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Abstract— In this paper we study the problem of computing
smooth planar paths in the presence of obstacles where we have
an a priori knowledge about the environment. We investigate
how the smoothness of a path and the total travel time required
by the path are related for paths used by a four-wheel four-
gear articulated vehicle. A path is considered smooth if the
variation of its curvature, i.e., the integral of the square of the
derivative of curvature along the path, is minimal. Paths are
defined by quartic B-splines and obstacles are represented by
polygonal chains. Quartic B-splines have a continuous derivative
of curvature. Obstacle-avoidance is achieved by means of the
envelope of the B-splines.

We present a study of eight cases based on real-world ap-
plication data from the Swedish mining company Luossavaara-
Kiirunavaara AB (LKAB). The results indicate that a minimum
curvature variation B-spline path-planning algorithm we have
developed yields paths that are substantially better than the ones
used by LKAB today. Our simulations shows that the new paths
are up to 39% faster to travel along than the paths currently
in use. They even decrease the wear on the vehicle. Preliminary
results from the production at LKAB show an overall 5-10%
decrease in the total time. The total time includes both travel on
the path and ore loading and unloading.

Note to Practitioners – This article was motivated by the
problem of how to automatically produce drive-paths of high
quality for autonomous transportation vehicles in mines. The
vehicles are heavy (> 100 tonnes) but are still expected to run
at speeds up to 20 km/h to be productive. To reach these speeds
without destroying the steering gear and the mechanics of the
vehicles, their paths must be smooth. It turns out that visual
inspection is often not sufficient to distinguish a smooth path
from a harmful one. We suggest a method for computing paths,
requiring an a priori knowledge about the environment, that
minimizes the amount of steering needed during a transport.
The computed paths are also safe in that they guarantee that the
vehicle will not collide with a tunnel wall. We present a study of
eight cases based on real-world application data from the Swedish
mining company Luossavaara-Kiirunavaara AB (LKAB). Our
simulations show that our paths are up to 39% faster to travel
along than the paths currently in use while they cause no more
wear on the vehicles. Tests performed in the production at LKAB
show an overall 5-10% decrease in the total time if not only travel
but also loading and unloading is included.

Index Terms— optimization methods, mining industry, spline
functions, motion-planning, vehicles, path smoothness, derivative
of curvature, autonomous guided vehicles
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I. INTRODUCTION

PATH-PLANNING is a problem area that is very impor-
tant as the level of automation increases [1–7]. Today,

there are many industrial applications that require the pre-
computation of paths for autonomous vehicles and robot arms
to follow and move along [8–13]. In this paper, we address
the problem of computing an obstacle-avoiding planar path
that combines the properties of being both smooth and fast to
traverse.

The work space of autonomous vehicles and robot arms are
often cluttered with obstacles that these machines must avoid.
An example is the path-planning of the autonomous vehicles
used for transporting iron ore in the underground mines
of the Swedish mining company Luossavaara-Kiirunavaara
Aktiebolag (LKAB) [14] . It is crucial that these autonomous
vehicles avoid the obstacles constituted by the mine walls
in order for the production to go on. Another example is a
robot arm holding a cutting tool that follows a pre-computed
path. It should perform its task while staying away from other
machines and it should not damage itself.

Much work has been devoted to planning paths in the pres-
ence of obstacles and there are many results yielding piecewise
linear paths [3, 15]. However, practical applications involving
physical machines also require that the paths are smooth [5, 7,
16–18]. An example of the importance of smoothness comes
from the offset path of a cutting tool [19]. Its path must
be curvature-continuous to avoid jumps in the acceleration
that damage the driver motors. Another example comes from
considering the autonomous ore transport vehicles used at
LKAB. These are articulated, which means that the whole
vehicle is involved in the steering. Its steering gear is worn
out even by small jerks in its path and large jerks increases
the risk of slippage. Moreover, such jerks easily cause the
machine to drop ore on the road which eventually must be
cleared before the transports may continue.

There are many definitions of smoothness. Depending on
context, a path or curve in 2D as well as in 3D is referred to
as being smooth if it is tangent continuous, has a continuous
curvature, or even has a continuous derivative of curvature [5,
7, 16–18]. Smooth curves are of importance not only to achieve
paths that do not cause unnecessary wear, but also have found
application in designing curves that look aesthetically pleasing.
Such applications are found in the car, airplane, virtual reality,
video game, and film industry [20–22].

