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Abstract

For many practical problems, solutions obtained from deterministic models are un-

satisfactory because they fail to hedge against certain contingencies that may occur

in the future. Stochastic models address this shortcoming, but up to recently seemed

to be intractable due to their size. Recent advances both in solution algorithms

and in computer technology now allow us to solve important and general classes of

practical stochastic problems. We show how large-scale stochastic linear programs

can be efficiently solved by combining classical decomposition and Monte Carlo (im-

portance) sampling techniques. We discuss the methodology for solving two-stage

stochastic linear programs with recourse, present numerical results of large problems

with numerous stochastic parameters, show how to efficiently implement the method-

ology on a parallel multi-computer and derive the theory for solving a general class

of multi-stage problems with dependency of the stochastic parameters within a stage

and between different stages.
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SUMMARY

An important class of problems of optimal allocation of scarce resources over

time can be formulated as dynamic linear systems. While efficient techniques have
been developed to solve large deterministic dynamic linear systems, the solutions

obtained from these systems turned out to be unsatisfactory, because they failed to
hedge against certain contingencies that may occur in the future. Stochastic models

address these shortcomings but have not been widely used so far because they seemed
to be intractable because of their size.

A novel approach composed by G.B. Dantzig and P. Glynn and developed jointly

by them and the author combines classical decomposition techniques with a rela-

tively new technique called importance sampling. Our approach has turned out to

be capable of solving large-scale stochastic linear programs with numerous stochastic
parameters which hitherto have not been able to be solved.

The basic concept for solving two-stage stochastic linear programs is as follows.

Using dual (Benders) decomposition we decompose the stochastic linear program

into a master problem (the first-stage problem) and into a series of subproblems (the
second-stage problems), where each subproblem corresponds to a scenario, that is

a certain combination of outcomes of the uncertain parameters in the model. We

iteratively solve the master problem to obtain a first-stage trial solution for the prob-

lem and a series of subproblems to evaluate that trial solution, that is, to obtain the

expected second-stage costs and its sensitivity with respect to the trial solution. The

second stage information is passed to the master problem in form of Benders cuts;

an updated trial solution is obtained in each Benders iteration. The algorithm termi-

nates when a particular trial solution can be declared optimal. Instead of solving all

possible scenarios subproblems to compute the expected future costs exactly (which
is impossible even for a small number of uncertain parameters), we use Monte Carlo

importance sampling techniques to obtain estimates of the expected future costs and

their sensitivity. Importance sampling is crucial in our concept. It is a powerful vari-

ance reduction technique used to obtain accurate estimates with only a small sample
size. Thus, the number of subproblems that has to be solved in each Benders iteration
can be kept small.

We first developed the theory for solving general two-stage stochastic linear pro-
grams with recourse and a certain restricted class of multi-stage problems, for which

the problem breaks down into two parts, a deterministic dynamic part and a stochastic

part. The latter structure arises from the formulation of facility expansion planning

problems. Our implementation uses MINOS as a subroutine for solving linear sub-

problems. Numerical results from large-scale test problems in the areas of facility
expansion planning and financial planning demonstrated that very accurate solutions

of stochastic linear programs can be obtained with only a small sample size.

The large-scale test problems included various stochastic parameters. For exam-

ple, the largest problem representing expansion planning for multi-area electric power

systems included 39 stochastic parameters. In the deterministic equivalent formula-
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tion, if it were possible to state it, the problem would appear as a linear program

with about 4.5 billion constraints and variables. The largest portfolio optimization

problem included 52 stochastic parameters, which in the deterministic equivalent for-

mulation would appear as a linear program with about 102z constraints and a similar

number of variables. Problems of these size hitherto seemed to be intractable. Using

our method we have been able to solve them on a laptop 80386 computer.

The test results indicate that we have not yet reached the limits of the approach.

The sample sizes turned out to be so small that use of parallel processors is not a

condition sine qua non for solving even large-scale stochastic linear problems. In order

to speed-up the computation time in the case where large sample sizes are required,

we have developed a parallel implementation running on a hypercube multi-computer.

The numerical results show that speed-ups of about 60% can be obtained using 64

parallel processors.

Encouraged by the promising numerical results for two-stage and a restricted class

of multi-stage problems we then have developed the theory for a general class of multi-

stage stochastic linear programs. Our approach for solving multi-stage problems,

includes special sampling techniques for computing upper bounds and methods of

sharing cuts between different sub-problems. It will enable us to efficiently solve large-

scale multi-stage problems with many stages and numerous stochastic parameters in

each stage. The implementation is subject to future research. Preliminary numerical

results have turned out to be promising.

