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Abstract

Partially observable Markov decision processes (POMDPs) provide a principled, general framework for

robot motion planning in uncertain and dynamic environments. They have been applied to various robotic

tasks. However, solving POMDPs exactly is computationally intractable. A major challenge is to scale up

POMDP algorithms for complex robotic tasks.

Robotic systems often have mixed observability: even when a robot’s state is not fully observable, some

components of the state may still be so. We use a factored model to represent separately the fully and

partially observable components of a robot’s state and derive a compact lower-dimensional representation

of its belief space. This factored representation can be combined with any point-based algorithm to compute

approximate POMDP solutions. Experimental results show that on standard test problems, our approach

improves the performance of a leading point-based POMDP algorithm by many times.

1 Introduction

Motion planning under uncertainty is a critical ability for autonomous robots operating in uncontrolled en-

vironments, such as homes or offices. For robotic systems, uncertainty arises from two main sources: robot
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control and sensing. If a robot’s control is imperfect, but its state is fully observable due to accurate sensing,

then Markov decision processes (MDPs) provide an adequate model for planning. MDPs with a large number

of states can often be solved efficiently (see, e.g., [5]). When a robot’s state is not fully observable, possi-

bly due to noisy sensors, partially observable Markov decision processes (POMDPs) become necessary, but

solving POMDPs exactly is computationally intractable [15]. Despite the impressive progress of point-based

POMDP algorithms in recent years [14, 16, 22, 26, 27], solving POMDPs with a large number of states remains

a challenge.

It is, however, important to note that robotic systems often have mixed observability: even when a robot’s

state is not fully observable, some components of the state may still be so. For example, consider a mobile

robot equipped with a compass, but not a geographic positioning system (GPS). Its orientation is fully observ-

able, though its position may only be partially observable. We call such problems mixed observability MDPs

(MOMDPs), a special class of POMDPs. In this work, we separate the fully and partially observable compo-

nents of the state through a factored model and show that the resulting MOMDP model leads to much faster

planning algorithms for robotic systems with mixed observability.

In a POMDP, a robot’s state is not fully observable. Thus we model it as a belief, which is a probability

distribution over all possible robot states. The set of all beliefs form the belief space B. The concept of belief

space is similar to that of a robot’s configuration space, except that each point in B represents a probability

distribution over robot states rather than a single robot configuration or state. Intuitively, one main contributor

to the difficulty of solving POMDPs is the “curse of dimensionality”: in a discrete-state POMDP, B has dimen-

sionality equal to |S|, the number of robot states. The size of B thus grows exponentially with |S|. Consider,

for example, the navigation problem for an autonomous underwater vehicle (AUV). The state of the robot ve-

hicle consists of its 3-D position and orientation. Suppose that after discretization, the robot has 100 possible

positions on a 10 × 10 grid in the horizontal plane, 5 depth levels, and 25 orientations. The resulting belief

space is 12,500-dimensional!

However, if the robot has an accurate pressure sensor and a gyroscope, we may assume that the depth level

and the orientation are fully observable and maintain a belief on the robot’s uncertain horizontal position only.

The space B then becomes a union of 125 disjoint 100-dimensional subspaces. Each subspace represents an

exact depth level, an exact orientation, and beliefs on the uncertain horizontal positions. These 100-dimensional

subspaces are still large, but a significant reduction from the original 12,500-dimensional space.

To exploit full observability for computational efficiency, we thus separate the fully and partially observable

state components using a factored model and represent the disjoint belief subspaces in a MOMDP explicitly so

that all operations can be performed in these lower-dimensional subspaces.

The observability of a robot’s state is closely related to sensor limitations. We consider two common

types of sensor limitations here. In the first case, some state components are sensed accurately and can be

considered fully observable while other state components are not. We then separate the state components with

high sensing accuracy from the rest in the MOMDP representation. The second case is more subtle. Some

sensors have bounded errors, but are not accurate enough to allow any assumption of fully observable state

components a priori. Nevertheless, we show that this case can be modeled as a MOMDP by (re)parameterizing

the state space. The reparameterization technique enables a much broader class of planning problems to benefit

from MOMDP modeling.

We tested our new approach on a set of distinct robotic tasks with large state spaces. The results show that

it improves the performance of a leading point-based POMDP algorithm by many times.

In the following, we start with some background on POMDPs (Section 2). We then define the MOMDP
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model and illustrate how it can be used (Section 3). In Section 4, we combine the MOMDP representation with

a point-based POMDP algorithm and analyze the benefits. We report the simulation experiments in Section 5.

Finally, we summarize the main results in Section 7.

2 Background

2.1 POMDPs

A POMDP models an agent taking a sequence of actions under uncertainty to maximize its total reward. For-

mally a discrete-state, infinite-horizon, discounted POMDP is specified as a tuple (S,A,O, T , Z,R, γ), where

S is a set of states, A is a set of actions, and O is a set of observations.

In each time step, the agent takes an action a ∈ A and moves from a state s ∈ S to s′ ∈ S. Due to the

uncertainty in action, the end state s′ is described as a conditional probability function T (s, a, s′) = p(s′|s, a),

which gives the probability that the agent lies in s′, after taking action a in state s. The agent then makes an

observation on the end state s′. Due to the uncertainty in observation, the observation result o ∈ O is again

described as a conditional probability function Z(s′, a, o) = p(o|s′, a) for s′ ∈ S and a ∈ A. See Figure 1 for

an illustration.

To elicit desirable agent behavior, we define a suitable reward function R(s, a). In each step, the agent

receives a real-valued reward R(s, a), if it is in state s ∈ S and takes action a ∈ A. The agent’s goal is to

maximize its expected total reward by choosing a suitable sequence of actions. When the sequence of actions

has infinite length, we typically specify a discount factor γ ∈ (0, 1) so that the total reward is finite and the

problem is well defined. In this case, the expected total reward is given by E[
∑∞

t=0 γtR(st, at)], where st and

at denote the agent’s state and action at time t, respectively.

For POMDPs, planning means computing an optimal policy that maximizes the agent’s expected total

reward. In the more familiar case where the agent’s state is fully observable, a policy prescribes an action,

given the agent’s current state. However, a POMDP agent’s state is partially observable and not known exactly.

So we rely on the concept of a belief. A POMDP policy π : B → A maps a belief b ∈ B, which is a probability

distribution over S, to the prescribed action a ∈ A.

A policy π induces a value function V , which specifies the expected total reward V (b) of executing π

starting from b. It is known that V ∗, the value function for an optimal policy π∗, can be approximated arbitrarily

closely by a piecewise-linear, convex function

V (b) = max
α∈Γ
{α · b}, (1)

where b is a vector representing a belief and Γ is a finite set of vectors called α-vectors [24]. Each α-vector

is associated with an action, and the policy can be executed by selecting the action corresponding to the best

α-vector at the current belief b, using (1). So a policy can be represented as a set Γ of α-vectors. Policy

computation, which, in this case, involves the construction of Γ, is usually performed offline.