Here, an important aspect of the smoothness of a path is its
relation to the speed at which the path can be traversed. The
turning speed of the transport vehicle is limited by the speed of



the vehicle. The speed of the vehicle is therefore adjusted such
that the vehicle is capable of following the path. If the vehicle
has different gears with certain limitations on curvature and
derivative of curvature, it is seen that the traversal time is a
function of the gears along the path. Then, in turn, the gears are
functions of the curvature and the derivative of curvature along
the path. Therefore, the higher the smoothness, the higher the
gear, and the faster the traversal of the path.

Still, obstacle-avoidance and smoothness are not enough for
practical purposes. The path should also stay at a sufficient dis-
tance – the safety margin – from the obstacles. The smoother
the path, the larger the radius of the curve. This means that
a path will tend to go close to obstacles in order to have
as high smoothness as possible. Once again, consider the ore
transportation vehicle. A smooth path makes it go close to the
walls of the mine when turning. As touching the walls is the
main danger for the vehicle, it should stay at a safe distance
from the walls. The computation of safety margins has been
considered in the literature [23].

A. Contribution

In this paper we focus on validating the assumption that geo-
metrically smooth paths, computed with an a priori knowledge
about the environment, are fast to traverse. The Swedish min-
ing company LKAB has already planned piecewise seventh-
degree polynomial paths inside their a priori known mine.
Based on mine map application data from LKAB, in the form
of polygonal chains, we compute safety margins that, in turn,
are two flanking polygonal chains. Inside of these margins,
using a standard nonlinear programming tool, we compute ge-
ometrically smooth paths built from obstacle-avoiding quartic
minimum curvature variation B-spline curves. These quartic
B-splines have a continuous derivative of curvature. Using the
same model of a four-gear four-wheel articulated vehicle with
gear-limits as the one used by LKAB, we validate an increase
in speed along the B-spline paths compared to the speed along
the LKAB paths. This is done for eight scenarios. Output
from our computations are piece-wise polynomial paths with
a dedicated gear for each piece, traversal time, curvature, and
derivative of curvature.

B. Paper outline

In the next section, we present some preliminaries. It is then
followed by Section III which introduces the vehicle model
used as well as a description of our method to produce a
safety margin. Section IV shows a comparison between our
paths and the LKAB paths, while Section V concludes this
paper.

II. PRELIMINARIES

THIS section contains a description of the LKAB paths
and their representation, our smoothness measure, and a

motivation to the use of B-splines as a path representation. It
also contains a description of the minimum curvature variation
B-spline (MVB) and how it is computed followed by a short
pseudocode description of our algorithm.

Our interest lies in the properties of paths which goes from
an initial to a terminal posture. A path cycle is simply a
combined path where we go back to the initial posture again
along the same path. As path cycle is the commonly used term
in industry, we also use the term although we mean a path or
a half path cycle. A path is built from subpaths which are
built from consecutive path segments. All paths must meet
up with initial and terminal endpoint constraints. These are
given as position, slope angle, curvature, and derivative of
curvature. Furthermore, the paths must not intersect obstacles
represented by flanking polygonal chains. These obstacles are
given as input for the path-planning.

LKAB describes path segments by seventh-degree polyno-
mials. These paths are not computed to minimize curvature
variation over the whole path. Instead, for each polynomial
segment, the maximal derivative of curvature is minimized.
Each segment is defined in a separate coordinate system,
which gives a path built from consecutive parameterizations
along different room axes or cartesian coordinate systems in
the plane. This representation is flexible, but the constructed
curves have the drawback that there is nothing that guarantees
smoothness nor a small traversal time for the whole path.
We compute paths that are quartic MVB curves, which are
described in Section II-C.

A. Smoothness measure

We consider the same smoothness measure as Kanayama
and Hartman [24], namely the integral over the square of arc-
length derivative of curvature along the path. A motivation
of using this measure comes from the physics of motion. At
constant speed, the centripetal (lateral) acceleration

mv2

r
= mv2K

of a vehicle is proportional to its curvature K , where m is
the mass of the vehicle, r is the radius curvature, and v is its
velocity. The time derivative of this acceleration is given by

d

dt
(mv2K) = mv2 dK

dt
= mv2 dK

ds

ds

dt
= mv3 dK

ds
,

where s is the curve length. Thus, the variation of curvature
is proportional to the jerk or change in lateral acceleration of
the vehicle.