Further research includes improved decomposition techniques for large--scale prob-

lems, e.g., optimized tree traversing strategies and passing information based on non-

optimal subproblems, improvements to the importance sampling approach, e.g., using

different types of approximation functions, improved software, e.g., a parallel imple-

mentation of the multi-stage algorithm on distributed workstations, and the testing

of the methodology on different practical problems in different areas.



Chapter 1

Introduction

1.1 DYNAMIC SYSTEMS UNDER UNCERTAINTY

A fundamental economic problem is the optimal allocation of scarce resources over

time. Since Dantzig (1948) [20] inve_,_-d the simplex method for linear program-

ming (see Oantzig (1963) [22]), Operations Research has been developing efficient

techniques to address this important problem. Important developments of Opera-

tions Research include recent advances in linear, nonlinear, and discrete optimization

techniques, and especially the advancements of large-scale optimization techniques.

For basic references see e.g. Gill, Murray, Wright (1981) [55], (1991) [56], La_don

(1970) [85] and Geoffrion (1974)[57]. Recent advances in computer technology, e.g.

vector processing and distributed computation on parallel processors, contribute to

the capabilities of modern Operations Research methods.

An important class of resource allocation problems over time can be formulated as

dynamic linear systems. These are linear programs with a certain matrix structure.

The non-zero elements of the constraint matrix appear in a staircase pattern, where

each step of the staircase corresponds to a certain time period. This structure emerges

because constraints associated with a particular time period have coefficients in that

time period and in the period before, for all time periods of the planning horizon.

Systems of this kind are also called multi-stage linear programs. Note that optimal

linear control problems in discrete time also fall into this category.

Multi-stage linear programs have been studied extensively. Methods for solv-

ing staircase systems exploit their structure in order to increase the computational

efficiency. Dantzig and Wolfe's (1960) [31] primal decomposition and nested dual de-

composition based on Benders (1962) [6] have been exploited and further developed.

Ho and Loute (1981) [69] gave efficient implementations and collected a set of stair-

case linear programming test problems. Some references for techniques for solving

dynamic systems are Glassey (1973) [65], Ho and Manne (1974) [70], Abrahamson

(1983) [1] and Wittrock (1983) [130]. Parallel dual decomposition has been applied

by Entriken (1988)[39], (1989)[40], and parallel primal decomposition by So and

Gnanendran (1989) [67] and Ho, Lee and Sundarraj (1988)[68].

While efficient techniques allow us to solve dynamic systems of very large sizes,

e.g. problems can be solved with several hundred thousand variables, the solutions

obtained from these systems have often proved to be impractical. Parameters of the

system, which had been assumed to have certain values when the model was formu-
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lated, assumed different values when the optimal solution was finally implemented.

These were deterministic systems, where all parameters were assumed to be known

to the planner with certainty. Solutions obtained from deterministic planning models

fail to hedge against different contingencies that occur unpredicably in the future.

Consider, for example, an operations planning problem of an electric power system.

An operations plan is determined, subject to constraints based on certain availabilities

of generators and transmission lines, and certain values of demands. The optimal

solution obtained is only optimal for this particular choice of parameters. When the

optimal solution is implemented, the generators and transmission lines may assume

different values of availability, e.g. due to unplanned failure, and the demands may

become different from the planned values. For these values of the parameters of

the system the solution is no longer optimal. Di_'erent costs than planned are the

consequence. In extreme situations the implemented solution may lead to infeasibility,

when unfavorable values occur. For example, the demands may not be able to be

satisfied, and very costly actions may be necessary.

As a further example consider the portfolio optimization problem. A deter,:_inistic

approach would assume the returns of the equities traded at the market as krown

parameters. The optimal solution of the deterministic model would contain fractions

of equities in decreasing order of their planned returns, subject to the constraints and

bounds in the model. It would contain as many shares as possible of the equity with

the highest assumed return, then as many as possible with the second highest return,

and so forth. An investor having implemented this optimal solution (that is having

bought the recommended numbers of shares at the market) may be disappointed when
he later observes different values of returns than have been assumed in the model.

The returns of a portfolio, selected by a deterministic model, may be significantly

different than expected. Of course, no one would attempt to implement the solution

of a deterministic portfolio optimization problem.

Since solutions obtained from deterministic planning models have turned out to

be unsatisfactory, different techniques have been developed to compensate for their

shortcomings.