Given a policy π, the control of the agent’s actions is performed online in real time. It repeatedly executes

two steps. The first step is action selection. If the agent’s current belief is b, it then takes the action a = π(b),

according to the given policy π. The second step is belief update. After taking an action a and receiving an

observation o, the agent updates its belief:

b′(s′) = τ(b, a, o) = ηZ(s′, a, o)
∑

s∈S

T (s, a, s′)b(s), (2)
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where η is a normalizing constant. The process then repeats.

Eq. (2) shows that a POMDP can be viewed as a belief-space MDP. Each state of this MDP represents a

belief, resulting in a continuous state space. The transition function can be easily constructed using (2).

More information about POMDPs is available in [13], [28].

2.2 Related Work

POMDPs are a powerful framework for planning under uncertainty [13, 24]. It has solid mathematical founda-

tions and wide applicability. The main disadvantage is high computational complexity [15]. As mentioned in

Section 1, the belief space B used in POMDP policy computation grows exponentially with the number of states

that an agent has. The resulting curse of dimensionality is one major obstacle to efficient POMDP planning.

There are several approaches to overcome this difficulty, including sampling B, building lower-dimensional

approximations of B [19], and employing structured value function representations [4, 6, 18].

In recent years, point-based algorithms, which are based on the idea of sampling, have made impressive

progress in computing approximate solutions to large POMDPs [14, 16, 22, 26, 27]. They have been success-

fully applied to several moderately complex robotic tasks, including navigation [2, 20], grasping [10], target

tracking [12, 16], and exploration [26]. In some cases, POMDPs with hundreds of states have been solved in a

matter of seconds (see, e.g., [12, 26]). POMDPs have also been applied to many domains beyond robotics, e.g.,

assistive technology [9] and dialog management [23, 29].

A popular structured value function representation is the algebraic decision diagram (ADD) [6]. It exploits

context-specific independence to aggregate states with the same expected total rewards and achieves a more

efficient value function representation. While ADDs are effective for some application domains, its suitability

for robotic tasks is unclear. In a typical robotic task, all robot actions incur costs. Since the expected total reward

is discounted, it is unlikely to have many states with the same or even similar values. Effective aggregation then

becomes difficult.

Our work on MOMDPs aims at alleviating the difficulty of high-dimensional belief spaces and scaling

up point-based algorithms for realistic robotic tasks. The main idea is that a MOMDP model factors out

the fully and partially observable components of an agent’s state and leads to a compact lower-dimensional

representation of B. We then combine this new representation with a point-based algorithm and obtain a much

faster planning algorithm. A related idea has been developed earlier for medical therapy planning [8]. Although

MOMDPs take advantage of factorization just as ADDs do, they exploit different underlying problem structure.

To represent α-vectors compactly, ADDs rely on “homogeneity” to aggregate states with the same or similar

expected total rewards. In contrast, MOMDPs exploit the observability of state variables.

Many of the above ideas are complementary. For example, we combine a point-based algorithm with the

MOMDP model. Point-based algorithms can also benefit from the ADD representation [22]. For a suitable

application, it may even be beneficial to use ADDs to represent α-vectors along with a MOMDP model.

3 Mixed Observability MDPs

3.1 MOMDP models

In a standard POMDP model, the state lumps together multiple components. Consider again our AUV nav-

igation example from Section 1. A single state variable models the robot’s horizontal position, depth, and

orientation. In contrast, a factored POMDP model separates the multiple state components and represents each
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Figure 1: The POMDP model (left) and the MOMDP model (right). A MOMDP state s is factored into two

variables: s = (x, y), where x is fully observable and y is partially observable.

as a distinct state variable. If three variables p, d, and θ represent the AUV’s horizontal position, depth, and

orientation, respectively, then the state space is the cross product of three subspaces: S = Sp × Sd × Sθ. This

allows for a more structured and compact representation of transition, observation, and reward functions.

We propose to represent a robotic system with mixed observability as a factored POMDP with mixed state

variables and call our model a MOMDP. In a MOMDP, the fully observable state components are represented

as a single state variable x, while the partially observable components are represented as another state variable

y. Thus (x, y) specifies the complete system state, and the state space is factored as S = X × Y , where X is

the space of all values for x and Y is the space of all values for y. In our AUV example, x = (d, θ) represents

the depth and the orientation, and y = p represents the horizontal position.

Formally a MOMDP model is specified as a tuple (X ,Y,A,O, TX , TY , Z, R, γ). The transition function

TX (x, y, a, x′) = p(x′|x, y, a)

gives the probability that the fully observable state variable has value x′ if the robot takes action a in state

(x, y), and

TY(x, y, a, x′, y′) = p(y′|x, y, a, x′)

gives the probability that the partially observable state variable has value y′ if the robot takes action a in state

(x, y) and the fully observable state variable has resulting value x′. Compared with the POMDP model, the

MOMDP model has a factored state space X × Y , with transition functions TX and TY , while other aspects

remain the same. See Figure 1 for a comparison. As mentioned in Section 2.1, a POMDP can be viewed as

an MDP with continuous (belief) states. Correspondingly, a MOMDP can be viewed as a hybrid MDP with

both discrete and continuous states [1, 3]. The discrete state variable corresponds to x, and the continuous state

variable corresponds to bY , the belief over y.

So far, the changes introduced by the MOMDP model seem mostly notational. The computational advan-

tages become clear when we consider the belief space B. Since x is fully observable and known exactly, we

only need to maintain a belief bY , a probability distribution on y. Any belief b ∈ B on the complete system

state s = (x, y) is then represented as (x, bY).

Consider a simple example, in which an agent’s state is specified by two binary variables (x, y). The full be-

lief space is a 3-simplex, i.e., a tetrahedron, because the probabilities of all the states must sum up to 1. Each cor-

ner of the tetrahedron represents a belief that the agent is in any of the four states (0, 0), (0, 1), (1, 0), and (1, 1)

with probability 1. The center of the tetrahedron represents the belief that the system is in the four states with

equal probabilities. Now if x is fully observable, then all beliefs must lie on one of the two opposite edges of

the tetrahedron. So B is in fact a union of two line segments and not the full tetrahedron (Figure 2).
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Figure 2: The belief space for two binary variables (x, y) is a tetrahedron. If x is fully observable, then all

beliefs lie on two edges of the tetrahedron, corresponding to x = 0 and x = 1.

In general, let BY denote the space of all beliefs on the partially observable state variable y. We associate

with each value x of the fully observable state variable a belief space for y: BY(x) = {(x, bY) | bY ∈ BY}.

BY(x) is a subspace in B, and B is a union of these subspaces: B =
⋃

x∈X BY(x). While B has |X | × |Y|

dimensions, where |X | and |Y| are the number of states in X and Y , each BY(x) has only |Y| dimensions.

Effectively we represent the high-dimensional space B as a union of lower-dimensional subspaces. When

the uncertainty of a system is small, specifically, when |Y| is small, the MOMDP model leads to dramatic

improvement in computational efficiency, due to the reduced dimensionality of belief space representation and

the resulting implications for policy representation and computation.