We are dealing with curves that are functions over a room
axis. For a function f(x) with curvature K(x), x ∈ [x0, x1],
there is the one-to-one relation ds =

√
1 + f ′(x)2 dx,

between x and arc-length s. Therefore, letting ν̇ = dν/ds
and ν ′ = dν/dx for any function ν, our smoothness measure
can be written as∫ s(x1)

s(x0)

K̇(s)2 ds =
∫ x1

x0

K ′(x)2√
1 + f ′(x)2

dx .

B. B-splines for path-planning

There are numerous ways to represent curves used for
trajectory planning. A brief and helpful overview is given
in [6]. There, seven different curve types are mentioned. Line
segments together with arcs of circles, Cartesian polynomials,



clothoids together with anticlothoids, cubic spirals, generalized
polar polynomials, B-splines, and parametric curves consisting
of a sum of harmonics (sine and cosine functions). Each
of the four first mentioned curve types have their obvious
drawbacks. Curves built from line segments connected to arcs
of circles are not smooth enough for our purposes as they
are discontinuous even in their curvature. When it comes to
Cartesian polynomials it is not easy to compute the maximum
value of the curvature. Clothoids and anticlothoids are intrinsic
curves so there are no closed form expressions of positions
along them [5, 7]. Cubic spirals have the same disadvantage.
The three remaining curve types do not have these obvious
drawbacks. They can all be written in closed form and they
can be constructed or defined in such a way that there
are a sufficient number of continuous derivatives. The last
mentioned parametric curves even have an infinite number of
continuous derivatives.

We have chosen to work with curves built from B-spline
functions. B-spline functions [25–27] have properties that
make them suitable for smooth and obstacle-avoiding path-
planning. A B-spline function or B-spline B(x) is a piecewise
polynomial of a certain degree. Much work has been devoted
to planning or smoothing trajectories using B-splines [8–13].
However, this work either contains proposals of using B-
splines of such a low degree that they lack a continuity in
their derivative of curvature or it does not handle obstacle-
avoidance. Here, we consider quartic, i.e., degree 4, uniform
B-splines that are functions of x. Quartic B-splines are suffi-
ciently smooth for our purposes as they are continuous even
in their derivative of curvature.

By means of its envelope [19, 28], a B-spline function
can avoid obstacles represented by piecewise linear functions
c(x) ≤ c(x). The envelope of B(x) is a pair of piecewise
linear functions e(x) and e(x), given by B(x), such that
e(x) ≤ B(x) ≤ e(x). In order for the B-spline to avoid the
obstacles it suffices to impose the constraints c(x) ≤ e(x) and
e(x) ≤ c(x). This, in turn, leads to obstacle-avoidance of the
B-spline B(x). The constraints c(x) ≤ e(x) and e(x) ≤ c(x)
can be formulated as a finite number of linear constraints
as they amount to comparing the piecewise linear functions,
representing the obstacles, at their respective vertices. Then,
instead of having to compare the function itself, at an infinite
number of points, against the obstacles, we have finitely many
constraints depending only on the number of vertices of the
envelope and the vertices of the piecewise linear obstacles.

B-splines are written in closed form, and they are also
efficiently computed [25]. Another thing that makes B-splines
attractive is the ease by which the shape of the resulting
curve can be controlled. Their approximation ability and the
properties of their shape depend on the number of B-spline
basis functions used to define B(x) [29]. The larger number
of basis functions B(x) is built from, the more flexible its
representation. For these reasons, B-splines are also widely
used in a variety of contexts such as data fitting, computer
aided design (CAD), automated manufacturing (CAM), and
computer graphics [21].

