization will conform to nominal. When k ≥ |N |, the decision-maker protects

against all potential outcomes that fall within the intervals specified by (20).

It is important to observe that (21) ignores the fact that a reduction in net supply at

a given time in a specific depot is most likely coupled with an increase in net supply at

another time epoch or depot. For instance, a reduction in net supply might be the result of a

customer requesting additional (more than forecasted) empty containers at a demand origin

depot, which therefore implies a net supply increase some time later at the corresponding

destination depot. Ignoring net supply correlations may result in a worst-case scenario that

includes joint realizations that are highly unlikely, and perhaps not possible; this may lead

to plans that are overly conservative. Handling supply correlations is a topic for future

research.

Since the robust framework presented proposes to determine a feasible solution to the

nominal repositioning problem (19) that also is recoverable for all potential outcomes, a

concept that will be important for the analysis to follow is the vulnerability of a set of nodes

to demand perturbations.

Definition 1 (Node Set Vulnerability) For a set of nodes V ⊆ V, its vulnerability

ϑ(V, k) is defined as

ϑ(V, k) = max
z

{∑

v∈V

b̂(v) z(v) :
∑

v∈V

|z(v)| ≤ k , |z(v)| ≤ 1 ∀ v ∈ V

}
. (22)
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Observe that ϑ(V, k) corresponds to the maximum aggregate deviation from the nominal val-

ues for the nodes in V over all demand realizations in ϕk. The vulnerability of a node set V

with m members can be determined easily in polynomial time. Suppose V = {v1, v2, ..., vm}
where b̂(v1) ≥ b̂(v2) ≥ ... ≥ b̂(vm). Then, ϑ(V, k) =

∑min(m,k)
i=1 b̂(vi). Further, we denote by

η(V, k) = ∪min(m,k)
i=1 {vi} the set of nodes that realize their worst-case value in the determi-

nation of ϑ(V, k).

We now specify several different robust repositioning problems, each defined by a dif-

ferent feasibility recovery set W . For each problem, we develop necessary and sufficient

conditions for feasible solutions.

3.2.2.1 The Inventory Robust Repositioning Problem

Suppose that a decision-maker would like to develop an empty repositioning plan in which

each depot hedges independently against uncertainty using its own inventory. To model this

case, let W1 be the set of feasibility recovery transformation vectors w that allow integer

flow changes only on inventory arcs:

W1 = {w ∈ ZZ|A| | w(a) = 0 ∀ a ∈ R}.

Flow changes on inventory arcs can be interpreted as using containers in inventory to

satisfy a larger-than-expected demand (a negative flow change), or adding extra containers

to inventory in the event of a larger-than-expected supply (a positive flow change).

The recoverable set H(W1, δ) for a given perturbation δ from nominal is given by:

H(W1, δ) =
{

x | ∃ w ∈ W1 : Aw = δ, x + w ∈ ZZ
|A|
+

}
.

We can now define the inventory robust optimization problem using our earlier notation:

TRP1 = TRP(W1, ϕk).

Any repositioning plan x satisfying the feasibility conditions of TRP1 is called k-robust

inventory feasible. TRP1 seeks the minimum cost k-robust inventory feasible solution, and
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can be written in extended form as

TRP1(W1, ϕk) minimize c x

s.t. Ax = b (23)

x ∈ ZZ
|A|
+ (24)

Awδ = δ ∀ δ ∈ ϕk (25)

x + wδ ∈ ZZ
|A|
+ ∀ δ ∈ ϕk (26)

wδ(a) = 0 ∀ a ∈ R, δ ∈ ϕk (27)

wδ ∈ ZZ|A| ∀ δ ∈ ϕk (28)

While correct, the above formulation requires for each potential uncertain outcome δ a

vector wδ of decision variables representing the feasibility recovery transformation and an

associated set of flow balance constraints. Clearly, such a formulation becomes intractable

as the size of the outcome space grows. We now show that TRP1 alternatively can be

solved as a minimum cost network flow problem with flow lower bound constraints using

only the original flow variables x.

To do so, consider any inventory arc a = (vd
t , vd

t+1) ∈ I and the corresponding node set

V d
t . Given a specific uncertain outcome δ ∈ ϕk, let σ(a) be the cumulative deviation from

nominal net supply at depot d by time t:

σ(a) =
∑

v∈V d
t

δ(v).

Since the vulnerability ϑ(V d
t , k) is the maximum cumulative deviation from the nominal net

supply values for the nodes of depot d up to the tail node of arc a in any realization, it is

clear then that |σ(a)| ≤ ϑ(V d
t , k) for all δ ∈ ϕk.

The relationship between the flow on an inventory arc x(a) and the vulnerability of V d
t

will determine whether or not a solution is k-robust inventory feasible. This motivates the

following definition.

Definition 2 (Weak Arc) For a given repositioning plan x, an inventory arc a = (vd
t , vd

t+1) ∈
I is a weak arc if

x(a) < ϑ(V d
t , k).
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Observe that if a is a weak arc, then the inventory at time t at depot d is not sufficient to

protect against every potential uncertain realization in ϕk.

The following theorem now characterizes the set of feasible solutions for TRP1:

Theorem 1 A feasible solution x for the nominal problem (19) is also a feasible solution

for TRP1 if and only if

x(a) ≥ ϑ(V d
t , k) ∀ a = (vd

t , vd
t+1) ∈ I. (29)

Proof. Given the definition of W1, for any δ ∈ ϕk the only transformation vector w that

can feasibly satisfy constraints (25), (27), and (28) in TRP1 is given by

w(a) = σ(a) ∀ a ∈ I. (30)

Thus, we focus attention on constraints (26).

To show necessity by contradiction, suppose that there exists a feasible solution x for

TRP1 such that x(a) < ϑ(V d
t , k) for some arc a = (vd

t , vd
t+1). Now consider the uncertain

outcome δ ∈ ϕk such that δ(v) = −b̂(v) for all v ∈ η(V d
t , k) and δ(v) = 0 for all other

v ∈ V . Thus, from (30) note that w(a) = −ϑ(V d
t , k) and thus the transformed flow on arc

a is x(a) − ϑ(V d
t , k) < 0 which violates constraint (26). Therefore, x cannot be a feasible

solution for TRP1.

Sufficiency can also be shown by contradiction. Let x be a feasible solution of (19)

satisfying (29). Now, consider uncertain outcome δ ∈ ϕk such that after applying transfor-

mation (30) to x there exists an arc a = (vd
t , vd

t+1) ∈ I such that x(a) + w(a) < 0. This

implies ϑ(V d
t , k) ≤ x(a) < −σ(a), which then implies δ /∈ ϕk. ¤

Theorem 1 shows that TRP1 can be solved for any given ϕk by adding a flow lower

bound constraint for each inventory arc a ∈ I to (19). Thus, TRP1 is polynomially-solvable

using standard minimum cost network flow algorithms. Also, observe that the lower bound

constraints for a specific depot j are independent of the vulnerability of the arcs for any

other depot in the system.
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It is also important to note that in order to develop the necessary and sufficient condi-

tions in Theorem 1, we need only consider perturbations δ ≤ 0. Any positive component in

δ implies an unexpected addition of containers into some depot of the system, and such an

event does not act against the interests of a decision-maker attempting to determine a fea-

sible container allocation. In the remainder of this chapter, we only consider perturbation

vectors δ ≤ 0.

3.2.2.2 The Inventory-Pooling Robust Repositioning Problem

Suppose that container depots can hedge against uncertainty not only using their own

inventory but also using inventory at other depots in the system. We use the term reactive

repositioning to refer to dynamic adjustments that correspond to depot-to-depot container

repositioning conducted in response to a perturbation from expected net supplies. For a

given value of k, a group of depots may be able to jointly hedge against uncertainty with

fewer total container resources.

This idea is illustrated for a simple two-depot system in Figure 3. The number inside

each node corresponds to the nominal net supply value, the number above each arc cor-

responds to its flow, and the interval above a node determines the range in which δ can

take values. Observe that the conditions of Theorem 1 are satisfied for the inventory arcs

of depot A, but not for those of depot B. However, if we could reactively reposition a unit

of inventory at time 1 from depot A to depot B, then we could recover feasibility for this

problem given any realization in ϕ1. Since depots A and B share a single container resource

in inventory to collectively hedge against uncertainty, such a solution is called an inventory

pooling 1-robust solution.

We now formally define a feasibility recovery set W2 for the inventory-pooling scenario:

W2 = {w ∈ ZZ|A| | w(a) ≥ 0 ∀ a ∈ R, w(a) = 0 ∀ a = (vj
0, u) ∈ R}.

The set W2 allows any integer flow change on each inventory arc, and non-negative integer

flow changes on repositioning arcs. By enforcing non-negativity, we assume that only minor

changes are allowed to the initial repositioning plan. Further, we do not allow any reactive

flow changes on repositioning arcs that begin in the initial time epoch, since such decisions
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0 1 2 3
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Depot A

Depot B

[-1, 0]

[-1, 0]

Figure 3: The solution is robust for k = 1 if containers in Depot A can be repositioned
reactively to Depot B.

are assumed to be fixed. If the decision-maker intends to fix decisions for multiple initial

time epochs, additional constraints could be added to W2.

In this case, the recoverable set H(W2, δ) for a given perturbation δ from nominal is

given by

H(W2, δ) =
{

x | ∃ w ∈ W2 : Aw = δ, x + w ∈ ZZ
|A|
+

}
,

and the general inventory-pooling robust repositioning problem is then:

TRP2 = TRP(W2, ϕk).

We can formulate Problem TRP2 in extended form:

TRP2(W2, ϕk) min c x

s.t. Ax = b (31)

x ∈ ZZ
|A|
+ (32)

Awδ = δ ∀ δ ∈ ϕk (33)

x + wδ ∈ ZZ
|A|
+ ∀ δ ∈ ϕk (34)

wδ(a) = 0 ∀ a = (vj
0, u) ∈ R, ∀δ ∈ ϕk (35)

wδ(a) ≥ 0 ∀ a ∈ R, ∀δ ∈ ϕk (36)

wδ ∈ ZZ|A| ∀ δ ∈ ϕk (37)

This direct integer programming formulation for TRP2 may become difficult to solve as

the space of feasible uncertain outcomes defined by ϕk grows large. Therefore, following the
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approach for the inventory robust repositioning problem, we seek methods for determining

an optimal inventory-pooling robust solution that do not rely on enumerating the outcome

space.

Creating a tight set of necessary and sufficient constraints for a nominal solution x to

be robust with respect to any set of allowable recovery actions W requires ensuring that

x is in the recoverable set H(W, δ) for every δ ∈ ϕk. A useful methodology for testing

this condition for the recovery actions considered in this chapter is to use the existence

conditions for a feasible flow on a properly defined recovery network.

Let GW = (NW , AW ) refer to the recovery network corresponding to allowable recovery

action set W . The node set NW is the same as the node set N of G. The arc set AW

contains all inventory arcs in I, and all repositioning arcs in R on which recovery flow is

permitted to be nonzero by W . In the case of recovery set W2, GW2 contains only inventory

arcs and each repositioning arc departing a depot at time t > 0.

To determine whether a repositioning plan x is recoverable using the action set W2 for

a specific realization δ ∈ ϕk, we add appropriate net supplies to the nodes NW2 and search

for a feasible flow on GW2 . To do so, let Ix,δ(v) at each time-space depot node represent the

marginal net inventory of containers available (or needed) in the recovery problem given x

and δ:

Ix,δ(vd
0) = 0 for all d ∈ D

Ix,δ(vd
1) = x(vd

1 , vd
2) + δ(vd

1) for all d ∈ D

Ix,δ(vd
t ) = x(vd

t , vd
t+1)− x(vd

t−1, v
d
t ) + δ(vd

t ) for all d ∈ D, 1 < t ≤ ρ

where we note that δ(vd
0) = 0 for all d ∈ D. To understand this definition, suppose initially

that δ = 0. Given repositioning plan x, Ix,0(vd
1) is the initial inventory at depot d that

could be repositioned to serve recovery needs elsewhere. For t > 1, a positive value of

Ix,0(vd
t ) indicates an increase in the number of units in inventory at depot d at time t, and

therefore an additional number of containers that may be repositioned if warranted, or held

in inventory to serve container needs at future times. On the other hand, a negative value of

Ix,0(vd
t ) indicates a reduction in container inventory at time t. Such a reduction represents
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a demand for containers at that time. A container shortage will occur if the reduction is not

satisfied by inbound containers either from inventory or via reactive repositioning. Observe

that
∑t

s=1 Ix,0(vd
s ) corresponds to the actual inventory at time t at depot d. Since x is

feasible for the nominal problem, this inventory is nonnegative for all values of t.

1 1 2 2 2 0

0 1 2 3 4 5Time

Depot d

0 +1 +1 0 0 -2

Figure 4: Given the flow on the inventory arcs of depot d, the value of Ix,0 indicates
that one unit at time 1 is available for reactive repositioning, and that an additional unit
becomes available at time 2. The negative value of Ix,0 indicates that at least 2 units must
be in inventory by time 5. If any units are repositioned out of d, the same number must be
repositioned back no later than time 5.

Given a nonzero realization vector δ, the net inventory at node vd
t is changed by δ(vd

t ).

Hence, the definition of Ix,δ(v) models the net inventory availability (or requirement) at

each node after the realization. Observe that
∑t

s=1 Ix,δ(vd
s ) is not necessarily greater than

or equal to 0 for all values of t. A negative value for this expression implies the necessity to

reactively reposition units into the depot by time t in order to avoid a container shortage.

1 1 2 2 2 0

0 1 2 3 4 5Time

Depot d

0 +1 +1 0 -1 -2

Figure 5: Value of Ix,δ after perturbation δ(vd
4) = −1, δ(vd

1) = δ(vd
2) = δ(vd

3) = δ(vd
5) = 0.

At least one unit must be in inventory by time 4 and at least 2 additional units by time 5
to recover feasibility.

Using Ix,δ, we can complete the definition of the recovery network GW2 . Each arc

a ∈ AW2 is given a flow lower bound `(a) = 0 and upper bound u(a) = +∞. The net

supplies d at each node are given by

d(vd
t ) = Ix,δ(vd

t ) ∀ d ∈ D, t = 0, 1, 2, · · · , ρ

d(s) = −
∑

v∈V

d(v)
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Let GW2(x, δ) refer to the recovery network with net supply vector d defined as above.

Proposition 1 A feasible solution x for the nominal problem (19) belongs to the recoverable

set H(W2, δ) for a given δ if and only if there exists a feasible flow in GW2(x, δ).

Proof. By construction of the network and its associated net supplies d, a feasible flow

in GW2(x, δ) defines a set of feasible reactive repositioning decisions and inventory flow

changes w restoring the feasibility of x given δ: for arcs a ∈ R, w(a) is simply the flow on

the corresponding arc in AW2 , and for arcs a = (vd
t , vd

t+1) ∈ I for t > 1, w(a) is the flow

on the arc in AW2 minus x(a). It is also not difficult to see that a w corresponding to an

x ∈ H(W2, δ) can be used to construct a feasible flow in GW2(x, δ): for a ∈ R, the flow on

the associated arc in AW2 is w(a) and for a ∈ I, the flow is x(a) + w(a). ¤

We now derive necessary and sufficient conditions for the existence of a feasible flow in

general recovery networks GW (x, δ), where W allows general flow changes on all inventory

arcs (vd
t , vd

t+1) for t ≥ 1 and non-negative or zero flow changes on repositioning arcs. To do

so, we first introduce two definitions.

Definition 3 (Competing Arc Set) A set of arcs S ⊆ I is competing if every directed

path P in GW has |P ∩ S| ≤ 1.

Such arcs essentially compete for inventory to protect against uncertainty, since containers

moved to satisfy a need of one arc cannot be later used to satisfy the need of any other in

the set since no path for flow exists.

Definition 4 (Inbound-closed Node Set) A set of nodes C ⊆ NW is inbound-closed if

there exists no directed path P in GW from any node i ∈ NW \ C to any node j ∈ C.

Since no reactive flow paths exist into an inbound-closed node set, no additional containers

can be brought into these nodes to satisfy net demand generated in excess of nominal. Thus,

each such set must contain enough pooled inventory to hedge against a worst-case outcome.
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Using these definitions, we can define a set of cuts in GW that characterize feasible flows

in GW (x, δ). Let ∆out(U) = {(u, v) ∈ AW | u ∈ U, v ∈ NW \ U}. Define

UW = {U ⊆ N | U is inbound-closed, ∆out(U) ∩ I is competing}.

Proposition 2 There exists a feasible flow in GW (x, δ) if and only if for every set of nodes

U ∈ UW

∑

v∈U

d(v) ≥ 0.

Proof. It is known (see e.g., Cook et al. [20]) that there exists a feasible flow in GW (x, δ)

if and only if

∑

a∈∆out(U)

`(a) ≤
∑

v∈U

d(v) +
∑

a∈∆out(N\U)

u(a) for all U ⊆ N. (38)

Consider then any node set U ⊆ N such that U /∈ UW . By definition of UW , there must

exist a v1 ∈ N \U and v2 ∈ U where (v1, v2) ∈ AW . Since u((v1, v2)) = +∞, (38) is always

satisfied for such U .

Now consider any node set U ∈ UW , and note that because U is inbound-closed, there

are no arcs into set U . Since `(a) = 0 for all a ∈ AW , (38) reduces to

0 ≤
∑

v∈U

d(v) for all U ∈ UW .

¤

The necessary and sufficient conditions in Proposition 2 can be enforced through a set

of constraints on the nominal flow variables, as proposed by the following theorem:

Theorem 2 A feasible solution x of the nominal problem (19) is also feasible for TRP2

if and only if for every set of nodes U ∈ UW2

∑

a∈∆out(U)∩I

x(a) ≥ ϑ(U, k)

Proof. Let x be a feasible solution of the nominal problem (19) and δ ∈ ϕk. By definition

of Ix,δ it is clear that
t∑

s=1

Ix,δ(vd
s ) = x(vd

t , vd
t+1) + σ((vd

t , vd
t+1)) ∀ d ∈ D
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and therefore that
∑

v∈U

Ix,δ(v) =
∑

a∈∆out(U)∩I

x(a) +
∑

d∈D

σ(ad)

for every U ∈ UW , where ad ∈ ∆out(U) ∩ I is the inventory arc for depot d in cut ∆out(U).

Thus, by Propositions 1 and 2, solution x is feasible for ROP2 if and only if

∑

v∈U

Ix,δ(v) =
∑

a∈∆out(U)∩I

x(a) +
∑

d∈D

σ(ad) ≥ 0 ∀U ∈ UW2 (39)

holds for each δ. But since δ ∈ ϕk, −
∑

d∈D σ(ad) can be bounded:

−
∑

d∈D

σ(ad) ≤ ϑ(U, k) ∀ d ∈ D.

We note that this bound is tight for at least one δ ∈ ϕk (namely, δ(v) = −b̂(v) for all

v ∈ η(U, k)). Thus, condition (39) simplifies to

∑

a∈∆out(U)∩I

x(a) ≥ ϑ(U, k) for all U ∈ UW2 .

¤

As an aside, we note that the conditions in Theorem 2 (and the techniques used to

develop the theorem) could also be used for the inventory robust problem TRP1 given an

appropriately-defined recovery network GW1 and set UW1 .

Using Theorem 2, an alternative integer programming formulation for TRP2 is:

min c x

s.t. Ax = b

∑

a∈∆out(U)∩I

x(a) ≥ ϑ(U, k) for all U ∈ UW2

x ∈ ZZ
|A|
+

Observe that the size of the constraint set specifying necessary and sufficient conditions

for a feasible solution to TRP2 is independent of the size of the uncertain outcome space

characterized by ϕk. Note also that the number of variables required for the robust formu-

lation is equal to the number required for the nominal problem. However, the formulation
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requires a separate constraint for each element of UW2 , which is the set of all inbound-closed

subsets of the nodes NW that satisfy the competing inventory arc condition. It should be

clear that enumerating this constraint set may be computationally expensive, and that the

resultant integer program may be difficult to solve if the constraint set is large. However,

for many problems arising in practice, this will not be the case; we will elaborate on these

ideas later in this chapter.

