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Planning UMTS Base Station Location: Optimization
Models With Power Control and Algorithms

Edoardo Amaldi, Antonio Capon&lember, IEEEand Federico Malucelli

Abstract—Classical coverage models, adopted for second-gen-criterion [1], [3], [4]. In the coverage planning phase, BSs are
eration cellular systems, are not suited for planning universal mo- placed so that the signal strength is high enough in the area to be
bile telecommunication system (UMTS) base station (BS) location served [5]-[9]. This step only makes use of propagation models,

because they are only based on signal predictions and do not con- h for inst Hata’ del. t dict the si R |
sider the traffic distribution, the signal quality requirements, and such as for instance Hata's model, o predict the signal levels

the power control (PC) mechanism. In this paper, we propose dis- (S€€, €.g., [10]). In the frequency planning phase, a set of chan-
crete optimization models and algorithms aimed at supporting the nels has to be assigned to each BS [11], [12], taking into account

decisions in the process of planning where to locate new BSs. Thesehe traffic requirements and the service quality measured as the
models consider the signal-to-interference ratio as quality measure signal-to-interference ratio (SIR).

and capture at different levels of detail the signal quality require- . . s .
ments and the specific PC mechanism of the wideband CDMA air With  the wideband code-division multiple access

interface. Given that these UMTS BS location models are nonpoly- (W-CDMA) air interface of UMTS, this two-phase ap-
nomial (NP)-hard, we propose two randomized greedy procedures proach is not appropriate mainly because the bandwidth is
and a tabu search algorithm for the uplink (mobile to BS) direction  ghared by all active connections and no actual frequency
which is the most stringentonq from the traffic_point of view in_the ssianment is strictly required. The access scheme allows for a
presence of balanced connections such as voice calls. The differenfSS'9 i y q ) ;
models, which take into account installation costs, signal quality more flexible use of radio resources and the capacity of each
and traffic coverage, and the corresponding algorithms, are com- cell (e.g., the number of connections) is not limitecpriori
pareq on familieso_fsmallto large-size instances generated byusingby a fixed channel assignment as in TDMA systems, but it
classical propagation models. depends on the actual interference levels which determine
~ Index Terms—Code-division multiple access (CDMA), optimiza- the achievable SIR values. As these values depend on both
tion algorithms, optimization models, planning, power control yraffic distribution and BS positions, BS location in UMTS
(PC), universal mobile telecommunication system (UMTS). .
networks cannot only be based on coverage but it must also be
capacity driven [3]. Indeed, interference levels are functions
|. INTRODUCTION of the emitted powers which, due tomower control (PC)
mechanism, depend on the mobile station positions. Since the

ITH THE extraordinary success of mobile communica-

tion services, service providers have been affording hu gwer available for transmission is limited, mobile stations
' ,ﬂlat are far away from the BS may not reach the minimum

investments for network infrastructures. Due to the high co ' ) )
and the scarcity of radio resources, an accurate and efficisht When the interference level is too high. Therefore, the area
mobile network planning appears of outmost importance. Wigiftually covered by each BS is heavily affected by the traffic
the rapid growth of network size and number of users, efficiefltstribution and its size can vary when the interference level
quantitative methods to support decisions for base station (B¥)janges (this is the so-calleell breathingeffect). It is worth
location have become essential. This need is now even mgéfaphasizing that, since interference levels depend both on the
acute with the advent of third-generation systems, such as u#finnections within a given cell and on those in neighboring
versal mobile telecommunication system (UMTS), due to tteglls, the SIR values and the capacity are highly affected by the
increased complexity of the system and the number of paranti@ffic distribution in the whole area.
ters that must be considered [1]-[3]. The planning phase of cellular networks usually takes as

The problem of planning second-generation cellular systerimgut the following kind of information related to the service
adopting a time-division multiple access (TDMA)-based acceasea: 1) a set of candidate sites where BSs can be installed;
scheme has usually been simplified by subdividing it into 2) the traffic distribution estimated by using empirical pre-
coverage planning problem and a frequency planning problefiction models; and 3) the propagation description based on
which are driven by a coverage and, respectively, a capacifyproximate radio channel models or ray tracing techniques.

The main purpose of planning is then to select the sites where
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propose and investigate discrete optimization models aimedadtere P,...iveq 1S the received power of the signdl,, is the
supporting the decisions in the process of planning where to total interference due to the signals transmitted by the same BS
cate new BSs. Our models differ in how closely they capture tiatracell interference)l,,; that due to the signals emitted by
peculiarities of the signal quality constraints and the PC medie other BSs (intercell interference)is the orthogonality loss
anism of the UMTS W-CDMA air interface. The focus here i§actor(0 < o < 1), andy the thermal noise power. In the uplink
on the uplink direction (mobile to BS), which turns out to be thease, no orthogonality must be accounted for and 1.

most stringent one from the system capacity point of view in the Since the quality of the received signal, usually expressed in
presence of full-duplex balanced connections such as voice c#gns ofbit error rate, mainly depends on the SIR, itis common
(see, e.g., [13] and [14]). Models for the downlink direction art® consider quality constraints requiring that the SIR exceeds a
presented in [15] and [39]. minimum valuer which may vary according to the communi-

In Section II, we discuss the main radio network pIannir;%’ition service considered (voice, video, packet data, etc.). For
issues pertaining to UMTS BS location and comment dh€ sake of simplicity_, in the sequel, we refer to the minimum
previous work. In Section IIl, we propose and analyze mathe!R Pefore despreading 88Ri, = 7/SF.
matical programming formulations of this general problem for A Simplified and commonly adopted model [20] assumes that
the W-CDMA setting considering the two most common way{€ interference due to the neighboring c¢lls,) can be ex-
to model the PC mechanism. In Section IV, we describe thr@&rﬂessed as a fractighof the interference due to the other trans-

heuristics: randomized greedy and reverse greedy procedJFB§S'ons in the same cell, so that the SIR can be expressed as

as well as a tabu search (TS) algorithm. Computational results Preceived

obtained with realistic instances are reported and discussed in SIR = SF In(1+ f) @
Section V. Finally, Section VI contains some concluding re-
marks. Preliminary versions of part of this work were present

in [16] and [17].

ere the thermal noise is omitted since it is assumed to be
much smaller than the interference. This simplified model is ac-
curate when the traffic distribution among cells is homogeneous,
while it is inappropriate in all the other cases where the contri-
II. RADIO PLANNING ISSUES FORUMTS bution to intercell interference is different for each cell. Values

. . . , _ . of finthe 0.3-0.5 range are usually considered.
UMTS [18] is the third-generation mobile communication

system standardized by ETSI, the European Telecommuniga-PC and Capacity Constraints
tions Standard Institute, and is also considered by ITU (Inter-
national Telecommunication Union) among the standards f0]:

the International Mobile Telephone standard 2000 (IMT-200 urn depend on the transmitted powers and the attenuation of the

family. radﬁio link between sources and receivers. According to propa-

Ont? cri: tihebtwo daccne?i/ ?S:Arzesntg Re usend n dti\r/]ie iaisljgég on conditions, the transmitted power can be adjusted by the
spectrum 1S based on - a equency-divisio >C mechanism so as to minimize interference and guarantee

lexing. The main characteristic of CDMA is its flexibility in . . .

tphe usge of radio resources. In particular, there isar‘prio)r/i quality. Two PC mechamsms are commonly con3|dered5 one
limit on the number of sim I.taneo S conn’ect'ons or cell hab sed on the received power and the other one on the estimated
clalac't ) asu ith TDM,IA : stemsu and resol rces are d (na IR. Inthe first one, the transmitted power is adjusted so that the
capacity) as wi  Systems, u YNalver received on each channel is equal to a given target value
|gally a§S|gned accordmg to interference .Ievels an.d trg rarget- SiMilarly, in the second one, the transmitted power is
dISt.I’IbUtIOh (soft capan) [13]. However, this f:learly |mpI|esS t so that the SIR is equal to a target ValIByy.ge;. The

an increased complexity in the network planning process apﬁ er mechanism, adopted for UMTS dedicated channels [18]
more involved access control procedures. Ad hoc planning ailgdI ' '

L : more complex since the power emitted by each station de-
optimization strategies for the CDMA technology are, thu . - L
needed to actually exploit this additional flexibility [3]. %ends on that emitted by all the others, but more efficient since it

. . : ’ . Il for th fl 21]. Therefore, f lan-
Spreading codes used for signals transmitted in downlink ows for the use of lower powers [21]. Therefore, from a plan

Mg prospective, assuming a power-based PC mechanism in-
the same BS are mutually orthogonal, while codes used forsi%‘gp pectve, Lming a pow 'sm !