C. Minimum curvature variation B-spline paths

We are concerned with obstacle-avoiding minimum curva-
ture variation B-splines (MVB) [30, 31]. They are solutions to
the following problem:

Problem 1: Given two flanking obstacles in the form of
polygonal chains that are piecewise linear functions c(x) ≤
c(x) defined on a real interval I = [x0, x1], a set of endpoint
constraints, and n B-spline basis functions, compute a quartic
uniform B-spline B(x) defined on I such that

1) the B-spline B(x) satisfies the given endpoint con-
straints,

2) c(x) ≤ e(x) and e(x) ≤ c(x), and
3) the B-spline B(x) minimizes the cost function

∫
I

K ′(x)2√
1 + B′(x)2

dx ,

where K(x) = B′′(x)/(1 + B′(x)2)
3
2 is the curvature

and e(x) ≤ e(x) is the envelope of B(x) respectively.
This problem is an n-dimensional nonlinear optimization

problem with linear constraints that can be solved with stan-
dard optimization tools. One such tool is the MATLAB solver
fmincon which in this case uses a medium scale optimiza-
tion algorithm based on Sequential Quadratic Programming
(SQL)[32]. The solution gives the values of the n B-spline
coefficients and thus the optimal B-spline curve is defined.
Figure 1 shows an MVB that is a solution to a setting where

c 

e 
B 

e 

c 
 

  

Fig. 1. A computed minimum curvature variation B-spline (MVB) B with
its envelope e ≤ e between two polygonal chains c ≤ c such that c ≤ e ≤
B ≤ e ≤ c.

the B-spline is built from 10 basis functions.
This problem formulation only accounts for obstacles that

are linear functions on a room axis. These functions are here
built from connected laser point data. Such obstacles are said
to be monotone with respect to the axis in question. A setting
that can not be parameterized along a room axis in its entirety,
can be dealt with by splitting it into smaller subparts, each
of which is monotone to a room axis of its own, and then
computing a solution in each subpart. We consider the overall,
however suboptimal, solution to be formed by concatenating
the smaller ones. A problem here is to choose proper split-
points. At this instance, this is done manually.



D. Method overview

For clarity, we present a short pseudocode describing the
main computational steps performed in this paper. These steps
are taken for each path cycle comparison. Briefly, we are given
a corridor-like environment, LKAB paths with prescribed path
segment gear specifications, a cost function, a vehicle model,
and start and endpoint constraints. Then we

1) compute safety margins which gives a new and narrower
corridor environment.

2) plan an optimal MVB path which satisfies the start
and endpoint constraints. This is done by computing
the quartic B-spline function which minimizes the cost
function while at the same time has its envelope con-
tained inside the corridor. The computation technique
is nonlinear programming with linear constraints. The
result is the B-spline coefficients defining the path.

3) compute the highest possible gear for the vehicle on
each MVB path segment. This includes the computation
of possible accelerations and needed decelerations.

4) compare the MVB path cycle with the corresponding
LKAB path cycle in different manners such as traversal
time, value of the cost function, maximum curvature,
maximum derivative of curvature, and path length.

III. VEHICLE MODEL AND SAFETY MARGIN

WE use a vehicle model based on the Load-Haulage-
Dump vehicle Tamrock Toro 2500 [33]. It is an

electrical wheel loader with articulated steering. A picture of
the vehicle is seen in Figure 2. Even though it is a rough
approximation, we will consider the sweep area of the vehicle
being of circular shape when the safety margin is computed.

A. Gears, speed, acceleration, and time

The vehicle has four distinct gears depending on its elec-
trical engine. The power output to the wheels of the vehicle
is about 165kW on average. The vehicle weighs differently
depending on the ore load in its bucket. We consider an
average weight of 85 tonnes.

A mean driving speed of each gear and the mean accelera-
tion up to each gear has been measured at LKAB according
to Table I. The deceleration is 0.9 meters per second for all
gears.

Gear Measured speed (m/s) Acceleration (m/s2)
1 1.0 3.8
2 1.9 1.3
3 3.1 0.8
4 5.0 0.5

TABLE I

GEAR SPEEDS AND ACCELERATIONS.

The time it takes for a vehicle to traverse a path cycle is a
sum of the time it takes for the vehicle to traverse each path
segment. A path segment is the B-spline function between two
knots.

Each segment has a prescribed gear chosen such that it
is the highest allowed gear on the segment according to the
limits given in Section III-B. The speed over a segment can
contain an acceleration part, a constant speed stretch and a
deceleration. In tests, the constant speed is reached on every
segment. For simplicity, we assume that this is also true in
theory. If a higher gear is allowed on the next segment, an
acceleration is performed and vice versa. It is important that
accelerations are not made before entering a segment with
higher gear and that decelerations are made before entering a
segment with lower prescribed gear.

v

t

vc

vi

vt

ta ta + tc ttot

Fig. 3. Time calculation of a segment.