3.2 MOMDP Policies

Now let us consider how we would represent and execute a MOMDP policy. As mentioned in Section 2.1,

a POMDP policy can be represented as a value function V (b) = maxα∈Γ{α · b}, where Γ is a set of α-

vectors. In a MOMDP, a belief is given by (x, bY), and B is represented as a union of subspaces BY(x) for

x ∈ X . Correspondingly, a MOMDP value function V (x, bY) is represented as a collection of α-vector sets:

{ΓY(x) | x ∈ X}, where for each x, ΓY(x) is a set of α-vectors defined over BY(x). To evaluate V (x, bY), we

first use the value of x as an index to find the right α-vector set and then find the maximum α-vector from the

set:

V (x, bY) = max
α∈ΓY (x)

{α · bY}. (3)

It is not difficult to see that any value function V (b) = maxα∈Γ(α · b) can be represented in this new form.

Geometrically, each α-vector set ΓY(x) represents a restriction of V (b) to the subspace BY(x), obtained by

restricting the domain of V (b) from B to BY(x). In MOMDP policy computation, we compute only these

restrictions in lower-dimensional subspaces BY(x) for x ∈ X , because B is simply a union of these subspaces.

A comparison of (1) and (3) indicates that (3) results in faster policy execution, because action selection

can be performed more efficiently. In a MOMDP value function, the α-vectors are partitioned into groups

according to the value of x. We only need to calculate the maximum over ΓY(x), which is potentially much

smaller than Γ.

In summary, by factoring out the fully and partially observable state variables, a MOMDP model reveals

the internal structure of the belief space as a union of lower-dimensional subspaces. We want to exploit this

structure and perform all operations on beliefs and value functions in these lower-dimensional subspaces rather

than the original belief space. Before we describe the details of our algorithm, let us first look at how MOMDPs

can be used to model uncertainty commonly encountered in robotic systems.
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3.3 Modeling Robotic Tasks with MOMDPs

Sensor limitations are a major source of uncertainty in robotic systems and are closely related to observability.

If a robot’s state consists of several components, often some components are fully observable, due to accurate

sensing, while others are not. This is a natural case for modeling with MOMDPs. All fully observable state

components are grouped together and modeled by the variable x. The other components are modeled by the

variable y.

Sometimes, however, a system does not appear to have mixed observability: none of the sensed state

components is fully observable. Is it still possible to model it as a MOMDP? The answer is yes under certain

conditions, despite the absence of obvious fully observable state components. We describe two techniques

below.

3.3.1 Pseudo Full Observability

All sensors are ultimately limited in resolution. It is task-dependent to determine whether the sensor resolution

is accurate enough to make a sensed state component fully observable. For example, a robot searches for an

unseen target and has small uncertainty on its own position. It is reasonable to assume that the robot position is

fully observable, because the uncertainty on the robot position is small compared to that on the target position

and the robot’s behavior depends mostly on the latter. By treating the robot position as fully observable, we can

exploit the MOMDP model for faster policy computation and execution. However, treating the unseen target’s

position as fully observable is not reasonable and unlikely to lead to a useful policy.

To improve the robustness of robot control, we can actually execute a computed MOMDP policy on the

original POMDP model, which makes no assumption of fully observable state variables. The POMDP model

treats both variables x and y as partially observable and maintains a belief b over (x, y). To account for the

additional uncertainty on x, our idea is to define a new value function V ′(b) by averaging over the computed

MOMDP value function V (x, bY) and use V ′(b) for policy execution rather than use the MOMDP value func-

tion directly. We first calculate a belief bX on x by marginalizing out y: bX (x) =
∑

y∈Y b(x, y). We then

calculate the belief bY|x on y, conditioned on the x value: bY|x(y) = b(x, y)/bX (x). Now the new value

function

V ′(b) =
∑

x∈X

bX (x)V (x, bY|x)

can be used for policy execution under the POMDP model through one-step look-ahead search.

Let V ∗(b) and V ∗(x, bY) be respectively the optimal value functions for a POMDP and the corresponding

MOMDP under the assumption of fully observable state variables. It can be shown that the value function

V ′(b) constructed from V ∗(x, bY) is an upper bound on V ∗(b). In this usage, the MOMDP model becomes an

approximation to the POMDP model. It is less accurate due to the additional assumption, but has substantial

computational advantages.

3.3.2 Reparameterized Full Observability

Instead of assuming full observability, a more subtle way of exploiting MOMDPs is to reparameterize the state

space S.

We first illustrate the reparameterization technique on a robot navigation task, modeled as a standard

POMDP (S,A,O, T , Z,R, γ). Suppose that the robot’s position sensor is noisy and localizes the robot to

a small region around the actual position in the plane. The state s ∈ S specifies the robot position and o ∈ O
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is the observed robot position. If we parameterize S with the standard Cartesian coordinates, none of the coor-

dinates would be fully observable. Instead, we reparameterize S so that s = (x, y), where x = o, the observed

robot position, and y is the offset of the actual position from the observed position o. Now x is clearly fully

observable by definition. Using this parameterization, we can construct the new transition functions TX and TY

from the old transition function T and observation function Z:

TX (x, y, a, x′) =
∑

s′∈S

T (s, a, s′)Z(s′, a, x′), (4)

TY(x, y, a, x′, y′) = T (s, a, s′)Z(s′, a, x′)/TX (x, y, a, x′), (5)

where s = (x, y) and s′ = (x′, y′). The correctness of this construction can be verified by applying the basic

rules of probability as well as the definitions of T , TX , and TY . We also construct the new observation function

ZM(x′, y′, a, o) =







1 if x′ = o

0 if x′ 6= o
(6)

and the new reward function

RM(x, y, a) = R(s, a) (7)

where s = (x, y).

To reparameterize S in the general case, we again set s = (x, y) and x = o. To determine y, consider

the preimage h(o) of an observation o. We define h(o) as the set of states that have non-zero probability of

emitting o. If o is in fact a combination of observations from multiple sensors, each with its own preimage,

then h(o) is the intersection of the individual preimages. The state variable y specifies the exact state within

the preimage h(x). Now the transition, observation, and reward functions of the reparameterized MOMDP can

be constructed according to (4–7).

Theorem 1 below states formally the equivalence between the POMDP and the reparameterized MOMDP.

It says that the belief space dynamics is exactly the same under both models, and so is the expected total reward

for any policy. The proof is given in the appendix.

Theorem 1 The POMDP (S,A,O, T , Z,R, γ) and the reparameterized MOMDP (X ,Y,A,O, TX , TY , ZM, RM, γ)

with X = O are equivalent:

(1) Given the same initial belief and any sequence of actions and observations, the beliefs reached under

both models are the same.

(2) Given the same initial belief, any policy has the same expected total reward under both models.