• Sensitivity analysis examines the changes of the optimal solution and the op-

timal objective value with respect to variations of uncertain parameters that

are considered to be important. Usually sensitivity analysis is conducted by

varying one parameter at a time. Linear programming theory provides for local

sensitivity result_ as a post-optimal analysis; see, e.g., Dantzig (1963) [22]. Usu-

ally not only local sensitivity analysis is performed, but uncertain parameters

are varied according to their full range of possible outcomes. If the solution of

the problem turns out to be very sensitive to a particular parameter, the value

of this parameter is revised to be more on the safe side. Then, by solving the

optimization problem again, one hopes to find a new solution that accounts, at

least partially, for the uncertainty. Clearly, sensitivity analysis cannot overcome

the shortcomings of deterministic planning models.
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• Scenario analysis is another method that has been widely us,_d and seems to be

the preferred technique for many planners. In this approach one assumes sce-

narios (certain combinations of possible values of the uncertain parameters) and

solves the problem for each of these scenarios. The different optimal solutions

and the corresponding optimal objective values in the different scenarios are

then aggregated in a heuristic way. By conducting scenario analysis the plan-

ner hopes to get insight into the problem. By solving the problem repeatedly

for different scenarios and studying the solutions obtained the planner observes

sensitivities and heuristically decides on an appropriate solution.

• Worst case analysis and other related techniques attempt to account for uncer-

tainty by putting safety margins into the problem formulation.

On the othe_ hand, stochastic models address the shortcomings of deterministic

models directly. Instead of assuming the uncertain parameters of the model to be
known, stochastic models assume their distributions to be known. This causes the

model size to grow enourmously, as will be discussed in detail later. As a result, it

has been too di_cult to solve real world practical stochastic models and they have

not been widely used so far. A new approach, based on decomposition techniques and

Monte Carlo importance sampling, has been composed by Dantzig and Glynn (1990)

[24] and developed by them and Infanger (1991) [73]. We believe that this approach

is a breakthrough in solving problems of planning under uncertainty. In the following
we will discuss this approach.

We first outline the basic theory for two-stage stochastic linear problems and

extend the discussion to a special class of multi-stage problems. We demonstrate

the power of the method on numerical results obtained from different test problems.

We then discuss an implementation of the method using parallel processors which we

have developed in collaboration with So (Dantzig, Ho, Infanger (1991)[26]). Finally

we derive the theory of solving general multi-stage stochastic linear problems.

First of all, we begin by introducing the stochastic problem and discussing different

approaches to its solution.

1.2 THE STOCHASTIC OPTIMIZATION PROBLEM

Defining a probability space (ft, P), where ft is the set of possible realizations w of the

uncertain parameters and P the corresponding probability distribution, a stochastic

optimization problem can be represented as:

z = min E(f(x,w)) = ff(x,w)dP(w)

s/txECC_R _, (1.1)

where f(x,w) is the objective function and C the set of feasible solutions defined

by the constraints of the optimization problem. The probability space (ft,P) can

represent all kinds of distributions, e.g. continuous, discrete, with a finite or infinite
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number of realizations. For example, consider the case in which fl is discrete and

finite and where a discrete outcome w has corresponding probability p(w). Problem

(1.1) then is represented as:

z - min E f(x,w) - _,,,en f(x,_z)p(w)

s/t x E C c_ n n. (1.2)

Problems (1.1) and (1.2) are hard to solve. The main problem lies in the sheer number

of possible outcomes that have to be taken into account. In problem (1.2) we define

the number of elements in fl to be K = [fl[. In practical problems K is a very

large number. In order to fully understand the nature of a stochastic solution, we

will discuss different solution approaches to the stochastic optimization problem. For

simplicity and ease of exposition we conduct the discussion for _he case of D being
discrete and finite.

1.2.1 The "Wait and See" Approach

. In the "wait and see" approach we assume that we can somehow wait and see until

the i uncertainty is resolved at the end of the planning horizon and an outcome w E fl
can be observed, before we make the optimal decision x. The "wait and see" approach

therefore assumes perfect information about the future. It is clear that such a solution

is not implementable. The corresponding problem can be stated as

z _ = min f(x,w)

s/t z C c_Rn, (1.3)

x _ E argmin {f(x,w)[z E GW}, (1.4)

z_,, = E z'= _ z"p(w). (1.5)
wEf_

The set of feasible solutions of x, C_, is defined by the constraints in scenario w.