As mentioned above, the SIR depends on the received powers
the considered signal and of the interfering ones. These in

nals emitted by different stations (base or mobile) can be cons ead of an SIR-based one leads to a conservative dimensioning
' ydi : ( lle) ihich may allocate more radio resources than necessary.

ered as pseudorandom due to the scrambling sequence [19]. Both in the case of power-based or SIR-based PC mecha-

an ideal environment, the despreading process performed atﬁ $s, the transmitted powers are adjusted considering some
receiving end can completely avoid interference of orthogo '

; . wer limits. In particular, a limit on the maximum power used
signals and ret_;luc_e that of_nonorthogonal ones bya_[dneadlng for each radio channel must be considered both for uplink and
factor(SF), which is the ratio batween the spread signal rate a&&mnlink. Moreover, for the downlink case only, a constraint on
the user rate. In wireless environments, due to multipath PrARs total power emitied by the BS must be addéd. Therefore. the
agation, th? interference of grthpgonal signals cannot be COl%ual power emitted on a channel is the minimum between ,that
pletely avoided and the SIR is given by provided by the PC mechanism and the maximum value.
From a planning point of view, the effect of the power bounds
Preceived and SIR constraints is to limit the capacity of the system. In

SIR = SF ol + Lowt + 1 @) the presence of power-based PC, as new users are added to the
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system, the SIR values of all the other users decrease until one [ll. BS LOCATION MODELS

falls below the lowest acceptable quality |e#R min. No ad- §ince, to the best of our knowledge, some crucial issues of

ditional user can then be served. In the presence of SIR-bage planning problem for CDMA-based UMTS networks have

PC, signal quality is guaranteed by keeping the SIRs at a CoI; : : ;
t yet been captured, we propose and investigate different
stant target valuSIR arget > SIRmin. When new users are y P brop g

dded. th L red to k the SIR mathematical programming models for the UMTS BS location
added, the emission powers required 1o keep the S equaﬁl@blem that account for intercell interference in the SIR con-

SIRtarger INCrease until the power limit is exceeded and, henc aints and for the PC mechanism. As previously mentioned,
the SIR falls below the target value. In both power-based a focus here is on the uplink direction with power-based as
SIR-based cases, the capacity is affected by user positions %ﬂ as SIR-based PC mechanism

propagation conditions. Indeed, the capacity depends on the M this work, we make two simplifying assumptions. First, we

terference generat_ed by user-BS transmissions which, in tu Qsume that each connection is assigned to a single BS. There-
depe_nds on_t_he emitted POWETS, \.Nh'Ch are str(_)ngly related t_o ?e, we do not explicitly account for soft-handover which al-
relative positions and the radio link propagation factors. Sin Exs a mobile terminal to be simultaneously connected with a

each user-BS transmission generates interference not only irgg,? of BSs. It is worth noting, however, that our assumption is

own cell but also toward all the other cells, itis as if each userigh the conservative side from a planning point of view since

volved in a connection “absorbs” a fraction of the capacity fro@oft-handover tends to increase the SIR values. A simple way

all BSs. to account for this feature is that of including an additional
margin on the SIR constraints (i.e., of selecting a loSI&,,,;,,).

B. Related Work Second, we assume that the number of available spreading codes
is higher that the number of connections assigned to any BS.

Classical coverage optimization models do not consider SHfgjs assumption is clearly satisfied in the uplink direction since

constraints but only constraints on the received power levelstiere s a very large number of nonorthogonal cddes.
the service area. In [22], the traffic distribution is described by

means ofdemand nodewhich represent the center of an area_ gasic Model

characterized by a given traffic demand (usually expressed mConsider a territory to be covered by a UMTS service. As-

Erlang). Using the demand node characterization, the coverage . .
9) ~sing . L ) ' . spme that a set afandidate sites = {1,...,m} where a BS
problem is then defined by considering the signal level in eag . s ; . .

. . can be installed, is given and that an installation egss as-
node from all BSs and requiring that at least one level is above

a fixed threshold. A common objective of the optimizatio sociated with each candidate sjigf € 5. A set oftest points

is that of finding th llest set of BS X IPs)I ={1,...,n}is also given. Each TPe I can be con-
process 1s that ot finding e smafiest set o S COVENNG diyered as a centroid where a given amount of traffiin Er-

demar_1d nodes (_see, €.g., [6] and [7]). In [23] and [24]’_traﬁ|8ng) is requested and where a certain level of service (measured
capacity constraints are also added for each BS. A differeqtye s of SIR) must be guaranteed [6]. The required number
coverage model is adopted in [5], where the position of trangr gimytaneously active connections for TRdenoted byu;,
mitters is s.ellec.ted from continuous three—dlmenspnal SPagfns out to be a function of the traffic demand, iwe. = o(dy).
so as to minimize the sum of path losses of the links t0 afhe actual definition of the function is a degree of freedom
receivers. of the planning process. It can simply correspond to the average
A few recent works address network planning problems feiumber of active connections or to the number of simultaneous
CDMA systems and, in particular, for UMTS. However, someonnections not exceeded with a given probabjityrhe con-
of them still rely on a classical coverage approach: In [25], igection activity factor can be considered as well.
simple model based on the minimum dominating set problem isThe propagation information is also supposed to be known. In
considered while in [26], the traffic capacity is also taken intparticular, lety;;,0 < g;; < 1 be the propagation factor of the
account and the resulting classical capacitated facility locatiesdio link between TR, 1 < 7 < n and a candidate sitg1 <
proach is adopted: A maximum independent set of verticesdstimated according to approximate propagation models such as
searched for in a graph in which vertices represent candid¢hese proposed by Hata or to more precise but computationally
sites and edges correspond to pairs of sites whose BSs wadulgénsive ray tracing techniques (see, e.g., [10]).
have coverage areas with too much overlap. In the W-CDMA UMTS BS location problem, one wishes
In [28], a simplified model for locating BSs in CDMA-based!o select a subset of candidate sites within theSsethere to
UMTS networks, which partially takes into account interferinstall BSs, and to assign the TPs to the available BSs taking
ence, is proposed and a polynomial time approximation scheifit9 account the traffic demand, the signal quality requirements
is presented. However, only intracell interference is considerédterms of SIR and the installation costs.
Wh||e the Crucia' aspect of the interference among BSs (inter_l_et us define the two fO”OWing classes of decision variables:
cell one) is neglected. As we shall see in Section IlI-A, even
if the intercell interference is assumed to be a nonzero fraction
of the intracell interference, in the uplink case, each interference
constraint amounts to impose a simple upper bound on the MaX, the downlink direction, where at most SF orthogonal codes are used, stan-
imum number of active connections with the corresponding B&ard cardinality contraints can be easily added to the model.