Let a be the acceleration, d the deceleration, and vc the con-
stant speed. Furthermore, let vi, vt, and l be the initial speed,
terminal speed, and the length of the segment, respectively. As
shown in Figure 3, the time ta = (vc − vi)/a of acceleration
and the time td = (vc − vt)/d of deceleration can be used
to compute the arc-lengths sa, sd, and sc of acceleration,
deceleration, and constant speed, respectively, through

sa =
at2a
2

+ vita, sd =
dt2d
2

+ vttd, sc = l − sa − sd.

After some computation, the total time, ttot, is shown to be

ttot = ta +
sc

vc
+ td =

(vc − vi)2

2avc
+

l

vc
+

(vc − vt)2

2dvc
.

B. Limits in maneuverability

The vehicle has limits in its maneuverability. When design-
ing paths, the steering angle α of the vehicle is limited to
|α| ≤ αmax = 38◦and the time derivative dα/dt of the steering
angle is limited to |dα/dt| ≤ α̇max = 10◦ per second.

A model of the vehicle is built from its technical specifica-
tion (Figure 4). The distance L = 2.55 meters to the joint is
the same for both the front and the rear wheels. The radius of
curvature is denoted R. The curvature K can be calculated as

K =
1
R

=
tan(α/2)

L
. (1)

Consequently each path segment must fulfill∣∣tan−1(LK)
∣∣ ≤ αmax

2
.

Let v be the velocity of the vehicle. From (1) the derivative
of curvature is given by

dK

ds
=

(1 + tan2(α/2))
2L

dα

ds
=

(1 + L2K2)
2L

dα

dt

dt

ds
,



Fig. 2. Side view of the Tamrock Toro 2500 electrical wheel loader; length: 14 meters, operating weight: 76 tonnes, and capacity: 25 tonnes.

L L

R

α

Fig. 4. Model of the wheel loader. The right part represents the front of the
vehicle.

ε

τ

C

C’

Fig. 5. The polygonal chain C′ approximates C. The minimal distance
between a point on C′ and a point on C lies between τ and τ + ε.

which gives
dK

ds
=

(1 + L2K2)
2Lv

dα

dt
. (2)

Then it is possible to isolate dα/dt and establish the bound
∣∣∣∣ v

(1 + L2K2)
dK

ds

∣∣∣∣ ≤ α̇max

2L
.

For each path segment, the gear with the highest prescribed
velocity v is chosen such that this bound still holds.

C. Safety margin

In order to account for the sweep area of the vehicle and at
the same time impose a safety distance between the vehicle
and the mine walls, we compute a safety margin. Therefore,
when we refer to a safety margin, we mean a margin that
takes into account both the sweep area of the vehicle and a
safety distance. This subsection contains a description of how
the margin is computed.

τ

C

C’

ε

Fig. 6. The polygon approximation algorithm does not guarantee a reduction
in the number of vertices of the resulting polygonal chain (dashed) when ε is
small compared to τ .

1) Safety margin problem formulation: Since we consider
the vehicle being of circular shape, we use the Minkowski
sum [23] on a polygonal chain to account for the size of
a vehicle and to impose a safety margin. The result, in
turn, needs to be a polygonal chain for use in our safety
margin optimization problem. In order to decrease the time
complexity of the path-planning, the number of vertices in the
new polygonal chain should be minimized. Our problem can
be formulated as:

Problem 2: Given a polygonal chain C construct another
polygonal chain C ′, containing no point closer to C than τ
and no point farther from C than τ + ε, having as few vertices
as possible.
A sketch of the problem is shown in Figure 5. We solve a re-
stricted version of this problem where the resulting polygonal
chain has its vertices at distance τ +ε/2 from C. Our resulting
polygonal chain is the solution to a polygon approximation
problem on β, that is a polygonal chain built from sufficiently
frequent sample points at distance τ + ε/2 from C.