Compared with pseudo full observability, reparameterized full observability results in an MOMDP equiva-

lent to the original POMDP and thus does not sacrifice solution quality in any way. The reparameterization can

be performed on any POMDP, but when does the resulting MOMDP bring computational advantages? To un-

derstand this, define that a system has bounded uncertainty if the preimage of its observation is always a small

subset of S: maxo∈O(|h(o)|/|S|) < c for some constant c < 1. When a system has bounded uncertainty with a

small constant c, then |Y| is small for the reparameterized MOMDP, and this leads to significant improvement

in computational efficiency. To determine whether reparameterization is beneficial, we can bound the constant

c by calculating the maximum size of preimages.
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Algorithm 1 Point-based MOMDP policy computation.

1: Initialize the α-vectors, Γ = {ΓY(x) | x ∈ X}, representing the lower bound V on the optimal value

function V ∗. Initialize the belief-value pairs, Υ = {ΥY(x) | x ∈ X}, representing the upper bound V on

V ∗.

2: Insert the initial belief point (x0, bY0) as the root of the tree TR.

3: repeat

4: SAMPLE(TR, Γ, Υ).

5: Choose a subset of nodes from TR. For each chosen node (x, bY), BACKUP-LB(TR,Γ, (x, bY)) and

BACKUP-UB(TR, Υ, (x, bY)).

6: PRUNE(TR, Γ).

7: until termination conditions are satisfied.

8: return Γ.

4 Computing MOMDP Policies

4.1 Overview

MOMDPs enable us to represent a high-dimensional belief space B as a union of lower-dimensional subspaces

and restrict value function computation to these subspaces rather than the entire B. We can combine this

representation with most of the existing POMDP algorithms that use α-vectors for value function and policy

representation, and improve their performance. However, for concreteness, we present our approach based on

the SARSOP algorithm [14], one of the fastest point-based POMDP algorithms.

Point-based algorithms have been highly successful in computing approximate solutions to large POMDPs.

Their key idea is to sample a set of points from B and use them as an approximate representation of B, rather

than represent B exactly. They also maintain a set of α-vectors as an approximation to the optimal value

function V ∗.

Specifically the SARSOP algorithm makes use of value iteration [21]. Exploiting the fact that the optimal

value function V ∗ must satisfy the Bellman equation, value iteration starts with an initial approximation to V ∗

and performs backup operations on the approximation by iterating on the Bellman equation until the iteration

converges.

Our point-based MOMDP algorithm samples incrementally a set of points from B and maintains a collec-

tion of α-vector sets, which represent a piecewise-linear lower-bound approximation V to V ∗. It also maintains

an upper bound V on V ∗. To improve the bounds, the algorithm performs backup operations on V and V at the

sampled points. A backup operation is essentially an iteration of dynamic programming, which improves the

approximation by looking ahead one step further. Under suitable conditions, V converges to V ∗ [11, 16, 26].

4.2 Algorithm

We give only a brief description of the overall algorithm here, with a focus on illustrating the use of the

MOMDP representation (Algorithm 1).

The algorithm starts by initializing V and V . The lower bound V is represented as a collection of α-vector

sets, {ΓY(x) | x ∈ X}, and initialized using fixed-action policies [7]. The upper bound V is represented by a

collection of sets of belief-value pairs: {ΥY(x) | x ∈ X}, where ΥY(x) = {(bY , v) | bY ∈ BY(x)}. A belief-

value pair (bY , v) ∈ ΥY(x) gives an upper bound v on the value function at (x, bY). For each subspace BY(x),

we interpolate the belief-value pairs in ΥY(x) through sawtooth approximation [7] and produce an upper bound
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Figure 3: The belief search tree rooted at b0 = (x0, bY0). Each node represents a MOMDP belief state (x, bY).

on V ∗(x, bY) over BY(x). The upper bound can be initialized in various ways, using, for example, the MDP

or the Fast Informed Bound (FIB) technique [7]. After initialization, our algorithm iterates over three main

functions, SAMPLE, BACKUP, and PRUNE.

SAMPLE. Let R ⊂ B be the set of points reachable from a given initial belief point b0 = (x0, bY0) under

arbitrary sequences of actions and observations. Most of the recent point-based POMDP algorithms sample

from R instead of B for computational efficiency. The SARSOP algorithm aims to be even more efficient

by focusing the sampling near R∗, the subset of points reachable from (x0, bY0) under sequences of optimal

actions, usually a much smaller space than R. Since R∗ is unknown in advance, we compute successive

approximations ofR∗ and converge to it iteratively.

The sampled points form a tree TR (Figure 3). Each node of TR represents a sampled point in R. In the

following, we use the notation (x, bY) to denote both a sampled point and its corresponding node in TR. The

root of TR is the initial belief point (x0, bY0).

To sample new belief points, we start from the root of TR and traverse a single path down. At each node

along the path, we choose action a with the highest upper bound and choose state x′ and observation o that

make the largest contribution to the gap ǫ between the upper and lower bounds at the root of TR. The choice

of a is optimistic with respect to the upper bound of V ∗, similar to that in the A∗ algorithm [21]. The choices

of x and o are a heuristic to help the algorithm converge faster. New tree nodes are created, if necessary, at the

bottom of TR. To do so, if at a node (x, bY), we choose a, o and x′ and compute a new belief b′Y on y:

b′Y(y′) = τM(x, bY , a, o, x′)

= ηZ(x′, y′, a, o)
∑

y∈Y

TX (x, y, a, x′)TY(x, y, a, x′, y′)bY(y), (8)

where η is a normalization constant. A new node (x′, bY
′) is then inserted into TR as a child of (x, bY). Clearly,

every belief point sampled this way is reachable from (x0, bY0).

The sampling path terminates under a suitable set of conditions. These conditions make use of the upper

and lower bounds as well as a simple on-line learning technique to estimate whether points further down the

path reduce ǫ, thus likely lying close to R∗ and worth further exploration. When a sampling path terminates,

we go back up this path to the root of TR and perform backup operations at each node along the way.

BACKUP. A backup operation at a node (x, bY) collates the value function information in the children of

(x, bY) and propagates it back to (x, bY). The operations are performed on both the lower bound V and the
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upper bound V . For V , we perform α-vector backup (Algorithm 2). A new α-vector resulting from the backup

at (x, bY) is inserted into ΓY(x), the set of α-vectors associated with observed state value x. For the upper

bound backup at (x, bY), we perform the standard Bellman update to get a new belief-value pair (bY , v) and

insert it into ΥY(x), the set of belief-value pairs associated with observed state value x (Algorithm 3).

Algorithm 2 Lower bound backup at a node (x, bY) of TR.

BACKUP-LB(TR, Γ, (x, bY))

1: For all a ∈ A, o ∈ O, and x′ ∈ X , αa,o,x′ ← argmaxα∈ΓY (x′)(α · τM(x, bY , a, o, x′)).

2: For all y ∈ Y and a ∈ A, αa(y)← R(x, y, a) + γ
∑

o,x′,y′

(

TX (x, y, a, x′)

×TY(x, y, a, x′, y′)Z(x′, y′, a, o)αa,o,x′(y′)
)

.