~_ J 1, ifaBSisinstalled inj
Yi = 0, otherwise
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forj € S and it is equal toP;..ee¢ and the quality constraint amounts to im-
posing an upper bound on the numBef’_, u;z;; of connec-

T = { 1, testpoint is assigned t®S tions that can be assigned to that BS [20]. Specifically, we have

0, otherwise

fori € I andj € S. The core of the basic integer programming Z”‘I’U < SIRL +1. (10)

model that we propose for the uplink case is the classical unca- P in(1+ f)

acitated facility location model .
P R For the typical valueg = 0.4, SF = 128 andSIRarget = 6 dB

L LR 1 used in the literature, we obtain an upper bound of 23.97 on
. Z ¢y + A Z Z i ;j‘”ii () the maximum number of connections that can be served by any
=1 =1i=1 single BS. Thus, for each candidate site S, the signal quality
subject to constraints can be rewritten as
Swy=1, iel 4 > wiwi; < 23y;. (11)
j=1 =1
Ti; <y;, 1€, j€S (5)  The resultingoasic modelwhich amounts to
Tij, Y5 6{071}7 LEI/JGS (6) m n m 1
The first term in the objective function corresponds to the nllnzcjyj + A;;“i%x'ij (12)
J= i=1j=

total installation cost. Sincg/g;; is proportional to the power

emitted from TP: when assigned to B$, the second term subject to
aims at favoring assignments which require a smaller total m
emission powerd > 0 is a tradeoff parameter between these Z w=1, i€l (13)
two objectives. Constraints (4) make sure that each; ¥ = ’

assigned to a single BS. Constraints (5) impose that TPs are

only assigned to sites where a BS is installed. Note that by zij < min{L gis P } yi, i€l,jes (14)
restricting the assignment variables; to take on binary . target
values, it is required that in every feasible solution, all active Z““’” <23y;, jeS (15)
connections must be assigned to a single BS. A
To account for the power limit on the user terminals, we need wisy; €{0,1y, i€l jeS (16)
to include, for each pair of TPise I and candidate sitg € S, ' o
the following constraint: falls within the class of standard capacitated facility location
P problems which have been extensively studied in the opera-
’g'fs"xij < Praxy; (7) tions research literature (see [29]). Note that to obtain a for-
)

mulation which does not involve the variables; such that
where Py is the maximum emission power abtlarget/gi;  Jij Pmax/Prarger < 1, it suffices to proceed as follows. For each
corresponds to the emission power required by a mobile statibR 4, let S; C S denote the set of all candidate sites to which
in TP to guarantee the target received powfer,,.. at sitej. TP can be assigned to while respecting the power lifjit..
Note that ifg; ; Pmax/ Prarger < 1, the TPi cannot be assigned to Symmetrically, for each candidate sjielet I; C I denote the
candidate sitg due to power limits, and therefore, the variableet of all TPs; that can be assigned jowhile respecting the
z;; can be omitted from the model. Otherwise, constraint (7) gower limit. Then replace the summation oversalicandidate
implied by the corresponding constraint (5). sitesj in the second term of the objective function (12) and in
The fundamental aspect to be taken into account is the qualignstraints (13) by a summation ovgy, and the summation
of the signal received by each BS. As mentioned in Section @iyer all» TPs in constraints (15) by one ovg&y. Finally, sub-
the simplest way to express the quality constraints is eithergtitute all constraints (14) by;; < y; forall € I andj € S;.
neglect the intercell interference or to consider that it amounts toUnfortunately even medium-size instances of these nonpoly-
a given fraction of the intracell interference as given in formulaomial (NP)-hard capacitated location problems turn out to be
(2) for nonzero values of the parameferFor each connection, out of reach of state-of-the-art optimization algorithms. But,
the quality constrain§IR > SIR..;, can then be rewritten as even more importantly, the capacity constraints (15) do not cap-
ture the distinctive features of the W-CDMA technology and,

SFM > SIRin (8) as we shall see in Section V-A, in most cases the above basic
Tin(1+ 1) model provides meaningless solutions.
which is equivalent to

B. Enhanced Model With Power-Based PC

iz I‘_ < SR ~Sfl ot 9) To make the model more realistic, intercell interference needs
received i to be considered explicitly and independently from intracell in-
Considering a power-based PC mechanism, the power receitefierence. The use of pseudorandom spreading codes implies
P,eceivea @t BSj from each mobile station in a TP assigned tthat, for a specific uplink connection between TBnd BSj,
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there is no significant difference in the two types of interfefFhus, theenhanced modghssuming a power-based PC mech-

ence. In other wordsy = 1 in the SIR formula (1) and for each anism, amounts to the following nonlinear mathematical pro-

connection, the quality constraint amountsRQceivea/(lin + gram:

Iyt + 1) > SIR i, WhereSIR ;, = 7/SF is the minimum

SIR before despreading. - \ o~ 1 19
In the presence of a power-based PC mechanism, the thermal i Zl i+ Z Z uigT]-‘Eij (19)

noisern is omitted as in the other works focusing on this type =

of PC mechanism (see, e.g., [20]) and for each candidate sjifhject to (20)—(23), shown at the bottom of the page, where, for
J € S the signal quality constraint can be expressed as followsach pair of TR in 7 and candidate sitgin S, constraints (21)
corresponds to the most stringent constraint among (5) and (7).
As mentioned in Section IlI-A for the basic model, a formulation
—~ — > SIRmin¥; involving only the variables:;; such thaw; ; Pmax/Prarget > 1
Doh=1 UhGhj D=1 %xht — Prarget can be obtained by using appropriate summationSeasd/;.
a7 To tackle this problem with state-of-the-art mixed integer pro-
gramming (MIP) solvers like CPLEX 7.0 [30], constraints (18)
and, hence, (22) can be linearized as follows:
wherePa.,e¢ is by definition the power received from each as-
signed TP. It is not difficult to verify that constraint (17) en- m
forces that, if a BS is installed in sifee S (i.e.,y; = 1), the L+ M(1 - y;) > STRmin (Z Z”h
SIR value inj must exceed the give$IR...;,,. For any single h=11=1

connection assigned to the BS located in gitehe numerator ., o large enough value dff. Indeed, constraint (24) amounts

of the left-hand-side term is the power of the relevant signal rg; (18) wheny; = 1 and, due to the value a¥/, it is always
J ' !

ceived inj while the denominator amounts to the total interfersatisfied wheny; = 0. In the linearized version of the enhanced

ence due to all other connections. Indeed, the double summatiggye| the nonlinear constraints (22) are replaced by the corre-
term expresses the total power received at giteom all TPs sponding inequalities (24).
h € I, from which the received pOw&Pi.... Of the relevant "t js \yorth emphasizing that constraints (22) and (24) are al-

signal is substracted. More specifically, for any TRhe quan- yays satisfied whep; = 0, regardless of the way the TPs are
tity Ptarget/gne @MoUNts to the emission power required atilP ysgjgned to the BSs, and when= 1, these constraints can be
to guarantee areceived power valugf... atsitet. Note that, | ociated as

sincey_;” , xn: = 1, the only term of the inner summation (over o m

indext) that is nonzero corresponds to the site to whichhTi® ~ 1

actually assigned. Thus, if this site is denoted @), the outer Z Z Ohelhe < SI ' (25)

summation can be rewritten 38, _, ungn; (Prarget [ 9ht(ny) '

whereg; (Prarget/gni(n)) is the power received at sijefrom  Here, we defin&z{Lt = uy, — 1 for one of the TPh assigned