3.2.2.3 A Restricted Inventory-Pooling Robust Repositioning Problem

Given a set of depots that pool inventory to hedge against uncertainty, a decision-maker

may still wish include dynamic policies to limit further the allowable options for reactive

repositioning during the planning phase. One approach that is appealing in practice desig-

nates a priori those depots that serve only as providers of reactive repositioning, and those

that serve only as recipients. Suppose that D then is partitioned into two subsets: the

depots in Ds can reposition containers reactively to other depots, but do not receive such

support, while the depots in Dr may receive reactive repositioning containers but do not

provide them. For example, in a geographic region a container operator may have a large

hub depot, and many smaller depots. The operator then might wish to include the hub in

Ds, and the smaller depots in Dr.

The feasibility recovery set W3 can be specified for this scenario by a simple modification

of W2 where we restrict outbound reactive repositioning from depots in Dr and inbound

reactive repositioning to depots in Ds:

W3 = {w ∈ ZZ|A| | w(a) ≥ 0 ∀ a ∈ R,

w(a) = 0 ∀ a ∈ {(vj
0, u) ∈ R} ∪ {(va

t , vb
t+h) ∈ R | a ∈ Dr or b ∈ Ds}}

The recoverable set H(W3, δ) for a given realization δ ∈ ϕk is then

H(W3, δ) =
{

x | ∃ w ∈ W3 : Aw = δ, x + w ∈ ZZ
|A|
+

}
,

and a restricted inventory-pooling robust repositioning problem is

TRP3 = TRP(W3, ϕk).
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While it is not too difficult to extend the analysis developed in Section 3.2.2.2 to de-

termine a tight set of necessary and sufficient conditions defining feasible solutions x for

TRP3, it turns out that these problems tend to require larger sets of constraints; the ba-

sic intuition behind this result is that fewer available reactive arcs lead to fewer reactive

flow paths and therefore more competing arc sets. Since effective solution procedures may

therefore require techniques to generate such constraints dynamically as needed rather than

a priori, we develop in this section some additional concepts that should prove useful for

such techniques.

In the TRP3 setting, it is clear that each depot in Ds must not dispatch inventory

for reactive repositioning that it will need later to cover its own needs. Recall that given

a nominal solution x and a realization δ ∈ ϕk, the inventory available at time t at depot

d ∈ Ds is given by

t∑

s=1

Ix,δ(vd
s ) = x(vd

t , vd
t+1) + σ((vd

t , vd
t+1)) ∀ d ∈ D.

Furthermore, any containers that are reactively repositioned from depot d at or before time t

will reduce this available inventory. Since this adjusted inventory cannot fall below zero, we

can define the available container support Sx,δ(vd
t ) at d at time t as the maximum number

of containers that can be reactively repositioned from depot d by time t given nominal

flow x and uncertain outcome δ, such that no container shortage occurs at d after time t.

Mathematically,

Sx,δ(vd
t ) =





0 if t = 0

minj{x(vd
j , vd

j+1) + σ((vd
j , vd

j+1)) | t ≤ j ≤ ρ} otherwise

Note that for a fixed d, Sx,δ(vd
t ) is a non-decreasing function of t. Support at time 0 is

defined again to indicate that no reactive repositioning is allowed at that time epoch.

Following the approach for TRP2, we first define a recovery network GW3 that will

be used to develop conditions for the existence of a feasible recovery flow given a nominal

problem solution. The network GW3 is specified using the procedure in Section 3.2.2.2;

the arc set AW3 thus contains no repositioning arcs outbound from depots in Dr and none

inbound to depots in Ds.
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The supply vector d in this case can be specified using the definitions of Ix,δ and Sx,δ.

For nodes associated with depots in Dr, the definition is unchanged. However, for nodes

associated with depots in Ds, the net supply is equal to the incremental support available

at time t:

d(vd
0) = 0 ∀ d ∈ D

d(vd
t ) = Ix,δ(vd

t ) ∀ d ∈ Dr, t = 1, · · · , ρ

d(vd
t ) = Sx,δ(vd

t )− Sx,δ(vd
t−1) ∀ d ∈ Ds, t = 1, · · · , ρ

d(s) = −
∑

v∈N\{s}
d(v)

A negative net supply at some node vd
t where d ∈ Dr indicates a demand for containers

that must be served from inventory, or via reactive repositioning. The net supplies for nodes

vd
t where d ∈ Ds specify the maximum number of additional units that can be repositioned

out of depot d at time t so that no container shortage occurs later in time. Note that by

the definition of support, a negative net supply can only occur at such a node at t = 1;

clearly in this case, there exists no feasible recovery flow.

Let GW3(x, δ) represent the recovery network GW3 along with the associated net supply

vector d. Again, a feasible flow in this recovery network has a one-to-one correspondence

with a valid feasibility recovery vector for a given realization δ.

Proposition 3 A feasible solution x of the nominal problem (19) is a member of the re-

coverable set H(W3, δ) for a given δ if and only if there exists a feasible flow in GW3(x, δ).

Proof. Parallel to proof of Proposition 1. ¤

Although it is true that valid necessary and sufficient conditions for the existence of a

feasible flow in GW3(x, δ) are given by Proposition 2 using set UW3 since W3 is a recovery set

of the form required by the Proposition, we now develop an explicit representation of these

conditions using the special structure of the recovery set W3. To do so, we first introduce

some additional notation. Given a set of inventory arcs α ⊆ I, let T (α) be the set of tail

nodes of arcs in α. Let C(α) be the set of nodes from which the tail nodes of arcs in α can
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be reached, i.e., the set of nodes from which there exists a directed path to the tail node of

an arc in α. Note that T (α) ⊆ C(α), and that C(α) is an inbound-closed set. Finally, let

D(α) be the set of depots corresponding to α.

In this case, instead of considering all subsets of nodes U ∈ UW3 , we can determine

whether or not a feasible flow in GW3(x, δ) exists by considering only sets of nodes C(α)

defined by sets of competing inventory arcs α at depots in Dr, where each arc a ∈ α has a

shortage with respect to δ: x(a) + σ(a) < 0.

Proposition 4 There exists a feasible flow in GW3(x, δ) if and only if

d(vd
1) = Sx,δ(vd

1) ≥ 0 ∀ d ∈ Ds (40)

and
∑

v∈C(α)

d(v) ≥ 0 (41)

for all α ⊆ I where α is competing, D(α) ⊆ Dr, and x(a) + σ(a) < 0 for each a ∈ α.

Proof. From Proposition 2, necessary and sufficient conditions for the existence of a feasible

flow in GW3(x, δ) are
∑

v∈U

d(v) ≥ 0 ∀ U ∈ UW3 (42)

It is now shown that the conditions in the proposition are equivalent to the conditions given

by (42).

The necessity of (40) and (41) is clear, since each constraint in the two sets corresponds

directly to some set U ∈ UW3 for which the expression in (42) must hold. For each d ∈ Ds,

(40) corresponds to U = {vd
0 , v

d
1} which is clearly inbound-closed by definition of Ds. Each

C(α) generating a constraint of type (41) is also inbound-closed. Further, the arc set

∆out(C(α)) ∩ I can be shown to be competing. This set is comprised of α and α, where

each a ∈ α is associated with a different depot d ∈ Ds. Therefore, since α is a competing

arc set, and no path exists containing arcs both in α and arcs in α by definition of C(α),

and no path exists containing more than one arc α by definition of Ds, α∪α is competing.

Thus, constraint of type (41) corresponding to C(α) also has a corresponding constraint in

(42).
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We now show the sufficiency of the conditions by showing that if they hold, conditions

(42) hold for all U ∈ UW3 . Consider any U ∈ UW3 , and let Du ⊆ Dr be the set of depots d

where there exists an arc ad ∈ ∆out(U)∩ I satisfying x(ad) + σ(ad) ≥ 0. Note then that for

each d ∈ Du,
∑

v∈V d∩U

d(v) = x(ad) + σ(ad) ≥ 0. (43)

We claim first then that the conditions for U in (42) are redundant with those for

Ũ = U \ ⋃
d∈Du

(V d ∩ U) in this case. Clearly this is true if Ũ = ∅. If Ũ 6= ∅, note that

Ũ ∈ UW3 since the subset ∆out(Ũ) of competing arcs ∆out(U)∩I is competing, and since no

outbound reactive repositioning arcs exist in AW3 from any depot d ∈ Du the set Ũ remains

inbound-closed. Suppose first that Ũ contains only nodes associated with depots in Ds. In

this case, conditions (40) guarantee that
∑t

s=1 d(vd
s ) ≥ 0 for any 0 ≤ t ≤ ρ by definition of

Sx,δ, and that therefore for any such Ũ , (42) holds. Along with (43), this in turn implies

that (42) is satisfied for U .

Finally, suppose instead that Ũ contains nodes for each depot in some set D̃r ⊆ Dr, in

addition perhaps to nodes for some depots in Ds. Let α ⊂ ∆out(Ũ) ∩ I where D(α) = D̃r.

Clearly, α is competing, and x(a)+σ(a) < 0 for each a ∈ α by the definition of Ũ . Further,

C(α) ⊆ Ũ , where any additional nodes in Ũ must be associated with depots in Ds. Since

d(vd
t ) ≥ 0 for d ∈ Ds by (40) and the definition of Sx,δ, if (41) holds for C(α) then (42)

holds for Ũ , and finally (43) implies further that (42) is also satisfied for U . ¤

Proposition 4 can now be used to specify necessary and sufficient conditions for a feasible

nominal repositioning plan x to be a feasible solution to TRP3. To do so, we must introduce

several additional definitions. First, we identify sets of arcs, denoted vulnerable sets, that

require a constraint of type (41) to protect against a joint container shortage that will arise

for at least one uncertain realization δ ∈ ϕk:

Definition 5 Given a feasible solution x to the nominal problem (19), a set of inventory

arcs α ⊂ I that are competing in GW3 and where D(α) ⊆ Dr is vulnerable if there exists a

δ ∈ ϕk such that x(a) + σ(a) < 0 for all a ∈ α.
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Let Ψ(x) = {α ⊂ I | α is vulnerable}. If α is vulnerable then there is δ ∈ ϕk such that

x(a) + σ(a) ≤ −1 for each a ∈ α. Therefore, if α is vulnerable then

1. Each arc a ∈ α is weak, and

2.
∑

a∈α x(a) + |α| ≤ ϑ
(⋃

(vd
t ,vd

t+1)∈α V d
t , k

)
.

For a given δ ∈ ϕk, a constraint (41) is required by Proposition 4 for arc set α. Note

that a vulnerable set corresponds to a set of arcs α for which we know there exists at least

one δ ∈ ϕk that would create a container shortage at all depots D(α) unless containers are

reactively repositioned. Further, note that an arc set α which is not vulnerable will not

require a constraint (41) for any δ ∈ ϕk.

For a vulnerable set α ∈ Ψ(x), let C ′(α) = C(α)
⋂ {⋃d∈(D\D(α)) V d} be the set of nodes

associated with depots in D \D(α) from which an arc in the vulnerable set can be reached.

Let D′(α) ⊆ D \D(α) be the set of depots with nodes from which an arc in the vulnerable

set can be reached, i.e., the set of depots d ∈ D \ D(α) for which C ′(α) ∩ V d 6= ∅. Let

tdα = argmaxt{vd
t ∈ C ′(α)} for all d ∈ D′(α). Finally, let

Id(α) =
{

(vd
t , vd

t+1) ∈ I | t ≥ tdα

}
∀ d ∈ D′(α).

Definition 6 A layer of a vulnerable set α ∈ Ψ(x), denoted θ(α) ⊂ ⋃
d∈D′(α) Id(α), is a set

of inventory arcs where

|θ(α) ∩ Id(α)| = 1 ∀ d ∈ D′(α).

Each layer of α, therefore, contains one inventory arc from each depot in D′(α) leaving d

at some time greater than or equal to tdα. Let Θ(α) = {θ(α) ⊂ I | θ(α) is a layer of α}.
Consider a vulnerable set α and a layer θ(α), and let

Ũ(α, θ(α)) =




⋃

(vd
t ,vd

t+1)∈α

V d
t




⋃



⋃

(vd
t ,vd

t+1)∈θ(α)

V d
t




Definition 7 Given a feasible solution x to the nominal problem (19), a vulnerable set

α ∈ Ψ(x), and a layer θ(α) ∈ Θ(α), let

∑
a∈α

x(a) +
∑

a∈θ(α)

x(a) ≥ ϑ
(
Ũ(α, θ(α)), k

)
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be the layer θ(α) inequality.

We are now ready for the main theorem in this subsection:

Theorem 3 A feasible solution x for the nominal problem (19) is also a feasible solution

for TRP3 if and only if

x(a) ≥ ϑ(V d
t , k) ∀ a = (vd

t , vd
t+1) ∈ I where d ∈ Ds

and for every vulnerable set α ∈ Ψ(x), the layer θ(α) inequality is satisfied for each θ(α) ∈
Θ(α).

Proof. Let x be a feasible solution of the nominal problem (19). By Propositions 3 and 4,

x is also a feasible solution for TRP3 if and only if conditions (40) and (41) are satisfied

for all δ ∈ ϕk.

First we consider conditions (40). By the definition of Sx,δ, these conditions become

min
1≤j≤ρ

{
x(vd

j , vd
j+1) + σ((vd

j , vd
j+1))

}
≥ 0 ∀ d ∈ Ds ∀ δ ∈ ϕk,

which are equivalent to the following sets of constraints for each d ∈ Ds:

x(vd
t , vd

t+1) ≥ −σ((vd
t , vd

t+1)) ∀ t ∈ {1, · · · , ρ} ∀ δ ∈ ϕk. (44)

For any δ ∈ ϕk,

−σ((vd
t , vd

t+1)) ≤ ϑ(V d
t , k)

where we note that this bound is tight for at least one δ ∈ ϕk. Therefore (44) simplifies to

x(vd
t , vd

t+1) ≥ ϑ(V d
t , k) ∀ t ∈ {1, · · · , ρ},

which must hold for all d ∈ Ds. Thus,

x(a) ≥ ϑ(V d
t , k) ∀ a = (vd

t , vd
t+1) ∈ I where d ∈ Ds.

Now consider conditions (41). Using the definition of vulnerable sets, these conditions

become
∑

v∈C(α)

d(v) ≥ 0 ∀ α ∈ Ψ(x), (45)
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which again by Proposition 3 must hold for all δ ∈ ϕk. The sum can be rewritten by

partitioning the depots into those associated with the vulnerable arcs and those providing

reactive repositioning support to the vulnerable arcs, and simplified as follows:

∑

v∈C(α)

d(v) =
∑

d∈D(α)

∑

v∈C(α)∩V d

d(v) +
∑

d∈D′(α)

∑

v∈C′(α)∩V d

d(v)

=
∑

d∈D(α)

∑

v∈C(α)∩V d

Ix,δ(v) +
∑

d∈D′(α)

tdα∑

s=1

(
Sx,δ(vd

s )− Sx,δ(vd
s−1)

)

=
∑
a∈α

x(a) +
∑

d∈D(α)

σ(ad) +
∑

d∈D′(α)

Sx,δ(vd
tdα

)

=
∑
a∈α

(x(a) + σ(a)) +
∑

d∈D′(α)

min
a∈Id(α)

{x(a) + σ(a)} .

where ad is the inventory arc for depot d in α. Thus, the condition for a specific α in (45)

can now be replaced by a set of inequalities, one for each layer θ(α) ∈ Θ(α):

∑
a∈α

(x(a) + σ(a)) +
∑

a∈θ(α)

(x(a) + σ(a)) ≥ 0.

Rewriting yields
∑
a∈α

x(a) +
∑

a∈θ(α)

x(a) ≥ −
∑
a∈α

σ(a)−
∑

a∈θ(α)

σ(a). (46)

Since δ ∈ ϕk, we have a tight bound of the right-hand side of (46) using ϑ(Ũ(α, θ(α)), k),

therefore
∑
a∈α

x(a) +
∑

a∈θ(α)

x(a) ≥ ϑ(Ũ(α, θ(α)), k)

which is the layer θ(α) inequality. ¤

Theorem 3 allows TRP3 to be formulated as the following integer program:

min c x

s.t. Ax = b

x(a) ≥ ϑ(V d
t , k) ∀ a = (vd

t , vd
t+1) ∈ I, d ∈ Ds

∑
a∈α

x(a) +
∑

a∈θ(α)

x(a) ≥ ϑ(Ũ(α, θ(α)), k) ∀ α ∈ Ψ(x), ∀θ(α) ∈ Θ(α)

x ∈ ZZ
|A|
+
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Note that the layer inequality constraints are specified for each vulnerable set α, and that

the vulnerable sets depend on the solution x. If the layer inequality constraints were alter-

natively required regardless of x for each competing arc set α in GW3 where D(α) ⊆ Dr, the

formulation would remain valid. However, Theorem 3 shows that a given solution x can be

checked for feasibility to TRP3 using potentially fewer constraints. These ideas motivate

computational approaches to this problem as future research.

3.2.3 Alternative Uncertainty Sets

Although the results developed above have assumed perturbation sets of the form specified

by (21), it turns out that several different types of “budget” uncertainty sets may be used

without changing the fundamental results. We now show that different budget uncertainty

sets lead only to different specifications of the vulnerability ϑ of a node set V . In this section,

let ϑ(V, ϕ) represent the vulnerability of node set V given an uncertainty set represented

by the perturbation set ϕ.

1. Maximum Scaled Deviation Per Depot : Rather than limiting the maximum scaled

deviation from the nominal net supply estimates for all depots jointly, a decision-

maker may wish to limit each depot’s deviation separately. Assuming for simplicity

that each depot has an identical budget k, the alternative perturbation set for this case

is given by ϕD
k = {δ ∈ ZZ|N | : δ(v) = b̂(v)z(v),

∑
v∈V d |z(v)| ≤ k ∀ d ∈ D, |z(v)| ≤

1 ∀ v ∈ V, δ(s) = −∑
v∈V δ(v)}. In this case, the vulnerability of a set V ⊆ V of

nodes can be determined by

ϑ(V, ϕD
k ) = max

z





∑

v∈V

b̂(v) z(v) :
∑

v∈V ∩V d

|z(v)| ≤ k ∀ d ∈ D , |z(v)| ≤ 1 ∀ v ∈ V



 ,

a simple optimization problem similar to that given by (22) which can be solved by

summing for each depot d the k largest values of b̂(v) for nodes v ∈ V ∩ V d, and then

adding the sums for all depots.

2. Telescoping Maximum Scaled Deviation: One limitation in applying uncertainty set

ϕk to problems with time-space nodes is that as the value of k is increased, the

method may generate very conservative decisions in the first few planning periods
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since a large proportion of the demands may simultaneously take on their worst case

values. This limitation can be avoided by using a telescoping uncertainty set. Let

κ = {k1, k2, ..., kρ} be a vector of budget parameters, kt ≤ kt+1, where parameter kt

represents the maximum number of time-space net supplies that may take on their

worst-case value by time period t. If we define Vt = ∪d∈DV d
t , the perturbation set

for this case is given by ϕT
k = {δ ∈ ZZ|N | : δ(v) = b̂(v)z(v),

∑
v∈Vt

|z(v)| ≤ kt ∀ t ∈
{1, ..., ρ}, |z(v)| ≤ 1 ∀ v ∈ V, δ(s) = −∑

v∈V δ(v)}. Then, the vulnerability of V ⊆ V
can be determined by

ϑ(V, ϕT
k ) = max

z

{∑

v∈V

b̂(v) z(v) :
∑

v∈V ∩Vt

|z(v)| ≤ kt ∀ t ∈ {1, ..., ρ} , |z(v)| ≤ 1 ∀ v ∈ V

}
.

This optimization problem is also easy to solve, given that the nodes in V are sorted

by non-decreasing order of b̂(v): set z(vd
t ) = 1 for the largest value of b̂(vd

t ), as long

as
∑

v∈V ∩Vτ
|z(v)| ≤ kτ for τ ≥ t, then proceed to the next largest value of b̂(v) and

repeat. Note that it would also be simple to construct such a telescoping maximum

scaled deviation uncertainty set where the maximums were applied per depot rather

than system-wide.