3: α′ ← argmaxa∈A(αa · bY).

4: Insert α′ into ΓY(x).

Algorithm 3 Upper bound backup at a node (x, bY) of TR.

BACKUP-UB(TR,Υ, (x, bY))

1: For all a ∈ A, o ∈ O, and x′ ∈ X , compute the upper bound va,o,x′ at the belief b′Y = τM(x, bY , a, o, x′)

through sawtooth approximation [7] over the points in ΥY(x′).

2: For all a ∈ A, Q(x, bY , a) =
∑

y bY(y)R(x, y, a) + γ
∑

y,o,x′,y′(bY(y)TX (x, y, a, x′)

×TY(x, y, a, x′, y′)Z(x′, y′, a, o) va,o,x′).

3: v = maxa Q(x, bY , a).

4: Insert (bY , v) into ΥY(x).

PRUNE. Invocation of SAMPLE and BACKUP generates new nodes in TR and α-vectors. However, not all of

them are useful for constructing an optimal policy and are pruned for computational efficiency. To prune belief

points, we compare the upper bound on the value for taking an action a at a belief node b with the lower bound

on the value for taking some other action a′ at b. If it is smaller, then taking action a at b is clearly suboptimal,

and we prune all the nodes of the subtree associated with a. To prune α-vectors, we go through each α-vector

set in the collection {ΓY(x) | x ∈ X} and prune any α-vector in ΓY(x) that does not dominate the rest at some

sampled point (x, bY), where bY ∈ BY(x).

Our description of the algorithm is quite brief, as the main purpose is to illustrate the use of the MOMDP

representation. More details and justifications for the particular choices of the sampling, backup, and pruning

strategies can be found in [14].

4.3 Convergence

The SARSOP algorithm’s convergence property relies on sampling the belief search tree TR adequately to a

sufficient depth, performing backups to improve the upper and lower bounds at the nodes along the sampled

paths, and propagating the improvement back to the initial belief at the root of the tree. To solve a MOMDP,

the main modifications required for SARSOP are the belief update equation (8) and the backup operations on

the lower bound (Algorithm 2) and the upper bound (Algorithm 3). These primitive operations do not affect
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the convergence property of SARSOP, and the new algorithm provides the same theoretical guarantee as the

original SARSOP algorithm [14].

To see this informally, the belief update operation under the MOMDP representation (Eq. (8)) is equivalent

to that in SARSOP (Eq. (2)). Modeling a task as a MOMDP does not change its belief-space dynamics. The

beliefs reached after any arbitrary sequence of actions and observations, in the corresponding MOMDP and

POMDP, are equivalent. This can be shown formally using the same technique as that in the proof of Theorem 1

(see Appendix A).

The main difference in the new algorithm’s backup operation lies in the lower bound backup. Algorithm 2

shows that lower bound backup at a belief (x, bY) generates a new α-vector that spans only the subspace BY(x)

and thus can improve the lower bound for beliefs in BY(x), but not for beliefs in other subspaces BY(x′) with

x′ 6= x. In contrast, the backup operation in the original SARSOP algorithm generates an α-vector that spans

the entire space B, and thus its potential to improve the lower bound is not restricted to any particular subspace

of B. However, SARSOP’s convergence property is not contingent on guaranteeing lower bound improvement

everywhere in B during the backup operation. In fact, such a guarantee is not possible for any point-based

POMDP algorithm. Thus SARSOP’s convergence property is unaffected and holds for the new algorithm for

MOMDPs as well.

4.4 Computational Efficiency

MOMDPs allow the belief space B to be represented as a union of low-dimensional subspaces BY(x) for

x ∈ X . To understand the resulting computational advantages, let us compare the key primitive operations—

belief update, backup, and pruning—under the standard POMDP model and the MOMDP model. We assume

an efficient sparse vector representation for the beliefs and a sparse matrix representation for the transition and

observation functions whenever possible.

In a mixed observability task, belief vectors under the POMDP model contain many zero entries and can

be processed and stored efficiently under a sparse representation. The MOMDP model does not bring further

advantage for belief update.

The efficiency gain of our algorithm comes mainly from faster backup and pruning operations. In a

MOMDP, α-vectors span the subspace BY(x) and have length |Y|, while in the corresponding POMDP, α-

vectors span B and have length |X | × |Y|. The backup operation for constructing the α-vectors (Algorithm 2,

line 2) is thus faster by a factor of |X | in our algorithm. The pruning operation also becomes more effective.

In a standard POMDP, an α-vector can be pruned only if it is dominated over the entire B. In a MOMDP, an

α-vector can be pruned if it is dominated over a subspace BY(x), which happens a lot more frequently. Thus

our algorithm prunes α-vectors more aggressively.

The efficiency gain in BACKUP-LB sometimes comes at a cost: although α-vectors in a MOMDP are shorter,

they also contain less information, compared with α-vectors in the corresponding POMDP. MOMDP backup

at (x, bY) generates an α-vector that spans only the subspace BY(x) and does not generate information in any

other subspace BY(x′) with x′ 6= x. In contrast, POMDP backup does more computation and generates an

α-vector that spans the entire space B. If a problem has many similar fully observable states in the sense

that the α-vectors in one belief subspace BY(x) are useful in many other subspaces BY(x′) with x 6= x′, then

POMDP algorithms may obtain more useful information in each backup operation and perform better than

our algorithm, despite the higher cost of each backup. This, however, requires a special property which does

not hold in general for complex systems. An α-vector which is optimal at some belief in BY(x) may not be
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optimal at any belief in BY(x′) with x 6= x′. In this case, the extra computation that POMDP backup performs

is superfluous, as the result does not form part of the optimal solution. This is especially true, when a system

visits only a small fraction of the entire state space under an optimal policy. An example is shown in Figure 6.

We would also like to point out that the belief update and backup operations, which are the main modifica-

tions required for SARSOP to solve MOMDPs, are common to most point-based POMDP algorithms, such as

PBVI [16], Perseus [27], and HSVI [25]. Replacing these operations with corresponding ones introduced here

would allow these algorithms to benefit from the efficiency gain of the MOMDP approach just as SARSOP

does.

5 Experiments

We used MOMDPs to model several distinct robotic tasks, all having large state spaces, and tested our algorithm

on them. In this section, we describe the experimental setup and the results.

5.1 Robotic Tasks

Tag. The Tag problem first appeared in the work on PBVI [16], one of the first point-based POMDP algo-

rithms. In Tag, the robot’s goal is to follow a target that intentionally moves away. The robot and the target

operate in an environment modeled as a grid. They can start in any grid positions, and in one step, they can

either stay or move to one of four adjacent positions (above, below, left, and right). The robot knows its own

position exactly, but can observe the target position only if they are in the same position. The robot pays a cost

for each move and receives a reward when it catches the target, i.e., arrives in the same position as that of the

target.