We solve the problem for the observed outcome w and obtain an optimal solution

subject to scenario w, x _. It is an optimal solution given perfect information about

the future. We compute the expected value of the optimal costs z_ to obtain zw,, the

expected costs under perfect information.

1.2.2 The "Here and Now" Approach

The "here and now" approach represents the true stochastic optimization problem of

(1.2). A decision x has to be made "here and now", before observing an outcome of

f_. The value x is chosen, such that the expected costs E f(x,_) assume a minimum:

z = min E f(x,w)

s/t x E C = {"ben C_. (1.6)
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The optimal objective function value z denotes the minimum expected costs of the

stochastic optimization problem. Note that x has to be feasible for all scenarios

co E ft; thus C = f'UE_ C_ denotes the intersection of all C w, ca E ft, where C w

represents the feasible region given by the constraints in scenario w. The optimal
solution

x* E argmin {E f(x,w) l x E N C'} (1.7)
weil

represents the realistic solution of the stochastic optimization problem. The solution

x* hedges against all possible contingencies co E fl that may occur in the future.

1.2.3 The Expected Value Approach

Let & denote the expectation over the set f_:

wEf2

In the expected value approach we replace the stochastic parameters by their expec-

tated values and solve the corresponding deterministic problem:

Zd = min f(x,_)

s/t x E Ca" (1.9)

Xd e argmin {f(x,_) l x e C a'} (1.10)

We refer to problem (1.9) as the expected value problem corresponding to the

stochastic optimization problem (1.2). _d denotes the costs corresponding to Xd, the

optimal solution of the expected value problem. We denote by Zd the expected costs

corresponding to the implementation of the solution of the expected value problem,
Xd:

Zd--" E f(xd, w). (1.11)

1.2.4 Assessment of the Different Approaches

Assuming f(x,co) to be convex and comparing the expected costs of the different

solutions of the stochastic optimization problem, we can show that

z_,s < z < Zd. (1.12)

We define the expected value of perfect information, EVPI, to be

EVPI = z- zws. (1.13)

It is a measure of how much one would be willing to pay (at most) to obtain perfect
information about the future. A small EVPI indicates that refined forecasts will lead
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to little gain. A large EVPI indicates that incomplete information about the future

is costly.

We define the value of the stochastic solution, VSS, to be

VSS = Zd -- z. (1.14)

It is a measure of how much can be saved by implementing the solution of the stochas-

tic optimization problem versus the solution of the deterministic expected value prob-

lem. If VSS is small, the approximation of the stochastic problem by the correspond-

ing expected value problem is a good one and the obtained expected value solution

is a good solution for the stochastic problem. The larger the value of VSS the more

important it is to obtain the solution of the stochastic optimization problem.

Birge (1980) [10] develops bounds on the expected value of perfect information

and on the value of the stochastic solution, e.g.'

0 < EVPI <_z- _:d<_Zd- _'d, (1.15)

0 _<VSS _<Zd- _.d. (1.16)

The bounds on EVPI and VSS are useful for deciding if it is necessary to solve the

stochastic problem or if an approximation is adequate.

1.2.5 The Classical Stochastic Linear Program with Recourse

A classical stochastic optimization problem is the two-stage stochastic linear program
with recourse. It has the form

z= min cz + E,_Q(z,w)

s/t Ax = b (1.17)

x .>_' 0,

where

Q(x,w) = rain f(w)y

s/t D(w)y = d(w) + B(w)z (1.18)

y:>O.

The matrix A and the vector b are known with certainty. E_ denotes the expecta-

tion with respect to w, an element of the probability space (li, P), and the function

Q(x,w) is referred to as the recourse function, which in turn is defined by the linear

program (1.18). The technology matrix D(w), the right hand side d(w) and the tran-

sition matrix B(w) as well as the objective function coefficients f(w) of this linear

program are random. Since Dantzig (1955) [21], this type of problem has been studied

extensively by many authors. A special class of (1.18) is that of complete recourse,

where the recourse function Q(x,w) is finite (e.g. (1.18) is feasible) for any choice of

x. Properties of this class have been studied e.g. by Wets (1966)[124]. The recourse

function Q(x,w) can be shown to be convex and is in general non-smooth.
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To evaluate the expectation E Q(x,_), a multiple integral or a multiple sum

typically has to be computed. We will show this later. The main difficulties in

stochastic optimization deal with the evaluations of multiple integrals or multiple

sums. The numerical computation of expectations requires large numbers of function

evaluations, where each function evaluation means that a linear program has to be
solved.