TP h anduy, is the number of connections required from IP to BS j anda;, = w, for all other TPs assigned to BS For

Clearly, the contribution to the outer summation of anyfil&s- all TPsh assigned to other BSs, we haVe< a}, < uy. This

signed to sitgg amounts tQuy, Piarget SINCEGh; = Ghi(h)- is clearly in contrast with standard capacity constraints arising
Multiplying both sides of the inequality (17) by the denomin classical capacitated facility location problems that can be

inator of its left-hand side and dividing the left and right sidegxpressed, whep; = 1, as

by Piarget, We obtain for each candidate sjte= S the bilinear

i=1 j=1

Ptarget

n
h

gy — 1) (24)

Ihj
9ht

he1 t—=1 min

constraint Zdhl'hj <s; j=1,...,m (26)
h=1
1> STRyiny; Z Z”h 9hj g —1). (18 where the “demand,, of “client” h does not depend on the
N T\oo 9w “facility” to which “client” h is assigned (there is no summa-
S omiy=1, i€l (20)
j=1
i 'Pmax . .
Tij gmin{Lg]i}yj, 1el,jes (21)
target
n o m ghj 1 )
Y up, o —1] < , JES 22
” (2 Sl ) e @
zij,y; €{0,1}, i€l j€S8 (23)
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tion on the second subscript of thevariables) and, for each whereSIRarget > SIRmin. Note thatp; g;; is the power of the
“facility” j, the constraint only involves the “clients” assignedignal received at B$ from TP . If TP 4 is assigned to site
to it [29]. In the context of the UMTS BS location problem, itisj (i.e., z;; = 1), this third-order nonlinear constraint makes
as if each TH: “absorbs” part of the capacity of every BS andure that the SIR level of the corresponding connection is high
not only that of the BS it is assigned to. Moreover, the amount ehough. Unlike in the power-based PC case, in this context, the
capacity requested from Bfdepends on the “distance” (gain)thermal noise, is usually included to guarantee convergence of
between TH, and BSj, as well as on the “distance” (gain) be-the closed-loop PC mechanism used in real systems [21].
tween TPh and the BS to which it is assigned. Thus, theSIR-based PC mode&mounts to the following
By analyzing the quality (SIR) constraints (17), one can emixed mathematical program:
tablish a simple butimportant property of the underlying assign-
ment subproblem of the BS location problem [31]. m n.m
Property: Given any set of active BSS C S and setl of min Y ey +AY Y uipizi (28)
TPs, only assignments of TPs to “closest” active BSs need to be J=1
considered, where “closeness” is meant in terms of the required
emission power. subject to (29)—(33), shown at the bottom of the page, with bi-
This derives from the fact that if any one of the TPs is ndtary variables;;; andy; as well as real variablgs. Note that,
assigned to one of its “closest” BSs, the SIR level at each actilike in the power-based PC case, there is here a signal quality
BS can only increase when that TP is reassigned to a closer B@1straint (31) for each pair of THn I and candidate sitgin
Thus, the UMTS BS location problem under consideratiof, and obviously only those with;; = 1 are relevant.
turns out to be substantially different from standard capacitated ) o
facility location problems, where, for any given set of activ®- Different Planning Objectives
BSs, the optimal assignment is not knoarpriori and needs  Although the generic objective function proposed in (3) (and
to be determined. the corresponding (12), (19), and (28) in the three models) takes
_ into account the installation costs and the total emission power;
C. Model With SIR-Based PC the appropriate choice depends on the specific planning objec-
Assuming a more sophisticated SIR-based PC mechanitwes. According to the traffic requirements and distribution, the
yields a more involved mathematical programming model sincember of candidate sites and their locations as well as the mo-
the emission poweyr;, required to connect each TR I to the bile station maximum power, the signal quality constraints (15),
candidate site it is assigned to, must be considered as an exp(i2®), and, respectively, (31) can be infeasible. In real-world in-
variable. Indeed, if TR is assigned to sitg, p; is not taken to stances where traffic patterns are based on short-to-mid term
be equal toP;..ee/gij, SO @s to guarantee a given prescribepredictions, it is likely that the system will be required to serve
received power,.,..; for every active connection. In the pres-all traffic. On the other hand, when traffic patterns are based on
ence of an SIR-based PC mechanism, the emission power valoaeg-term predictions, a multiperiod network planning strategy
p; can be freely selected provided they do not exceed the ma®sn be adopted [32] and, in the first stages, one has to cope with
imum emission poweP,, .. and that the SIR level of each activesolutions that do not cover all traffic. In this case, it is reasonable
connection is not lower than a prescrilsi® ... Besides the to aim also at maximizing the fraction of traffic that is actually
n new power variableg;, the core model is then as in (3)—(6)served. This can be achieved by relaxing the assignment con-
except that in the second term of the objective functigp;;  straints (13), (20), and, respectively, (29)
is replaced by the actual emission powerTo account for the
power limit on the user terminals, constraints (7) are replaced m
by 0 < p; < Puax. Moreover, for each pair of TP € T and Ziﬂu <1, i€l (34)
candidate sitg € S, the signal quality constraint is now j=1

i=1 j=1

Digij > STRiarger i sonas to allow some TPs not to be assigned. The additional term

D h=1 UnGhj Dpeq PhTht = Digij + 1 i1 ui Yoy wi; can then be included in the objective func-
(27) tion with an appropriate negative weight parameter.

»omij=1, i€l (29)

j=1
Tij <yj, 1€I,jJ€ES (30)

- < pigi; . .
Tij <Z UhGhj thl'ht — Ppigi; + 7]) SSIR ]_ , 1€I,j€S8 (31)
h=1 t=1 i

LijsYj 6{07 1} (AS [7 J €S (32)
0 Spi S Pma)u 1 €1 (33)
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IV. HEURISTIC ALGORITHMS In the randomized reverse greedy algorithm (Remove), BSs
Since the UMTS BS location models proposed inthe previo%e removed iteratively Startir.]g frofa= 5. Given the currenF
section contain the uncapacitated facility location problem a ag.S , for eagh candidate s!t,ee 5, the apove procedure is
special case, they turn out to be NP-hard. To obtain good plied to5 {; }.so as.tp obtaln_corr espondirgindy vectors.
proximate solutions within a reasonable amount of computi en, the following utility function is evaluated:
time, we have first devised greedy and reverse greedy random- _ n m m
ized procedures (see [33]) that construct a solution (i.e., asubset U (SUj) = > Y upzn — w »_ ey + vF(x) (36)
of candidate sites where to activate BSs) by iteratively adding h=1 t=1 t=1
or, respectively, removing BSs from the current solution. TS al- re F(x) is the sum, over all BSg that have so far been
gorithms have also been developed for the power-based as WeWF ' A X
as SIR-based PC models Installed, of the number of additional connections they could
. . ) . rvice, namely, of A;/Pia.get], WhereA; is defined as the
We first describe the algorithms for the power-based P fflerence between the current SIR a§iR.... » > 0 is the
T e s e fhresponding wagh. At each teaton i s ancoly
value for each BS. Moreover, in this setting all connections fc,oelected among the, fraction of those that yield the largest

. . val fU,., where th ram i - < 1. As for th
a given BSj have the same SIR level, denoteddiR ;. Given alue ofv ere the parametgr. 1s 0 < p, < s for the
. . X J dd procedure, the Remove procedure stops when the removal
any set of active BSs, if all traffic requests can not be covere

. . L of another BS worsens the current solution value according to
the central procedure of our algorithms aims at satisfying th lity function U,
.