In the MOMDP for this task, the fully observable state variable x models the robot position, which is known

exactly. The x variable also takes one extra value that indicates that the robot and the target are in the same

position. The partially observable state variable y models the target position, as the robot does not see the target

in general. Experiments were performed on environment maps with different resolutions. Tag(M ) denotes an

experiment on a map with M positions. Thus we have |X | = M + 1 and |Y| = M , while in the standard

POMDP model, the state space has |S| = (M + 1)M dimensions.

Two-Robot Tag. This task is a variation of Tag. Two robots attempt to catch a target, which always moves

away from the closer robot (Figure 5). We assume centralized planning and execution. The two robots maintain

a communication link and share their knowledge of actions and observations. The main objective here is to test

our algorithm’s ability to handle more than one robot. Similar to Tag, the x variable in the MOMDP models the

two robots’ positions, and the y variable models the target position. TwoRobotTag(M ) denotes an experiment

on a map with M positions.

Rock Sample. The Rock Sample problem [25] has frequently been used to test the scalability of new POMDP

algorithms. It models a planetary rover exploring an area represented as a grid and searching for rocks with

scientific value. The rover always knows its own position exactly, as well as those of the rocks. However, it does

not know which rocks are valuable. The rover can take noisy long-range sensor readings to gather information

on the rocks. The accuracy of the readings depends on the distance between the rover and the rocks. The rover

can also sample a rock in the immediate vicinity. It receives a reward or a penalty, depending on whether the

sampled rock has scientific value.
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Figure 4: AUV navigation. Top: The 3-D environment and an AUV simulation trajectory (marked in black)

generated from the computed policy. The AUV can localize its horizontal position only at the surface level

(shaded in light green). The simulation trajectory shows that the AUV rises to the surface level to localize,

navigates through the rocks, and then dives to reach the goal. Bottom: The grid map for the deepest level. “S”

marks the AUV starting positions, which are all located at this level. The AUV is equally likely to start in any

of them. “E” marks the end positions, also located at this level only. “R” marks the rocks.

Here, the x variable in the MOMDP represents the robot position, and the y variable is a binary vector in

which each element indicates whether a particular rock has scientific value or not. Experiments were performed

on maps of different sizes and with different numbers of rocks. RockSample(M,R) denotes a map size of

M ×M and R rocks.

AUV Navigation. An AUV navigates in an oceanic environment modeled as a 3-D grid with 4 levels and

7 × 20 positions at each level (Figure 4). It needs to navigate from the right boundary of the deepest level

to some goal locations near the left boundary and must avoid rock formations, which are present in all levels

except the surface. In each step, the AUV may either stay in the current position or move to any adjacent position

along its current orientation. Whether the action is stay or move, the AUV may drift to a neighboring horizontal

position due to control uncertainty or ocean currents. The AUV does not know its exact starting position. It

knows its horizontal position only at the surface level, where GPS signals are available. However, surfacing

causes heavy fuel consumption and must be avoided if possible. Using its pressure sensor and gyroscope, the

AUV can acquire accurate information on the depth and the orientation. The orientation is discretized into 24

values.

In the MOMDP model, the x variable represents the AUV’s depth and orientation, and the y variable

represents the AUV’s horizontal position.

It may be tempting to approximate the belief on the AUV state as a Gaussian distribution. However, due to

significant uncertainty on the AUV’s initial state, the belief is in fact not even unimodal (Figure 4), and Gaussian

approximation likely causes too much loss in accuracy. The MOMDP model handles beliefs of general form

and does not make such approximations.

5.2 Results

We applied the MOMDP algorithm described in Section 4 to the four tasks. For each task, we first performed

long preliminary runs to determine approximately the reward level for the optimal policies and the amount of

time needed to reach it. We then ran the algorithm for a maximum of two hours to reach this level or until
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Table 1: Performance comparison on tasks with mixed observability.

Reward Time (s)

Tag(29)

|X|=30,|Y|=29 MOMDP −6.03 ± 0.04 4.7

|S|=870, |A|=5, |O|=30 SARSOP −6.03 ± 0.12 16.5

Tag(55)

|X|=56,|Y|=55 MOMDP −9.90 ± 0.11 19

|S|=3,080, |A|=5, |O|=56 SARSOP −9.90 ± 0.12 736

TwoRobotTag(24)

|X|=625,|Y|=24 MOMDP −12.07 ± 0.15 1636

|S|=14,400, |A|=25, |O|=625 −11.37 ± 0.15 1831

SARSOP −12.10 ± 0.16 4095

−12.09 ± 0.16 7200

RockSample(7,8)

|X|=50,|Y|=256 MOMDP 21.47 ± 0.04 160

|S|=12,545, |A|=13, |O|=2 SARSOP 21.47 ± 0.04 1061

RockSample(10,10)

|X|=101,|Y|=1,024 MOMDP 21.47 ± 0.04 318

|S|=102,401, |A|=15, |O|=2 SARSOP 21.47 ± 0.11 1589

RockSample(11,11)

|X|=122,|Y|=2,048 MOMDP 21.57 ± 0.04 103

|S|=247,809, |A|=16, |O|=2 22.48 ± 0.03 1879

SARSOP 21.56 ± 0.11 1369*

RockSample(12,11)

|X|=145,|Y|=2,048 MOMDP 21.45 ± 0.04 24

|S|=294,913, |A|=16, |O|=2 22.00 ± 0.04 836

SARSOP 21.38 ± 0.04 963*

AUV Navigation

|X|=96,|Y|=141 MOMDP 799.9 ± 3.5 112

|S|=13,536, |A|=6, |O|=144 808.0 ± 3.4 123

SARSOP 799.3 ± 2.9 3463

795.7 ± 3.5 7200

*The program ran out of memory.

the program ran out of memory. To estimate the expected total reward of the resulting policy, we performed a

sufficiently large number of simulation runs until the variance in the estimated value was small. For comparison,

we also ran the original SARSOP algorithm [14] on the same tasks modeled as standard POMDPs. Both

algorithms are implemented in C++. The implementation uses an efficient sparse vector representation for the

beliefs and a sparse matrix representation for the transition and observation functions. The experiments were

performed on a PC with a 2.66GHz Intel processor and 2GB memory.

5.2.1 Mixed Observability Tasks

The results are shown in Table 1. Column 1 of the table lists each task, its state space size |S| for the standard

POMDP model, |X | and |Y| for the MOMDP model, as well as action space and observation space sizes, |A|

and |O|. Small optimizations can be performed to reduce the number of states in the POMDP model. So |S|

may not be exactly equal to |X | × |Y| for the corresponding MOMDP. However, this is not significant enough

to affect |S| = O(|X ||Y|). Column 3 of the table lists the estimated expected total rewards for the computed
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Figure 5: A simulation trajectory under a policy for Two-Robot Tag. Striped regions indicate obstacles. The

two “R”s indicate the robots’ positions, and the “T” indicates the target’s position. The various shades of gray

indicate the belief on the target position. Lighter colors indicate higher probabilities, with dark gray indicating

zero probability.

policies and the 95% confidence intervals. Column 4 lists the running times.