There are several approaches to attack this problem. In the following we give

an overview of different approaches that have been developed to solve stochastic

optimiration problems.

1.2.6 Research in Stochastic Optimization

Stochastic programming with recourse was first introduced independently by Dantzig

(1955) [21] and Beale (1955) [4]. Chance constrained stochastic programming, in-

volving a different type of model, was first introduced by Charnes and Cooper (1959)

[18]. It involves models where a decision is made prior to the knowledge of outcomes

of random parameters, such that certain constraints are met with certain probability

levels. See Prfikopa (1988) [109] for an overview of probabilistic constrained program-

ming models. A number of different algorithmic approaches have been proposed for

solving two-stage stochastic linear programs of the type (1.17), (1.18) stated above.

(See Kall (1976)[78], Wets (1974) [125] and Wets (1983)[126] for an investigation of

the recourse problem.)

Van Slyke and Wets (1969) [121] showed with their L-shaped method how Benders

(1962) [6] decomposition can be applied to solving two-stage stochastic linear pro-

grams. Their algorithm uses expected-value cuts, representing an outer linearization

of the expected second-stage costs (or the recourse function). A variant proposed

later by Birge and Louveaux (1985) [11] is based on multiple cuts, where a different

cut with respect to each scenario is computed, and the expected-value calculation

is carried out in the master problem. Earlier, Dantzig and Madansky (1961) [29]

pointed out that the dual of the two-stage stochastic linear program has a structure

ideal for Dantzig-Wolfe (1960) [31]decomposition.

Stochastic quasigradient methods select sequentially random search dir,ections

based on a limited number of observations of the ran .)m function (1.18) in each

iteration. They have been studied by Ermoliev (1983) [42], (1988) [431 [44] and Gaiv-
oronski (1988) [51]. The convergence rates of stochastic quasigradient methods are

low; it !s important how well objective values, subgradients, and stepsizes can be

specified. Pflug (1988) [113] provided stepsize rules and stopping criteria for stochas-

tic quasigradient methods, and Ruszczynski (1987) [118] contributed by proposing

a linearization method. Marti (1980) [92] improved the convergence by introducing

semi-stochastic approximation.

A classical approximation scheme for solving two-stage stochastic linear programs

with stochastic right-hand sides (randomness in the transition matrix B and the

right-hand side d, see equation (1.18)) is to calculate upper and lower bounds via
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the inequalities of Jensen (1906) [76] and Edmundson (1956)[38] and Madansky

(1959) [90], respectively, and to successively improve these bounds. (See, e.g., Kall,
Ruszczynski, Frauendorfer (1988)[80].) The lower bound based on Jensen's inequal-

ity involves the evaluation of the recourse function at only one point, namely the

expected value of the random parameters. The upper bound due to Edmundson

and Madansky is based on the theory of moment spaces and is computed by weight-

ing the extreme points of the support of the random variables. Refinements of this
bound have been proposed by Ben Tal and Hochman (1972)[7], Kall (1974)[77],

Huang, Ziemba and Ben-Tal (1977) [71], Kall and Stoyan (1982) [81], Frauendorfer

and Kall (1988) [50] for independent random variables, and Dupa_:ow£ (1978) [36],

Gassmann and Ziemba (1986) [54], Frauendorfer (1988)[48] and Birge and Wallace

(1988) for dependent random variables. Frauendorfer (1992)[49] uses Barycentric

Approximations to solve two-stage stochastic programs. Ermoliev, Gaivoronski and

Nedeva (1985) [45] provided a general framework for stochastic programming prob-

lems. Birge and Wets (1987) [15] and Cipra (1985) [19] computed bounds based on

solving a generalized moment problem. Based on that, Birge and Wets (1986) [14]

and (1989) [16] exploited the sublinear property of the recourse function. Wallace

(1987) [123] proposed a procedure for the case that the evaluation of the recourse
function involves the solution of a network problem, and Birge and Wallace (1988)

[13] provided a separable piecewise linear upper bound. Upper bounds for the ex-

pectation of convex functions with discrete random variables and the relationship of

moment problems and linear programming have been investigated by Pr@kopa (1988)

[110], (1989)[111], and (1990) [112]. Birge (1985)[9] proposed row and column ag-

gregation schemes to approximate a stochastic program. Robinson and Wets (1987)

[114] present stability results for two-stage stochastic programs.