3. Maximum or Telescoping Maximum Absolute Deviation: Finally, while budget un-

certainty sets that limit the maximum total scaled deviation from nominal have the

benefit of being independent of the vectors b and b̂, there may be cases where the

decision-maker would rather limit the maximum absolute deviation from nominal for

which he would like to plan; in fact, generating an appropriate value for such a statis-

tic may be relatively simple from an analysis of past forecast accuracy. In the non-

telescoping case, such a perturbation set could be represented by ϕA
k = {δ ∈ ZZ|N | :

δ(v) = b̂(v)z(v),
∑

v∈V b̂(v)|z(v)| ≤ k , |z(v)| ≤ 1 ∀ v ∈ V, δ(s) = −∑
v∈V δ(v)}. In

this case, the vulnerability of V ⊆ V can be determined simply by

ϑ(V, ϕA
k ) = min

{
k,

∑

v∈V

b̂(v)

}
.

A telescoping set and vulnerability could be similarly defined.
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3.3 Using the Robust Repositioning Models in Practice

Large carriers are typically organizations with regional business units. A region usually

encompasses a group of facilities that are relatively close to one another geographically.

Since repositioning costs tend to be smaller between facilities within a region than between

those in separate regions, it may make sense to limit the allowable reactive control decisions

considered while generating plans to those that represent intra-regional repositioning moves.

Importantly, note that such an assumption does not mean that inter-regional moves are not

planned or executed. Instead, the restriction simply forces the planning model to assume

that facilities within the same region can share resources reactively, but that they cannot

be shared reactively inter-regionally. In addition to eliminating costly reactive moves from

consideration, such a restriction may also improve the computational tractability of the

approach proposed in this research by limiting the size of the constraint sets required to

specify the robust repositioning problems TRP2 and TRP3.

For example, consider an international container manager that provides service from

many container depots located across the globe. These depots may be naturally grouped

into regions: e.g., Southeast Asia, East Coast North America, Northern Europe, etc. While

depots within a region might pool inventory to hedge against uncertainty, it might not be

practical to allow reactive sharing across regional boundaries. This scenario can be modelled

using a simple modification of TRP2 or TRP3 where inter-regional repositioning arcs are

included in the nominal problem network G, but excluded from the specification of GW . It

should be clear, then, that the conditions in Theorems 2 and 3 decompose by region, leading

to much smaller sets of constraints guaranteeing feasibility. Such decomposition also could

allow the manager to specify certain regions where complete reactive pooling of the type

specified by TRP2 is allowed, and other regions where the restricted reactive pooling of

TRP3 is used.

The idea of partitioning a service area into regions is incorporated in the computational

study now described. The computational experiment demonstrates that realistic instances

of the empty repositioning problem can be solved effectively with the proposed robust
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optimization framework, and provides insight into how different levels of conservatism (de-

termined by parameter k) and different degrees of flexibility for performing reactive reposi-

tioning (determined by the feasibility recovery constraints) affect the cost of a repositioning

plan and therefore the price of robustness.

Consider now an example problem setting representative of those found in the tank-

container industry. Twenty depots, each located nearby a seaport of global importance, were

chosen to be part of the network where the tank-container operator provides transportation

services. The depots were partitioned into eight geographic regions as described in Table 6.

Transportation times between seaports were determined using a published schedule of port-

to-port sailing for a large ocean carrier, in which the largest time corresponded to 5 weeks

between ports in the east coast of North America and some ports in Asia. Transportation

costs were assumed to be proportional to transportation times.

Table 6: Regions and depots in the computational test network.

Region Depots
1. South East Asia Singapore, Port Kelang
2. East Asia Hong Kong, Shanghai, Busan
3. Japan Kobe, Tokyo
4. Northern Europe Southampton, Rotterdam, Hamburg
5. Southern Europe Algeciras, Gioia Tauro
6. North America West Los Angeles, San Francisco, Seattle
7. North America East New York, Norfolk, Savannah
8. South America Buenos Aires, Rio de Janeiro

In order to generate point forecasts of the net expected supply for each time period

for each depot (i.e., the vector of nominal values), a total of 3, 000 customer requests for

loaded tanks were randomly generated uniformly over a time period of 57 weeks. Each

request requires a number of tanks, which was randomly generated uniformly from the

set {1, 2, 3, 4, 5}. Each request has an associated origin depot and destination depot (the

determination of which is described in the following paragraph), where tanks are assumed to

be sourced from and returned to, respectively. Aggregating across all requests, the weekly

net inflow of empty tanks was calculated for each depot for each week; this value was then

used as the corresponding point forecast b(v) at each node v. Uncertain intervals were then

constructed assuming fluctuations of up to 10% of nominal value: b̂(v) = d0.10b(v)e.
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Similar to the approach used in the computational study of Chapter 2, to incorporate

geographic trade imbalances into the test problem, the origin region and destination region

of each request was randomly generated using the probabilities given in Table 7. Within in

a region, a specific depot is randomly selected with equal probability. For this distribution

data, regions in North America and Europe are on average net sources of empty tanks,

while regions in Asia and South America correspond to net sinks.

Table 7: Origin-destination distribution information for loaded demands between regions
for computational test.

Conditional probability of destination region
Region Probability of Origin 1 2 3 4 5 6 7 8

1 0.15 0 0.10 0.10 0.20 0.15 0.20 0.20 0.05
2 0.35 0.05 0 0.05 0.15 0.10 0.30 0.30 0.05
3 0.10 0.05 0.05 0 0.15 0.10 0.30 0.30 0.05
4 0.10 0.10 0.20 0.10 0 0.10 0.20 0.25 0.05
5 0.05 0.10 0.25 0.15 0.05 0 0.15 0.25 0.05
6 0.05 0.10 0.30 0.15 0.20 0.15 0 0.00 0.10
7 0.10 0.10 0.30 0.15 0.20 0.15 0.00 0 0.10
8 0.10 0.05 0.05 0.10 0.15 0.15 0.20 0.30 0

To avoid beginning and ending effects created by this approach for generating time-space

net supplies, we truncated the problem horizon. The first 9 weeks and the final 8 weeks

were eliminated from the initial 57 weeks of data, resulting in an instance with a 40 week

planning horizon. The size of the container fleet was set at three different levels: 500, 600

and 700; each level captures different capacity limits for the carrier. Initial inventories of

tank-containers at each depot were determined proportional to the probability of a demand

originating in its corresponding region.

All instances were solved using both TRP1 and TRP2, where for the latter, reactive

repositioning was only allowed between depots in the same region. Solutions were obtained

using CPLEX 9.0 with default parameter values on a PC with a 1.6 GHz processor and

1Gb of memory. In all cases, fewer than 4 seconds of computation time were required to

instantiate and solve an instance.

Control parameter k was varied from 0 (i.e., solution to the nominal problem) to 9.

When k = 9, the corresponding solution must be recoverable when any nine net supplies

in the region simultaneously take their worst-case forecasted value. Figure 6 summarizes
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Figure 6: Total plan cost by fleet size and value of control parameter k for TRP1 and
TRP2.

cost results. Interestingly, for a fleet size of 600 containers the total 40-week plan cost

for TRP2 increases only 3.6% from k = 0 to k = 9. This increment corresponds to the

price of robustness. A similar increment was obtained for 700 containers, and in the case

of 500 containers the corresponding increment was less than 4%. This suggests that even

under tight capacity, the price of robustness of the repositioning plans obtained using our

approach remains within reasonable limits.

For a fleet size of 600 containers, there are no feasible solutions for TRP1 for values

of k greater than 7. The same is true for 500 containers, but for values of k greater than

3. Interestingly, feasible solutions for TRP2 exist for all levels of k. Furthermore, observe

that for k = 9 the cost of the optimal solution obtained for TRP2 with 600 containers

is less than the cost of the optimal solution for TRP1 with 700 containers. These results

show the power of inventory pooling to hedge against uncertainty in a cost-effective way.

Lastly, to examine how decisions change when using a robust repositioning approach,

we examine the planned average inventory levels at depots that result for different levels

of k for both TRP1 and TRP2. To avoid any bias resulting from our choice of initial
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inventory locations, a 2-phase approach was employed for this analysis. In Phase I, we

solve the full 40-week problem, and assume that decisions for the first 12 weeks of the plan

are implemented. Based on these decisions, we update the nominal net supply values for

weeks 13 through 17 (recall that the maximum transportation time is 5 weeks). Then, in

Phase II, we solve a 28-week instance corresponding to weeks 13 through 40. Our inventory

analysis is based on the results of the 28-week repositioning instance solved in Phase II.

Figures 7 and 8 summarize average inventory by region for different levels of k for TRP1

and TRP2, respectively; note that these figures include regions that are net demanders of

empty containers. Not unexpectedly, observe that in both cases, average inventory per

region increases as the value of k increases. At k = 0, which corresponds to the nominal

problem, little inventory is kept at these depots; on the other hand, for values of k > 0,

safety-stock inventory is built by the repositioning plan to hedge against uncertainty.

Figure 7: Average inventory per region by value of control parameter k for TRP1 given
a fleet size of 600 tanks.

The effect of inventory pooling can be observed by contrasting Figures 7 and 8. When

reactive repositioning is allowed between depots in the same region, the plan is recoverable
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with respect to the same level of uncertainty, defined by parameter k, with far fewer tank

containers of inventory per region.

Figure 8: Average inventory per region by value of control parameter k for TRP2 given
a fleet size of 600 tanks.
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CHAPTER IV

ROBUST OPTIMIZATION APPROACHES FOR THE VEHICLE

ROUTING PROBLEM WITH STOCHASTIC DEMANDS

In this chapter, we study fleet management problems arising in a completely different envi-

ronment. A homogeneous fleet of vehicles based at a single depot is used to serve the daily

demand of a set of customers. The daily demand at a customer is not known with certainty,

but falls between known lower and upper bounds. A set of fixed routes is employed to serve

the customers. That is, each vehicle visits the same set of customers in the same order

every day. Since customer demand is uncertain, it may happen during the execution of a

route that a vehicle arrives at a customer and finds that it has insufficient product to satisfy

demand. In that case, the vehicle deviates from its fixed route, restocks at the depot and

resumes the route. The process of restocking at the depot is referred to as a recourse action.

Recourse policies specify system conditions under which a vehicle takes a recourse action.

The environment outlined above is an example of a Vehicle Routing Problem with Stochas-

tic Demands (VRPSD). The VRPSD and its variations have been studied extensively by

the research community.

In this research, we study two specific variants of the VRPSD. First, we consider the

Robust Vehicle Routing Problem with Stochastic Demands (RVRPSD), where the objective

is to identify, for a given recourse policy, a set of fixed tours such that the maximum actual

travel time for any tour under any possible demand realization is minimized. The travel

time of a fixed tour includes two components: the time associated with traversing the fixed

tour, and the time associated with performing recourse actions. The objective function has

the min-max form commonly found in robust optimization settings. Second, we consider the

Vehicle Routing Problem with Stochastic Demands and Duration Constraints (VRPSDDC),

where the objective is to minimize the total expected travel time of the fixed tours, but

subject to a hard duration constraint that restricts the maximum travel time of any tour
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under any possible realization.

4.1 Problem definitions

The Vehicle Routing Problem with Stochastic Demands (VRPSD) is defined on a directed

graph G = (V0, A) where V = {1, · · · , N} represents the set of customers. We use 0 to refer

to the depot, therefore V0 = {0} ∪ V . A = {(i, j) | i 6= j, i, j ∈ V0} is the set of arcs defined

over V0. Matrix (l(i, j)) is defined on A and coefficient l(i, j) is used to denote some cost

metric; in this research we assume it represents travel time between customers i and j. It

is assumed that travel times satisfy the triangle inequality: l(i, j) ≤ l(i, k) + l(k, j) for all

i, j, k in V0. The vehicle capacity is denoted by Q, and assume for exposition that vehicles

carry inventory to be delivered to customers.

Customer demands are integer-valued random variables with known distributions, and

are denoted by vector d̃ ∈ Z|V |+ . It is assumed that vectors d, d ∈ Z|V |+ are known, and that

d ≤ d̃ ≤ d. It is further assumed that d(i) ≤ Q and that d(i) > 0 for all i ∈ V . The

uncertainty space considered in this problem is then denoted by

U =
{

d ∈ Z|V |+ : d ≤ d ≤ d
}

.

A tour specifies the a priori sequence in which some subset of customers is visited by a

single vehicle; all tours start and end at the depot. Each customer is assumed to be served

by one and only one vehicle. Let Tk = {i1, i2, · · · , ink
} denote the tour of vehicle k, where

ij ∈ V . Observe that in this notation we do not include the depot (node 0) at the beginning

and at the end of the tour.

Each time a vehicle traverses its tour, all customer demands must be satisfied; therefore,

the vehicle might need to take one or more recourse actions and restock at the depot

without skipping any customer in the tour. A recourse policy, denoted by P, defines the

system conditions that lead to vehicle recourse actions. It is assumed that for any demand

realization, P determines uniquely when and where recourse actions will be undertaken in

each tour. Let L(Tk) be the total travel time required by vehicle k to complete its a priori

tour if no recourse actions were required, and let φ(Tk,P, d) be the total additional travel
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time due to recourse required given policy P and demand realization d ∈ U . Then, the

maximum duration of tour k is:

L(Tk,P) = L(Tk) + max
d∈U

φ(Tk,P, d).

Since the additional travel time incurred due to recourse actions depends on the demand

realization, obtaining the maximum travel time that can be incurred due to recourse actions

is an optimization problem. We will refer to it as the adversarial problem and its objective is

to identify the worst-case demand realization. For convenience, we introduce the following

notation:

Φ(Tk,P) = max
d∈U

φ(Tk,P, d).

We now formally state the two problems considered in this chapter. Given a fleet of m

vehicles, the Robust Vehicle Routing Problem with Stochastic Demand (RVRPSD) develops

a set of m vehicle tours with minimum maximum travel time duration:

RVRPSD min
{Tk}

max
k

L(Tk,P) (47)

Observe that no probability distribution is necessary for demand vector d̃ in this case, since

no expectations are computed.

Before stating the second problem, we introduce the function

LE(Tk,P) = L(Tk) + E [φ(Tk,P, d)],

where E denotes the expectation operator with respect to the customer demand uncertainty

space U . E[φ(Tk,P, d)] denotes the expected additional travel time incurred by vehicle k

due to recourse actions under recourse policy P. The second problem studied, the Vehicle

Routing Problem with Stochastic Demands and Duration Constraints (VRPSDDC), finds

the set of tours with minimum total expected duration subject to a hard constraint on

individual vehicle duration:

VRPSDDC min
{Tk}

∑

k

LE(Tk,P) (48)

s.t. L(Tk) + Φ(Tk,P) ≤ D ∀ k,
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where D denotes the maximum travel time duration allowed for a tour.

4.2 The adversarial problem

Consider now a single vehicle and its tour T = {1, 2, · · · , n} of some subset of the customers.

The adversarial problem corresponds to determining the demand realization d ∈ U that

maximizes φ(T ,P, d). If function φ is non-decreasing in d(i) for P and for all i ∈ T , it

is clear that an optimal solution to this problem is to set d equal to d. As will be shown

later, this is not the case for all recourse policies; that is, unlike most robust optimization

applications, the worst scenario in this problem is not always found at an extreme point of

the box that defines the uncertainty space. Therefore, we investigate solution approaches

for the adversarial problem. Observe that for a given tour T , the size of the uncertainty

space is given by
∏

i∈T

(
d(i)− d(i) + 1

)
,

which rules out enumerative approaches.

All recourse policies considered in this research are assumed to have the following char-

acteristics:

1. For any given demand realization, the customers at which recourse actions are trig-

gered are uniquely determined.

2. The number of recourse actions is a non-decreasing function of the demand d(i) for

all customers i in the tour.

The process resulting from operating tour T under policy P can be described in terms

of state variables (r, i, Ii) defined for every customer i in the tour, where r = k if the kth

recourse action is triggered by customer i and r = 0 if no recourse action is triggered by

this customer, and Ii denotes the load of the vehicle when it departs from customer i after

completing delivery. Therefore, the state space for each customer i ∈ T is 0 ≤ Ii ≤ Q and

i ≤ r ≤ R, where R denotes the maximum number of recourse actions that can occur. For

the policies we consider, the value of R can be calculated by evaluating the tour using P for

demand realization d; R is also clearly bounded from above by n, the number of customers
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in the tour. Note also that by earlier assumption, recourse policies have the property that

for a given demand realization, the values of the state variables are uniquely determined.

To solve the adversarial problem for a given tour T , a given recourse policy P, and

demand uncertainty set U , we characterize the set of recourse-triggering states S for which

there exists a demand realization d ∈ U that leads to that state. Consider, for example, tour

T operated using recourse policy P. Because d and d are known, it is possible to determine

the set of customers at which the first recourse action may be triggered, and for each such

customer a corresponding demand realization(s) and the resulting vehicle load(s) at the

departure from that customer. Given tour T and recourse policy P, let C1(i, Ii) for i ∈ T
denote the set of necessary and sufficient conditions (on d and d) that ensures existence

of a demand realization d ∈ U for which the first recourse action is triggered for customer

i and such that the vehicle load at the departure from customer i is Ii. Furthermore, let

Cr,r+1(i, Ii, k, Ik) for all i, k ∈ T such that i < k and for r = 1, · · · , R − 1 denote the set

of necessary and sufficient conditions that ensures existence of a demand realization d ∈ U
for which the (r + 1)th recourse action is triggered for customer k with vehicle load Ik at

departure given that the rth recourse action is triggered at customer i with vehicle load Ii at

departure. Conditions C1(i, Ii) and Cr,r+1(i, Ii, k, Ik) are referred to as recourse conditions.

The recourse conditions are used in the construction of an acyclic digraph G(P) =

(N ,A). The set of nodes of G(P) is constructed as follows

N = {s} ∪ {t} ∪ {
(r, i, Ii) | i ∈ T , r ∈ {i, · · · , R}, Ii ∈ {0, 1, · · · , Q}}.

The set of arcs is constructed as follows

1. (s, (1, i, Ii)) ∈ A for i ∈ T and Ii that satisfies C1(i, Ii). The cost of the arc is

the increase in travel time incurred when a recourse action is triggered by customer

i. Each arc is associated with a demand realization for which the first recourse is

triggered by i yielding corresponding load Ii.

2. For r = 1 to R−1, ((r, i, Ii), (r+1, k, Ik)) ∈ A for i, k ∈ T , i < k, and Ii, Ik that satisfy

Cr,r+1(i, Ii, k, Ik). The cost of the arc is the increase in travel time incurred when a

recourse action is triggered for customer k. Each arc is associated with a demand
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realization for which the rth recourse action is triggered by customer i yielding vehicle

load Ii at departure and the (r + 1)th recourse action is triggered by customer k

yielding vehicle load Ik at departure.

3. For all (r, i, Ii) ∈ A such that indeg(r, i, Ii) > 0 and the outdeg(r, i, Ii) = 0, ((r, i, Ii), t) ∈
A with cost 0.

Figure 9 shows digraph G(P) = (N ,A) for an instance with Q = 1 and n = R = 4.
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Figure 9: G(P) for an instance with Q = 1 and n = R = 4, with (i, Ii) in each node.

Let L(G(P)) be the longest s− t path in the graph. If there does not exist an s− t path,

then by definition L(G(P)) = 0.

Lemma 1 For a tour T operated using recourse policy P, Φ(T ,P) = L(G(P)).

Proof. It is assumed that for any demand realization d there is a unique set of customers on

T where recourse actions take place. From the construction of network G(P), it is clear that

every d ∈ U is associated with one and only one s−t path in G(P), and also, every s−t path
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in the network is associated with one and only one demand realization. In order to evaluate

Φ(T ,P), the longest path on the network needs to be identified because this is associated

to a demand realization with maximum additional travel time; hence, Φ(T ,P) = L(G(P)).