largest fraction of demands [see the relaxed constraints (SZB Given the randomized nature of the Add and Remove pro-

This subproblem amounts to a special case of the multidimen- : ; X .
. R h I ly | I
sional knapsack problem which is difficult (NP-hard) to solv(e:edures and their relatively low computational requirements, a

optimally [34]. Since in our context good solutions are needé"aultlstartstrategy is adopted. Specifically, the greedy procedure

) . IS run a predefined number of times and the best solution found
in a short amount of time, we proceed as follows. d

Given a sefS of active BSs, each TP is first assigned to one
of_ its “closest” BSsj in S. Th_en, TPs aSS|gned to _actlve BS . TS Algorithm
with SIR; < SIRmi, are considered by nonincreasing value o ) o )
emission powets; P;..qe: /¢;; and deleted one at a time until all TS is ametaheuristichat guides a local search procedure
active BSs have an SIR of at le&8R ;. to explore the solution space of optimization problems beyond
Thus, TPs which cause higher interference are first deleti@§al optima. The idea is to use the history of the search process
while the number of BSs affected by the deletion is not consiHirough an appropriate memory scheme to prevent cycling (run-

uring all the runs is returned as output.

ered. ning into feasible solutions that have already been generated)
and to explore regions of the solution space that are promising in
A. Randomized Greedy Procedures terms of the objective function. The modern TS paradigm goes

back to the seminal work by Glover [35], [36] and is extensively
discussed in [37].
The basic ingredients of a general TS strategy can be de-

In the first randomized greedy algorithm (Add), BSs ar
added iteratively tcS starting fromS = . At each iteration

there is a current st C 5 of sites (possibly empty) in Wh'Chdsa(igbed as follows. Starting from an initial feasible solutiSn

BSs have already been installed. For each remaining candi 1%t of neighboring solution (s°) are generated by applyin
sitej € S\ S, the above assignment procedure is then applieqS 9 9 S 9 Y applying

J H « » +.0 . :
t0 $ U {j} so as to obtain a corresponding vectar The a set of possible “moves” te”. Then the best solution in the

I & o . “neighborhood”N (s°) is selected as the next iterateeven if
characteristic vectoy of subsets'u j C S is simply defined it does not strictly improve the value of the objective function
asy; = 1forallt € SU{j} andy; = 0, otherwise. For each y Imp )

of these potential solutions, specified by the set of active sit%g,?}the process is repeated to generate a sequence of solutions

S U {j} and a corresponding paix,y), the following utility

function is evaluated: In order to prevent cycling and to try to escape from local op-

tima a list of “tabu moves” is maintained. The purpose of this

i Ui list is to forbid the opposite move that has been made at a given
Z UhTht — W Z eyt (35) step for a certain number of iterations. A move that is added to

=1 the list remains tabu for a number of iterations that corresponds
where the first term amounts to the fraction of traffic that is cute the lengthl, of the list. According to the “aspiration criteria,”
rently covered and the second one expresses the total costétwu moves can be clearly made if they lead to an improved so-
installing the BSs in the sites selected so far. The tradeoff gation. The best solution encountered is stored as the algorithm
rameterw,w > 0 allows us to assign higher priority to max-proceeds and it is returned after a maximum number of itera-
imize the first objective than to minimize the second one. Atons max;;. max;; and L are two parameters of the method.
each iteration, ong’ € S\ S is randomly selected among theNot surprisingly, the efficiency and performance of a TS proce-
pa fraction of those that yield the largest valuelgf, wherep,  dure strongly depend on the way the moves are defined and how
is a given parametdr < p, < 1. The procedure stops whenwell they exploit the actual structure of the problem at hand.
the addition of a new BS worsens the current solution value ac-As an initial solution, we consider the set of active BSS S
cording to utility functionU,,. provided by the Add or the Remove procedures together with

n

U.Suih =3

h=1t=1

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 24, 2009 at 22:44 from |IEEE Xplore. Restrictions apply.



946 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 2, NO. 5, SEPTEMBER 2003

an assignmeng of the TPs to their closest active BS, wheneonstraints (27) in the variablesp;, a solution satisfies all of
ever they are served. Note that the current solution is in a setisem with equality. Assuming that TPs are assigned to closest
fully characterized by the sé& C S of active BSs. Besides theactive BSs, the system can then be simplified by reducing the
add andremovemoves used in the randomized greedy proce&umber of variables as well as the number of equations. Indeed,
dures, we do also defirmvapmoves that amount to installing for each given active B$, the equations corresponding to all

a new BS in one of the empty sites while deleting one of thEPsi assigned to B$ are equivalent when considered as func-
active BSs. Exploring all possible swap moves for any giveions ofp;g;;. Denoting the power received from any such:TP
current solution would, of course, be very time consuming ev@yp;- = p.gi;, the single equation associated to eaah S can

for small-size instances. But, due to the actual structure of the rewritten as

problem, it is reasonable to focus on swaps between candidate P}
sites that are relatively “close” to each other. For each active BS —; p— ; = SIRtarget-  (37)
j, we initially consider the set C S of max,..., available sites 2h=1UhGhj 2= g Tht = Py )

that have the largest propagation gains with respegatul that  The size of the resulting system is, thus, equal to the number of

are in a sense the best candidates for a swapy beta param- active BSs which is at most and usually much smaller than the

eter such tha < ¢ < 1. The swaps involving thenax.y., -¢ numbem of TPs. This size reduction plays an important role in

best sites inC' are systematically evaluated, while those correénaking our algorithms applicable to the more accurate model.

sponding to the remaining available sites(inare considered Given the assignment and the solutiorp’ of the the above

with a given probabilityy’, 0 < ¢’ < 1. system, the emission power at the TPs are derived by setting
The objective function used to guide our TS algorithm is thg, = P}/ 9ij if pi < Prax and, otherwisep; = Prax.

utility function U,. given in (36). As to the implementation of the

tabu list, BSs that are installed (disactivated) cannot be disacti- V. COMPUTATIONAL RESULTS

vated (reinstalled) durind. iterations. Although this imposes To evaluate the performance of the proposed algorithms, we

stronger restrictions on the search process than just aVOidhnaQ/e considered synthetic but realistic uplink instances gener-
considering solutions that have already been generated, we hatve y P 9

observed that it provides better experimental results. Indeed,"“ogd by using Hatas propagatpn model [.38]' For each instance,
we consider a rectangular service area with dimensiordV,

reducing the size of the neighborhood examined at each itera: . o . -
. . . a numberm of candidate sites in which to locate omnidirec-
tion, one allows the algorithm to explore a larger region of tr}e .
. - 1onal antennas, and a numbeof TPs. Using a pseudorandom
solution space. The ability of a local search procedure to exploan ber generator each candidate sied each TRis assianed
solution-space areas far away from each other is usually referfed D 9en . candiaate s . g
. P a position with uniform distribution in the service area. The ma-
to as diversification [37]. A . : . : i i
) . . . . . trix G is obtained by using Hata’'s formulas which give the at-
In the experiments described in Section V, TS is applied |n . : : : ?
. . . . enuationA (loss) in decibels due to signal propagation. In par-
two different settings. On the one hand, TS iterations are used . 0
. . ticular, the attenuation for urban areas is given by
in a multistart Add or Remove context as a local search pro-
cedure to improve the solutions obtained with each one of the A, = 69.55 + 26.16 log(F') — 13.821log(H,;)
ten runs.of the greedy method. Specifically, 200 iterations of TS —[(1.11og(F) — 0.7)Hy, — (1.56 log(F) — 0.8)]
are applied after each one of the ten runs of Add or Remove and 44.9 — 6.55 low( FV loe d 38
the best solution encountered is returned. On the other hand, the +[44.9 — 6.5 log ()] log (38)
same total number of iterations of TS, namely 2000, are carrigthere I is the signal frequency in megaherfz, andH,, are
out starting from a single initial solution provided by Add or Rethe heights of the base and the mobile station in meters] &nd
move. Note that the advantage of Remove to generate a starttngdistance in kilometers, while the formula for rural areas is
solution is that it allows for automatically checking whether all 9 .
traffic demands can be satisfied. Ap = Ay — A.78[log(F)]” +18.33 log(F) — 35.94. (39)

) Clearly g;; = 1/104(di3)/10, whered;; denotes the distance
C. Extension to SIR-Based PC Model between TR and candidate sitg.