Using mathematical programming techniques seemed to be promising in special

cases, e.g. Nazareth and Wets (1986)[100]. Strazicky (1980)[119] and Kall (1979)

[79] proposed basis factorization approaches. Ruszczynski (1986) [117] proposed his

regularized decomposition method. Wets (1988) [128] surveyed the use of large-scale

linear programming techniques, and Nazareth and Wets (1988) [101] provided an

overview of using nonlinear programming techniques for solving stochastic programs.

Lustig et al. (1991) [89] empirically studied interior-point linear programming solvers'

performance on different formulations of two-stage stochastic linear programs.

Rockafellar and Wets (1989)[115] presented "Progressive Hedging", in which non-

anticipativity constraints are enforced via Lagrangian penalty terms in the objective,
and in each iteration a two-stage or multi-stage program is solved for each scenario.

It provides an iterative method, solving scenario optimization problems to the solu-

tion of the stochastic problem. Numerical results of the performance of "Progressive

Hedging" have been given by Mulvey and Vladimirou (1989)[97], [98].

King and Wets (1989)[82] have applied the theory of epi-consistency to stochastic

programming in order to obtain consistency results for sequences of optimal solutions,

and Dupa_ow£ and Wets (1988) [37] studied the asymptotic behavior of statistical
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estimators in stochastic programs.

Higle and Sen (1989) [61] developed a "Stochastic Decomposition" Benders De-

composition method, which, like the stochastic quasigradient algorithm, only requires

one observation or a very small number of observations per iteration, and which asym-

totically creates an outer linearization of the second-stage costs. Optimality condi-

tions and stopping rules for their method have been presented in Higle and Sen (1989)

[62]. Higle, Wing and Odio (1990) [64] subsequently extended the framework to the

case where the recourse function is evaluated by simulation.

Gaivoronski and Nazareth (1989) [52] combined generalized programming with

sampling techniques. Niederreiter (1986) [102] proposed the use of pseudo random

numbers for multi-dimensional numerical integration. De£k (1988) [33] gave a survey

of well known techniques for multi-dimensional integration for stochastic program-

ming. Monte Carlo methods are known to be efficient for multi-dimensional numeri-

cal intergration. Lavenberg and Welch (1981)[86] and Rubinstein and Markus (1985)

[116] discussed the efficiency of control variables in Monte Carlo simulation. Pereira

et al. (1989) [104] used control variables as a variance-reduction technique in Monte

Carlo sampling in a modified Benders decomposition framework. Dantzig and Glynn

(1990) [24] and Infanger (1991)[73] used importance sampling, based on an additive

approximation function, as a variance-reduction technique for Monte Carlo sampling

for stochastic linear programs. Krishna (1992) [83] extended the scheme to using

piecewise linear approximation functions.

Birge (1985) [9]extended the L-shaped method to multi-stage stochastic programs,

employing a nested Benders decomposition scheme. Gassmann (1990) [53], based on

results by Wittrock (1983) [130] for deterministic multi-stage programs, explored dif-

ferent tree-traversing strategies in a Benders decomposition framework for stochastic

multi-stage programs. This work has been extended by Morton (1992) [93] and Mor-

ton and Zang (1992)[94]. Louveaux (1986)[87] discussed multi-stage problems with

block-separable recourse. Beale, Dantzig and Watson (1986) [5] proposed a first-

order approach to a class of multi-stage stochastic programs. Dempster (1986) [35]

also studied multi-stage problems. Pereira and Pinto (1991) [106] proposed stochastic

dual dynamic programming, a dual Benders decomposition approach, exploiting the

piecewise linear property of the recourse function, and introduced path sampling for

obtaining estimates of upper bounds.

Ideas of using parallel processors can be found in Wets (1985) [127], Dantzig

(1988) [23], Hillier and Eckstein (1990) [66], Zenios (1990)[131], and Ariyawansa and

Hudson [2]. There has been a large variety of applications for stochastic programming;

for example, Ferguson and Dantzig (1956) [47] allocated aircraft to routes, Kusy

and Ziemba (1986) [84] formulated a bank asset and liability management model,

Zenios (1992) [132] managed large mortgage-baci,ed securities, Mulvey (1987) [95]

formulated nonlinear networks for modeling in finance, Pereira and Pinto (1989) [103]

optimized large hydro-electric systems and (1991) [107] carried out energy planning.