¤

Lemma 2 L(G(P)) can be calculated in O(n3Q2).

Proof. Evaluating L(G(P)) can be done in O(|A|) because G(P) is an acyclic network.

Observe that instances such that d(i) = 0 and d(i) = Q for all i ∈ V have the largest value

for |A| because this gives the highest flexibility to the adversary. For this case, the number

of nodes (i, ri, Ii) with ri = r is clearly bounded by (n− r +1)(Q+1). Take a node (i, r, Ii)

in N , observe that it can be connected directly with any other node (k, r + 1, Ik) such that

i < k; hence, the number of such arcs with tail (i, r, Ii) is O((n − i)Q), and for a fixed i,

there can be Q + 1 of such nodes in the network, therefore the number of arcs with tail

(i, r, Ii) for Ii ∈ {0, · · · , Q} is O((n− i)Q2). For a given r, i is bounded between r and R,

so the total number of arcs with tail (i, r, Ii) for all i and Ii is O(
∑R

i=r(n − i)Q2). Sum-

ming over r, the number of arcs connecting the nodes associated with the rth and (r + 1)th

recourse actions for all r is then O(
∑R−1

r=1

∑R
i=r(n − i)Q2), and since R is bounded by n,

after some algebra this expression reduces to O(n3Q2). The number of nodes connected to

both s and t is bounded by nQ in each case, so the total number of arcs in G(P) is O(n3Q2).¤

The previous lemmas imply that the adversarial problem can be solved in pseudopoly-

nomial time for recourse policies for which the corresponding recourse conditions can also

be evaluated in at most pseudopolynomial time.

Definition 8 (History independent recourse policy) A recourse policy P is history

independent, if for every i, k ∈ T such that i < k, recourse conditions Cr,r+1 can be evaluated

independent of (or without considering) d(1), · · · , d(i− 1), for all r = 1, · · · , R− 1.

For history independent recourse policies, the corresponding state space does not need

to include on-board inventory at departure (Ii) after a customer is served. Policies in
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which the on-board inventory needs to be considered in order to determine if there exists

a demand realization d ∈ U for which the (r + 1)th recourse can occur at customer k given

that the rth recourse occurred at customer i, are not history independent because on-board

inventory is a function of d(1), · · · , d(i − 1), together with d(i). Recourse conditions for

history independent policies take the form C1(i) and Cr,r+1(i, k) for all customers i and k

in the tour.

For history independent recourse policies the adversarial problem can be solved using a

simpler directed graph G0(P) = (N ,A), which is now defined and illustrated for n = 4 in

Figure 10. The set of nodes is defined as

N = {s} ∪ {t} ∪ {(r, i) | i ∈ T , r ∈ {i, · · · , R}}

The arc set A is defined as follows:

1. (s, (1, i)) ∈ A for every i ∈ T that satisfies C1(i). The cost of each arc is the net

increment in travel time incurred when making a recourse action for customer i. Each

arc is associated with a demand realization for which the first recourse is taken for i.

2. For r = 1 to R− 1, ((r, i), (r + 1, k)) ∈ A for i, k ∈ T (i < k) that satisfy Cr,r+1(i, k).

The cost of each arc is the net increment in travel time incurred when making a

recourse action for customer k. Each arc is associated with a demand realization for

which the rth recourse action is taken for i and the (r + 1)th recourse action is taken

for k.

3. For all (r, i) ∈ A such that indeg(r, i) > 0 and the outdeg(r, i) = 0, then ((r, i), t) ∈ A
with cost 0.

Let L(G0(P)) be the longest s− t path in the network. If there does not exist an s− t

path, then by definition L(G0(P)) = 0.

Lemma 3 Consider a fixed sequence T operated using recourse policy P. If P is history

independent, then Φ(T ,P) = L(G0(P)).
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Figure 10: Illustration of G0(P) for an instance with n = R = 4.

Proof. From the construction of network G0(P), it is clear that every d ∈ U is associated with

one and only one s− t path in G0(P), and that every s− t path in the network is associated

with at least one demand realization in the uncertainty space. In order to evaluate Φ(T ,P),

the longest path on the network needs to be identified because this path is associated with

a demand realization with maximum additional travel time; hence, Φ(T ,P) = L(G0(P)). ¤

Lemma 4 L(G0(P)) can be calculated in O(n3).

Proof. Similar to the proof of Lemma 2. ¤

History independent policies are attractive because by the previous lemmas, their ad-

versarial problem can be solved in polynomial time provided that conditions C1(i) and

Cr,r+1(i, k) can be evaluated in polynomial time.

4.3 Recourse policies

In this section, a number of recourse policies are defined and their recourse conditions

derived. In this context, it is important to consider how demand information is revealed

over time. Three cases are considered:
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1. No advance demand information: demand is revealed only after the vehicle arrives at

a customer location.

2. Total demand visibility : demand for all customers is known before the vehicle departs

from the depot for the first time.

3. One customer ahead demand visibility: before departing from a customer’s location,

but after the customer is served, the demand of the next customer in the tour is

revealed.

All policies studied here can be classified according to the following categories:

1. Splitting vs non-splitting policies: in a splitting policy, when the vehicle arrives at a

location and the demand is larger than the on-board inventory, the vehicle delivers

the on-board inventory, restocks at the depot and delivers the remaining demand. In

a non-splitting policy, when the vehicle arrives at a location and the demand is larger

than the on-board inventory, the vehicle restocks at the depot before satisfying any

part of the customer demand.

2. Anticipatory vs non-anticipatory (myopic) policies: recourse actions are taken at cus-

tomer locations. The information used to decide if such an action should be taken

determines whether a policy is classified as anticipatory or non-anticipatory. The

term myopic is also used to refer to non-anticipatory policies. In non-anticipatory

policies recourse actions are taken based only on local information; namely, the ob-

served customer demand and the on-board inventory. Anticipatory policies also make

use of additional information available to the decision maker, such as travel times and

demand intervals (d, d) of the customers that are ahead in the tour to decide when a

recourse action takes place.

4.3.1 No advance demand information

In this section, it is assumed that a customer demand is known only after the vehicle

arrives at the corresponding customer location. Before proceeding consider the following

useful lemma.
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Lemma 5 Consider vectors d, d ∈ Zn
+ such that d ≤ d and d > 0. If

n−1∑

`=1

d(`) ≤ M and
n∑

`=1

d(`) ≥ M + 1,

where M < ∞ is an integer constant, then there exists a vector d ∈ Zn
+ such that d ≤ d ≤ d

that satisfies
n−1∑

`=1

d(`) ≤ M and
n∑

`=1

d(`) ≥ M + 1

Proof. A constructive proof is provided. Initialize d as d(`) = d(`) for ` = 1, · · · , n− 1 and

d(n) = d(n). Clearly d ≤ d ≤ d and
∑n−1

`=1 d(`) ≤ M . If such d also satisfies
∑n

`=1 d(`) ≥
M +1, then the desired vector is obtained. Else, since d > 0 it follows that

∑n−1
`=1 d(`) < M

and that
n−1∑

`=1

d(`) <

n∑

`=1

d(`). (49)

Take any d(`) such that d(`) < d(`) for 1 ≤ ` ≤ n − 1 and perform the following up-

date: d(`) ← d(`) + 1. Such an ` exists, otherwise
∑n

`=1 d(`) ≥ M + 1 would be contra-

dicted. After such an update, inequality (49) remains true, and furthermore d ≤ d ≤ d

and
∑n−1

`=1 d(`) ≤ M . Therefore, if
∑n

`=1 d(`) ≥ M + 1 stop with the desired d; else, take

any d(`) such that d(`) < d(`) for 1 ≤ ` ≤ n − 1 and repeat the process described in this

paragraph. At every step the difference between M + 1 and
∑n

`=1 d(`) is reduced by 1,

and condition
∑n−1

`=1 d(`) ≤ M remains true; hence, in a finite number of steps the desired

vector is obtained. ¤

4.3.1.1 A non-anticipatory and splitting policy

Definition 9 Ps
0 is used to denote the following non-anticipatory and splitting recourse

policy on a fixed sequence T : a recourse action is triggered by customer i ∈ T if and only if

when the vehicle arrives at i, it observes that d(i) is strictly greater than on-board inventory.

After satisfying as much of d(i) as possible, the vehicle restocks at the depot, then returns

to i and finishes satisfying the rest of the demand before proceeding.

Recourse conditions for this policy are now derived. Observe that for this recourse policy,

whenever a recourse action occurs the on-board inventory after the customer is served is
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always strictly less than Q. Also, a recourse action will never be taken at customer 1 because

by assumption d(i) ≤ Q for all customers.

Proposition 5 (Recourse condition Cr,r+1(i, Ii, k, Ik) for Ps
0) Consider a fixed sequence

T = {1, · · · , n} operated using recourse policy Ps
0 . Assume there exists a demand realization

d ∈ U such that the rth recourse occurs at customer i ∈ T leaving onboard inventory Ii. The

(r + 1)th recourse can occur for customer k (k > i) with corresponding Ik if and only if

k−1∑

`=i+1

d(`) ≤ Ii and
k∑

`=i+1

d(`) ≥ Ii + 1;

for Ik ∈ {0, 1, · · · , Q− 1} further bounded by expression

Q + Ii −min

{
Ii,

k−1∑

`=i+1

d(`)

}
− d(k) ≤ Ik ≤ Q + Ii −

k∑

`=i+1

d(`).

Proof.

(⇒) A demand realization d that has the (r + 1)th recourse action for customer k with Ik

given that the rth recourse action occurred at customer i with Ii must satisfy

k−1∑

`=i+1

d(`) ≤ Ii and
k∑

`=i+1

d(`) ≥ Ii + 1;

with corresponding

Ik = Ii −
k∑

`=i+1

d(`) + Q.

Since d ∈ U , d(`) ≤ d(`) and d(`) ≤ d(`) for all `; summing over `, the above implies

k−1∑

`=i+1

d(`) ≤
k−1∑

`=i+1

d(`) ≤ Ii and
k∑

`=i+1

d(`) ≥
k∑

`=i+1

d(`) ≥ Ii + 1;

it also implies that

Q + Ii −
k∑

`=i+1

d(`) ≤ Ik ≤ Q + Ii −
k∑

`=i+1

d(`),

but since
∑k−1

`=i+1 d(`) ≤ Ii, it follows that

Q + Ii −min

{
Ii,

k−1∑

`=i+1

d(`)

}
− d(k) ≤ Ik ≤ Q + Ii −

k∑

`=i+1

d(`).
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(⇐) The existence of a demand realization in U such that the r +1 recourse takes place for

k given that rth takes place for i with on-board inventory Ii follows directly from Lemma

5; Ik just needs to be bounded accordingly. ¤

When the vehicle departs from the depot for the first time, system conditions are equiv-

alent to having a recourse at customer 0 (i.e., the depot) with I0 = Q; the following result

then follows directly from Proposition 5.

Proposition 6 (Recourse condition C1(i, Ii) for Ps
0) Consider a fixed sequence T =

{1, · · · , n} operated using recourse policy Ps
0 . Recourse conditions C1(i, Ii) are equivalent

to Cr,r+1(0, Q, i, Ii).
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Figure 11: Tour operated using Ps
0 and Q = 3.

Example. Consider the six customer tour in Figure 11, where relevant transit times are

included on the corresponding arc. Assume that the tour is operated using recourse policy

Ps
0 with a vehicle of capacity Q = 3. Observe that L(T ) = 18 and for demand realization d,

Table 8 shows the corresponding values that the state variables take under this realization.

From the table it can be seen that R = 3 and φ(T ,Ps
0 , d) = 12.

The adversarial problem is solved using network G(Ps
0), which for this example is shown in

Figure 12. The longest s−t path in the network corresponds to {s, (1, 3, 2), (2, 4, 2), (3, 6, 2), t},
which is associated with recourse actions taken at customers 3, 4 and 6, with cost 22. Ob-

serve then that the maximum net additional travel time due to recourse actions is not
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Table 8: Values of the state variables for demand realization d when the tour is operated
using recourse policy Ps

0 .

i 1 2 3 4 5 6
d(i) 2 2 1 3 3 1
r 0 1 0 2 3 0
Ii 1 2 1 1 1 0

achieved with demand realization d.

The demand realizations d? for which φ(T ,Ps
0 , d) achieves optimal cost 22, are [2, 1, 1, 3, 2, 1]

and [1, 2, 1, 3, 2, 1], neither of which corresponds to extreme points of the uncertainty space

U . Table 9 shows the values of the state variables for these realizations. Observe that for

both of these demand outcomes the state variables for customer 4 take values r = 2 and

I4 = 2, so that if the demand for customer 5 were to take value d(5) = 3, then the third

recourse would take place at this customer, no more recourse actions could take place, with

a resulting net increment equal to 16. On the other hand, if demand for customer 5 were to

take value d(5) = 1, no additional recourse actions are needed so the resulting net increment

would equal 14.

Table 9: Values of the state variables for demand realization [2, 1, 1, 3, 2, 1] and
[1, 2, 1, 3, 2, 1] respectively when the tour is operated using recourse policy Ps

0 .

i 1 2 3 4 5 6 i 1 2 3 4 5 6
d(i) 2 1 1 3 2 1 d(i) 1 2 1 3 2 1
r 0 0 1 2 0 1 r 0 0 1 2 0 1
Ii 1 0 2 2 0 2 Ii 2 0 2 2 0 2

From Proposition 5, it follows that Ps
0 is not a history independent recourse policy

because Ii is a function of d(1), · · · , d(i− 1). In order to solve the adversarial problem the

longest s − t path on G(Ps
0) needs to be identified. From Lemmas 1 and 2 it follows that

this can be done on pseudopolynomial time. Interestingly, a special case of Ps
0 remains

polynomially solvable.
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Figure 12: Network G(Ps
0).

Proposition 7 Consider a fixed sequence T = {1, · · · , n} operated using recourse policy

Ps
0 . For instances such that R ≤ 2, there exists a demand realization d ∈ U such that the

first recourse occurs for i ∈ T and the second recourse occurs for k ∈ T such that i < k if

and only if
i−1∑

`=1

d(`) ≤ Q and
i∑

`=1

d(`) ≥ Q + 1;

max

{
1,

i∑

`=1

d(`)−Q

}
+

k−1∑

`=i+1

d(`) ≤ Q and min

{
d(i),

i∑

`=1

d(`)−Q

}
+

k∑

`=i+1

d(`) ≥ Q+1.
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Proof. First recourse for i follows from Proposition 6. To show the second part, let ∆i be

the part of the demand at customer i that was satisfied after the restock.

(⇒) Such a demand realization d must satisfy

∆i +
k−1∑

`=i+1

d(`) ≤ Q and ∆i +
k∑

`=i+1

d(`) ≥ Q + 1

Observe that ∆i ≥ 1 in order for a recourse to have occurred at i. Also, since d ∈ U ,

d ≤ d ≤ d; further, ∆i ≥
∑i

`=1 d(`)−Q , ∆i ≤ d(i) and ∆i ≤
∑i

`=1 d(`)−Q. This, and the

inequalities above imply

max

{
1,

i∑

`=1

d(`)−Q

}
+

k−1∑

`=i+1

d(`) ≤ ∆i +
k−1∑

`=i+1

d(`) ≤ Q and

min

{
d(i),

i∑

`=1

d(`)−Q

}
+

k∑

`=i+1

d(`) ≥ ∆i +
k∑

`=i+1

d(`) ≥ Q + 1

(⇐) Follows from Lemma 5 making n = k − i + 1 and M = Q; where d(1) in the

lemma is associated with ∆i, d(n) in the lemma is associated with d(k) and shifting

all other entries accordingly; further making d(1) = max{1,
∑i

`=1 d(`) − Q} and d(1) =

min{d(i),
∑i

`=1 d(`)−Q} in the lemma. ¤

The following theorem summarizes the results of this section.

Theorem 4 Consider a fixed sequence T = {1, · · · , n} operated using recourse policy Ps
0 .

Instances for which R ≤ 2, Φ(T ,Ps
0) can be evaluated in polynomial time by solving a longest

s-t path problem on G0(Ps
0). In general, Φ(T ,Ps

0) can be evaluated in pseudopolynomial time

by solving a longest s-t path problem on G(Ps
0).

Proof. Proposition 7 implies that for instances with R ≤ 2, although Ps
0 is not in general a

history independent recourse policy, Φ(T ,Ps
0) = L(G0(Ps

0)) because the recourse conditions

can be evaluated without explicitly considering on-board inventory after the first recourse,

hence lemmas 3 and 4 apply in this case. Building network G0(Ps
0) is also done in polynomial

time because for any arc in this network, conditions in Proposition 7 can be evaluated in

polynomial time.
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The same argument can be used for the general case to show that Φ(T ,Ps
0) can be evaluated

in pseudopolynomial time, by means of lemmas 1 and 2, applying propositions 5 and 6 on

network G(Ps
0). ¤

4.3.1.2 A non-anticipatory and non-splitting policy

Definition 10 Pn
0 is used to denote the following non-anticipatory and non-splitting re-

course policy on a fixed sequence T : a recourse action is taken for customer i ∈ T if and

only if when the vehicle arrives at i it observes that d(i) is strictly greater than the on-board

inventory. Before satisfying any part of d(i), the vehicle restocks at the depot returns to i

and satisfies the entire demand.

Under this policy since d(i) ≤ Q a customer’s demand is never split between two vehicle

restocks. Also, the first recourse will never take place at the first customer in the tour. The

following observation is useful.

Observation 1 Consider a fixed sequence T = {1, · · · , n} operated using recourse policy

Pn
0 , and assume a demand realization d such that there is a recourse at customer i ∈ T ;

then, after i is served the on-board inventory is always Q− d(i).

Based on the previous observation, Pn
0 seems to be a history independent recourse policy

because after a recourse action is taken, say at customer i, it is just as if the vehicle had

left the depot and i was the first customer in the tour. It seems like the system status is

independent of the events that occurred before a restock, and therefore Φ(T ,Pn
0 ) could be

evaluated in polynomial time (see Lemma 4). Unfortunately, this is not true, consider the

following result.

Lemma 6 Consider a fixed sequence T = {1, · · · , n} operated using recourse policy Pn
0 ,

and assume a demand realization d ∈ U such that the (r− 1)th recourse action occurred for

j ∈ T . If the rth recourse action occurs for i ∈ T (j < i) then

d(i) ≥ d(i/j) ≡ max



1, Q + 1−

i−1∑

`=j

d(`)



 .
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Proof. For Pn
0 such demand realization d must satisfy

i−1∑

`=j

d(`) ≤ Q (50)

i∑

`=j

d(`) ≥ Q + 1 (51)

Since d ∈ U then d(`) ≤ d(`) ≤ d(`) and summing over `

i−1∑

`=j

d(`) ≤
i−1∑

`=j

d(`)

The above expression together with (50) implies

i−1∑

`=j

d(`) ≤ min



Q,

i−1∑

`=j

d(`)





From (51)

d(i) ≥ Q + 1−
i−1∑

`=j

d(`)

≥ Q + 1−min



Q,

i−1∑

`=j

d(`)





≥ max



1, Q + 1−

i−1∑

`=j

d(`)





¤

The previous result implies that Pn
0 is not a history independent recourse policy because

to determine if there exists a demand realization in the uncertainty set where the (r + 1)th

recourse occurs for k, given that the rth recourse occurred for i, information provided

by d(1), · · · , d(i − 1) needs to be considered in order to determine for which customer

the (r − 1)th recourse action actually occurred. This implies that one way in which the

adversarial problem can be solved for Pn
0 is to derive recourse conditions that are a function

of Ii and Ik (like the conditions in Proposition 5) and solve a longest s− t path problem on

network G, which by lemmas 1 and 2 would be done in pseudopolynomial time.

An alternative way to address the adversarial problem for Pn
0 is to derive recourse

conditions that can be used to determine for which customers the (r + 1)th recourse action
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can takes place conditioning on the customers for which the rth and (r − 1)th recourse

actions occurred. As will be shown later, under this approach the adversarial problem can

be solved in polynomial time for recourse policy Pn
0 .