2) Polygon approximation: Let d(p, p ′) be the Euclidean
distance between the points p and p′. Furthermore, let the
measure D(·, ·) between the two polygonal chains V and V ′

be defined by D(V, V ′) = maxp∈V minp′∈V ′ d(p, p′). The
polygon approximation problem is:

Problem 3: Given a polygonal chain V with n vertices and
an error bound δ, find a polygonal chain V ′, consisting of a
minimal length subsequence of the vertices of V , such that
D(V, V ′) ≤ δ.
A solution to this problem is presented by Iri and Imai [34].
They build a graph G by extending V with edges for all valid
shortcuts from one vertex vi ∈ V to another vertex vj ∈ V . A
shortcut is said to be valid if all vertices vk ∈ V , k = i, . . . , j,



are at distance less than δ from the straight line connecting
vi and vj . Finding V ′ with minimum number of vertices is
equivalent to finding the minimum number of edges in G that
connect v1 and vn. Since G is a directed and acyclic graph, this
can be done in a straightforward manner using, for example,
dynamic programming techniques.

We apply the polygon approximation solution proposed by
Iri and Imai [34] to our restricted problem by letting their
original polygonal chain V equal our sampled polygonal chain
β and their error bound δ equal ε/2, see Figure 5. Note that,
although we minimize the number of resulting vertices, there
is no guarantee for our resulting polygonal chain to have less
vertices than the original chain. A special case where a high
number of vertices is needed is seen in Figure 6.

IV. PATH CYCLE COMPARISONS

Our algorithm permits us to take two flanking polygonal
chains and produce a safety margin. From this margin, we
are able to compute, by means of its envelope, an optimal
or suboptimal obstacle-avoiding MVB path from a start to a
terminal endpoint. This is also done in previous work [30].
Now, we want to compare our paths with corresponding
paths produced in industry. The industrial paths are built
from relatively small concatenated path segments produced
entirely by hands. We use the same vehicle and time model,
see Section III, as LKAB and compare the traversal time of
MVB paths with the traversal time of the LKAB paths. The
comparison is made without taking into account any control
algorithm.

The LKAB paths are built from consecutive path segments.
Each segment is a seventh degree polynomial over a separate
room axis. This means that the LKAB path is flexible and need
not be entirely defined over a certain room axis. An MVB path
needs to be defined over one room axis only. The path becomes
a fourth degree piecewise polynomial over the particular axis.
Each piece constitutes a path segment according to Section III-
A. The idea is to have the same parametrization from initial to
terminal endpoint. If this is not possible, the path is split into
subpaths where the optimization is performed on each subpath.
This yields a suboptimal path. The LKAB path representation
is more flexible than the MVB path representation. It allows
the path to turn in any direction and each segment has more
degrees of freedom than that of an MVB path segment. The
good thing with the MVB path is that it is defined in such a
manner that it yields a smooth path from initial to terminal
endpoint.

We consider mining area 820:39 in the LKAB underground
mine in Kiruna, Sweden. This mining area is shown in
Figure 7. The figure also points out eight different path cycles,
namely a1, a2, a3, a5, a6, c1, c2, and c3. A safety margin is
computed such that it accounts for both the sweep area of the
vehicle and a safety distance. The margin is such that it is not
closer to the walls than the minimum distance from the walls
to the LKAB paths. In our setting, the safety margin lies in a
region between 2.25m and 2.35m from the polygonal chains
describing the walls of the mine.

The MVB paths are constrained to have the same position,
slope angle, curvature, and derivative of curvature at its

Fig. 7. Mining area 820:39 and cycles a1, a2, a3, a5, a6, c1, c2, and c3.

endpoints as the LKAB paths. The derivative of curvature and
the curvature are computed numerically at 300 positions along
each segment. Based on this, the highest gears possible are
chosen on each segment according to methods described in
Section III-B. The same method of choosing gears is used
both for the LKAB and the MVB paths. We accelerate and
decelerate in the same manner as LKAB and we use an average
weight – 85 tonnes – in all our computations. Acceleration and
deceleration are modelled according to Section III-A.

In order to produce an MVB path cycle, the cycle is divided
into connected subpaths that are produced from 25 B-spline
basis functions. At this instance, we have split the cycles into
paths by hands according to a scheme where a split-point is
introduced where the corridor has a slope change of more than
about 40 degrees and, if possible, in the middle of a straight
stretch of the road. This technique is thus not automated yet,
but it requires only a few steps compared to producing the
LKAB cycles, where each segment is defined by hands. For
example, in Figure 8, 4 split-points are chosen. One at each
endpoint and one on the middle of the horizontal straight
stretch.