A description of practical models can be found in Dempster (1980) [34] and Ermoliev
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and Wets (1988) [46]. Overviews of stochast: ' programming are given in Dempster

(1980) [34], Ermoliev and Wets (1988)[46] and Wets (1989) [129]. For a recent survey,

see Birge and Wets (1991)[17].



Chapter 2

Benders
Decomposition and

Importance Sar npling

2.1 T_vVO-STAGE STOCHASTIC LINEAR PROGRAMS

An important class of stochastic models is that of two-stage stochastic linear programs
with recourse. These models can be seen as the stochastic extensions of deterministic

dynamic systems with two stages: x, y denote the first and the second-stage decision

variables, A, b represent the coefficients and right-hand sides of the first stage con-
straints, and D, d concern the second period constraints togetherwith the transition

matrix B that couples the two periods. In the literature, D is often referred to as the

technology or recourse matrix, c, f are the objective function coefficients.

In the deterministic case, c, f, A, b, B, D, d are known with certainty to the

planner. In the stochastic case, the values of the second-stage parameters are uncer-

tain. The second-stage parameters are known only by their probability distribution
of possible outcomes at time t = 1, but actual outcomes will be known later at time

t = 2. The second-stage parameters can be viewed as random variables that assume

certain outcomes with certain probabilities. We denote a certain outcome of these

random variables by w and the corresponding probability by p_ or p(w), w E ft, the

set of possible outcomes. We consider the case where uncertainty occurs only in the

transition matrix B and in the right-hand side vector d. The second-stage costs f

and the elements of the recourse matrix D are assumed to be known with certainty.

In (2.1) a two stage staircase problem is transformed into a two stage stochastic
linear program.

min Z = cx + E_(fy _)
s/t Ax = b

-B_z + Dy" = d_ (2.1)

x, y'_ > O, wE f_.

The problem is to find a first stage decision x that is feasible for all scenarios w E f_

and has the minimum expected costs. Note the adaptive nature of the problem:

while the decision z is made only with the knowledge of the distribution (w,p(w))
of the random parameters, the second-stage decision y_ is made after an outcome

13
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w is observed. The second-stage decision compensates for and adapts to different
scenarios w.

Let us consider the case of ft being discrete and finite, and define ft as an index set

ft = {1,... ,K} that means the parameter w may take on K different values• Then

we can tormulate adeterministic problem that is equivalent to the stochastic linear

problem. This deterministic equivalent problem is tractable only if K is small• It
takes the form

min Z = cx + plfyl + p2fy2 + ... + pKfyK

s/t Ax = b

-Blx + Dy I = d1

-B2x + DY 2 = d2 (2.2)

-B_'x + Dy K = dK

x, yl, y2, ..., yK >_ O.

In the deterministic equivalent problem (2.2) the second-stage constraints are

explicitly formulated for each scenario w E ft, one below the other. The objective

function carries out the expected value computation by direct summation. Clearly,

this formulation may lead to linear programs of enormous size.

2.2 BENDERS DECOMPOSITION

The method we wish to apply to solve two-stage stochastic linear programs utilizes

Benders (1962) [6] decomposition. Van Slyke and Wets (1969) [122] suggested ex-

pressing the expected value of the second-stage costs by a scalar t9 and replacing the

second-stage constraints sequentially by "cuts", which are necessary conditions ex-

pressed only in terms of the first stage variables x and 0. Our analysis follows this

approach.

In the following we will derive the main steps of a Benders decomposition algo-

rithm for two-stage stochastic linear programs. We will consider the "universe" case,

which yields the exact solution of the equivalent deterministic problem ("certainty

equivalent"). See, e.g., Geoffrion (1974)[57] tor an excellent derivation cf the Benders

decomposition algorithm.

Given the equivalent deterministic problem in (2.2) and assuming K scenarios

describe the universe case, we rewrite the problem applying projection onto the x

variables and obtain (2.3). We assume for simplicity that (2.2) is feasible and has a
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finite optimum solution•

minZ =

cx + rnJn [plfya + p2fy2 + ... + pK fyK]
Ax = b Dy 1 = d I + Blx

x > 0 Dy 2 = d 2 + B_x

Dy h" = d t( .+ B g x

yl y2 yK > O.

(2.3)

The infirnal value function in (2.3) corresponds to the following primal linear
problem (2.4):

min ZR = plfyl + p2fy2 + ... + pKfyg = E_(fy,,,)
plrr 1. Dya = d I + Blx

P 27r2. DY _ - d 2 -I- B2x

: ... . (2.4)

Ph'TrK: Dy g = dK+B gx

ya, y2, ..., yh" >_ O,

and to the dual linear problem (2.5)"

max z D --

par a (d_ + B_x) + p2r2 (d2 + B2x) + ... + pKrK (d K + BKx)

tlD <f

rr2 D < f

7rg D <_ f.

