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ABSTRACT5

The integration of quality and quantity issues in the management of water resources6

systems is key to meet society’s long-term needs for freshwater while maintaining essential7

ecological services and economic benefits. Current water management practices are mostly8

targeted towards quantitative uses and quality is usually addressed separately as an in-9

dependent problem. One of the reasons for the lack of integration lies in the inadequacy10

of optimization techniques nowadays available to cope with the large, distributed, simu-11

lation models adopted to characterize the coupled ecological and biochemical processes in12

water bodies. In this paper we propose a novel approach based on the conjunctive use of a13

batch-mode Reinforcement Learning algorithm and a 1D coupled hydrodynamic-ecological14

model to design the optimal operation of a multipurpose water reservoir accounting for both15

quantity and quality targets. We consider up to five operating objectives, including both16

in-reservoir and downstream water quality parameters, and design efficient operating poli-17

cies conditioned upon not only the current storage but also water characteristics, such as18
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temperature and total suspended solids at different depths. The approach is applied to a19

real world case study in Japan consisting of a water reservoir, Tono Dam, equipped with20

a selective withdrawal structure and used for flood protection, power generation, irrigation21

and recreational purposes. Results show that a potential control over in-reservoir and down-22

stream water quality can be gained without impairing the hydraulic capacity of the reservoir23

by effectively exploiting - through the operating policy - the operational flexibility provided24

by the selective withdrawal structures.25

Keywords: selective withdrawal systems; reservoir operation; water quality; reinforcement26

learning; optimization27

INTRODUCTION28

Dealing with a scarce resource, traditional reservoirs operating strategies are generally29

designed to meet only the quantitative demand in river basins, e.g., agricultural supply,30

hydropower production, and flood control. Water quality rarely competes with these water31

uses and is usually addressed separately as an independent problem assuming the primary32

quantity target forms constraints on the management options. As a consequence, most of the33

lakes in the world suffer water quality deterioration and sedimentation to the point where the34

primary storage functions are being impaired (ILEC 2005). Poor understandings of aquatic35

and riparian ecosystems and the lack of quantification of social and environmental objectives36

are some of the possible reasons for the inadequate development of water-quality based man-37

agement strategies, taking advantage of the close relationships and synergies between quality38

and quantity (Dhar and Datta 2008). Another, more technical reason is the lack of mathe-39

matical tools capable of effectively combining the complexity of the distributed parameter,40

physically-based models usually adopted to describe hydrodynamics and biochemical condi-41

tions of water bodies (for a review, see Ostfeld and Salomons (2005)) and the computational42

burden of rational, optimization based, decision-making (Castelletti et al. 2011).43

As reported in Dortch (1997), three are the options available to affect in-reservoir and44

downstream water quality in water systems: i) pre-treatment or control of reservoir inflows45
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(e.g., upstream settling basins, some type of watershed control or land management activ-46

ity); ii) in-reservoir management or treatment techniques (e.g., destratification, aeration,47

diluition, etc.); iii) management of reservoir outflows (e.g., controlling the outflow rate, out-48

flow location and timing or releases treatments). In this paper, we focus on the third option49

and consider the case in which the control on the outflow is performed by equipping the reser-50

voir with a multilevel intake, or selective withdrawal system (SWS), that allows releasing51

water at different depths with different physico-chemical properties (Bohan and Grace 1973;52

Davis et al. 1987; Smith et al. 1987). The obtained flexibility in the selection of the outlet53

offers advantages for more continuously meeting water quality goals, especially in reservoirs54

affected by seasonal stratification, or for responding to short term events (Gelda and Effler55

2007). SWSs were originally designed starting from the 1950s and 1960s to control the water56

temperature in the receiving river using data collected from the reservoir of interest (Nece57

1970). Then, numerical models have been developed to assist the design and evaluation of58

these infrastructures in order to predict the effects on water quality and design water quality59

targeted operation in new and existing reservoirs (Vermeyen et al. 2003).60

Water quality objectives can be broadly divided into in-reservoir and downstream ob-61

jectives. Most of the works proposed in the literature consider only downstream objectives62

and one single water quality parameter at a time. The effects of different release strategies63

for single-outlet dams have been widely studied for the control of the outflow salinity (Or-64

lob and Simonovic 1982; Dandy and Crawley 1992; Nandalal and Bogardi 1995), turbidity65

(Ikebuchi and Kojiri 1992), and specific ecological parameters as BOD, DO, or TOC (Dhar66

and Datta 2008; Westphal et al. 2003). Multi-outlet reservoirs studies concentrated on the67

problem of maintaining a desired discharge temperature (Fontane et al. 1981; Hanna et al.68

1999; Sherman 2000; Hanna and Saito 2001; Gelda and Effler 2007; Baltar and Fontane69

2008), which is key to preserve fish habitat (Vermeyen 1999) but is also an important factor70

affecting irrigation and pollution control (Fontane et al. 1981). The control of downstream71

temperature is not the only controllable variable and SWSs can be also exploited in order to72
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influence sedimentation and ecological discharge parameters (Hayes et al. 1998; Kerachian73

and Karamouz 2006).74

So far, relatively few studies have considered in-reservoir quality targets and, to the au-75

thors’ knowledge, optimization-based approaches are nearly unexplored. Ferris and Lehman76

(2007) identified the causal factors affecting algal bloom and modeled this phenomenon to77

test the possibility of influencing algal growth with few ad-hoc alternatives. A similar ap-78

proach was developed by Lee and Guy (2012) to assess the room for reducing in-reservoir79

sedimentation through outflow management. Simplifications such as the steady-state as-80

sumption were introduced to control eutrophication (Kuo et al. 2008; Huang et al. 2012).81

Alternative approaches are based on heuristic optimization algorithms, like Genetic Algo-82

rithms (GAs): Khan et al. (2012) developed a Reservoir Optimization-Simulation with Sedi-83

ment Evacuation model based on GAs to design management strategies considering sediment84

evacuation in addition to classical quantity objectives as irrigation supply and hydropower85

generation. Chaves and Kojiri (2007) adopted a Stochastic Fuzzy Neural Network approach86

to obtain a quasi-optimal solution considering both quantity and quality objectives.87