For all tasks, the MOMDP algorithm obtained good approximate solutions well within the time limit and

outperformed SARSOP by many times. We ran experiments on Tag with two different map sizes. As the

problem size increases, both |X | and |Y| increase. The performance gap between our algorithm, which uses the

MOMDP model, and SARSOP, which uses the standard POMDP model, increases as well. We also ran multiple

experiments for Rock Sample, with different map sizes and numbers of rocks, and found a similar trend. In

particular, for the largest problems, RockSample(11,11) and RockSample(12,11), which have 250,000 and

300,000 states respectively, SARSOP never reached the same reward level attained by the MOMDP algorithm

before running out of memory. This is not surprising as the computational efficiency gain achievable from the

MOMDP model increases with |X | (Section 4.4). For both TwoRobotTag(24) and AUV Navigation, SARSOP

also failed to reach the same reward level attained by the MOMDP algorithm.

Figure 5 shows snapshots of a single simulation run of a policy that our algorithm computed for TwoRobotTag(24).

The robots’ initial belief on the target position is uniform over all possible positions, as there is no prior in-

formation (snapshot 1). The two robots then move toward the top middle part of the environment to search

for the target (snapshots 1 and 2), while updating the belief using the observations received and the model of

target dynamics. The belief is now non-uniform with several high-probability regions. Next, the robots move to

search the lower left corner (snapshot 3) and lower right corner (snapshot 4) in turn. It is interesting to note that

in both cases, the two robots coordinate to approach the corner from opposite sides of the obstacle, in order to

surround the target, if it tries to escape. Also, as the robots move from the lower left to lower right corner, they

take as short paths as possible (snapshot 3), because there is cost for each move. Throughout the run, prior to

the target’s capture, the robots never see the target, and yet right before the capture, the robots have eliminated

the possibility of the target hiding in a large portion of the environment (the dark gray area in snapshot 5), but

not all. They finally capture the target in the lower right corner (snapshot 6). If the robots do not capture the
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Figure 6: RockSample(12,11). “S” marks the initial robot position, “o” marks rock positions. The robot’s final

destination is on the right side of the map. Shaded cells represent robot positions for which the algorithms

perform backup and generate α-vectors.

target there, it is expected that they will search the top left part of the environment again.

To understand the computational advantages of the MOMDP algorithm, let us look at Rock Sample more

closely. In this task, x represents the robot position, and y represents the value of rocks. For each position x,

ΓY(x) is a set of α-vectors that specify the actions for the robot if it is located at x and has some belief bY on

the rocks. Suppose that under an optimal policy, the robot never visits a position x′, starting from its initial

position. Then there is no need to construct the α-vector set ΓY(x′). The MOMDP algorithm automatically

benefits from such computational efficiency gains. Figure 6 shows a concrete example. After 836 seconds

of policy computation, the MOMDP algorithm obtains a better policy than the SARSOP algorithm. Yet, the

MOMDP algorithm performs backup and generates α-vectors in only roughly 60% of robot positions, while

the SARSOP algorithm, which uses a standard POMDP model, generates α-vectors for all robot positions. We

believe that this is an important contributor to the efficiency of the MOMDP algorithm.

5.2.2 Pseudo Full Observability and Reparameterized Full Observability

The original Tag problem is modified to create a noisy version, in which the robot has p% chance of observing

its own position correctly and (1/8)(100−p)% chance of observing each of the 8 surrounding positions. In this

case, both the robot position and the target position are partially observable. However, following the pseudo

full observability technique in Section 3.3.1, we modeled the task as a MOMDP by assuming that the robot

position is fully observable. We then averaged over the value function computed by the MOMDP algorithm

and generated a policy to control the robot under the original POMDP model, without assuming any fully

observable state variables for policy execution.

We ran experiments with different sensor accuracy p for the Noisy Tag problem. The results are shown in

Table 2. NoisyTag(M,p%) denotes a modified Tag problem with a map of M positions and sensor accuracy

p%. The MOMDP algorithm drastically outperformed SARSOP, even when p was as low as 10%. This is a little

surprising. The MOMDP model brings computational advantages, but is less accurate than the POMDP model,

due to the assumption of fully observable state variables. One would expect that the MOMDP algorithm may

reach a reasonable reward level faster, but loses to SARSOP in the long run. However, in this case we did not

observe any significant performance loss for the MOMDP policy. To confirm the results, we ran SARSOP for

two additional hours, but the reward level of the resulting policy did not improve much beyond those reported

in the table.

To examine the reparameterized full observability technique, the Tag problem is modified so that the robot
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Table 2: Performance comparison on tasks using pseudo or reparameterized full observability techniques.

Reward Time (s)

NoisyTag(29,90%)

|X|=30,|Y|=29 MOMDP −11.12 ± 0.14 4.5

|S|=870, |A|=5, |O|=30 SARSOP −11.12 ± 0.14 228.0

NoisyTag(29,50%)

|X|=30,|Y|=29 MOMDP −12.14 ± 0.14 1.5

|S|=870, |A|=5, |O|=30 SARSOP −12.15 ± 0.14 11.6

NoisyTag(29,10%)

|X|=30,|Y|=29 MOMDP −12.53 ± 0.14 1.5

|S|=870, |A|=5, |O|=30 SARSOP −12.59 ± 0.14 176.4

NoisyTag(55, 3 × 3)

|X|=56,|Y|=495 MOMDP −10.62 ± 0.10 32

|S|=3,080, |A|=5, |O|=56 SARSOP −10.61 ± 0.08 927

never observes its own position exactly, but only the 3× 3 region around it in the grid. Now both the robot and

the target positions are partially observable. However, the preimage of any observation on the robot position

is bounded. We can apply the approach described in Section 3.3.2 and reparameterize the robot position as

(or, δr), where or indicates a 3 × 3 region in the grid and δr indicates the actual position of the robot within

the region. We then model the reparameterized problem as a MOMDP: the x variable represents or, and the y

variable represents δr and the target position.

Again the MOMDP algorithm significantly outperformed SARSOP (Table 2). This suggests that extracting

fully observable state variables through reparameterization is a promising idea and deserves further investiga-

tion.

6 Software Implementation

We implemented the MOMDP algorithm in a C++ software package APPL, which stands for Approximate

POMDP Planning Library. It is now available for download at http://motion.comp.nus.edu.sg/

projects/pomdp/pomdp.html.

APPL has several useful features for those interested in using POMDPs for robot motion planning:

• APPL provides a new XML-based file format POMDPX for specifying POMDP/MOMDP models in a

compact and flexible way. APPL is backward compatible and can read the standard POMDP format as

well. As an example, the file for the benchmark problem RockSample(7,8) has 18.9 MB in the standard

format, but only 0.1 MB in the new POMDPX format.

• APPL also allows POMDP/MOMDP models to be specified in C++ and integrated with the solver algo-

rithm through a well-defined programming API.

• APPL provides several ways to examine the computed policy. It provides a simple simulator for estimat-

ing the expected total reward of a policy. It can also output a computed policy in a graphical form similar

to a finite-state machine controller diagram.