For recourse policy Pn
0 , the recourse conditions used here take the form Cr−1,r,r+1(j, i, k)

for customers j, i and k in the tour such that j < i < k, and for values of r such that

r ≥ 1. This conditions are used to determine if there exists a demand realization where

the (r + 1)th recourse occurs for k, given that the rth recourse occurred for i and that the

(r− 1)th recourse occurred for j. When r = 1, recourse conditions can always be evaluated

using j = 1, because by Observation 1, under Pn
0 the state of the system when the vehicle

departs from customer 1 is the same as if a recourse had taken place for this customer; that

is, I1 = Q−d(1). For the same reason, d(i/1) in Lemma 6 is associated with a lower-bound

on d(i) if the first recourse takes place for customer i.

Proposition 8 (Recourse condition C1(i) for Pn
0 ) Consider a fixed sequence T = {1, · · · , n}

operated using recourse policy Pn
0 . There exists a demand realization d ∈ U such that the

first recourse occurs for i ∈ T if and only if

i−1∑

`=1

d(`) ≤ Q and
i∑

`=1

d(`) ≥ Q + 1.

Proof.

(⇒) Such demand realization d must satisfy

i−1∑

`=1

d(`) ≤ Q and
i∑

`=1

d(`) ≥ Q + 1.

Since d ∈ U , d(`) ≤ d(`) and d(`) ≤ d(`) for all `; summing over `, the above implies

i−1∑

`=1

d(`) ≤
i−1∑

`=1

d(`) ≤ Q and
i∑

`=1

d(`) ≥
i∑

`=1

d(`) ≥ Q + 1.

(⇐) Follows from Lemma 5 making n = i and M = Q. ¤

Proposition 9 (Recourse condition Cr−1,r,r+1(j, i, k) for Pn
0 ) Consider a fixed sequence

T = {1, · · · , n} operated using recourse policy Pn
0 . Assume there exists a demand realization
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d ∈ U such that the (r − 1)th recourse occurs for j and the rth occurs for i > j for r > 0.

The (r + 1)th recourse can occur for k > i if and only if

max
{
d(i/j), d(i)

}
+

k−1∑

`=i+1

d(`) ≤ Q and
k∑

`=i

d(`) ≥ Q + 1.

Proof.

(⇒) Since there is a recourse for i, by Observation 1 the on-board inventory after i is served

is Q− d(i); hence, such demand realization d must satisfy

k−1∑

`=i

d(`) ≤ Q and
k∑

`=i

d(`) ≥ Q + 1

Since d ∈ U , d(`) ≤ d(`) for all `, therefore Q+1 ≤ ∑k
`=i d(`) ≤ ∑k

`=i d(`) which corresponds

to the second inequality in the proposition. Also, d(`) ≤ d(`) for all `; further, by Lemma

6, d(i/j) ≤ d(i) and therefore max {d(i/j), d(i)} +
∑k−1

`=i+1 d(`) ≤ ∑k−1
`=i d(`) ≤ Q.

(⇐) Follows from Lemma 5 by making M = Q, n = k−i+1 and associating d(1) in Lemma

5 with d(i) in the proposition, d(n) in Lemma 5 with d(k) in the Proposition, and shifting

all other entries accordingly; just need to further update d(1) = max{d(i/j), d(i)}, which

follows from Lemma 6. ¤

Propositions 8 and 9 state the recourse conditions C1 and Cr−1,r,r+1 for Pn
0 . Although

this policy is not history independent, observe that the only element in the proposition

bringing information from the past is d(i/j). In order to determine in which customer the

r+1 recourse can occur, only information about where the r and r−1 recourses needs to be

considered (not about any previous recours actions). Also, observe that it is not necessary

to keep track of the inventory level after customers i or j are served.

It is possible to find instances of the VRPSD where the r + 1 recourse can occur for k

given the that the r recourse occurred for i and the r − 1 occurred for j1, but it might not

be the case if the r − 1 occurred for j2. Observe that when r = 1, the situation illustrated

above cannot occur because, by Observation 1, the result of Proposition 9 can be used by

making j = 1 for all i. The following example illustrates such a case.
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Example. Consider the six customer tour T in Figure 13 and assume that it is operated

using recourse policy Pn
0 with a vehicle of capacity Q = 3. It is easy to check that customers

2 to 6 satisfy the conditions of Proposition 8, and so there are demand realizations for which

the first recourse occurs at their locations.
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Figure 13: Tour operated using Pn
0 and Q = 3.

Observe that d(2/1) = 2 = d(2), and recall that under our notation d(2/1) it is associated

with the first recourse taking place for customer 2. Therefore, if the first recourse occurs for

2 then d(2) = 2. Similarly, since d(3/1) = 1, if the first recourse occurs for 3 then d(3) = 1.

Evaluating recourse conditions C0,1,2(1, 2, 4) from Proposition 9, since d(2/1) + d(3) = 2

and
∑4

`=2 d(`) = 6, then there exists a demand realization in the uncertainty set for which

the first recourse occurs for 2 and the second for 4. Also,
∑4

`=3 d(`) = 4, so there exists a

demand realization in which the first recourse occurs for 3 and the second at 4.

Now consider C1,2,3(2, 4, 6) and observe that d(4/2) = 1; then, by Proposition 9 since

d(4/2) + d(`) = 2 and
∑6

`=4 d(`) = 5, there exists a demand realization such that the first

recourse occurs for 2, the second for 4 and the third for 6. On the other hand, consider

C1,2,3(3, 4, 6) and observe d(4/3) = 3; hence, there does not exist a demand realization such

that the first recourse occurs for 3, the second for 4 and the third for 6. Observe then that

the plausibility of having the third recourse taking place at customer 6 given the second

recourse at customer 4 depends on which customer the first recourse occurred.
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It is now clear that Φ(T ,Pn
0 ) cannot be evaluated using network G0; still, since a limited

part of the history of the process needs to be traced to evaluate Cr−1,r,r+1, a new network

is defined. Let G1(Pn
0 ) = (N ,A) denote this network, which is now defined and illustrated

in Figure 14 for the instance in the previous example. The set of nodes is defined as

N = {s} ∪ {t} ∪ {(1, i/1) | i ∈ T \ {1}} ∪ N ′

where (1, i/1) is associated with having the first recourse at customer i, and

N ′ =
{
(r, i/j) | r ∈ {2, · · · , R}, i ∈ {r + 1, · · · , n}, j ∈ {r, · · · , i− 1}}

where (r, i/j) is associated with having the rth recourse at customer i given that the (r−1)th

took place at customer j. The arc set A is defined as follows:

1. (s, (1, i/1)) ∈ A for every i ∈ T that satisfies Proposition 8. The cost of each arc is the

net increment in traveled time incurred when making a recourse action for customer

i.

2. For r = 1 to R − 1, ((r, i/j), (r + 1, k/i)) ∈ A for i, j, k ∈ T such that j < i < k

that satisfy Proposition 9. The cost of each arc is the net increment in traveled time

incurred when making a recourse action for customer k.

3. For all (r, i/x) ∈ A such that indeg(r, i/x) > 0 and the outdeg(r, i/x) = 0, then

((r, i/x, ), t) ∈ A with cost 0.

Let L(G1(Pn
0 )) be the longest s-t path in the network. If there does not exist an s − t

path, then by definition L(G1(Pn
0 )) = 0.

Theorem 5 Consider a fixed sequence T = {1, · · · , n} operated using recourse policy Pn
0 .

For instances such that R ≤ 2, Φ(T ,Pn
0 ) can be evaluated in O(n3) by solving a longest

s-t path problem on G0(Pn
0 ). In general, Φ(T ,Pn

0 ) can be evaluated in O(n5) by solving a

longest s-t path problem on G1(Pn
0 ).

Proof. Observe that although Pn
0 is not history independent, when evaluating the conditions

in Proposition 9 on i for r = 1, since I1 always equals Q− d(1), by Observation 1 it is clear
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Figure 14: Network G1(Pn
0 )

that d(i/j) only needs to be evaluated for j = 1 independent of the demand history between

customers 1 and i−1; hence G0(Pn
0 ) can be used to solve adversarial problem for tours where

R ≤ 2. G0(Pn
0 ) is an acyclic network, so the longest s-t path can be calculated in O(|A|).

The number of (s, (i, 1)) and ((i, r), t) arcs is O(n) in each case; further, the number of

((i, 1), (k, 2)) is O(n2); construction of network G0(Pn
0 ) is done in O(n3) because recourse

conditions of proposition 9 can be checked on O(n) for each arc, therefore Φ(T ,Pn
0 ) can be

evaluated in O(n3).

In general, Φ(T ,Pn
0 ) can be calculated using G1. Observe that the number of nodes in the

rth layer of the network for r > 1 is bounded by
∑n−r

i=1 i = (n−r)(n−r+1)
2 ; each node (i/j, r) is
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connected to at most n− i nodes in the r + 1 layer. Therefore, the number of arcs between

the r and r +1 layers is O(n3). R is bounded by n, so summing the number of arcs over all

r, the resulting number of these arcs is O(n4). The number of arcs with tail in s is bounded

by n. The number of nodes in the network is clearly bounded by n3 so the number of arcs

with head t is also bounded by n3. The total number of arcs in the network is then O(n4),

and checking recourse conditions of propositions 8 and 9 can be done in O(n) for each arc,

therefore Φ(T ,Pn
0 ) can be evaluated in O(n5). ¤

Example. Consider again the tour in Figure 13, observe that L(T ) = 18, and that for

demand realization d, Table 10 shows the corresponding value for the state variables. From

this table, R = 3 and φ(T ,Pn
0 , d) = 12.

Table 10: Values of the state variables for demand realization d when the tour is operated
using recourse policy Pn

0 .

i 1 2 3 4 5 6
d(i) 2 2 1 3 2 1

r 0 1 0 2 3 0
Ii 1 1 0 0 1 0

Network G1(Pn
0 ), illustrated in Figure 14, is now used to solve the adversarial problem.

From Proposition 8, it is clear that there is a demand realization in which the first recourse

action can occur in one of the customers between 2 and 6. There is an arc connecting s

and each of the associated nodes in G1. By using the recourse conditions C0,1,2(1, 2, 3) of

Proposition 9, d(2)+d(3) = 3 < Q+1; it can be concluded that given that the first recourse

was taken for customer 2, the second recourse cannot occur for customer 3.

Consider C0,1,2(1, 2, 4), observe d(2)+ d(3)+ d(4) = 6 ≥ Q+1 and d(2/1)+ d(3) = 2 where

d(2/1) = 2; therefore, there is a demand realization in which the second recourse occurs for

customer 4 given that the first occurred for customer 2; this is incorporated in G1 with an

arc that connects node (1, 2/1) with node (2, 4/2). By evaluating these conditions, it can

be seen that this is also true for customers 5 and 6.
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Given that the second recourse can occur for customer 4, it is now determined in which

customers can the third recourse take place. Consider recourse condition C1,2,3(2, 4, 5) and

C1,2,3(3, 4, 5); observe that d(4/2) = 1 and d(4/3) = 3; also, d(4) = 3 and d(4) = 2;

therefore condition
∑5

`=4 d(`) = 5 ≥ Q + 1 is satisfied. It can be concluded that the third

recourse can occur for customer 5 independently of whether the first recourse action took

place for customer 2 or 3. This is incorporated in G1 by adding arcs ((2, 4/2), (3, 5/4))

and ((2, 4/3), (3, 5/4)). Consider now customer 6, and the corresponding recourse condition

C1,2,3(2, 4, 6) and C1,2,3(3, 4, 6); observe that
∑6

`=4 d(`) ≥ Q+1 and d(4/2)+d(5) = 2 ≤ Q,

but d(4/3)+d(5) = 4 > Q. In this case, given that the second recourse occurs for customer

4, the third recourse can take place for customer 6 only if the first occurred for customer 2,

and not if it occurred for customer 3. In this case, only arc ((2, 4/2), (3, 6/4)) is added into

G1.

The longest s − t path in G1(Pn
0 ) corresponds to {s, (1, 2/1), (2, 4/2), (3, 6/4), t} with an

associated cost of 18. The following observations are important. First, it does not corre-

spond to the cost obtained for demand realization d. Second, demands realizations d for

which φ(T ,Pn
0 , d) achieves cost 18 are [2, 2, 0, 2, 1, 1], [2, 2, 1, 1, 2, 1] and [2, 2, 1, 2, 1, 1], none

of which correspond to an extreme point of the uncertainty space.

4.3.1.3 Anticipatory and non-splitting policies

Definition 11 Pn
1 is used to denote the following one customer ahead anticipatory and

non-splitting recourse policy on a fixed sequence T = {1, · · · , n}: a recourse action is taken

at customer i− 1 ∈ T for customer i ∈ T if and only if after the vehicle services customer

i − 1 it observes that on-board inventory is strictly less than d(i). The vehicle restocks at

the depot and then resumes the tour at customer i.

In this policy a recourse action is undertaken after a vehicle services a customer when

there is the possibility that when the vehicle arrives at the next customer’s location a restock

must take place. In order to anticipate this, the vehicle deviates to the depot, restocks and

resumes the tour by traveling directly to the next customer’s location. The net increment in
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travel time due to taking a recourse action at customer i−1 is l(i−1, 0)+ l(0, i)− l(i−1, i).

Under triangular inequality on the travel time, the total travel time would be reduced by

anticipating the stock-out if indeed a recourse actions was to occur; on the other hand, an

unnecessary recourse could have taken place if it was not the case.

Observe that by the definition of this policy, given that a recourse occurred at customer

i− 1 for customer i, the location where the next recourse would occur, say k, depends only

on d(i), · · · , d(k), therefore the following observation can be made.

Observation 2 Pn
1 is a history independent recourse policy.

Proposition 10 (Recourse condition C1(i) for Pn
1 ) Consider a fixed sequence T = {1, · · · , n}

operated using recourse policy Pn
1 . There exists a demand realization d ∈ U such that the

first recourse occurs at i− 1 ∈ T for i ∈ T if and only if

j−1∑

`=1

d(`) + d(j) ≤ Q ∀ j = 2, · · · , i− 1 and
i∑

`=1

d(`) ≥ Q + 1.

Proof.

(⇒) Such demand realization d must satisfy

j−1∑

`=1

d(`) + d(j) ≤ Q ∀ j = 2, · · · , i− 1 and
i∑

`=1

d(`) ≥ Q + 1

Since d ∈ U , d(`) ≤ d(`) ≤ d(`) for all `, then the above expressions imply

j−1∑

`=1

d(`)+d(j) ≤
j−1∑

`=1

d(`)+d(j) ≤ Q ∀ j = 2, · · · , i−1 and
i∑

`=1

d(`) ≥
i∑

`=1

d(`) ≥ Q+1.

(⇐) The result follows from Lemma 5 by making n = i, M = Q and d(n − 1) = d(n − 1)

for j = i − 1. By the policy definition, if
∑j−1

`=1 d(j) > Q for any j < i − 1 then the first

recourse must occur before customer i− 1 for i. ¤

Proposition 11 (Recourse condition Cr,r+1(i, k) for Pn
1 ) Consider a fixed sequence T =

{1, · · · , n} operated using recourse policy Pn
1 . Assume there exists a demand realization
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d ∈ U such that the rth recourse occurs at i − 1 for i. The (r + 1)th recourse can occur at

k − 1 for k if and only if

j−1∑

`=i

d(`) + d(j) ≤ Q ∀ j = 2, · · · , k − 1 and
k∑

`=i

d(`) ≥ Q + 1.

Proof.

From Observation 2, it is clear that when a recourse is taken for customer i, the situation

(in terms of where the next recourse will occur) is identical to the one when the vehicle

departs the depot for the first time. The result then follows from Proposition 10. ¤

Theorem 6 Consider a fixed sequence T = {1, · · · , n} operated using recourse policy Pn
1 .

Φ(T ,Pn
1 ) can be evaluated in O(n4) by solving a longest s-t path problem on G0(Pn

1 ).

Proof. Pn
1 is a history independent recourse policy, so the result follows from Lemma 3 and

Lemma 4, further observing that the conditions in propositions 10 and 11 can be checked

in O(n) for each arc in G0(Pn
1 ). ¤

Example. Consider the tour in Figure 13 but operated using recourse policy Pn
1 . Observe

that the net increment in travel time due to taking a recourse at customer 1 for customer

2 is 1; at customer 2 for 3 is 2; at customer 3 for 4 is 3 ; at customer 4 for 5 is 2 and at

customer 5 for 6 is 2. Clearly under Pn
1 a recourse action would never be taken for customer

1 or at customer 6.

Table 11: Values of the state variables for demand realization d when the tour is operated
using recourse policy Pn

1 .

i 1 2 3 4 5 6
d(i) 2 2 1 3 2 1
r 0 1 0 2 3 0
Ii 1 1 0 0 1 0

From Table 11 it can be seen that φ(T ,Pn
1 , d) = 6 and R = 3. Network G0(Pn

1 ) is used to

determine the optimal solution to the adversarial problem. Figure 15 shows G0(Pn
1 ) for this

101



example. A longest s− t path is {s, 3, 4, 6, t} with cost 7.
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Figure 15: Network G0(Pn
1 )

Up to this point, all recourse policies considered in this research are simple decision

rules based on very local information; namely, take a recourse action now because there is

not enough on-board inventory to satisfy the current customer’s demand, or because there

is a chance of not being able to satisfy the next customer’s demand. Recourse policies that

use an optimization approach, and that take into account more global information are now

considered. It is assumed that after each customer is served, a recourse plan is dynamically

generated based on on-board inventory, the travel time matrix (l(i, j)) and an estimate of

the demand of the remaining customers in the tour. A recourse plan specifies at which

customers will recourse actions be taken assuming that demand realization will be equal to

demand estimates. The objective is to determine an optimal recourse plan, which is the one

that minimizes total traveled time over the remaining customers. This plan is dynamically

updated, if needed, after each customer is served using the newly available information.

Only non-splitting recourse plans are considered, but all results are easily extendible to the

splitting case.
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In order to formalize this concept, assume that customer i− 1 in the tour has just been

served and that on-board inventory is Ii−1. Let

Ti = {j ∈ T | i ≤ j}

represent the set of remaining customers in the tour, which will be considered in order

to determine a recourse plan. Let d̂i ∈ Zn−i+1
+ represent the vector of demand estimates

of the customers in Ti, where d̂i(j) is the estimate of the demand for customer j ∈ Ti.

Observe that for a given value of vector d̂i there are a finite number of subsets of customers

at which non-splitting recourse actions that satisfy all estimated demand can take place.

Let R(Ii−1, d̂i) represent the set of all such subsets of customers in Ti assuming on-board

inventory Ii−1 and demand d̂i. Let φ′(Ti, r) denote the total traveled time between i − 1

and the final arrival to the depot after all customers have been served under recourse plan

r ∈ R(Ii−1, d̂i).

We are then interested in solving problem

ORP(Ti, Ii−1, d̂i) = min
r∈R(Ii−1,d̂i)

φ′(Ti, r) (52)

referred to as the Optimal Recourse Plan problem, where r? is used to denote an optimal

solution.

Following an approach similar to the one proposed by Beasley [4] for the deterministic

VRP, the problem (52) can be solved as a shortest path problem on a directed network.

Let G(Ii−1, d̂i) = (N ,A), where N = {s} ∪ {t} ∪ Ti, and arc set A defined as

1. (s, j) ∈ A for all j ∈ Ti s.t.
∑j

`=i d̂i(`) ≤ Ii−1 , with arc-cost =
∑j−1

`=i−1 l(`, ` + 1);

each of these arcs is associated with taking the next recourse action at customer j.

2. (s, j) ∈ A for all j ∈ Ti s.t.
∑j

`=i d̂i(`) ≤ Q , arc-cost = l(i − 1, 0) + l(0, i) +
∑j−1

`=i l(`, ` + 1); each of these arcs is associated with taking a recourse action at

customer i− 1 and then a recourse actions at customer j.

3. Similarly, (j, k) ∈ A for all j, k ∈ Ti, s.t. j < k and
∑k

`=j+1 d̂i(`) ≤ Q , arc-cost

= l(j, 0) + l(0, j + 1) +
∑k−1

`=j+1 l(`, ` + 1) . Each of these arcs are associated with

taking a recourse actions at customer j and the next recourse at customer k.