A general methodology for designing the optimal operation of SWSs considering multiple88

water quantity and quality objectives, both in-reservoir and downstream, is still needed. In89

this work, a novel approach is proposed for designing Pareto-optimal operating policies for90

SWS reservoirs. The approach exploits the feedback between the selection of outlet loca-91

tions for water quantity demand and the water quality patterns within the reservoir (Gelda92

and Effler 2007), making it possible to satisfy downstream objectives and, simultaneously,93

affect in-reservoir water quality. In particular, we adopt a Reinforcement Learning (RL) ap-94

proach combined with a 1D coupled hydrodynamic-ecological model of the lake (DYRESM-95

CAEDYM) to design Pareto-optimal operating policies conditioned upon some key informa-96

tion on the current conditions of the lake as captured by the model. Unlike simulation-based97

optimization methods (e.g., Implicit Stochastic Optimization (Labadie 2004) or Parametriza-98

tion Simulation and Optimization (Koutsoyiannis and Economou 2003)) that do not offer any99

4



performance guarantee and proof of convergence, the proposed approach is an approximation100

of traditional Dynamic Programming (DP) and as such ensures some anticipated favorable101

properties of the policy obtained (Powell 2007). More precisely, we use a batch-mode al-102

gorithm, called fitted Q-iteration (Ernst et al. 2005; Castelletti et al. 2010), that allows103

learning the operating policy offline on a sample data-set constituted of observational data104

and/or the outputs of simulated experiments. The approach offers two important features105

that make it particularly suitable for the high dimensional problem here considered: first,106

the use of simulation to estimate quantities of interest, thus avoiding model-based computa-107

tions that would make the approach inapplicable in combination with a high fidelity model108

of the water quality processes (i.e. the so called curse of modeling (Tsitsiklis and Van Roy109

1996)); second, it adopts a non-parametric function approximation (Ernst et al. 2005) of the110

value function and thus considerably mitigates the curse of dimensionality associated with111

DP based or derived approaches.112

The approach is demonstrated on Tono Dam (Japan), an artificial reservoir constructed113

for flood protection, power generation, supplying agricultural water downstream and recre-114

ational purposes. Due to the region’s climate, the lake is characterized by prolonged periods115

of stratification that negatively impact the water quality both in-reservoir and in the lake’s116

outflow. With the purpose of conjunctively controlling water quality and quantity, the dam117

was equipped with a SWS. In this study, the SWS operation is optimized with respect to118

five objectives and the Pareto frontier of the problem is computed. The operating policies119

corresponding to the extremes of the front are first analyzed in order to gain insight on the120

strategy adopted by the algorithm for each single objective separately. Then a compromise121

policy that simultaneously considers all the objectives is analized.122

The paper is organized as follows: the Tono Dam case study is firstly described, followed123

by the presentation of the methodology. Results and discussion are then reported, while124

final remarks along with issues for further research are presented in the last section.125

SYSTEM DESCRIPTION126
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Tono Dam127

Tono Dam is located at the confluence of Kango and Fukuro rivers (Figure 1a), in the128

western part of Japan. The construction works were completed in 2011. With a height of129

75 m (Figure 1b), the dam forms an impounded reservoir of 12.4 x 106 m3 (gross capacity),130

with a surface area of 0.64 km2 and fed by a 38.1 km2 catchment.131

The reservoir was primarily constructed to support irrigated agriculture, for flood control132

and recreational purposes, and is also connected to a small hydropower plant (1.1 MW133

installed capacity). Due to the region’s climate, the lake is characterized by prolonged134

periods of stratification that produce negative effects on water quality both in-reservoir135

and in the lake’s outflow. With the purpose of conjunctively controlling water quality and136

quantity, the dam was equipped with a selective withdrawal system (SWS) constituted by137

a rack of 15 vertically stacked siphons (Figure 1c) allowing to release water from the active138

storage at different depths. Siphons are operated by inflating or deflating air, and blending139

is allowed: the total amount of water released through the SWS is equally divided among140

the active siphons. Floods are only controlled using a flood orifice gate at elevation 182.8141

m a.s.l. that operates on the flood control volume. Selective release is not available in the142

sediment storage, however two more siphon gates are equipped below 156 m to release water143

in winter period (from December to March) or to release the minimum environmental flow144

in particularly dry periods, when the water level drops below the lower bound of the active145

storage. In normal conditions between April and October, the minimum environmental flow146

is guaranteed through the top 15 siphons, when the level drops below the SWS lower limit,147

the sediment outlet is activated.148

Social, economic and environmental issues149

While one of the main purposes of Tono dam operation is to provide water for irrigation,150

the SWS might have an impact on several other water uses. We distinguish between in-151

reservoir and downstream issues, the former being affected by level variations, the latter by152

the release.153
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In-reservoir154

Too low reservoir levels, which can be generated in the attempt to release water to satisfy155

agricultural water demand, can potentially reduce the recreational value of the lake. In order156

to emphasize this recreational interest, the SWS management has to consider to keep the157

lake level as close as possible to a reference level of 182.8 m a.s.l. as the normal high water158

level. This, however, implies stocking a significant volume of water in the reservoir with159

potentially negative effects both in-reservoir, e.g., boosting algal blooms, and downstream,160

e.g., water shortages.161

Odors and unattractive appearance of algal blooms can detract from the recreational value162

of the lake affecting the quality of the water stored in the reservoir. The physical processes163

driving the bloom of algae are particularly complex. However, thermal stratification has a164

dominant role. Controlling the temperature profile is a mechanical way of controlling the165

depth of nutrient load intrusion and therefore the algae bloom, which is basically sensitive to166

the available light, is stimulated by an intrusion in the layer of shallow stratificaton (Yajima167

et al. 2006). Moreover the temperature profile might vary as a consequences of withdrawing168

at different levels (Gelda and Effler 2007). Generally, the deeper the withdrawal the more169

the deepening of the thermocline. Yet, this implies releasing colder water with potentially170

negative effects downstream and might affect sedimentation in the way explained below.171