For each path, knots are placed uniformly. For the optimiza-
tion, the MATLAB solver fmincon is used with termination
criteria tolfun = tolcon = tolx = 10−8. The computation
of function and gradient values depend on the integration
routine coteglob with accuracy 10−8 [35]. The appropriate
gears of the vehicle are chosen for each segment after the
optimization.

We choose to present only one path cycle comparison in
detail, namely the one for cycle a1; see Figure 8a. Figure 8b
shows how velocities (gears) are chosen along the LKAB and
the MVB path. Computations starts from the initial position
I in the upper left corner and end at the terminal position T
at the bottom of Figure 8a (the detour close to T is required
because the LHD-vehicle connects to an power outlet there).

From Figure 8b it is seen that the MVB path cycle is slightly
longer than the LKAB path (184.7 compared to 183.2 as seen
in Table II) but that it sustains a much higher speed during
most of the travel. Here, negative numbers means that the
vehicle is reversing and positive numbers that it is driving
forward.



(a) LKAB and MVB cycle.
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(b) Velocity over curve length comparison scheme.

Fig. 8. Cycle a1: LKAB (dotted) and MVB (solid).
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Fig. 9. Cycle a1: LKAB (dotted) and MVB (solid).

Figure 9 shows a comparison between the curvature and a
comparison between the derivative of curvature for the LKAB
and the MVB paths over path cycle a1. It is seen that neither
the magnitude of curvature nor the magnitude of derivative of
curvature of the MVB path is larger than for the LKAB path.

We get similar results for the other seven path cycles. We
present corresponding results in Table II. The columns of the
table show the following properties:

t the time in seconds it takes for the vehicle to traverse
a path from an initial to a terminal endpoint given in
seconds.

Scost the smoothness cost
∫

K̇(s)2ds over the path with
metric rad2/m3, where rad stands for radians and
m stands for meters . This is the measure of our
optimization.

Kmax: the maximal magnitude of the curvature along the
path expressed in radians per meter. Together with
K̇max, Kmax limits the speed of the vehicle.

K̇max the maximal magnitude of the derivative of curvature

along the path expressed in radians per square meter.
s the length of the path in meters.

The rows of the Table II are divided into groups depending
on what cycle they belong to. Each cycle has a row for LKAB,
MVB, and a difference in percents going from the LKAB value
to the MVB value. The very last row contains a mean of all
the percentage differences. It is seen that an MVB path is
more smooth and faster to traverse than the LKAB path at
the expense of being slightly longer. The computation time
for an optimization increases with the number of B-spline
basis functions. An optimization with 25 basis functions takes
about 30 minutes on a Pentium IV 2 GHz machine with 2 Gb
RAM memory. As seen in Figure 7, the cycles presented here
mostly consists of turns. Longer cycles also include straight
stretches. For these stretches, the benefit of using MVB paths
is not significant as they can be traversed on the highest gear.
Then, the time differences remain the same, but the relative
differences decrease. It is in the turns where the MVB paths
come to their best.



Cycle t Scost Kmax K̇max s

a1 LKAB 90.8 0.01358 0.125 0.02171 183.2
MVB 56.63 0.007523 0.1214 0.01876 184.7

Diff (%) 37.63 44.62 2.914 13.58 -0.8301
a2 LKAB 84.95 0.01369 0.125 0.02171 155.9

MVB 52.89 0.007727 0.1214 0.01876 157.3
Diff (%) 37.74 43.58 2.914 13.58 -0.8684

a3 LKAB 76.95 0.01374 0.125 0.02171 130
MVB 58.11 0.01033 0.1214 0.01885 131.6

Diff (%) 24.48 24.82 2.912 13.16 -1.245
a5 LKAB 75.7 0.01373 0.131 0.02171 129.6

MVB 54.08 0.00968 0.1214 0.01876 130.3
Diff (%) 28.56 29.49 7.365 13.58 -0.5315

a6 LKAB 82.52 0.01178 0.12 0.02171 151.8
MVB 50.11 0.007129 0.1214 0.01876 152.1

Diff (%) 39.28 39.48 -1.136 13.58 -0.2491
c1 LKAB 60.41 0.01077 0.1278 0.02194 112.1