For those interested in improving POMDP algorithms, APPL provides efficient implementation of primitive

operations, such as belief update and backup. The belief representation is encapsulated and can be changed

without affecting the solver algorithm.
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7 Conclusion

POMDPs have been successfully used for motion planning under uncertainty in various robotic tasks [10,

16, 17, 26]. A major challenge remaining is to scale up POMDP algorithms for complex robotic systems.

Exploiting the fact that many robotic systems have mixed observability, our MOMDP approach uses a factored

model to separate the fully and partially observable components of a robot’s state. The factored representation

drastically improves the speed of POMDP planning, when combined with a point-based POMDP algorithm.

Furthermore, even when a robot does not have obvious fully observable state components, it still can sometimes

be modeled as a MOMDP by reparameterizing the robot’s state space. Experiments show that on a set of test

problems, our new approach improves the performance of a leading point-based POMDP algorithm by many

times.

Ten years ago, the best POMDP algorithm could solve POMDPs with a dozen states. Five years ago, a

point-based algorithm solved a POMDP with almost 900 states, and it was a major achievement. Nowadays,

POMDPs with hundreds of states can often be solved in seconds, and much larger POMDPs can be solved in

reasonable time. We hope that our work is a step forward in scaling up POMDP algorithms and ultimately

making them practical for robot motion planning in uncertain and dynamic environments.
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A Proof of Theorem 1

We start by defining the equivalence between a POMDP belief and a MOMDP belief for a system whose state

s consists of a fully observable component x and a partially observable component y. For the POMDP model

(S,A,O, T , Z,R, γ), a belief b on s is a probability distribution over S. Since the state variable x is fully

observable, b has a special structure: if x has value ξ, then b(x, y) = 0 for all x 6= ξ and all y. For the

corresponding reparameterized MOMDP model (X ,Y,A,O, TX , TY , ZM, RM, γ) with X = O, the belief bY

on y is a probability distribution over Y . We say that a POMDP belief b whose observed state variable x has

value ξ and a MOMDP belief (ξ, bY) are equivalent if b(s) = bY(y) for all s = (ξ, y).

The first statement of Theorem 1 claims that given equivalent initial beliefs, the beliefs reached under a

POMDP model and the reparameterized MOMDP model are equivalent after any arbitrary sequence of actions

and observations. We prove this by induction on the length t of the action-observation sequence.

Proof. The base case t = 0 holds trivially, as the initial beliefs are equivalent. Now assume that a POMDP

belief bt and a MOMDP belief (xt, bt
Y) are equivalent after any arbitrary action-observation sequence of length

t, i.e., bt(s) = bt
Y(y) for all s = (xt, y). Consider the belief bt+1 reached after an action-observation sequence

of length t + 1 under the POMDP model and similarly the belief (xt+1, bt+1
Y ) under the MOMDP model. Let a

and o denote the (t + 1)’th action and observation. We have

bt+1
Y (y′) = ηZM(xt+1, y′, a, o)

∑

y∈Y

TX (xt, y, a, xt+1)TY(xt, y, a, xt+1, y′)bt
Y(y)

= η
∑

y∈Y

TX (xt, y, a, xt+1)TY(xt, y, a, xt+1, y′)bt
Y(y)

= η
∑

y∈Y

T (s, a, s′)Z(s′, a, o)bt
Y(y),

where s = (xt, y) and s′ = (xt+1, y′). The first line above follows from (8), the second line follows because

xt+1 = o for the MOMDP by construction, and the third line follows from the definition of TY in (5). By the

induction hypothesis, bt(s) = bt
Y(y) for all s = (xt, y). Furthermore, bt(s) = 0 for all s = (x, y) with x 6= xt,

because the state variable x is fully observable. It then follows that for all s′ = (xt+1, y′),

bt+1
Y (y′) = ηZ(s′, a, o)

∑

s∈S

T (s, a, s′)bt(s) = bt+1(s′).

✷

Next we consider the second statement of Theorem 1. Given a policy π, let V t(b) be the expected total

reward after executing π for t steps starting with an initial belief b under the POMDP model. Similarly let

21



V t
M(x, bY) be the expected total reward after executing π for t steps starting with an initial belief (x, bY) under

the MOMDP model. We want to show that if b and (x, bY) are equivalent beliefs, then V t(b) = V t
M(x, bY) for

all t, again by induction.

Proof. The base case of V 0(b) = V 0
M(x, bY) = 0 when b and (x, bY) are equivalent holds trivially. Now

suppose that V t(b) = V t
M(x, bY) for any POMDP belief b and MOMDP belief (x, bY) that are equivalent.

Consider V t+1(b) and V t+1
M (x, bY):

V t+1(b) =
∑

s∈S

b(s)R(s, a) + γ
∑

o∈O

p(o|b, a)V t(b′), (9)

with a = π(b) and b′ = τ(b, a, o);

V t+1
M (x, bY) =

∑

y∈Y

bY(y)RM(x, y, aM) + γ
∑

x′∈X ,o∈O

p(x′, o|x, bY , aM)V t
M(x′, b′Y), (10)

with aM = π(x, bY) and b′Y = τM(x, bY , aM, o, x′). We now show that the corresponding terms in (9) and (10)

are equal. First, by definition, RM(x, y, a) = R(s, a) where s = (x, y), and for any a. Since b and (x, bY) are

equivalent beliefs, we have a = π(b) = π(x, bY) = aM and

∑

y∈Y

RM(x, y, aM)bY(y) =
∑

s∈S

R(s, a)b(s). (11)

Next, using the first statement of the theorem, we conclude that b′ and (x′, b′Y) are equivalent. Combining this

with the induction hypothesis, we have V t
M(x′, b′Y) = V t(b′). For the reparameterized MOMDP, x′ = o, and

thus

V t
M(o, b′Y) = V t(b′). (12)

Finally,

p(x′, o|x, bY , aM) =
∑

y∈Y,y′∈Y

p(x′, y′, o|x, y, aM)bY(y)

=
∑

y∈Y,y′∈Y

TX (x, y, aM, x′)TY(x, y, aM, x′, y′)ZM(x′, y′, aM, o)bY(y),

and

∑

x′∈X ,o∈O

p(x′, o|x, bY , aM)V t
M(x′, b′Y) =

∑

o∈O

∑

y∈Y,y′∈Y

TX (x, y, aM, o)TY(x, y, aM, o, y′)bY(y)V t
M(o, b′Y) (13)

=
∑

o∈O

∑

s∈S,s′∈S

T (s, a, s′)Z(s′, a, o)b(s)V t(b′) (14)

=
∑

o∈O

p(o|b, a)V t(b′) (15)

Eq. (13) follows, because ZM(x′, y′, aM, o) is 1 if x′ = o and 0 otherwise. Eq. (14) uses the definitions of TX

and TY , the fact that (x, bY) and b are equivalent beliefs, and (12). Substituting (11) and (15) into (10), we get

the desired results. ✷
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