High levels of in-reservoir sedimentation can remarkably reduce the reservoir life by induc-172

ing the rapid silting of the impoundment. Sedimentation is basically driven by the inflow and173

re-suspension can be assumed as negligible considering the reservoir depth (Evans 1994). In174

particular, inflow intrusion is governed by the in-reservoir temperature profile and the inflow175

temperature because floods are more likely to intrude just above the thermocline (Yajima176

et al. 2006). Therefore, to maximize sediment evacuation, the release should be set at the177

depth at which the turbid inflow is intruding and then, if necessary, dynamically moved178

to the deeper siphons to intercept the maximum concentration of suspended solids not yet179

evacuated. Moreover, some recent studies (Yajima et al. 2006) have shown that using the180
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top siphon combined with the spillways leads the inflow to the shallower depth and facilitate181

sediment flushing from the spillway. These ways of operating the SWS might have nega-182

tive effects on the other sectors, like, for instance, the ecosystem downstream, which might183

be damaged by too warm water. Also recreation could be affected, since by keeping the184

thermocline in the shallow layer, algal blooms are more likely to occur as explained above.185

Downstream186

Farmers are interested in reducing the water supply deficit, which has a direct effect on187

the seasonal harvest and, therefore, on the annual income, which is the criterion through188

which the farmers judge the level of attractiveness of an operating policy (Hashimoto et al.189

1982).190

The riverine ecosystem downstream from the dam is potentially threatened by large de-191

viations of the water temperature from the seasonal natural patterns that might negatively192

affect faunal richness in both fishes and invertebrates (Hanna and Saito (2001) and refer-193

ences therein). According to Fontane et al. (1981) and Baltar and Fontane (2008), a simple194

and physically rooted criterion to reduce the effect of artificially induced temperature varia-195

tions is to force the outflow temperature to be as closest as possible to the (natural) inflow196

temperature.197

MATERIALS AND TOOLS198

Planning efficient operating rules for the SWS based solely on the indications reported be-199

forehand might turn out particularly difficult in this absence of quantitative references from200

the historical operation (the dam has been just constructed). Moreover, while potentially201

effective strategies can be anticipated for most of the involved issues separately considered,202

their interaction and the associated conflicts make it hard to empirically formulating ad-203

equately balanced rules. In this study, we adopt a batch-mode Reinforcement Learning204

approach to design Pareto-optimal feedback operating policies for the SWS. The operating205

policy is computed by repeatedly solving a regression problem on a data-set of one-step206

transitions of the reservoir system generated by multiple simulations of a physically-based207
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coupled hydrodynamic-ecological model of Tono Dam under different external driver and208

release decision scenarios. The procedure adopted is described in the flowchart of Figure 2209

and its building blocks are described next.210

Problem formulation211

Given the current system conditions as described by the state vector xt ∈ Rm (e.g.,212

storage, temperature, suspended solid), a daily feedback operating policy p for the SWS213

returns the volume uit = mt(xt), i = 1, . . . , n, to be released over the time interval [t, t+ 1),214

i.e. the next 24 hours, from each of the n SWS outlets and for each day t. The problem of215

designing the set of Pareto-optimal policies can be formulated as an optimal control problem216

of a dynamic system evolving according to a model xt+1 = ft (xt,ut, εt+1), controlled by a217

vector ut ∈ Ut(xt) ⊆ Rn of n feasible decisions, and affected by l stochastic external drivers218

εt+1 ∈ Rl (e.g., inflow, wind, solar radiation, nutrient load), i.e.219

p∗ = arg min
p
λ · J(p) (1)

in which J(p) = [J1, . . . , Jq] is the vector objective function and λ is the vector of weights220

with
∑q

k=1 λ
k = 1 and λk ≥ 0 ∀k. The k-th objective is formulated as the expected total221

discounted cost over an infinite horizon (see, for more details, Castelletti et al. (2008))222

Jk = lim
h→∞

E
ε1,...,εh

[
h−1∑
t=0

γtgkt+1(xt,ut, εt+1)

]
(2)

where gkt+1(·) is the k-th immediate cost function associated to each system transition and223

γ is a discount factor (0 < γ ≤ 1).224

By reformulating and solving the problem for different values of the weights λ, a finite225

subset of the generally infinite Pareto-optimal policy set is obtained (Weighting Method).226
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The DYRESM-CAEDYM model227

The characterization of the system dynamics ft(·) involves the description of the main228

hydrodynamic and ecological processes arising in the reservoir. In principle, a 3D spatially-229

distributed model (e.g., ELCOM-CAEDYM (Yajima et al. 2006)) would be the best choice in230

terms of accuracy and physically meaningful description of the involved processes. However,231

the reservoir is being created by damming two rivers in a quite narrow and steep section of232

their course and vertical phenomena are dominating. Therefore, a simpler 1D model might233

be an acceptable surrogate. By working with a 1D model, a full characterization of the234

spatial dynamics between the inlet and the outlet of the reservoir is lost, however the run-235

to-real time ratio drops off to nearly 1/12300 from the 1/30 of an equivalent 3D model. Yet,236

compared with the simple lumped models traditionally used for reservoir policy design, 1D237

models still have a very high number of state variables, which constitutes the main limitation238

for their inclusion within a classical optimization framework.239

In this study we adopted the 1D DYRESM-CAEDYM model developed by the Centre for240

Water Research at the University of Western Australia (Hipsey et al. 2006; Imerito 2007).241

The model consists of two main components: a 1D hydrodynamic model (DYRESM-Dynamic242

Reservoir Simulation Model), including a vertical distribution of temperature, salinity and243

density in a reservoir, and an aquatic ecosystem model (CAEDYM-Computational Aquatic244