MVB 44.06 0.005326 0.1142 0.01787 112.8
Diff (%) 27.08 50.55 10.6 18.54 -0.6826

c2 LKAB 40.3 0.004429 0.1278 0.02194 79.7
MVB 27.2 0.001884 0.1142 0.01787 80.75

Diff (%) 32.51 57.45 10.6 18.54 -1.32
c3 LKAB 42.58 0.006361 0.1278 0.02194 63.56

MVB 29.9 0.004048 0.1142 0.02188 63.42
Diff (%) 29.78 36.36 10.6 0.2729 0.2281

Mean Diff (%) 32.13 40.79 5.847 13.10 -0.6873

TABLE II

MEASURE COMPARISONS FOR CYCLES A1, A2, A3, A5, A6, C1, C2, AND

C3.

V. CONCLUSIONS AND FUTURE WORK

USING application data from the Swedish mining com-
pany LKAB, we have shown that quartic minimum

curvature variation B-splines are suitable as paths for four-
wheel Load-Haulage-Dump vehicles. In the 8 real-world cases
we have studied these smooth B-spline curves yield paths that
are faster to drive along than paths used by LKAB today. We
conclude that, the higher the smoothness, the higher the gear
and therefore, the shorter the travel time.

We are able to plan planar paths that are up to 39 percents
faster to drive along than the paths currently in use at LKAB
without increase in wear. Moreover, preliminary results from
an internal project at LKAB show an overall 5-10% increase
of the speed in which iron ore is transported out of the mine
during production. In this ongoing study they include the
entire transporation cycle (including not only transportation
but also loading, dumping, maintanence, etc). Altogether, this
shows that a minimum curvature variation B-spline constitutes
a suitable path representation if traversal time is considered.

Our computation of B-spline paths relies on the definition
of initial and terminal constraints, an a priori knowledge about
the surrounding, as well as a division of the paths in parts that
are functions along a local room axis. The choice of initial
and terminal constraints and the choice of cutting points can
be made more automatic than they are today. The placing of
knot points defining the B-splines could also be made more
automatic. Through a good choice of knot placement, the B-
spline paths would have sufficient degrees of freedom where
needed, while at the same time being fast to compute.

From a practical point of view, there seems to be a trade-off

between short travel times and high wear of the vehicle. Our
smooth paths inflict less wear on the vehicle. However, they
also makes it possible to drive at a higher speed, which in
turn increases the wear. This relation would be of interest to
investigate in order to further optimize the transporation cycle.
Also, short path segments allow high granularity in the choice
of gear since low gears need not be used for a longer time
than necessary. This also contributes to the lowering of the
travel time and is a great time benefit of the B-spline paths. In
real life, however, frequent changes of gears yield high wear
on the gearbox of the vehicle which brings down its expected
life-time. Future work should take short segments and frequent
gear changes into account. It is possible to use the method of
computing a safety margin according to the one described in
this paper. Still, the safety margin does not take the real sweep
area of the vehicle into account. This is a difficult task, but
would give a more realistic setting and in practice enable the
computation of even smoother paths. It is clear that our paths
can be applied in other contexts than mining. It would also be
of interest to investigate whether minimum curvature variation
B-splines could be computed in three dimensions and used
for smooth obstacle-avoiding path-planning in, for instance,
underwater and air space applications.
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imum variation b-spline problem,” in Int. Conf. on Geometric Modeling
and Graphics (GMAG03), London, England, July 2003.

[32] P. Gill, W. Murray, and M. Wright, Practical Optimization. Academic
Press, New York, 1981.

[33] S. Tamrock, Toro 2500 Electric Technical specification L002500E-
1, retrieved 16 Dec. 2003 from the World Wide Web:
http://www.toro.sandvik.com/.

[34] H. Imai and M. Iri, “Polygonal approximations of a curve—formulations
and algorithms,” in Computational Morphology, G. T. Toussaint, Ed.
Amsterdam, Netherlands: North-Holland, 1988, pp. 71–86.

[35] T. Espelid, “Doubly adaptive quadrature routines based on newton-cote
rules,” Department of Informatics, Tech. Rep. 229, May 2002.

PLACE
PHOTO
HERE

Tomas Berglund THIS IS STILL MISSING

PLACE
PHOTO
HERE

Andrej Brodnik THIS IS STILL MISSING

PLACE
PHOTO
HERE
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