Although in the SIR-based case assigning TPs to closest BS¥Ve considered three families of uplink instances with a ser-
is no longer guaranteed to yield the best possible SIR values, vige area of 40 400 m, 1x 1 km, and 1.5«< 1.5 km, respec-
make this simplifying assumption which reflects a conservativively. Different instances of these families are obtained using
point of view in the sense that there might exist assignmentstbe pseudorandom generator. Two gain matriGesre consid-
TPs to active BSs involving a smaller number of active BSs oresied for each configuration using the urban and the rural Hata's
lower total installation cost. Note that, from a planning point dormulas with
view, delving |r_1to such details doe_s not seem appropriate since H,=10m, H, =1m, F =2000MHz. (40)
the actual assignments used during operation are dynamically
determined by the access procedure. Small-size instances are characterized by a service area of

Given a current set of active BSSC S and an assignment 400x 400 m,m = 22 candidate sites; = 95 TPs, andy; = 1
x, to compute the emitted poweps it would be necessary to for all TPs: € I. Medium-size instances are characterized by a
solve the system composed of constraints (27) for each actservice area of X 1 km, m = 120, n = 400, andu; uniformly
connection between TP and BS together subject to the bouuiisgtributed in{1,2,3} for all i € I. Large-size urban (LU)
on the maximum power. Since the resulting system containgnstances are characterized by a service area ot 1.5 km,
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TABLE |
ResuLTS OBTAINED WITH ADD, REMOVE (p. = p» = 0.3), MULTISTART TS AND SINGLE-RUN TS FOR SMALL -SU AND RURAL (SR)
INSTANCESWITH m = 22,n = 95,u; = 1. FOR EACH ALGORITHM, FROM LEFT TO RIGHT: MINIMUM NUMBER OF BSS NSTALLED,
THE AVERAGE NUMBER AND THE STANDARD DEVIATION OVER 50 RUNS

I Add I Remove [[ multistart TS (A) [[ multistart TS (R) | TS
SU-1 5 | 580 | 0.85 4 | 5.22 | 0.46 4 | 4.62 0.49 4 | 4.42 0.49 4
SU-2 5 | 5.22 | 0.41 4 | 474 | 0.44 4 4 0 4 4 0 4
SU-3 4 | 532 | 0.58 4 | 5.08 [ 0.74 4 | 4.02 0.14 4 4 0 4
SU-4 5 | 6.72 | 0.96 5 | 5.58 | 0.64 5 5 0 5 5 0 5
SU-5 4 | 5.06 | 0.54 4 | 490 [ 0.30 4 4 0 4 4 0 4
SR-1] 5 | 574 060 4534065 4450 050 || 4] 444] 049 || 4
SR-2 4 | 5.16 | 0.50 4 | 472 | 0.45 4 4 0 4 4 0 4
SR-3 4 | 5.18 | 0.51 4 | 4.72 | 0.49 4 | 4.02 0.14 4 4 0 4
SR-4 5 | 5.60 | 0.90 5 | 5.34 | 0.62 5 5 0 5 5 0 5
SR-5 4 | 5.04 | 0.45 4 | 5.02 | 0.37 4 4 0 4 4 0 4

m = 200,n = 750, andu; uniformly distributed in{1, 2} for
all 7 € I. Finally, all instances have uniform installation costs
namelyc; = cforall j € S.

The remaining parameters have been selected as f -
lows: SF = 128 andr = 4 (s0 thatSIR,;, = 0.03125),  © - e W o
SIRtarget = 6 dB, Pmax = 30 dBM, Piarger = —100 dBm. In
all the experiments reported hete= 1/(c m) andv = 1/m?,
which imply that in the utility functions (35) and (36), the flrst'-'n
term has higher priority than the second term and that in (3§
the second term has higher priority than the third one. «

A. Shortcomings of the Model With Simplified SIR Formula

The first computational effort aimed at comparing the sim
plified power-based PC model (i.e., the basic model (12)—(1
with only the relevant variables;;) with the enhanced power-
based PC model (19)—(23) in which intercell interference
explicitly considered. Setting = 0.4 and the other parame- 5 14 15 19 20
ters as mentioned above, in the simplified model the maximu... BS identifier
number of users per BS, is bounded above by 23.97 and, hence, ()
it is at most 23. The resulting models for the small instances
have been solved to optimality by using CPLEX 7.0 MIP solve ~ -125
[30]. In all cases, the simplified model activates 5 BSs (whic
corresponds to the lower bound, sirf%¢g 23 is about 4.1) while
the optimal solution of the enhanced model always activat
just four BSs.

To evaluate the quality of the solutions yielded by the smm ~130
plified model, we consider the active BSs and the assignme’s
of TPs specified by the optimal solution provided by CPLEXE
and we compute the SIR value of each BS using a power- ba z
PC mechanism as well as the power received by each BS u'~‘§
an SIR-based PC mechanism. Typical results obtained for oneg
the small instances of Table | [instance small-size urban (SU-:
are reported in Fig. 1. SIR values and received powers are gi
for each of the five active BSs. Note that in the power-bast
PC setting, the power received is constant, while in the Sl a0 _ _
based setting the SIR is constant. In the power-based setti 5 14 15 19 20
SIR values often exceed the minimum level required to gue. 8BS identifier
antee signal quality, while in the SIR-based setting, the SIR (b)
values are set t8IR;..get = 6 and the actual received powers

associated to a number of connections can be |Ower]Pn:ﬁ‘£1> Fig. 1. Quality of the optimal solution (including five BSs) of the simplified
del withf = 0.4 for instance SU-3 of Table I. (a) SIR values obtained with

Foraf bet the soluti ided by the
or a fair Comparlson etween the solutions provided by lﬂ% power-based PC setting. (b) Received powers obtained with the SIR-based
simplified and enhanced models, we changed the value of pa-setting.

-135
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(SR). For the same instances, the optimal solutions, involving
four BSs in all cases, have been obtained by using CPLEX 7.0.
Although Add and Remove are heuristics with no guarantee to
provide an optimal solution, they do so in half of these cases
and the number of BSs installed never exceeds the minimum
number by more than one. It is worth noting that the computa-
tion time required by Add or Remove to find a close-to-optimal
solution for a single instance was less than 5 s on a Pentium
[11/700-MHz personal computer, while CPLEX 7.0 MIP solver
required 5-20 min to find an optimal solution on an about
twice as fast computer. As a matter of fact, solving even such
small instances using a state-of-the-art MIP solver turns out to
be a challenging task due to the very delicate choice of the
value M. If the parameterM is too small, then some SIR
constraints that should be omitted will not be disactivated and,
. therefore, the resulting solutions contain a larger number of
0 6 8 13 BSs than optimal solutions of the actual problem. On the other
BS identifier hand, for too large values @ff, one runs into numerical prob-
lems related to machine precision which tend to override some

Fig. 2. Quality of the optimal solution (including four BSs) of the simplified ; ; ; ;
model with f = 0.35 for instance SU-3: SIR values obtained with theSIR constraints and, hence, to yleld solutions with a too small

power-based PC setting. number of BSs.