Ecosystem Dynamics Model), which simulates a range of biological, chemical and physical245

processes, expressing the variables that are commonly associated with water quality (such as246

total phosphorus, total nitrogen, chlorophyll-a, etc.). The model is based on a Lagrangian247

architecture that models the reservoir as horizontal layers of uniform properties (i.e. tem-248

perature and water qualities). The thickness of the layers varies in time depending on the249

water density profile. In our model, the minimum and the maximum thickness of a layer is250

set to 1 m and 2 m, respectively, which correspond to allow the definition of more than 30251

layers in the Tono Dam reservoir. Twenty-one state variables are defined for each layer, for252

a total of nearly 600 state variables (including the level). Details on the model calibration253
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can be found in Yajima et al. (2006)254

Operating objectives255

According to the multi-objective nature of the problem, an immediate cost function gkt (·)256

is defined for each sector of interest affected by the SWS operation:257

- Level : the squared positive difference of lake level with respect to the reference level h̄ =258

182.8 m:259

glevt+1 =
(
max

(
h̄− ht+1, 0

))2
(3)

- Algal bloom: the daily average hourly maximum concentration of chlorophyll-a (Chl-a) in260

the see-through layer:261

galgaet+1 =
1

24

24∑
τ=1

max
zτ∈zE

(chlaτ (zτ )) (4)

where chlaτ is the Chl-a concentration [µg/L] at the τ -th hour of day t, zτ is the depth262

with respect to the lake surface, zE is the see-through layer depth set at 7 m below263

water surface, where the thermocline is generally formed in summer.264

- Sedimentation: the daily volume of sediment expelled with the release, which has to be265

maximized in order to reduce the silting of the reservoir and increase its expected life:266

gsedt+1 = TSSoutt+1 (5)

where TSSoutt+1 =
N∑
i=1

tssit+1r
i
t+1 + tssspillt+1 r

spill
t+1 with rit+1 [m3/day] being the volume of267

water released from the i-th siphon of the SWS, tssit+1 the average total suspend solid268

concentration [g/m3] in the corresponding layer, tssspillt+1 the average total suspend solid269

in the layer of the spillway, and rspillt+1 the actual release from the corresponding layer.270

- Irrigation: the squared water daily deficit with respect to the agricultural water demand271

wt:272

girrt+1 = βt
(
max

(
wt − (rt+1 − qMEF

t+1 ), 0
))2

(6)
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where rt+1 is the total release from the dam (including SWS and spillway), qMEF
t+1273

is the minimum environmental flow, and βt is a time-varying coefficient taking into274

consideration the different relevance of the water deficit in different periods of the years.275

In particular, the immediate cost is elevated to the square to favour operating policies276

that reduce severe deficits in a single time step, while allowing for more frequent, small277

shortages, which cause less damage to the crop. This ensures that vulnerability is a278

minimum (Hashimoto et al. 1982).279

- Temperature: the squared difference between the inflow and outflow temperature (as in280

Fontane et al. (1981) and Baltar and Fontane (2008)):281

gtempt+1 = (T outt+1 − T int+1)2 (7)

where T outt+1 is the average temperature in a section just downstream of dam outlet282

and T int+1 =
TKt+1a

K
t+1+TFt+1a

F
t+1

aKt+1+aFt+1
with TK and T F being the average temperature [◦C] of the283

inflow respectively in the Kango and Fukuro rivers, and aKt+1 and aFt+1 the corresponding284

flows.285

Batch-mode Reinforcement Learning286

To solve Problem (1) in this work we adopt a batch-mode Reinforcement Learning (RL)287

algorithm called fitted Q-iteration (Ernst et al. 2005; Castelletti et al. 2010). The fitted288

Q-iteration (FQI) combines RL concepts of off-line learning and functional approximation of289

the value function, from which the policy is derived, using tree-based regression. The optimal290

operating policy is determined on the basis of experience samples previously collected from291

the system or simulations thereof, i.e. a variety of system conditions experienced by the292

system under different combinations of release decisions and external driver realizations293

with the associated resulting immediate costs. Strictly, such experience is represented as a294
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finite data-set F of tuples of the form < t,xt,ut, t+ 1,xt+1, gt+1 >, where295

gt+1 =

q∑
k=1

λkgkt+1 (8)

The underlying idea of FQI is to replace the recursive solution of the Bellman equation by296

DP with a sequence of non-linear regressions over the data-set F (see, for further details,297

Castelletti et al. (2010)) with the purpose of obtaining an approximation of the optimal,298

but uncomputable, DP solution.299

State reduction300

Although FQI alleviates the curse of dimensionality, it can handle no more than few301

dozens of state variables, while the 1D DYRESM-CAEDYM model embeds several hundreds302

(about 600). To combine the 1D model and FQI, a reduction of the state vector dimension303

is unavoidable. The original state vector xt is transformed into a smaller vector x̃t ∈ Rm̃,304

with m̃ << m, such that x̃t is still significant in conditioning the release decision, but makes305

the control problem computationally tractable. The FQI will then work on a new data-306

set F̃ , containing the reduced state vector x̃t instead of xt. Both formal (see the review by307

(Castelletti et al. 2012)) and empirical (expert based) approaches can be adopted to perform308

such reduction: the former are mainly based on Dynamic Emulation Modeling (DEMo)309

(ibidem), the latter exploit domain knowledge to identify the most interesting variables to310

be considered.311

Setting the Experiments312

In this section we describe the main assumptions made and the modeling solutions313

adopted to apply the above methodology to the Tono Dam case study.314

Decision Variables315

The SWS was planned to allow releasing at different depths and, possibly, blending water316

volumes with different physicochemical characteristics. This is reflected in our model by two317

decision variables: u−3 is the volume to be releases at 3 meters below the water surface, u−13
318
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at 13 meters. In both cases, the decision is defined with respect to the water body surface319