103



4. Finally, add an arc that connects node n ∈ Ti to t with cost l(n, 0).

By the construction of the network, it is clear that each s− t path is associated with a

recourse plan r ∈ R(Ii−1, d̂i). Observe that for the recourse policy under consideration it

does not make any sense to take a recourse at customer n, so a recourse action is considered

at every customer in the tour, except at this customer. An optimal recourse plan (r?) is

then associated with the shortest s− t path in G(Ii−1, d̂i).

The concept of an optimal recourse plan is now used to define a new recourse policy

for the case of no advance demand information. It corresponds to a generalization of Pn
1 ,

where after serving a customer instead of just examining the next customer, an optimal

recourse plan is determined considering the remaining customers in the tour assuming the

maximum demand realization for each of them.

Definition 12 Pn
n is used to denote the following n customers ahead anticipatory and non-

splitting recourse policy on a fixed sequence T = {1, · · · , n}: for each customer i ∈ T prior

to departing from i − 1, solve ORP(Ti, Ii−1, d̂i), for d̂i(j) = d(j) for all j ∈ Ti and follow

the optimal recourse plan r?.
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Figure 16: Tour operated using Pn
n with Q = 4.

Example. Consider the tour in Figure 16 operated using Pn
n with a vehicle of capacity

Q = 4. When departing from the depot for the first time, problem ORP(T1, Q, d) is solved

by identifying the shortest s − t path in G(Q, d). Figure 17(a) shows this network; the
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shortest s − t path is {s, 1, 4, 6, t}, hence r? states taking recourse actions at customers 1

and 4, with a total travel time of 21.
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Figure 17: (a) Network G(Q, d) for T1. (b) Network G(I1, d) for T2 using I1 = 4 after
observing d(1) = 0.

.

Assume that when the vehicle reaches the first customer it observes d(1) = 0; then for T2

the shortest s− t path in G(I1, d̂1) using I1 = 4 needs to be identified in order to determine

the corresponding optimal plan r? starting at customer 1 for demand estimate d̂j = d(j) for

all j ∈ T2. Figure 17(b) shows this network; the shortest s − t path is {s, 4, 6, t}. Observe

then that given the newly available demand information, r? states taking recourse action

only at customers 4, with a total travel time of 19 from the location of customer 1. It took 1

time unit to travel to customer 1, so the total travel time if this recourse plan was followed

would be 20.

This process is then repeated at each of the remaining customers in the tour, dynamically

updating the recourse plan in order to try to reduce the total traveled time. Observe that

in this case there was a reduction of 1 unit in total travel time for the new recourse plan

generated at customer 1 when compared to the initial plan generated at the depot.

105



In order to implement recourse policy Pn
n , the first step is to solve an shortest s− t path

problem in G(Q, d). This problem can be solved in O(nQ) because G(Q, d) is an acyclic

network with n + 1 nodes, where the maximum number of arcs with tail in any node is

Q, and with outdgeg(t) = 0. If a shortest s − t problem is solved from scratch at every

customer in the tour, the total solution time would be O(n2Q).

Consider networks G(Ii−1, di) and G(Ii, di+1), where di(j) = d(j) and di+1(k) = d(k)

for all j ∈ Ti and k ∈ Ti+1 respectively. Observe that G(Ii−1, di) and G(Ii, di+1) are almost

identical; the main difference is that G(Ii, di+1) does not include node i; also, node s in

G(Ii, di+1), which is associated with node i in G(Ii−1, di), is the tail of some additional arcs.

These additional arcs are associated with not taking a recourse action at customer i. This

implies that in order to solve the Optimal Recourse Plan problem (52) at customer i there

is no point in making all calculation from scratch because most of the problem data in the

previous stage, at customer i− 1, is the same.

Finding the shortest s− t path in G(Q, d) can be accomplished by means of a labeling

algorithm, where the label of node j ∈ T represents the minimum travel time from j to

t. From the argument in the previous paragraph, except for node s, the label of all other

nodes in G(I1, d2) do not change with respect to the labels calculated in G(Q, d). Calculating

the label for s requires O(Q) operations, corresponding to evaluating the additional arcs

associated with not taking a recourse action at i. This argument is also true for any

G(Ii−1, di) and G(Ii, di+1) for i > 2; therefore, calculations required throughout the whole

process can then be performed in O(nQ + nQ) = O(nQ).

Proposition 12 Consider a fixed sequence T = {1, · · · , n} operated using recourse policy

Pn
n . An optimal solution to the adversarial problem is always d = d.

Proof. For any i ∈ T , by the construction of network G(Ii−1, d̂), φ′(Ti, r
?) is a non-increasing

function on Ii−1, because as Ii−1 decreases, the arc set on this network reduces, further

reducing the number of s− t paths in G(Ii−1, d̂). Ii−1 decreases as d(i−1) increases; it then

follows that ORP(Ti, Ii−1, d̂) achieves its maximum value by setting d(i− 1) = d(i− 1).
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Now consider the optimal recourse plan r? obtained from solving ORP(Ti, Ii−1, d) and

observe that r? remains feasible (i.e., all demands can be satisfied) for any demand real-

ization d ∈ U the vehicle actually sees as it visits the customers in Ti; hence the cost of

φ′(Ti, r
?) is always attainable if the vehicle follows r?. Therefore, the optimal recourse plan

r? obtained from solving z?
0 = ORP(T1, Q, d) is always feasible and z?

0 is an upper-bound

on the actual total travel time on the tour. Observe that this bound is tight if d(j) = d(j)

is chosen for all subsequent problems associated with j ∈ T .

All that remains to show is that z?
0 , obtained by setting d = d, corresponds to the max-

imum value of φ′(T1, r
?). This follows from the construction of G(Q, d̂), because the arc set

of the network reduces as d̂(j) increases for every j ∈ T . ¤

4.3.2 Total advance demand visibility

In this section it is assumed that before the vehicle departs the depot for the first time,

the demand of all customers in the tour is known. Total visibility of demand allows for an

optimal recourse plan.

Definition 13 Pn
nv is used to denote the following n customer ahead with perfect demand

visibility and non-splitting recourse policy on a fixed sequence T = {1, · · · , n}: Once de-

mand realization d is observed, follow the optimal recourse plan r? obtained by solving

ORP(T1, Q, d).

The adversarial problem in this case has a simple solution. The following result is quite

intuitive.

Proposition 13 Consider a fixed sequence T = {1, · · · , n} operated using recourse policy

Pn
nv. An optimal solution to the adversarial problem is always d = d.

Proof. Parallel to the proof of Proposition 12. ¤

107



4.3.3 Partial advance demand information

4.3.3.1 One customer ahead

In this section it is assumed that after a vehicle finishes servicing a customer, before de-

parting there is perfect visibility of the demand of the next customer in the tour. This

corresponds to an intermediate case between the the no advance demand information and

the total demand visibility cases.

Definition 14 Pn
1v is used to denote the following one customer ahead anticipatory with

perfect demand visibility and non-splitting recourse policy on a fixed sequence T = {1, · · · , n}:
a recourse action is taken at customer i− 1 ∈ T for customer i ∈ T if and only if after the

vehicle services customer i− 1 it observes that on-board inventory is strictly less than d(i).

The vehicle restocks at the depot and resumes the tour at customer i.

Observation 3 Consider a fixed sequence T = {1, · · · , n} and a demand realization d ∈ U .

For d there is a recourse action at i under Pn
0 if and only if for d there is a recourse action

at i− 1 for i under Pn
1v.

Theorem 7 Proposition 8 and Proposition9 are also valid for Pn
1v. Further, Theorem 5

also holds for Pn
1v.

Proof. Follows from Observation 3. ¤

4.4 Analysis of recourse policies

We are now interested in analyzing and even assessing the benefits of having total or partial

demand visibility over no advance demand information. Intuitively, it makes sense to believe

that better decisions can always be made when more information is available. We now focus

our attention on proving or disproving the validity of this intuitive result from a worst-case

perspective by comparing the value of function L(T ,P) for all non-splitting recourse policies

defined in the previous section.

From the definition of recourse policy Pn
nv, since the decision maker has total visibility

of all customer demands before the vehicle departs the depot, it then follows that L(Pn
nv) is

108



a lower-bound on the value of L(T ,P) for any non-splitting recourse policies P considered

in this research. Equivalently, since in Pn
nv the decision maker has the best attainable

information of demand and total flexibility to create a recourse plan, no other policy can

perform better. The following observation is then obvious.

Observation 4 Consider a fixed sequence T . For instances with triangular inequality on

the travel time

L(T ,Pn
nv) ≤ L(T ,Pn

0 ),

L(T ,Pn
nv) ≤ L(T ,Pn

1 ),

L(T ,Pn
nv) ≤ L(T ,Pn

n ),

L(T ,Pn
nv) ≤ L(T ,Pn

1v)

We begin by considering recourse policies Pn
1v and Pn

0 , and our interest is to determine

if there exists a dominant relation of the former over the latter since Pn
1v assumes partial

visibility of the demand process while Pn
0 does not. The following proposition establishes

the existence of such a relation.

Proposition 14 Consider a fixed sequence T . For instances with triangular inequality on

travel time

L(T ,Pn
1v) ≤ L(T ,Pn

0 )

Proof. Follows from Theorem 7 under triangular inequality on the travel time because

G1(Pn
0 ) and G1(Pn

1v) are identical expect for the costs on the arcs. By Observation 3, for the

same demand realization if a recourse takes place at i under G(Pn
0 ) a recourse will be taken

at i−1 for i; the additional traveled time in the first case is l(i, 0)+ l(0, i), and in the second

is l(i− 1, 0) + l(0, i)l(i− 1, i). Subtracting the latter expression from the l(i, 0) + l(0, i), the

result is l(i− 1, i) + l(i, 0)− l(i− 1, i), which by triangular inequality has to be ≥ 0. ¤

Proposition 14 implies that Pn
1v dominates Pn

0 from a worst-case perspective. That is,

given T , the value of function L(T ,Pn
1v) will be less than or equal to the value of L(T ,Pn

0 ).
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This result seems to support the idea that more information always leads to better decisions.

The following results contradicts this intuitive idea.

Proposition 15 Consider a fixed sequence T , for instances such that R ≤ 1 when the tour

is operated using Pn
1 and Pn

1v then

L(T ,Pn
1 ) ≤ L(T ,Pn

1v)

Proof. From theorems 5 and 7, Φ(T ,Pn
1v) can be determined using network G0 because

R ≤ 1. Pn
1 is a history independent recourse policy, so by Lemma 3 and 4, Φ(T ,Pn

1 ) can

also be determine using G0. Comparing recourse conditions C1(i) for both policies, observe

that any node i satisfying Proposition 10 also satisfies Proposition 8 and not viceversa,

hence the arcs set (s, (i, 1)) in G0 under Pn
1 is a subset of the corresponding arcs set under

Pn
1v with the same arc cost; therefore Φ(T ,Pn

1 ) ≤ Φ(T ,Pn
1v) and the result follows. ¤

Proposition 15 establishes an interesting and counterintuitive result. For any tour with

at most one recourse action under both policies, Pn
1 dominates over Pn

1v; this implies that

in this case a policy that requires less information always performs better. This type of

result actually raises questions regarding the true benefit of perfect information in a worst-

case context, and naturally leads to questions like, what is the gap between L(T ,Pn
nv) and

L(T ,Pn
n ) ? The following result gives the answer.

Theorem 8 For any fixed sequence T

L(T ,Pn
nv) = L(T ,Pn

n )

Proof. From Proposition 13 it follows that L(T ,Pn
nv) = ORP(T1, Q, d). From Proposition

12 it follows that L(T ,Pn
n ) = ORP(T1, Q, d). ¤

This result implies that for the case of no advance demand information, recourse policy

Pn
n always achieves the same objective value than Pn

nv, which assumes perfect demand

visibility over the demands of all customers in the tour. Therefore, from a worst-case

perspective the value of perfect demand visibility is zero.
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Theorem 9 Consider a fixed sequence T , for instances with triangular inequality on travel

time such that R ≤ 1 when the tour is operated using Pn
0 , Pn

1 and Pn
1v then

L(T ,Pn
nv) = L(T ,Pn

n ) ≤ L(T ,Pn
1 ) ≤ L(T ,Pn

1v) ≤ L(T ,Pn
0 )

Example. For R > 1 the previous result is not true. Consider the tour T in Figure 18 for

a vehicle with capacity Q = 5. Observe that L(T ) = 8.
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Figure 18: Tour T for Q = 5.

By evaluating the tour for demand realization d, it can be seen that R = 2 if the tour is

evaluated with recourse policy Pn
0 , Pn

1 or Pn
1v; therefore, for all three policies the adversarial

problem can be solved using network G0. Figure 19 shows the corresponding G0 for each

of these policies. Observe that Φ(T ,Pn
0 ) = 4, Φ(T ,Pn

1v) = 3 and Φ(T ,Pn
1 ) = 5; therefore

L(T ,Pn
1v) < L(T ,Pn

0 ) < L(T ,Pn
1 ). This example not only shows that the previous

Theorem is not valid when there is more than one recourse, it also shows that there are

instances in which anticipatory policy Pn
1 actually performs worst than myopic policy Pn
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1v) (b) G0(Pn
1 ).
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4.5 Solution approach

In this section, we develop heuristic methods for solving both RVRPSD and VRPSDDC.

Developing an exact solution approach is beyond the scope of this dissertation. Nonetheless,

we present a simple result on how to solve single vehicle instances of the RVRPSD for

recourse policies Pn
nv and Pn

n .

Let LV RP denote the optimal cost of the deterministic capacitated VRP on network

G = (V0, A) with vehicles of capacity Q, using cost matrix (l(i, j)) and customer demand d.

Theorem 10

L(T ?,Pn
nv) = L(T ?,Pn

n ) = LV RP

where T ? is the optimal solution of the single vehicle RVRPSD.

Proof. Consider a tour T operated using policy Pn
n . From Proposition 12 it follows

L(T ,Pn
n ) = ORP(T1, Q, d). Clearly, ORP(T1, Q, d) is the cost of a feasible solution to

the associated deterministic VRP with demand vector d; therefore,

LV RP ≤ L(T ,Pn
n ). (53)

Take the optimal solution to the deterministic VRP and build a tour T by arbitrarily se-

quencing tours in the optimal solution and deleting all edges that connect to the depot

except for one in the first and last tours in the sequence; then connect any degree one ver-

tices between consecutive tours in the sequence. It is clear that LV RP = ORP(T1, Q, d) =

L(T ,Pn
n ), which implies that the bound in expression (53) is tight. The result for Pn

nv

follows from Theorem 8. ¤

Thus, for these two policies, optimal robust solutions can be found by solving a deter-

ministic vehicle routing problem.

4.5.1 A Tabu Search Heuristic

We propose a Tabu Search heuristic for solving instances of the RVRPSD with a single ve-

hicle, and instances of the VRPSDDC with multiple vehicles. The heuristic closely follows
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the ideas presented in Gendreau et al. [32], which computational studies show performs

quite well on expectation minimization problems with stochastic demands and customers.

Initial solution

For the single vehicle RVRPSD, the initial solution is simply a random permutation of the

customers. For the VRPSDDC, on the other hand, the initial solution simply places each

customer in its own tour, identical to the initialization of the savings heuristic of Clarke

and Wright [19] for the deterministic vehicle routing problem.

Neighborhood structure

The typical N(p, q, x) neighborhood is used, where for a given solution x, the neighborhood

includes all tours that are obtained by removing in turn one of q randomly selected cus-

tomers, and inserting each of them either immediately after or immediately before each of

its p nearest neighbors.

Tabu moves

If vertex (customers or depot) is moved in iteration ν, then any move involving that vertex,

either among the q randomly selected or among the p nearest neighbors is tabu until iteration

ν + θ where θ is randomly selected in interval [N − 5, N ].

Aspiration criteria

The search process moves from one iteration to the next considering only nontabu solutions

in the neighborhood associated with the current solution, unless a tabu solution in the

neighborhood improves the best solution found thus far.

Steps of the tabu search algorithm

STEP 1: (Initialization)

Construct a randomly generated solution x, let T ∗ be the cost of x and let x∗ = x. Set

p = min{N − 1, 5} and q = min{N − 1, 5}. Set t0 = 0, t1 = 0 and t2 = 30N , where t0 is

the iteration counter, t1 is the number of iterations in which the best solution found thus

far has not improved and t2 is the maximum number of iterations allowed without one of

such improvements.

STEP 2: (Neighborhood search)
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Set t0 = t0 + 1 and t1 = t1 + 1. Consider all moves in N(p, q, x) and build a LIST where all

moves are sorted in nondecreasing order of their cost. Let y be the first move in the list,

if it is not a tabu move or it improves the best solution found thus far then let x = y; else

continue examining LIST until such solution is found.

STEP 3: (Incumbent update)

If T (x) < T ∗, set T ∗ = T (x), x∗ = x and t1 = 0. Else, set t1 = t1 + 1. If t1 < t2, go to

STEP 2; otherwise go to STEP 4.

STEP 4: (Intensification or termination)

If t2 = 30N , set t1 = 0, t2 = 10N , p = min{N − 1, 10}, q = N − 1 and go to STEP 2.

Otherwise; stop, x∗ is the best solution found.

Note that in cases where the tabu search heuristic is used to solve single vehicle RVRPSD

instances, evaluation of the objective function cost T (x) requires evaluation of the maximum

tour duration L(T ,P) using the techniques described in earlier sections, given recourse

policy P. When solving multiple vehicle VRPSDDC instances, evaluation of L(Tk,P) is

conducted for each vehicle tour Tk as necessary in order to guarantee solution feasibility

with respect to the duration constraint. In this case, the objective function is calculated

directly by expectation. Unlike the approach in Gendreau et al. [32], the exact expected

cost of the complete solution is determined for each potential move.

4.6 Computational Study

A computational study was conducted in order to obtain insights about the characteris-

tics of robust minimax solutions obtained using different recourse policies for single vehicle

instances of the Robust Vehicle Routing Problem with Stochastic Demands, and to un-

derstand the potential expected cost impacts of imposing hard duration constraints on

stochastic routing problems by solving Vehicle Routing Problem with Stochastic Demands

and Duration Constraints instances.

The computational study is therefore divided into two parts. In the first part we focus

our attention on the single vehicle RVRPSD and proceed by:
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1. Performing a comparison of solutions obtained using recourse policy Pn
0 for the robust

and expectation minimization approaches for single tour problems.

2. Performing a comparison of solutions obtained with our robust approach for myopic

recourse policy Pn
0 and anticipatory recourse policy Pn

n for single tour problems.

In the second part, we consider the multiple vehicle VRPSDDC and proceed by per-

forming a comparison of expected solution cost for unconstrained instances, to those solved

with more restrictive duration constraints.

All heuristic runs were performed on a computer running LINUX with dual 2.4GHz

Intel Pentium processors and with 2GB of memory.

4.6.1 Part I: Single Vehicle RVRPSD

In this part of the computational study three factors are considered in the experimental

design:

1. Number of customers. Three levels were considered: 10, 20 and 30.

2. Demand variability. Customers have homogeneous demand uncertainty intervals, i.e.,

d(i) and d(i) is the same for any customer i. Parameter d(i) was set to 1 in all in-

stances, and three different levels of d(i) were considered in order to capture different

levels of demand variability: d(i) = 5, 11 and 17. For comparisons using the expec-

tation minimization approach, demand was assumed to be discrete uniform on the

intervals, independent and identically distributed for all customers. For this type of

stochastic demand, Ak and Erera [2] propose efficient methods that can be used to

evaluate the objective function; such algorithms were employed in this study.

3. Average number of failures per tour. The value of Q was set using the following

expression

Q =
n

r

d(i) + d(i)
2

,

where the value of r was set at 1, 2, 3. The value of r can be interpreted as an

approximation to the number of recourse actions if each customer demanded the
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mean value. Observe that for this computational study Q is always integer given the

values used to model demand and the number of customers.