In Table I, multistart TS consists of 50 runs of Add (A) or
emove (R) followed by 200 iterations of TS while single-run
S consists of Remove followed by 2000 iterations of TS. For

B)

SIR (d

rameterf (setting it to 0.35) so that also the simplified mode.
returns solutions with only four active BSs. The correspondi ) . )

. y four . P gﬁese small instances, a tabu list of lendth= 8 is used,
results obtained for the same instance of Fig. 1 are reported in

— K — / 1
Fig. 2. Notice that in the power-based PC setting, the SIR valuggXswap = 94 = L andg’ = 0. As far as the best solutions

L {:e concerned, for these small instances the Remove procedure
drop far below any acceptable value, while in the SIR-based ; . . )
rovides as good solutions as the TS variants. However, in mul-

setting, i.t has not even beep possible to find a feasiple value ﬁ%rt?rt TS and single-run TS, the average quality of the solutions

the recew;ed pO\tNirIS‘ m;aa}:.nlng that the PC mechanism doesig%etterand the standard deviations are lower in all but one case.

converge 1o a stable sofution. . Due to this more robust behavior, a single run of multistart TS
Interesting insight on the inadequacy of the location mod&)

ould suffice to yield the same best solutions for eight out of
with the simplified SIR constraints is provided by the distributhe ten instanceg g

tion of th? number of connections as_sig_ned to each active B_S Mrable I reports the results obtained with Add, Remove (both
the solutions of the. Othef more soph|s.t|cated models. A typ'%lth 50 runs), multistart TS (Add and Remove), and single-run
_exal_”nple for a medium-size instance (instance MU-3) is sho for ten medium-size instances. The number of TS iterations
n Fig. 3 In the the case of SIR-based PC quel, a SUDSIgR: n istart and single-run TS are as for small-size instances.
tial fraction of BSs (here more than 37%) is assigned a numqi—:gr medium-size instances, a tabu list of lengtk: 15 is used,
of connections that is larger than 23, which is the strict upp _ 1= o : }
bound that would be imposed by the simplified power-basgfgg)e(gviaﬁ 21 bt one cases fall e coverage. ¥he numbar o
PC model. Solutions of the enhanced power-based PC MOgels installed by our Add and Remove randomized procedures
do also exhibit similar distributions. _ ~differ at most by three. None of them consistently outperforms
~ All our experiments show that the model with the simplighe other one. However, the standard deviation of the number
fied SIR formula is not suitable for locating BSs in UMTS netys gss in the solutions given by Remove (over the 50 runs) is
works since it fails to capture some fundamental characterist[g:scua”y higher than that of the solutions provided by Add. The
of third-generation systems. solutions provided by the TS procedures require a few BSs less
) o ) than Add and Remove. Although there is no significant differ-
B. Comparison of Heuristic Algorithms for Power-Based PCgpyce among the three TS procedures, single-run TS provides in
Model all but one cases the best solution and it always does so at lower
In this subsection, the results obtained with the three algeemputational cost.
rithms for the enhanced power-based PC model (19)-(23) withThe 50 runs of Add and Remove take in average 10 and, re-
no thermal noisér = 0) are reported and discussed. spectively, 30 s for the small-size instances, and 1:50 and, re-
Results for the small-size instances obtained with the raspectively, 1:20 h for the medium-size instances. For large-size
domized Add and Remove proceduigs = p, = 0.3) over instances more than 13 CPU hours are needed for Add and ap-
50 runs are reported in Table I. The solutions found alwagsoximately 7 h for Remove. A single-run TS lasts in average
satisfy all 95 requested connections. Out of the ten instande20 h for medium-size instances and 6 h for large-size ones.
mentioned in Table I, five have been generated using the H&@r solution quality comparison purposes, multistart TS was run
formula for urban areas (SU) and five using that for rural areasth the same total number of TS iterations as single-run TS and
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Fig. 3. Distribution of the number of TPs assigned to the various BSs for the medium-size instance MU-3.

TABLE I
RESULTS OBTAINED WITH THE ADD, REMOVE (p, = p, = 0.3), MULTISTART TS AND SINGLE-RUN TS FORMEDIUM-SIZE URBAN (MU) AND RURAL (MR)
INSTANCESWITH m = 120, n = 400, AND «; UNIFORMLY DISTRIBUTED IN {1, 2, 3}. FOR EACH ALGORITHM, FROM LEFT TORIGHT: MINIMUM NUMBER OF
BSs NSTALLED, THE AVERAGE NUMBER, AND THE STANDARD DEVIATION OVER 50 RUNS.* NOT ALL THE TRAFFIC |S COVERED

I Add I Remove [ multiTS(A) [ multiTS(R) [ TS
MU-1 47* | 50.30 | 1.53 50 | 56.16 | 7.36 46 | 46.90 | 1.04 48 | 48.50 | 0.50 47
MU-2 46 48.26 | 1.51 46 | 49.06 | 6.65 43 | 43.40 | 0.66 43 | 43.40 | 0.49 43
MU-3 45 46.40 | 1.18 43 | 48.98 | 4.06 41 | 41.00 0 41 41 0 41
MU-4 45 48.10 | 1.36 44 | 48.08 | 2.98 42 | 42.30 | 0.46 42 | 42.10 0.3 42
MU-5 44 47.54 | 1.37 46 | 49.86 | 3.26 42 | 42.30 | 0.46 42 | 42.10 0.3 42
MR.1 || 44 | 4588 | 1.13 || 42 | 4580 | 3.23 || 40 | 40.80 | 0.40 || 41 | 41 0 || 40
MR-2 44 47.72 | 1.48 45 | 48.60 | 5.72 43 | 43.10 | 0.30 43 | 43.30 | 0.46 43
MR-3 43 46.26 | 1.60 44 | 48.80 | 4.83 41 | 41.10 | 0.30 41 | 41.20 0.4 41
MR-4 45 48.34 | 1.57 45 | 49.08 4.5 42 | 42.10 | 0.30 42 42 0 42
MR-5 44 46.38 | 1.13 46 | 49.64 | 2.64 42 | 42.40 | 0.49 42 | 42.30 | 0.46 42

TABLE Il
RESULTSOBTAINED WITH ADD AND REMOVE (p, = p» = 0.3) FORLU INSTANCESWITH m = 200, = 750, u; UNIFORMLY DISTRIBUTED IN {1,2}. FROM
LEFT TORIGHT: FRACTION OF TRAFFIC COVERED, MINIMUM NUMBER OF BSS NSTALLED, AVERAGE NUMBER, AND STANDARD DEVIATION OVER TEN RUNS

I Add I Remove

LU-1 1106/1107 | 68 | 70.80 | 1.89 [[ 1106/1107 | 68 | 100.34 | 17.41
LU-2 1133/1136 | 72 | 70.46 | 2.00 1136/1136 | 73 | 92.54 9.14
LU-3 1120/1124 | 64 | 67.46 | 2.15 || 1120/1124 | 61 73.14 13.10
LU-4 || 1130/1130 | 63 | 66.60 | 2.04 || 1130/1130 | 69 | 89.08 7.02
LU-5 1103/1103 | 61 | 64.66 | 2.02 1103/1103 | 60 | 64.40 2.68

this obviously led to higher (approximately twice as long) coneities. The results are reported in Tables Il and IV. Unlike
puting times. for the previous classes of instances, the traffic demand is
As shown in Table I, multistart TS (ten runs) and single-runot always satisfied. It is worth noting that Remove provides
TS yield for all instances better solutions than the best ongslutions with much higher average number of active BSs even
obtained with Add and Remove. In many cases, these solutidtheugh the best solution found is worse than the best one yield
are obtained within less than 500 local search iterations. by Add only for two out of the five instances. In fact, the best
We have also applied Add and Remove (ten runs), multistadlutions found with Remove turn out to be better for instances
TS (ten runs with 200 iterations of local search each) as welJ-3 as well as LU-5 and equivalent for LU-1. Moreover, for
as single-run TS (1000 iterations) to five LU instances. Thiastance LU-2 the best solution provided by Remove contains
choice of parameter values, with 1500 active connections in tAe additional BS but it covers the whole traffic. The advantage
average, is quite realistic for UMTS setting in medium-to-largef the Remove scheme to obtain the initial solutions is that it

Authorized licensed use limited to: University of Pittsburgh. Downloaded on August 24, 2009 at 22:44 from |IEEE Xplore. Restrictions apply.