(see Figure 1b). These water depths should correspond, respectively, to the epilimnium and320

the hypolimnium of the stratified reservoir (Yajima et al. 2006). The vector of the decision321

variables ut = [u−3
t , u−13

t ] is defined over a feasibility set Ut(xt) that takes into account322

which outlets are available given the current storage, the physical constraints imposed by323

the siphons, and the SWS characteristics (Figure 1c). Precisely, each siphon cannot convey324

more than 7.353 m3/s, while the maximum flow rate allowed through the SWS outlet is325

13.780 m3/s. The water volume released through each siphon cannot be freely decided, but326

depends on the total amount released from the SWS, which is hydraulically equally divided327

among the open siphons. When more than one siphon is opened, each siphon cannot be328

operated at the maximum capacity.329

State Variables330

Reasonably, not all the state variables in the 1D DYRESM-CAEDYM model are equally331

relevant in the causal network linking the release decisions, and thus the operating policy,332

and the objectives. Some of them have little or no effect in conditioning the policy and333

can be removed. In this study, we used an expert-based approach to reduce the original,334

large dimensional state vector to a lower order vector x̃t including only 5 state variables, all335

having a direct effect on the value of the objectives. These are the reservoir’s level ht, the336

temperature T it and the total suspended solid TSSit in the 1D model layer corresponding to337

the controlled outlet (with i=-3; -13). Observe that, since the controlled siphons depends338

on the position of the lake surface (Figure 1b), also the corresponding state variables are339

defined according to the same moving reference.340

Learning data-set341

The learning data-set F̃ was constructed by running simulations of the 1D DYRESM-342

CAEDYM model over the period 1995-2006 (calibration period) under 100 different release343

scenarios generated pseudo-randomly with the aim of exploring the reduced state-decison344

space as more homogeneously as possible. The resulting data-set F̃ is composed by 437,800345
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tuples, a dimension which can be hardly managed by the FQI algorithm as its computational346

complexity grows more than linearly with the number of tuples #F̃ (i.e. #F̃ · log(#F̃)).347

A resampling was then performed by trial-and-error to reduce the number of tuples thus348

obtaining a reduced data-set of 4378 tuples which represents a good compromise between the349

computational requirements and space-decision space exploration. The resampling procedure350

preserves the decision frequencies of the large data-set and, therefore, also the homogeneus351

exploration of the state-decision space.352

Benchmark353

Since Tono Dam was under construction at the time this paper was being prepared, there354

was not historical reference for the resulting Pareto-optimal operating policies. However, a355

release scenario is available for the period between 1990 and 1999. In a former study, the dam356

construction authority (Japanese Ministry of Land, Infrastructure and Tourism) concluded357

that 7 m depth withdrawal between April and October and 28 m depth withdrawal (the358

lower of the two siphon gates in the sedimentation zone) between November and next year359

March is the desirable SWS operation for Tono Dam. Therefore this operational scenario is360

assumed as a benchmark to evaluate the Pareto-optimal operating policies computed in this361

paper. Since it is partially overlapping the calibration period (1995-2006), only the first 5362

years from 1990 to 1994 (validation period) have been considered in the comparison. The363

performances of the benchmark with respect to the five considered objectives are reported in364

Table 1. Actually, two objectives are reported for the irrigation sector: the first one, which365

is considered in the optimization, is the daily quadratic water deficit defined in eq. (6);366

since the physical meaning of this immediate cost is hardly interpretable, a second objective367

defined as the daily water deficit along the year is reported to support policy evaluation, but368

it is not considered in the optimization. It is worth noting that the benchmark operation369

assumes the irrigation as the main objective and, indeed, the daily water deficit is nearly370

insignificant (0.028 m3/s). Consequently the room for further improvements of this objective371

is limited.372
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RESULTS373

In this section the operating policies obtained by solving Problem 1 for 50 different374

combinations of the weights are evaluated through simulation (dashed path in Figure 2)375

over the period 1990-1994 (validation period). Results are evaluated in three steps: first,376

the approximate 5D Pareto-front is analyzed to explore trade-offs, conflicts, and correlations377

among the objectives; second, the extremes points of the front, i.e. the policies obtained378

by setting to zero all the weights in eq. (8) but one, are considered to assess the individual379

SWS operation strategies; third, the Pareto front is explored in order to find out possible380

interesting compromise solutions between the five conflicting objectives.381

5-D Pareto front382

The 5-D Pareto front is represented through projections in the space of the algae and383

sedimentation objectives in Figure 3 and Figure 4. In particular, Figure 3 shows that the384

best performing alternatives with respect to algae and sedimentation (in the bottom-left385

part of the figure) negatively impact on the level objective (very small circles): the opti-386

mal operation for the first two criteria tends to release large amount of water to flush out387

both nutrients and sediments producing a drawdown of lake level. As anticipated, algae388

and sedimentation objectives are only partially conflicting (bottom-left part of the figure):389

sediment evacuation is maximized by keeping the thermocline in the shallow layer, which is390

a favorable condition for algal blooms too. The best alternatives for algae performs fairly391

well also with respect to the temperature objective (blue circles) and, therefore, these two392

objectives seem to be not in conflict. Also observe that all the Pareto-optimal alternatives393

significantly outperform the performance of the benchmark with respect to the algae objec-394

tive. Moreover, the benchmark is poorly performing with respect to sedimentation and level395

objective. Finally, the benchmark performance on the temperature objective is intermediate396

with respect to the range of variability obtained with the Pareto optimal alternatives.397