A total of 30 base instances were randomly generated for this computational study, which

corresponds to ten instances for each of the three levels of number of customers described

above. These instances were obtained by randomly generating customer locations uniformly

in [0, 100]2 with the depot always located at point (50, 50). Travel times were assumed equal

to the Euclidean distance between points. All combinations of r and d(i) were considered

for each of the ten instances to obtain a total of 270 instances.

4.6.1.1 Comparison of robust and expectation minimization approaches

First, we investigate the performance of recourse policy Pn
0 under both the robust minimax

and expectation minimization approaches. The objective is to understand the benefits and

shortcomings of each approach, and to obtain insight into their key differences.

The Tabu search algorithm described in the previous section was used to solve each of

the 270 instances for both the robust and the expectation minimization approaches; the

only difference being the function called to evaluate the objective function. Further, for

both approaches all instances were solved 4 different times starting from different randomly

generated solutions, and the best of the four solutions was chosen for this analysis; therefore,

a total of 2160 solution runs were performed for this study.

Let TR and TE represent the best solutions found under the robust and expectation

minimization approaches respectively for a particular instance. We use the term ‘robust

tour’ to refer to TR. In order to study and analyze the characteristics of these tours, we use

four key metrics or performance measures. For all instances and for all factors considered

in this computational study, we calculate:

BestRob ≡ L(TR,Pn
0 ): maximum cost of the robust solution.

BestExp ≡ LE(TE ,Pn
0 ): expected cost of TE .

MeanBestRob ≡ LE(TR,Pn
0 ): expected cost of the robust solution.

MaxBestExp ≡ L(TE ,Pn
0 ): maximum cost of TE .
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It is easy to see that if TR and TE are the optimal solutions for the robust and expectation

minimization approaches respectively, the following relations hold:

LE(TE ,Pn
0 ) ≤ LE(TR,Pn

0 ) ≤ L(TR,Pn
0 ) ≤ L(TE ,Pn

0 ). (54)

In this computational study we are interested in quantifying the differences in value

of these four expressions. Observe that the difference between L(TE ,Pn
0 ) and LE(TE ,Pn

0 )

corresponds to the maximum deviation from the expected cost for tour TE ; that is, this

expression captures the difference between the average and the worst-case cost for this

tour. On the other hand, the difference between LE(TR,Pn
0 ) and LE(TE ,Pn

0 ) captures the

average cost increment of the robust tour over TE .

The average value of LE(TE ,Pn
0 ) among all instances considered in this study was 507.3.

The corresponding value for L(TE ,Pn
0 ) was 699.2, which implies that the percentage cost

increment for TE between the expected value and its maximum value is on average 37.8%.

The average values of LE(TR,Pn
0 ) and L(TR,Pn

0 ) were 522.7 and 677.7 respectively. Observe

then that on average, the expected cost of TR is only 3% larger than the expected cost of

TE .

Figure 20 shows the average values of LE(TE ,Pn
0 ),LE(TR,Pn

0 ),L(TR,Pn
0 ) and L(TE ,Pn

0 )

over all instances, summarized by number of customers. Among all three levels of number

of customers, the maximum percentage difference between L(TE ,Pn
0 ) and LE(TE ,Pn

0 ) was

52.6% for 10 customers; for 20 and 30 customers this value was 33.3% and 31.3% respectively.

Comparing figures 20, 21 and 22, it can be observed that among the three factors

considered in this computational study and their corresponding levels, the average number

of failures per tour (r) was found to have the highest impact on the four performance

measures that we consider here. Further, increasing the value of parameter r was found to

have a larger effect on L than on LE . That is, by increasing the value of r by one unit,

the increment found on the value of L was higher than on LE . Thus, by increasing the

number of possible failures in a tour, the maximum cost appears to be more sensitive than

the average cost.
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Figure 20: Average cost of all solutions over the 270 instances for each level of number of
customers.

Increasing the demand variability seems to have the least effect on cost among the three

factors considered. Further, function LE is much less sensitive than L to an increase in

customer demand variability. Also, L is much more sensitive when d(i) is increased from 5

to 11, than when it is increased from 11 to 17. This might be explained partially by our

previous observation that for recourse policy Pn
0 , the worst-case demand does not necessarily

correspond to an extreme point of the uncertainty space. Still, it is intuitively clear that

increasing the size of the demand window might allow more flexibility to the adversary to

find the worst-case demand that further increases the maximum cost. On the other hand,

increasing the number of customers was found to have a slightly higher effect on LE than

on L, especially between 10 and 20 customers.

In order to compare the characteristics of both solutions, TR and TE , consider now the
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Average Cost by Demand Variability
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Figure 21: Average cost of all solutions over the 270 instances for each level of number of
demand variability.

following performance measures:

1. WCE - Worst case of expected solution, defined by

WCE =
L(TE ,Pn

0 )− LE(TE ,Pn
0 )

LE(TE ,Pn
0 )

,

which corresponds to the maximum potential percentage increment in cost from the

expected cost of the best solution found in the expectation minimization approach.

2. WCR - Worst case of the robust solution, defined as

WCR =
L(TR,Pn

0 )− LE(TR,Pn
0 )

LE(TE ,Pn
0 )

,

which corresponds to the maximum potential percentage increment in cost of the

robust solution with respect to its expected cost.
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Average Cost by r
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Figure 22: Average cost of all solutions over the 270 instances for each level of parameter
r.

3. POR - Price of robustness, defined by

POR =
LE(TR,Pn

0 )− LE(TE ,Pn
0 )

LE(TE ,Pn
0 )

,

which corresponds to the percentage increment in cost of the expected value of the

best robust tour with respect to the best solution of the expectation minimization

approach. This is the average price to pay for having a robust solution that is less

sensitive to worst-case demand.

4. WRE - Worst case over the robust tour of the expectation minimization solution,

defined by

WRE =
L(TE ,Pn

0 )− L(TR,Pn
0 )

LE(TE ,Pn
0 )

,
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which corresponds to the maximum percentage increment over the max cost for the

robust solution of the solution obtained using the expectation minimization approach.

In other words, it is the potential price to pay in the worst case over the robust solution

for using a solution that on average performs well.

Observe that each of these performance measures is computed using the same denom-

inator (LE(TE ,Pn
0 )), and thus they are readily comparable. The following three tables

summarize these average performance indices across all 270 instances.

nCust WCE WCR POR WRE

10 48.5 42.8 2.2 3.6

20 32.2 25.4 2.2 4.6

30 30.4 22.1 4.3 4.2

width WCE WCR POR WRE

5 26.3 18.5 3.0 4.8

11 42.3 35.6 3.0 3.7

17 42.6 36.2 2.8 3.8

r WCE WCR POR WRE

1 21.5 17.8 1.7 2.2

2 37.1 27.7 3.9 5.6

3 52.5 44.8 3.1 4.6

The average value of WCE overall instances is 37%. Among the four measures con-

sidered in this study, WCE showed a surprisingly high value. For all three factors, it was

always observed that its average value was over 20%. For 10 customers and r = 3, WCE

took values of over 100% for the larger values of demand variability. Furthermore, observe

that unlike LE (see Figure 21), the value of WCE appears to be very sensitive to demand

variability. This implies that solutions obtained using the traditional expectation minimiza-

tion approach can experience worst-case demand realizations with considerable deviations

from its expected cost.

The average value of WCR overall instances is 30%, seven units smaller than WCE. In

the tables above, it can be seen that on average, for each of the three factors considered in

this study, WCR is always at least five units smaller than WCE. This consistency across

factors suggests that worst-case deviations from the expected cost are significantly less in
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the robust solutions than in the solutions obtained using expectation minimization.

The average value of POR is 3%, which implies that on average the expected cost

deviation of the tours developed under the robust approach with respect to the cost of the

best expectation minimization solution is not substantial, or at least much less considerable

than the deviation from the mean cost for the worst-case demand for the tours obtained

under the expectation minimization approach. Interestingly, it was always observed that

on average POR < WRE, which implies that when using the expectation minimization

approach, the potential price to pay in the worst case over the robust solution is on average

higher than the price of robustness. Of course, one must be careful when interpreting such

results since the price of robustness is paid each period, while the worst-case price is paid

only during worst-case periods. Without knowledge of the decision-maker’s attitude toward

risk, it is not clear which solution is preferable.

4.6.1.2 Comparison of myopic and anticipatory robust approaches

In this section recourse policy Pn
n is compared to Pn

0 in order to assess the benefit, if any,

of anticipatory policies over myopic policies. The same test instances from the previous

section were used. From Theorem 10, it follows that for single vehicle problems, an optimal

tour for RVRPSD with Pn
n can be obtained by solving a deterministic VRP. Solutions for

Pn
n were obtained using the optimal partitioning approach used in deterministic VRPs (see

Beasley [4]).

As defined in the previous section, TR represents the best solution obtained for recourse

policy Pn
0 . Now, let T a

R be the best solution obtained for anticipatory recourse policy Pn
n . In

addition to two of the performance measures already defined, L(TR,Pn
0 ) and LE(TR,Pn

0 ),

we are now also interested in quantifying and comparing the values of L(T a
R ,Pn

n ), and

LE(T a
R ,Pn

n ). Just as in the previous section, let:

BestRobAnt ≡ L(T a
R ,Pn

n ): maximum cost of the robust anticipatory solution.

MeanBestRobAnt ≡ LE(T a
R ,Pn

n ): expected cost of the robust solution under anticipatory

policy Pn
n .
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Average Cost by Number of Customers
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Figure 23: Average cost of all solutions over the 270 instances for each level of number of
customers.

The value of LE(T a
R ,Pn

n ) is difficult to calculate because of the complexity of the recourse

policy, which potentially implies solving an optimization problem at each customer location

in the tour. Thus, a discrete event simulation model was developed in order to estimate the

value of LE(T a
R ,Pn

n ). The best tour found for Pn
n using optimal partitioning in each of the

270 instances was simulated. For each tour T a
R , a total of 1800 simulation replications were

used to calculate L̂E(T a
R ,Pn

n ), an estimate of LE(T a
R ,Pn

n ). Each replication corresponds

to the simulation of a vehicle traversing the entire tour once. As before, all customers’

demands were assumed independent and identically distributed and discrete uniform over

the interval in which demand takes values.
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Average Cost by Demand Variability

400

450

500

550

600

650

700

750

800

5 11 17

T
ra

v
e

l
T

im
e

BestRob

MeanBestRob

BestRobAnt

MeanBestRob

Ant

Figure 24: Average cost of all solutions over the 270 instances for each level of demand
variability.

In order to understand better the differences between the myopic and anticipatory poli-

cies, we calculate the following metrics:

1. The percentage worst-case difference of the two policies

PWD =
L(TR,Pn

0 )− L(T a
R ,Pn

n )
L(T a

R ,Pn
n )

2. The percentage average case difference

PAD =
LE(TR,Pn

0 )− L̂E(T a
R ,Pn

n )
L̂E(T a

R ,Pn
n )

PWD captures the worst-case difference in cost of the myopic policy with respect to the

anticipatory policy. On the other hand, PAD captures this relation for the average case.
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Average Cost by r
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Figure 25: Average cost of all solutions over the 270 instances for each level r.

If TR and T a
R were the optimal solutions for recourse policies Pn

0 and Pn
n respectively, it is

clear that PWD ≥ 0, but no such relation is clear for PAD.

In our results from the computational experiment the average values across all instances

for L̂E(T a
R ,Pn

n ) and L(T a
R ,Pn

n ) were 514.5 and 592.9 respectively. In turn, average values

for LE(TR,Pn
0 ) and L(TR,Pn

0 ) were 522.7 and 677.7 respectively; these results suggest that

on average anticipatory policy Pn
n outperforms myopic policy Pn

0 in both expected and

maximum cost. Although the difference on average cost is relatively small, the reduction on

maximum cost is quite significant. Average values for PWD and PAD overall instances were

14.31% and 1.38% respectively. This is an interesting result. In practice, it is very useful

to reduce the gap between the average and maximum values as much as possible, since this

greatly improves the predictability of the operational problem and its cost. Details of all
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results can be found in Table 13. Although on average over all 270 instances the value of

PAD is positive, in some instances the the myopic policy actually performed better (i.e.,

PAD < 0). This suggests that in terms of average-case, the anticipatory policy does not

dominate the myopic policy.

Average results by number of customers are summarized in Figure 23. Interestingly,

the gap between the worst and the average case reduces as the number of customers in-

creases. This gap is 106.4 for 10 customers (25% with respect to the average case), and

reduces almost by 40% for 30 customers. This suggests that anticipatory policies perform

better as the number of customers in the tour increases. This is reasonable. To reduce

costs, the anticipatory policy determines whether or not to take a recourse action at each

customer in the tour by considering both its current capacity status and the travel times

and demand intervals of the customers that remain to be visited. When the number of

customers increases, more information and more potential decision points become available

to dynamically adjust the recourse plan as the tour is traversed, and thus the advantages

of using an anticipatory over a myopic policy becomes more important.

Figure 24 summarizes results by all levels of demand variability. For this factor, as

well as for number of customers, on average the anticipatory policy performs better than

the myopic policy. For the anticipatory policy, the average gap between the worst and the

average case is only 7% for the lowest level of demand variability. This percentage increases

to over 19% for the two highest levels. Although the anticipatory policy outperformed the

myopic, it is very sensitive to demand variability because at every customer location the

minimum cost recourse plan is determined assuming that the demand for the remaining

customers in the tour will take the highest value (i.e., d(i)). This suggests that this gap

can further be reduced and in general the average performance of the anticipatory policy

can be improved by considering ways to address the conservatism of the recourse plan.

Among the three factors considered in this study, the average number of recourses r was

found to have the highest effect on the performance of the anticipatory policy. For r = 1,

the gap between the worst and the average case is less than 5%. It increases up to 24%

for r = 3. Interestingly, on average for r = 1 the myopic policy actually outperformed the
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anticipatory policy.

Table 13: Detailed average results for anticipatory policy T a
R

No. cust. Avg. Failures r Demand Var. L(T a
R ,Pn

n ) L̂E(T a
R ,Pn

n ) PWD PAD
5 349.6 328.0 9.4% 0.5%

1 11 362.8 333.0 10.6% 0.0%
17 362.8 334.7 10.6% -0.3%
5 441.8 410.9 14.5% 3.2%

10 2 11 541.9 419.1 16.6% 4.3%
17 541.9 422.8 16.6% 3.6%
5 541.9 503.0 16.6% 3.1%

3 11 819.4 531.0 24.2% -1.9%
17 819.4 541.4 24.2% -3.4%
5 457.8 441.7 10.9% -1.3%

1 11 470.9 443.0 9.3% -1.3%
17 470.9 443.9 9.4% -1.8%
5 558.0 521.4 11.7% 1.9%

20 2 11 586.1 521.7 14.9% 1.9%
17 586.1 524.3 15.0% 2.1%
5 664.0 602.9 12.8% 2.6%

3 11 772.5 615.6 13.6% 1.3%
17 772.5 620.8 13.4% 1.0%
5 521.1 512.5 13.0% 0.0%

1 11 527.9 515.1 12.1% -0.7%
17 535.5 517.5 11.9% -1.1%
5 627.4 586.9 12.0% 4.0%

30 2 11 651.3 591.3 14.1% 5.1%
17 686.0 596.2 12.6% 1.6%
5 727.7 664.1 14.9% 5.0%

3 11 805.2 671.2 14.2% 4.7%
17 805.2 677.2 13.3% 4.1%

4.6.2 Part II: Multiple Vehicle VRPSDDC

In this section, we conduct a computational study of the Vehicle Routing Problem with

Stochastic Demands and Duration Constraints (VRPSDDC). The objective of this study

is to assess the effect of including duration constraints in the vehicle routing problem with

stochastic demands. We are interested in quantifying the potential increases in total ex-

pected system travel time when duration constraints are enforced on a per tour basis, as

well as understanding how different factors, like number of customers, vehicle capacity and
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demand variability can affect this performance. For simplicity, we restrict this study to the

myopic recourse policy Pn
0 .

For each instance, we proceed by first solving a base unconstrained problem. Then, the

instance is solved again by including constraints on the maximum duration of any individual

vehicle tour, and the percentage difference in the value of the expected travel time of the

two solutions is calculated for comparison. The value of the maximum duration (i.e., the

right-hand side of the duration constraint) is determined for each instance individually by

identifying the maximum tour duration in the solution to the unconstrained problem, and

then multiplying this value by a nonnegative reduction factor α < 1.

In this computational exercise, four factors were considered:

1. Number of customers: five levels were considered; namely 20, 40, 60, 80 and 100 cus-

tomers.

2. Demand variability : customer demand was assumed discrete uniform, independent

and identically distributed for all customers; hence the demand of any customer takes

values over the same interval, i.e., d(i) and d(i) is the same for any customer i. In this

computational study d(i) was set to 1 in all instances, and three different levels of d(i)

were considered in order to capture different levels of demand variability: d(i) = 5, 11

and 17.

3. Vehicle capacity : three levels of vehicle capacity were considered: Q1, Q2 and Q3.

As in the previous computational study, the vehicle capacity was determined using

expression

Q =
n

r

d(i) + d(i)
2

.

In this context, the value of r can be interpreted as a tight lower bound on the number

of vehicles required in a solution of the deterministic Vehicle Routing Problem (VRP)

obtained by setting each customer demand equal to the corresponding expected value.

When modifying the values of n and d(i), factors 1 and 2 in this computational study,

the vehicle capacity is set so that the value of r remains constant. In that sense,

instances generated using the same value of r, for different combinations of number of
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customers and demand variability, are comparable; and differences in their solutions

should, at least in part, be accounted to the stochastic component of the problem.

The values of Q1, Q2 and Q3 are determined by substituting in this expression r = 5, 4

and 3 respectively. Observe then that Q1 < Q2 < Q3.

4. Reduction factor (α): three levels were considered, 0.75, 0.85 and 0.95.

A total of 50 base instances were randomly generated for this study; this corresponds to

10 instances for each of the five levels of number of customers. The instances were obtained

by randomly generating customer locations uniformly in [0, 100]2 with the depot located

at point (50, 50). Again, travel times between points are determined using the Euclidean

distance function. For each base instance, all combinations of levels of demand variabil-

ity, vehicle capacity and reduction factor were considered; this generated 1350 different

instances. Furthermore, for each base instance, an unconstrained problem was also solved

for each level of demand variability and vehicle capacity. Thus, a total of 1800 different

problem instances were solved for this computational study.

All instances were solved using the tabu search heuristic algorithm described in a previ-

ous section. In each iteration of the algorithm, primal feasibility was enforced. The initial

solution considered by this algorithm, where each customer is assigned to a different vehicle,

must satisfy the duration constraint; otherwise the problem is clearly infeasible. At any iter-

ation, solutions in LIST that violate the maximum duration constraint are discarded. Each

of the 1800 instances were solved ten different times using each time a different initial seed

for the random number generator; among these ten solutions only the one with minimum

expected travel time was selected for the subsequent result analysis.

The numerical results obtained show that duration constraints can significantly impact

the structure of the tours in a best solution to the VRPSD, and furthermore may substan-

tially increase the value of the total expected travel time of a solution. With respect to the

unconstrained problem, the average percentage increase in expected travel time was found

to be 6.6%. Although this average increase may not be very large, for some combinations of
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parameters considered in this study, average increases of over 12% were identified, and spe-

cific instances with increments of over 25% were found. Table 14 provides a list of general

statistics of the results of this study summarized by reduction factor. Table 15 presents a

more detailed summary of overall results.

Table 14: General statistics on the increment of expected travel time with respect to the
unconstrained problem for all levels of reduction factor α.

Reduction Factor (α) Mean Max St.dev.
0.75 10.1% 25.7% 5.6%
0.85 6.4% 20.1% 4.4%
0.95 3.2% 13.7% 3.0%

Number of customers was found to be a factor with a very important effect on the

expected travel time when duration constraints are enforced. For problems with 20 cus-

tomers, results show an average percentage increment of 2.5%. For 40 customers, this value

jumped-up to 6.1%; this non-decreasing trend continued for 60 and 80 customers with values

7.8% and 8.3% respectively. Interestingly, for 100 customers this value decreased to 8.1%.