950 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 2, NO. 5, SEPTEMBER 2003

TABLE IV
ReESULTS FORLU INSTANCESWITH m = 200, n = 750, u; UNIFORMLY DISTRIBUTED IN {1, 2}. FROM LEFT TO RIGHT: FRACTION OF TRAFFIC COVERED,
MINIMUM NUMBER OF BSs NSTALLED, AVERAGE NUMBER, AND STANDARD DEVIATION OVER TEN RUNS

I multi TS (A) I multi TS (R) [ TS

LU-1 1106/1107 | 62 63 0.89 || 1106/1107 | 64 | 66.9 | 1.64 || 62
LU-2 || 1136/1136 | 63 | 61.3 | 1.10 || 1136/1136 | 63 | 65.1 | 1.22 || 63
LU-3 || 1120/1124 | 57 | 57.5 | 0.67 || 1120/1124 | 57 | 58.1 | 1.14 57
LU-4 (| 1130/1130 | 57 58 0.63 || 1130/1130 | 58 | 61.8 | 1.6 58
LU-5 || 1103/1103 | 54 | 54.7 | 0.78 || 1103/1103 | 54 | 54.7 | 1.01 54

naturally allows for testing whether all traffic demands can be TABLE V
satisfied COMPARISON BETWEEN MODELS WITH SIR-BASED AND POWER-BASED PC:
. . . NUMBER OF INSTALLED BSs WITH TABU SEARCH ALGORITHMS
According to Table IV, multistart TS and single-run TS al-
ways yield solutions of better quality than the best ones provid SIR-based PC power-based PC
. . . multistart T'S TS multistart TS
by Add and Remove. For these large-size instances, atabu li€ mstance || best | average | st. dev. | best || best | average | st. dev.
lengthL = 15 is usedmaxgwap = 15,¢ = 0.26, andg’ = 0.3. "MU-L 39 39 0 39 || 52 53.1 0.83
T i i i < MU-2 37 37.1 0.3 36 45 45.5 0.5
Note that_for all five |_nstances the improvement in terms of B S el e i s e e
installed is substantial. MU-4 36 36.7 0.46 36 || 43 41 0.94
MU-5 36 36.5 0.5 36 43 44.5 1.20
H ' _ MR-1 35 35.9 0.3 36 42 42.5 0.5
C. Comparison Between Models With Power-Based and TR = g 5 s 5
SIR-Based PC MR-3 35 35.1 0.3 35 43 133 0.46
. . . MR-4 36 36.4 0.49 36 43 44.7 1.19
We now discuss the results provided by the model with Sli—wm=5 36 366 0.49 36 a3 B9 083

based PC (28)—(33) pointing out the differences with respect to
those from the model with power-based PC (19)—(23). To ob-
tain meaningful solutions with the SIR-based model, a nonze "~ 19
thermal noise) must be considered. For comparison purpose
the same value af = —130 dB is also used in the model with
power-based PC. 9L .
Multistart TS is applied with ten runs and single-run TS witl
2000 iterations. To maintain the computational times at a re -
sonable level, TPs have been assigned to closest BSs in terrr
emitted powers, even though better performance (and possfg
also lower costs) may be attained with different types of assigE
ments. At each iteration, once the current solution is fully dg; -
termined (i.e., a TP-BS assignment is derived for the current
of active BSs), the received powers are computed by solving 1
related linear system (37). This constitutes the heavy part of 1

computation. Tests have been conducted on the small-size

stances and both algorithms provided solutions with four BS

as in the enhanced power-based PC case. In order to emg

size _the di_ffergnces, experiments were also c_arrie(_j out with1 5 14 7 1‘0 1‘3 1‘6 1‘9 20 2‘5 08 31 34 37 40

medium-size instances. For each of the medium-size instanc BS id.

multistart TS took about 15 h while single-run TS took about

9 h. These computing times have to be compared to the 2139 4. Measured SIR values with the enhanced power-based PC model for

and 1:30 h, respectively, for the same type of algorithms a'B§tan°e MU-3.

plied to the enhanced power-based PC. This clearly indicates the

considerable additional computational load required to compuetk BSs they are not assigned to. Thus, the system can support

the power values at each iteration. Table V shows the numerere connections per BSs and, in practice, the capacity of the

ical results for the ten medium-size instances. For multistart DSerall network is better exploited.

the minimum number of installed BSs is reported together with The above observations are also confirmed by comparing the

the average and the standard deviation (over ten runs), while 8IR values at each BS and the received powers for each connec-

single-run TS the best solution is given. tion. Fig. 4 reports the SIR values measured in each active BS
Comparing the number of active BSs yielded by the enhandeglusing the enhanced power-based PC model. Notice that only

power-based PC model with that obtained by the SIR-basadew BSs have an SIR equal to the requitéit ...+ 0f 6 dB,

PC model, we observe that the latter one allows for a saviagd for many BSs the service quality is far above the required

of at least six BSs. This is due to the fact that, since the mievel. Thus, the emitted powers are higher than needed and as

bile stations can emit lower powers with respect to those in theresult the interference levels are higher and the scarce radio

power-based PC case, they generate lower interference towasburces are not used as efficiently as they could.
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VI. CONCLUDING REMARKS [8]

The main features characterizing the important problem of
planning UMTS networks using the W-CDMA air interface [°]
have been discussed. Focusing on the uplink direction, we
have investigated discrete optimization models for the UMTS
BS location problem that capture at different levels of detaill0]
the peculiarities of the signal quality constraints and the PG, ;
mechanism for W-CDMA. Standard capacitated location
models being inappropriate, we have proposed an enhancédl
power-based PC model as well as a more accurate SIR-based
PC one. [13]

Since solving even medium-size instances of these NP-hard
problems is beyond the reach of state-of-the-art commercigj 4,
optimization solvers, we have developed three heuristics for
the power-based PC model. Our randomized greedy and re.
verse greedy procedures provide, in a reasonable amount f)?l
time, good approximate solutions for medium-to-large size real-
istic instances generated by using classical propagation model$¢
A TS algorithm, which can be applied either in a multistart or(; 7
single-run setting, allows us to further improve the approximate
solutions obtained with these greedy procedures. [18]

The three above algorithms have also been extended to the
SIR-based model by assuming that TPs are assigned to a closgsi
active BS. From the planning point of view, this is just a con-[ZO]
servative assumption in the sense that there might exist solu-
tions with less natural assignments but better objective function
values. [21]

Our experimental results show that the enhanced power-
based PC model yields interesting solutions but those obtaindeR]
with the SIR-based model use in a more efficient way the scarce
radio resources and the computed SIR values are closer to the;
actual values in real systems.

[24]
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