The performances of the irrigation objective are reported in Figure 4 against sedimen-398

tation and algae (this latter can be considered as representative also of the temperature, as399
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explained above). The best performing alternatives on algae (temperature) and sedimenta-400

tion correspond to high values of irrigation deficit (yellow circles), meaning that the first401

three objectives are also conflicting with irrigation. Some interrelations exist between irri-402

gation and level in the top-right part of the figure corresponding to negative performances403

on algae (temperature) and sedimentation. So, two groups of conflicting alternatives can404

be identified: on one side, possible compromises between level and irrigation, on the other405

side, compromises between algae, temperature, and sedimentation. A slight improvement in406

the objectives of the first group produces a significant worsening in the performances of the407

second group and vice-versa.408

Pareto front extremes409

In Table 1 we compare the optimal single-objective policies mapping into the extreme410

points of the Pareto front, obtained by setting to zero all the components of the weights411

vector (λ = |λlevλalgaeλsedλirrλtemp|), but the one corresponding to the objective considered.412

The associated policies are named accordingly (e.g., the extreme policy for level plev is413

obtained by setting λ = |1 0 0 0 0|). The performance is evaluated as the improvement414

with respect to the benchmark, which is the current best available solution. Results show415

that the SWS operation has a considerable impact on all the water-related issues considered416

and all the optimal policies significantly outperform the benchmark. Not surprisingly, the417

room for improvement on the irrigation sector is quite limited since this objective was the418

primary target considered in designing the benchmark policy. The analysis of the release419

strategy adopted by the individual policies is useful to validate the behaviours we prefigured420

in the description of the main issues involved in the problem (see above). In what follows,421

we therefore evaluate the different policies by analyzing the temporal pattern of the main422

variables (Figures 5-9). We do not analyze pirr in detail as it is almost equivalent to the423

benchmark.424
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Level425

The improvement obtainable with policy plev with respect to the benchmark is significant:426

a high and constant lake level is highly conflicting with the release of water for other uses,427

particularly for irrigation in dry years, which is the target of benchmark operation. The428

system controlled with this policy behaves in a quite easily interpretable way (Figure 5b):429

the optimal policy plev tries to keep the lake at the constant level of 182.8 m a.s.l. (37.8 m430

from the bottom) by keeping the release at a minimum.431

Algal bloom432

The improvement obtained by policy palgae over the benchmark is remarkable (a daily433

average of nearly 4.7 µg/L of Chl-a), meaning that the SWS operation might positively434

impact algal blooms. Without constraints on the reservoir level, blooms are controlled by435

increasing the release in spring/summer (Figure 6b), when algal blooms are more likely436

to occur, thus flushing away water volumes with high Chl-a concentration. The resulting437

reservoir levels are generally lower than those produced by the benchmark (Figure 6a) and438

follow the natural inflow pattern. In other words, the reservoir capacity is not exploited and439

the reservoir follows a river-like behaviour.440

Sedimentation441

The improvement of policy psed on the benchmark is less significant than with policy palgae442

and plev. Yet, the SWS operation seems to affect also the silting of the reservoir. Again, the443

behaviour of the system controlled by policy psed follows the inflow dynamics: without any444

constraint on lake level or penalty on wasting water, the optimal policy suggests to release445

the inflow in order to flush out the maximum amount of sediments. This is evident when446

comparing the inflow and total release patterns (Figure 7b). Furthermore, releasing the447

inflow produces two favourable conditions: first, low lake levels reduce the retention time of448

the reservoir and, therefore, prevent in-reservoir sedimentation, as also observed by Lee and449

Guy (2012). Second, since the sediments tend to intrude along the thermocline (Yajima et al.450

2006), which means that the highest TSS concentration is found around the thermocline, the451
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optimal policy moves the temperature profile so as to have the thermocline in correspondence452

of one of the two depths where the release can be performed. As shown in Figure 7c, the453

optimal policy maintains, on average, the thermocline around 13 m depth, while with the454

benchmark policy the thermocline is constantly deeper, generally deeper than 13 m from the455

surface, and so is not able to release the same amount of sediments as psed because sediments456

are trapped in the uncontrollable region of the reservoir. The TSS concentration profiles for457

the benchmark and policy psed for a small flood event are shown in Figure 8a-b: after the458

flood event of January 9-10, policy psed is able to release more sediment and to reduce the TSS459

concentration in the lake by adopting a more effective release strategy than the benchmark.460

The benchmark in January releases only from the outlet at 28 m depth according to the rule461

defined by the dam construction authority. On the contrary, the strategy adopted by policy462

psed (Figure 8c) first releases at -3 m in order to keep the thermocline shallower (Gelda and463

Effler 2007) and, then, opens the -13 m siphon in order to actually release the sediments.464

Temperature465

Lake level dynamics under policy ptemp follow a nearly periodic pattern (Figure 9b), with466

values constantly lower than the benchmark (Figure 9a) generated by higher releases. With467

this strategy, the optimal policy is able to stabilize the thermocline between 5 and 10 m depth468

(Figure 9c) and to exploit blending between the two controlled siphons to generate the same469

temperature as the inflow. The benchmark follows a different and less effective strategy470

by maintaining the lake at higher levels. As a consequence, in summer the thermocline471

decreases at 13 m depth or deeper and blending can not be exploited to meet the target472

temperature of the outflows since the water has the same temperature at the two controlled473

depths. Probably, a further release decision variable at 7 m depth (which is the average474

depth at which the thermocline is located during the stratification) could make it easier to475

intercept the intruding inflow and, therefore, to further reduce the difference between the476

inflow-outflow temperature. This will be the subject of subsequent research.477
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Pareto front compromises478

In this section, we analyze one policy (policy p5 in Table 2 and Figures 3-4) particularly479

interesting in terms of balance of the different objectives, which thus constitutes a strong480

candidate to be the final compromise solution in a real policy making context. Obviously,481

this is a subjective evaluation by the authors and the real Decision Maker (DM) might482

prefer different alternatives. However, the aim of this analysis is to show that there is room483

to design compromise policies outperforming the benchmark and of practical interest. As an484

example, in Table 2 we also report the performance of other two alternatives showing slightly485

different trade-offs among the objectives but still good candidates as best compromise.486