Figure 26 shows the interactions found by number of customers and reduction factor on the

percentage increment of expected travel time. It is interesting to observe that in the case

with tightest duration constraints (i.e., α = 0.75) the increment reaches its maximum at 60

customers, and then decreases for 80 and 100 customers. These results suggest that in terms

of expected travel time, systems where customers are geographically more concentrated per

unit area may be less affected by enforcing duration constraints than systems with more

geographically dispersed customers.

A consistent trend was identified between expected travel time increment and vehicle

capacity: as the value of Q increases, the average percentage increment was also observed

to increase. For levels Q1, Q2 and Q3 the observed increment was 6.3%, 6.5% and 6.9%

respectively. This suggests that in general fleets with larger vehicle capacity are more

negatively affected when duration constraints are imposed as compared to fleets with lower

vehicle capacity. This result has a clear intuitive explanation; when duration constraints

are enforced, vehicle capacity might no longer be a binding constraint. Having a larger
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Figure 26: Average percentage increment in expected travel time for each level of reduction
factor and number of customers.

vehicle capacity might no longer work in your benefit because it might not be possible to

utilize the vehicles fully since by doing so, duration constraints may be violated.

A very interesting result follows from further considering number of customers and

reduction factor in the analysis; this is illustrated in Figure 27. For specific circumstances,

results indicate that systems operated using fleets with higher vehicle capacity may indeed

be less affected by duration constraints than their counterparts. Specifically, in systems

with tighter duration constraints and customers that are more geographically concentrated,

the average increment in expected travel time due to duration constraints is less significant

when operated with fleets with larger vehicle capacity. From Figure 27 it is clear that in

the cases given by α = 0.75, for 80 and 100 customers, a lower increment is observed when

operated with vehicles of capacity Q3 than with vehicles of capacity Q1.

These results also imply that for systems with tighter duration constraints where cus-

tomers are less concentrated per unit area, fleets with lower vehicle capacity are less af-

fected by the introduction of durations constraints. In Figure 27 consider the cases given
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Average Exected Travel Time Increment by Vehicle

Capacity and Reduction Factor

0%

2%

4%

6%

8%

10%

12%

14%

16%

20 40 60 80 100

Number of Customers

Q1 - 0.75

Q1 - 0.95

Q3 - 0.75

Q3 - 0.95

Figure 27: Average percentage increment in expected travel time for each level of reduction
factor for vehicle capacity and demand variability.

by α = 0.75 for 20 and 40 customers, Q1 has a more moderate increment than with Q3.

Although the idea of benefiting from fleets with higher vehicle capacity in the presence

of duration constraints might seem counterintuitive, there is actually a very simple expla-

nation. The reason for preferring vehicles with larger capacity when more customers need

to be served is that although duration constraints tend to mitigate the benefits of this type

of vehicle, when customers are highly concentrated per unit area, more can be packed into

shorter duration tours to take advantage of the larger vehicle capacity. If this is not the

case, and there are not enough nearby customers, this advantage of higher capacity cannot

be exploited.

In our results, it was observed that increasing demand variability tends to also increase

the average expected increment in total expected solution travel time. For levels of d(i)

equals to 5, 11 and 17, the corresponding increment was 5.9%, 6.8% and 7% respectively.

Still, when compared to number of customers, both vehicle capacity and demand variability

seem to have a less substantial effect on transit times. Figure 28 shows the interaction or

each of these factors by reduction factor α.
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Figure 28: Average percentage increment in expected travel time for each level of reduction
factor for vehicle capacity and demand variability.

Results for the first three levels of number of customers, 20, 40 and 60, were pooled

together into a single group called ‘Low number of customers’; the remaining results were

pooled into another group called ‘High number of customers’. Results for these two groups

are summarized in Figure 29. As previously observed, this figure shows that for the problems

with higher customer density, it is advantageous to use vehicles with higher capacity; while

for the other group, it is better to use vehicles with lower capacity. Interestingly, this figure

also shows that the group with lower number of customers is less sensitive to increased

demand variability than the group with larger number of customers. This can be explained

at least in part by the fact that, as previously illustrated, when customers are not very

concentrated geographically, it is not possible to use the vehicle’s capacity to the maximum

limit. Thus, each vehicle has excess capacity that can be used as a buffer to hedge against

demand variability. Observe that this also explains why high density customer group, which

can make a better utilization of vehicle capacity, is more sensitive when demand variability

increases: it lacks the capacity buffer.
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Figure 29: Average percentage increment in expected travel time for each level of reduction
factor for for high and low number of customers.
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Table 15: Detailed average percentage increment on expected travel time

No. customers Vehicle capacity Demand variability α = 0.75 α = 0.85 α = 0.95
5 4.89% 1.89% 1.25%

Q1 11 3.50% 1.66% 1.09%
17 2.74% 1.69% 1.12%
5 5.05% 3.04% 1.05%

20 Q2 11 1.47% 1.01% 0.81%
17 1.57% 1.05% 0.83%
5 6.63% 3.28% 1.63%

Q3 11 5.85% 2.95% 0.92%
17 5.54% 2.87% 0.89%
5 8.24% 4.28% 0.82%

Q1 11 6.06% 3.76% 1.49%
17 6.12% 3.26% 1.61%
5 10.56% 6.70% 2.85%

40 Q2 11 12.79% 7.70% 2.82%
17 12.60% 7.25% 2.40%
5 10.14% 6.88% 1.01%

Q3 11 13.05% 8.26% 1.76%
17 12.69% 9.06% 1.66%
5 10.93% 3.88% 2.02%

Q1 11 14.22% 6.26% 2.75%
17 13.02% 7.11% 2.29%
5 11.25% 6.80% 4.00%

60 Q2 11 11.05% 6.77% 3.12%
17 15.06% 9.07% 3.92%
5 10.92% 7.88% 4.28%

Q3 11 12.67% 9.19% 4.54%
17 13.13% 9.79% 3.41%
5 13.86% 8.62% 4.08%

Q1 11 14.42% 9.06% 4.29%
17 13.96% 8.84% 4.04%
5 8.41% 6.25% 3.24%

80 Q2 11 12.14% 6.33% 3.92%
17 13.93% 9.39% 5.56%
5 10.33% 6.08% 5.10%

Q3 11 12.12% 8.75% 5.69%
17 11.20% 8.52% 7.23%
5 11.35% 7.74% 5.19%

Q1 11 15.82% 10.12% 6.08%
17 14.60% 9.60% 5.60%
5 8.87% 6.93% 3.39%

100 Q2 11 12.55% 8.38% 5.33%
17 12.37% 9.17% 4.02%
5 8.41% 4.62% 2.84%

Q3 11 9.91% 8.18% 4.91%
17 9.64% 7.87% 6.34%
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

This dissertation investigates effective planning and control for fleet management in freight

transportation.

Chapter 2 presents a large scale dynamic model for the management of a global fleet of

tank containers. A computational study demonstrates that realistic size instances of this

model can be solved with commercially available optimization software. The computational

experiments also suggest that substantial cost savings and improvements in equipment

utilization can be attained. Further analysis, however, reveals that in practice these savings

may not be realized because demand uncertainty has been ignored, which may lead to

situations where costly actions are required to deal with unexpected changes in demand.

The study described in Chapter 2 serves as motivation for the main focus of the thesis:

the development of methodologies for generating fleet management plans that allow cost-

effective control in the presence of demand uncertainty. We investigate approaches based

on robust optimization as opposed to more traditional expectation minimization models.

Chapter 3 presents a robust optimization approach for generating empty repositioning

plans. Starting from a deterministic model currently in use at some freight carriers, we

develop a model that explicitly incorporates demand uncertainty in a simple, yet flexible

manner, and that can easily be understood and implemented by practitioners. Risk aversion

is also included in a way that we believe expert fleet managers can easily relate to. Com-

putational evidence suggests that the approach is tractable, generates plans with a clear

intuitive interpretation of how inventory is managed to hedge against demand uncertainty,

and that the price that has to be paid for robustness remains within reasonable limits. The

approach, although based on sophisticated mathematical optimization concepts, has simple

input requirements, and allows for easy interpretation of results. Therefore, we believe it

may be readily accepted by freight carriers.
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Chapter 4 presents robust optimization techniques for the development of fixed routes

for local delivery operations under various control policies. Computational experiments

demonstrate that our robust optimization approach generates solutions with expected costs

that compare favorably to those obtained with traditional expectation minimization tech-

niques, but also that perform much better in worst-case scenarios. This is especially true

when anticipatory recourse policies are considered. We further illustrate how the techniques

can be applied to enforce tour duration constraints, which are often important in practical

routing applications but are usually ignored by the research literature. A computational

study shows that considering tour duration constraints can have a significant effect on the

expected cost of the fixed routes.

The findings and results of this dissertation suggest a few interesting areas for further

research.

Our findings clearly demonstrate the benefits of incorporating redundant capacity (or

buffers) into fleet management plans to hedge against demand uncertainty thereby allowing

cost-effective control. This redundant capacity, of course, comes at a price: the price of

robustness. It will be interesting to study a kind of “dual problem” in which we try to

maximize the robustness of a plan given a certain robustness budget. If we are willing to

accept an increase in planned cost of say two percent, how much robustness can we achieve?

A deeper analysis of how robustness is achieved in different contexts, i.e., what hedging

mechanism are used in different situations, may lead to insights that can be captured in

simple rules of thumb that may be of value for practitioners.

Our computational experiments with the vehicle routing problem with stochastic de-

mands show that the use of anticipatory strategies within robust optimization approaches

can significantly reduce worst-case recovery costs at a minimal increase in expected costs.

Almost all of the research in the area of vehicle routing problem with stochastic demand

has focused on simple myopic policies. Our efforts suggest that much may be gained by

considering anticipatory strategies and this should be a fruitful area of further research.

138



REFERENCES

[1] Abrache, J., Crainic, T. G., and Gendreau, M., “A new decomposition algorithm
for the deterministic dynamic allocation of empty containers,” Tech. Rep. CRT-99-49,
Centre de Recherche sur les Transport, 1999.

[2] Ak, A. and Erera, A., “A paired-vehicle recourse strategy for the vehicle routing
problem with stochastic demand,” Transportation Science, vol. to appear, 2006.

[3] Atamturk, A. and Zhang, M., “Two-stage robust network flow and design under
demand uncertainty,” Operations Research, vol. to appear, 2006.

[4] Beasley, J., “Route first - cluster second methods for vehicle routing,” Omega, vol. 11,
pp. 403–408, 1983.

[5] Ben-Tal, A., Goryashko, A., Guslitzer, E., and Nemirovski, A., “Adjustable
robust solutions of uncertain linear programs,” Mathematical Programming, vol. 99,
pp. 351–376, 2004.

[6] Ben-Tal, A. and Nemirovski, A., “Robust convex optimization,” Mathematics of
Operations Research, vol. 23, pp. 769–805, 1998.

[7] Ben-Tal, A. and Nemirovski, A., “Robust solutions of linear programming problems
contaminated with uncertain data,” Mathematical Programming, vol. 88, pp. 411–424,
2000.

[8] Bertsimas, D., “A vehicle routing problem with stochastic demand,” Operations Re-
search, vol. 40, pp. 574–585, 1992.

[9] Bertsimas, D., Pachamanova, D., and Sim, M., “Robust linear optimization under
general norms,” Operations Research Letters, vol. 32, pp. 510–516, 2004.

[10] Bertsimas, D. and Sim, M., “Robust discrete optimization and network flows,” Math-
ematical Programming, vol. 98, pp. 49–71, 2003.

[11] Bertsimas, D. and Sim, M., “The price of robustness,” Operations Research, vol. 52,
pp. 35–53, 2004.

[12] Bertsimas, D. and Simchi-Levi, D., “The new generation of vehicle routing research:
robust algorithms addressing uncertainty,” Operations Research, vol. 44, pp. 286–304,
1994.

[13] Bertsimas, D. and Thiele, A., “A robust optimization approach to supply chain
management,” in Proceedings of the 10th International Integer Programming and Com-
binatorial Optimization (IPCO) Conference, pp. 86–100, 2004.

[14] Bertsimas, D. and Thiele, A., “A robust optimization approach to inventory the-
ory,” Operations Research, vol. 54, pp. 150–168, 2006.

139



[15] Bourbeau, B., Crainic, T., and Gendron, B., “Branch-and-bound paralleliza-
tion strategies applied to a depot location and container fleet management problem,”
Parallel Computing, vol. 26, pp. 27–46, 2000.

[16] Cheung, R. and Chen, C., “A two-stage stochastic network model and solution
methods for the dynamic empty container allocation problem,” Transportation Science,
vol. 32, pp. 142–162, 1998.

[17] Cheung, R. and Powell, W., “Models and algorithms for distribution problems
with uncertain demands,” Transportation Science, vol. 30, pp. 43–59, 1996.

[18] Choong, S. T., Cole, M. H., and Kutanoglu, E., “Empty container manage-
ment for intermodal transportation networks,” Transportation Research Part E, vol. 38,
pp. 423–438, 2002.

[19] Clarke, C. and Wright, J., “Scheduling of vehicles from a central depot to a number
of delivery points,” Operations Research, vol. 12, pp. 568–581, 1964.

[20] Cook, W., Cunningham, W., Pulleyblank, W., and Schrijver, A., Combina-
torial Optimization. New York: John Wiley and Sons, 1998.

[21] Crainic, T. G., “Service network design in freight transportation,” European J. Op-
erational Research, vol. 122, pp. 272–288, 2000.

[22] Crainic, T. G., “A survey of optimization models for long-haul freight transporta-
tion,” in Handbooks of Transportation Science (Hall, R. W., ed.), pp. 451–516,
Kluwer, 2003.

[23] Crainic, T. G., Gendreau, M., and Dejax, P., “Dynamic and stochastic models
for the allocation of empty containers,” Operations Research, vol. 41, pp. 102–126,
1993.

[24] Crainic, T. G. and Laporte, G., “Planning models for freight transportation,”
European J. Operational Research, vol. 97, pp. 409–438, 1997.

[25] Crainic, T., Gendreau, M., and Dejax, P., “Dynamic stochastic models for the
allocation of empty containers,” Operations Research, vol. 41, pp. 102–126, 1993.

[26] Dror, M., Laporte, G., and Trudeau, P., “Vehicle routing with stochastic de-
mands: properties and solutions frameworks,” Transportation Science, vol. 23, pp. 166–
176, 1989.

[27] Dror, M. and Trudeau, P., “Stochastic vehicle routing with modified savings algo-
rithm,” European Journal of Operational Research, vol. 23, pp. 228–235, 1986.

[28] Erera, A., Morales, J., and Savelsbergh, M., “Global intermodal tank container
management for the chemical industry,” Transportation Research Part E: Logistics and
Transportation Review, vol. 41, pp. 551–566, 2005.

[29] Frantzeskakis, L. and Powell, W., “A successive linear approximation procedure
for stochastic, dynamic vehicle allocation problems,” Transportation Science, vol. 24,
pp. 40–57, 1990.

140



[30] Gendreau, M., Laporte, G., and Seguin, R., “An exact algorithm for the vehi-
cle routing problem with stochastic demands and customers,” Transportation Science,
vol. 29, pp. 143–155, 1995.

[31] Gendreau, M., Laporte, G., and Seguin, R., “Stochastic vehicle routing,” Euro-
pean Journal of Operational Research, vol. 88, pp. 3–12, 1996.

[32] Gendreau, M., Laporte, G., and Seguin, R., “A tabu search heuristic for the
vehicle routing problem with stochastic demands and customers,” Operations Research,
vol. 44, pp. 469–477, 1996.

[33] Godfrey, G., , and Powell, W., “An adaptive dynamic programming algorithm for
single-period fleet management problems I: Single period travel times,” Transportation
Science, vol. 36, pp. 21–39, 2002.

[34] Godfrey, G. and Powell, W., “An adaptive dynamic programming algorithm for
single-period fleet management problems II: Multiperiod travel times,” Transportation
Science, vol. 36, pp. 40–54, 2002.

[35] Jansen, B., Swinkels, P., Teeuwen, G., van Antwerpen de Fluiter, B., and
Fleuren, H., “Operational planning of a large-scale multi-modal transportation sys-
tem,” European J. Operational Research, vol. 156, pp. 41–53, 2004.

[36] Jordan, W. and Turnquist, M., “A stochastic, dynamic network model for railroad
car distribution,” Transportation Science, vol. 17, pp. 123–145, 1983.

[37] Kouvelis, P. and Yu, G., Robust Discrete Optimization and Its Applications, vol. 14
of Nonconvex Optimization and Its Applications. Dordrecht, Germany: Kluwer Aca-
demic, 1997.

[38] Laporte, G., Louveaux, F., and Hamme, L., “An integer l-shaped algorithm for the
capacitated vehicle routing problem with stochastic demands,” Operations Research,
vol. 50, pp. 415–423, 2002.

[39] Laporte, G., Louveaux, F., and Mercure, H., “Models and exact solutions for
a class of stochastic location-routing problems,” European Journal of Operational Re-
search, vol. 39, pp. 71–78, 1989.

[40] Misra, S., “Linear programming of empty wagon disposition,” Rail International,
vol. 3, pp. 151–158, 1972.

[41] Powell, W., “A stochastic formulation of the dynamic vehicle allocation problem,”
Transportation Science, vol. 20, pp. 117–129, 1986.

[42] Powell, W., “A stochastic formulation of the dynamic assignment problem, with an
application to truckload motor carriers,” Transportation Science, vol. 30, pp. 195–219,
1996.

[43] Powell, W., “Dynamic models of transportation operations,” in Handbooks in Op-
erations Research and Management Science: Supply Chain Management (Graves, S.
and de Tok, T. A. G., eds.), pp. 677–756, Amsterdam: Elsevier, 2003.

141



[44] Powell, W. and Carvalho, T., “Real-time optimization of containers and flatcars
for intermodal operations,” Transportation Science, vol. 32, pp. 108–126, 1998.

[45] Powell, W., Jaillet, P., and Odoni, A., “Stochastic and dynamic networks
and routing,” in Network Routing (Ball, M., Magnanti, T., Monma, C., and
Nemhauser, G., eds.), vol. 8 of Handbooks in Operations Research and the Manage-
ment Sciences, pp. 141–295, Amsterdam: Elsevier Science, 1995.

[46] Powell, W. and Topaloglu, H., “Fleet management,” in Applications of Stochas-
tic Programming (Wallace, S. and Ziemba, W., eds.), Math Programming Society
SIAM Series in Optimization, 2005.

[47] Savelsbergh, M. and Goetschalckx, M., “A comparison of the efficiency of fixed
versus variable vehicle routes,” Journal of Business Logistics, vol. 16, pp. 163–187,
1995.

[48] Shen, W. S. and Khoong, C. M., “A DSS for empty container distribution planning,”
Decision Support Systems, vol. 15, pp. 75–82, 1995.

[49] Soyster, A., “Convex programming with set-inclusive constraints and applications
to inexact linear programming,” Operations Research, vol. 21, pp. 1154–1157, 1973.

[50] Stewart, W. and Golden, B., “Stochastic vehicle routing: a comprehensive ap-
proach,” European Journal of Operational Research, vol. 14, pp. 371–385, 1983.

[51] Stolt-Nielsen Transportation Group, “Private communication.” 2004.

[52] Topaloglu, H. and Powell, W., “An algorithm for approximating piecewise linear
concave functions from sample gradients,” Operations Research Letters, vol. 31, pp. 66–
76, 2003.

[53] Topaloglu, H. and Powell, W., “Dynamic programming approximations for
stochastic, time-staged integer multicommodity flow problems,” Informs Journal on
Computing, vol. to appear, 2004.

[54] White, W., “Dynamic transshipment networks: an algorithm and its application to
the distribution of empty containers,” Networks, vol. 2, pp. 211–236, 1972.

[55] Yang, W., Mathur, K., and Ballou, R., “Stochastic vehicle routing problem with
restocking,” Transportation Science, vol. 34, pp. 99–112, 2000.

142