As shown in Figure 10, policy p5 really represents a possible interesting compromise487

solution among the five conflicting objectives: although there exist some better alternatives488

for each objective, which however are dominated on the other objectives, policy p5 balances489

all the considered objectives. Indeed, the presence of multiple objectives allow to obtain490

very good performances (bottom part of the figure) only on few, non-conflicting objectives491

which are identified by horizontal lines. However, these solutions negatively impact on the492

remaining objectives, graphically represented by oblique lines. It is worth noting that the493

conflicts previously identified between the two groups of objectives (algae, sediment and494

temperature on one side and level and irrigation on the other one) are particularly evident495

in Figure 10 looking at the high number of crossing lines between temperature and level.496

Among the set of alternatives, policy p5 represents instead a possible compromise as it497

is almost an horizontal line, meaning that the satisfaction of the five objectives is almost498

equivalent.499

The SWS operating strategy of policy p5 (Figure 11) is a mix of the different Pareto500

extreme policies which tries to consider all the objectives and, depending on the period of501

the year, it focuses on different objectives as shown in Figure 12. This copromise strategy502

is also evident looking at Figure 13: following palgae, psed and ptemp, policy p5 activates a503

drawdown cycle in summer by increasing the release, while it stores water in the winter and504

20



early spring period to satisfy the level and irrigation objectives.505

CONCLUSIONS506

Despite the recent progress in the design of optimal planning and management strategies507

for water resources systems, most of the studies reported in the domain literature deals with508

quantitative objectives only, e.g., agricultural supply, hydropower energy production, and509

flood control. However, a really sustainable operation should also consider water quality510

targets. This paper illustrates a novel approach to design optimal operating policies for511

water reservoirs equipped with multiple outlet release schemes which optimize quantity and512

quality objectives both in-reservoir and downstream.513

We combined a 1D physically-based description of the hydrodynamic and ecological pro-514

cesses taking place in the lake with a batch-mode Reinforcement Learning algorithm to515

design quasi optimal release strategies conditioned upon an augmented state including not516

only the current storage but also water characteristics, such as temperature and total sus-517

pended solid at different depths. The use of a batch-mode approach makes it possible to518

combine simulation experiments conducted with a high fidelity physically-based model and519

the guarantees on the policy optimality property offered by Dynamic Programming family520

methods, which is particularly useful in a complex, many-objective context with no historical521

reference for the operation.522

The application to Tono Dam case study shows that the operation designed with the523

proposed approach outperforms the current best available solution on all the objectives in-524

dependently considered but also produces compromise policies that considerably improve the525

water quality objectives in-reservoir and downstream at the cost of a very small, practically526

negligible, reduction of the irrigation supply. For example, with the examined compromise527

policy the improvements in the algae, sedimentation and temperature objectives with respect528

to the benchmark are equal to 42%, 14% and 5% respectively, while the worsening of the529

irrigation objective is equal to 15%. However, given the strong conflict between the level530

objective and the water quality interests, favoring these latter produces a significant decrease531
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in the level objective performance, i.e. from 35.9 m2 to 120.9 m2.532

Future research will concentrate on increasing the number of controlled siphons to im-533

prove operation flexibility: allowing the release at more different depths should make it534

possible to open the siphons at the point with the maximum sediment concentration, as535

well as to do blending depending to the thermocline position. Further improvements on the536

methodological ground can be achieved by: i) substituting the original high fidelity model537

for a lower order dynamic emulator (Castelletti et al. 2012); ii) adopting Active Learning ap-538

proaches (Rachelson et al. 2011) to improve the simulation-based exploration of the system539

behavior and generate an equally informative data-sample with lower dimensionality and so540

lower associated computational cost, but also potentially improved performance; iii) using541

projections method (e.g., principal component analysis (Galelli et al. 2011)) to aggregate542

interrelated objectives thus allowing a more dense Pareto front approximation and the use543

of visualization technique to jointly explore the decision and the objective space (Kollat and544

Reed 2007).545
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TABLE 1. Performances of the Pareto front extreme policies. The gray shaded
objective was not directly considered in the optimization.

Sector Description Unit of Measure Benchmark Policy Improvement
Level daily quadratic positive (m)2 35.9338 0.0195 35.9143

difference w.r.t. the reference

level of 182.8 m a.s.l.

Algae daily average maximum µg/L 6.8133 2.1293 4.684
concentration of Chl-a in

the see-through layer

Sedimentation daily volume of sediment g/day 2.8102 · 106 2.8699 · 106 5.97· 104

expelled with the release

Irrigation daily quadratic water (m3/day)2 6.9408 · 107 6.5449 · 107 3.959 · 106

deficit modulated by β

Irrigation (2) daily water deficit m3/s 0.0280 0.0270 0.001
along the year

Temperature daily average quadratic (◦C)2 4.3818 2.5143 1.8675
difference of temperature

between inflow and outflow
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TABLE 2. Performances of three interesting compromise alternatives. The gray shaded
objective was not directly considered in the optimization.

Policy [weights] Level Algae Sedimentation Irrigation Irrigation (2) Temperature
(m)2 µg/L g/day (m3/day)2 m3/s (◦C)2

p5 [.33 .13 .0001 .2099 .33] 120.9102 3.9351 3.2093· 106 7.9648 · 107 0.0374 4.1692
p5a [.35 .10 .0001 .1999 .35] 151.2584 3.3330 2.7721· 106 7.7229 · 107 0.0348 3.6647
p5b [.31 .15 .0001 .2299 .31] 111.6356 4.1838 3.0261· 106 7.5715 · 107 0.0346 4.2691

Best case 0.0195 2.1293 3.8376· 106 4.0183 · 107 0.0177 2.2275
Worst case 322.6452 6.8133 2.4509· 106 14.2593 · 107 0.0504 12.4755

30



List of Figures674

1 Tono Dam location in Western Japan (panel a), the main characteristics of675

the reservoir with the decision variables adopted in this study (panel b), and676

the schematization of the SWS structure (panel c). . . . . . . . . . . . . . . 33677

2 Schematization of the procedure adopted. The black line is the optimization678

workflow, the dashed line is evaluation via simulation of the optimal operating679

policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34680

3 Projection of the 5D Pareto front in the objectives space algae-sedimentation;681

circles size is proportional to the logarithm of the level objective (the bigger682

the circle, the better is the alternative); colors provide the temperature ob-683

jective. The irrigation objective is not represented. Policy p5 represents a684

possible compromise alternative. . . . . . . . . . . . . . . . . . . . . . . . . . 35685

4 Projection of the 5D Pareto front in the objectives spacealgae-sedimentation;686

circles size is proportional to the logarithm of the level objective (the bigger687

the circle, the better is the alternative); colors provide the temperature ob-688

jective. The temperature objective is not represented. Policy p5 represents a689

possible compromise alternative. . . . . . . . . . . . . . . . . . . . . . . . . . 36690

5 Water surface level (black line), inflow (blue line), and the total actual release691

(red line) produced by the benchmark in panel (a) and policy plev in panel (b)692

over the validation period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37693

6 Water surface level (black line), inflow (blue line), and the total actual release694

(red line) produced by the benchmark in panel (a) and policy palgae in panel695

(b) over the validation period. . . . . . . . . . . . . . . . . . . . . . . . . . . 38696

7 Water surface level (black line), inflow (blue line), and the total actual release697

(red line) produced by the benchmark in panel (a) and policy psed in panel698

(b) over the validation period. Panel (c) reports the thermocline depth for699

the same alternatives over the validation period (the dotted lines represent700

the average depth). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39701

8 TSS concentration profiles for a small flood event in January 1990 for the702

benchmark in panel (a) and policy psed in panel (b). The black line represents703

the thermocline and the green lines represent the positions of the controlled704

outlets (3 and 13 m depth). Panel (c) shows the outlets operating strategy705

for policy psed in the same period. . . . . . . . . . . . . . . . . . . . . . . . . 40706

9 Water surface level (black line), inflow (blue line), and the total actual release707

(red line) produced by the benchmark in panel (a) and policy ptemp in panel708

(b) over the validation period. Panel (c) reports the thermocline depth for709

the same alternatives over the validation period (the dotted lines represent710

the average depth). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41711

10 Representation of the performances of policy p5 (red line) with respect to all712

the other alternatives. For illustration purposes the objectives are standard-713

ized (zero mean and unit standard deviation). . . . . . . . . . . . . . . . . . 42714

11 Water surface level (black line), inflow (blue line), and the total actual release715

(red line) produced by the benchmark in panel (a) and policy p5 in panel (b)716

over the validation period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43717

31



12 Comparison of the cyclostationary means (over the validation period) of the718

immediate costs gkt (·) between policy p5 and the single-objective policies. . . 44719

13 Cyclostationary mean (over the validation period) of the lake levels for differ-720

ent policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45721

32



(a)

(b)

Japan Sea

Tottori
City

Sendai
River

Tono dam

0 4000 m20001000

N

S

EW

Fukuro river

Kango river

spillways

u-3

u-13

h
sed

h

h
spill

(c)

FIG. 1. Tono Dam location in Western Japan (panel a), the main characteristics
of the reservoir with the decision variables adopted in this study (panel b), and the
schematization of the SWS structure (panel c).

33



external 
drivers

release
generation

1D DYRESM 
CAEDYM

fitted
Q-iteration

post
processing

expert-based
state reduction

objectives

optimal decisions

FIG. 2. Schematization of the procedure adopted. The black line is the optimization
workflow, the dashed line is evaluation via simulation of the optimal operating policy.
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FIG. 3. Projection of the 5D Pareto front in the objectives space algae-sedimentation;
circles size is proportional to the logarithm of the level objective (the bigger the circle,
the better is the alternative); colors provide the temperature objective. The irrigation
objective is not represented. Policy p5 represents a possible compromise alternative.
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FIG. 4. Projection of the 5D Pareto front in the objectives spacealgae-sedimentation;
circles size is proportional to the logarithm of the level objective (the bigger the
circle, the better is the alternative); colors provide the temperature objective. The
temperature objective is not represented. Policy p5 represents a possible compromise
alternative.
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FIG. 5. Water surface level (black line), inflow (blue line), and the total actual release
(red line) produced by the benchmark in panel (a) and policy plev in panel (b) over the
validation period.
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FIG. 6. Water surface level (black line), inflow (blue line), and the total actual release
(red line) produced by the benchmark in panel (a) and policy palgae in panel (b) over
the validation period.
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FIG. 7. Water surface level (black line), inflow (blue line), and the total actual release
(red line) produced by the benchmark in panel (a) and policy psed in panel (b) over the
validation period. Panel (c) reports the thermocline depth for the same alternatives
over the validation period (the dotted lines represent the average depth).
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FIG. 8. TSS concentration profiles for a small flood event in January 1990 for the
benchmark in panel (a) and policy psed in panel (b). The black line represents the
thermocline and the green lines represent the positions of the controlled outlets (3
and 13 m depth). Panel (c) shows the outlets operating strategy for policy psed in the
same period.
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FIG. 9. Water surface level (black line), inflow (blue line), and the total actual release
(red line) produced by the benchmark in panel (a) and policy ptemp in panel (b) over the
validation period. Panel (c) reports the thermocline depth for the same alternatives
over the validation period (the dotted lines represent the average depth).
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FIG. 10. Representation of the performances of policy p5 (red line) with respect to all
the other alternatives. For illustration purposes the objectives are standardized (zero
mean and unit standard deviation).
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FIG. 11. Water surface level (black line), inflow (blue line), and the total actual release
(red line) produced by the benchmark in panel (a) and policy p5 in panel (b) over the
validation period.
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FIG. 12. Comparison of the cyclostationary means (over the validation period) of the
immediate costs gkt (·) between policy p5 and the single-objective policies.
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FIG. 13. Cyclostationary mean (over the validation period) of the lake levels for
different policies.
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