(2.5)

The primal problem is parameterized in the right-hand side by x. The assumption of
(2.2) being finite implies that (2.4) is finite for at least one value of x for which x > 0

and Ax = b. Applying the Duality Theorem of Linear Programming we state that
(2.5) has to be feasible. The feasibility conditions

_rWD- f < 0 (2.6)

indicate that the feasible region {rwlr_D- f < 0} is independent of x and w and is
simply repeated for each scenario w 6 f}.

The assumption of (2.2) being feasible requires feasibility of the primal problem
(2.4) for at least one value of x satisfying x > 0 and Ax = b. We define r :=

(Tri,Tr2,... ,r K) to be the vector of dual variables of problem (2.5). By the Duality

Theorem again, ZD in (2.5) has to be finite. Let 7rJ,j -- 1,... ,p be the extreme points
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and rJ,j = p+ 1,... ,p+q be representatives of the extreme rays of the feasible region

of (2.5), where _rj := (Trli, _r2J,..., 7rgJ). Problem (2.5)is finite if and only if

_r'_J(d'' + B'x) < O, j = p + 1,... ,p + q, ,, E _. (2.7)

Constraints (2.7) may be appended to problem (2.3) to ensure that the dual problem

(2.5) is bounded.

Next we outer linearize the infimal value function in (2.3), whose value is exactly

.max _ f" 7r_j (d_ + B _x). (2.8)
3--1,...,p w'-_

By expressing the infimal value function by the outer linearized dual problem and

using 0 as the smallest upper bound, the problem can be represented in the following
form:

min Z=cx +

Ax = b (2.9)
x > 0

0 > _,,,ca p"r_J(d" + B'_x), j = 1,... ,p (2.10)
rJ(d w + B'_x) <_O, j = p + 1,... ,p + q, w __ft.

Relaxation is applied to solve problem (2.10) as we do not want to know ali _rJ,j --

1,...,p+ q in advance. Given a solution (&,0) from the master problem, one solves

problem (2.4) or problem (2.5), actually by solving the individual problems (2.11):

z _*(&)=min z_ = fy_

Dy _ = d" + B'x (2.11)

y_ _> 0, weft,

or the dual problems (2.12) of these:

z_'(_) = maxz_ = r_(d _ + S_&) (2.12)
_r_D < f, _Efl.

We call _r_*(&) the optimum dual solution vector. If primal infeasibility or dual

unboundedness is detected, with _r"_°(&)denoting the corresponding extreme ray, a

feasibility cut

Tr"°(&.). (d '_ + S"x) <_0 (2.13)

is added to the master problem. If all primal problems are feasible or all dual problems

bounded, an optimality cut

0 >_ _ p'_r"*(_,). (c_ + b'_x) (2.14)
well

is added to the master problem. We call

L(&,x) := _ p'_r_'(&) • (d" + B_x) (2.15)
weil
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an outer linearization of the second-stage costs, which are defined by

z(_) := Z z_'(x) • (2.16)
¢oEf_

The relation

< (2.17)

formulates the main property of the outer linearization. Any cut regardless of the k

from which it was originally derived is a valid cut as long as it does not violate the

main property of outer linearization.

Benders decomposition provides upper and lower bounds to the solution in each

iteration. In the/-th iteration,

LBt := ¢_:1 ._. _l, (2.18)

with k t, t_t being the optimum solution of the master problem in iteration I is defined

to be a lower bound, and

UBt := min{UBt-_, ck I + z(kt)), UB° = _, (2.19)

with z(k t) the second-stage costs associated with the solution Zt of the master prob-

lem, to be an upper bound to the solution of the problem. If

(UB1- LBt)/LB t < TOL, (2.20)

where TO L is a given tolerance, the problem is said to be solved with a sufficient

accuracy.

Summarizing, Benders decomposition splits the original problem into a master

problem and a subproblem, which in turn decomposes into a series of independent

subproblems, one for each w E f_. The latter are used to generate cuts. The master

problem, the subproblems and the cuts are summarized in (2.21), (2.22) and (2.23).

The master problem:

rrfin ZM = cx + 0

s/t Ax = b

_Gtx + atO >_ gr, l = l,...,L (2.21)

zr., 0>0

The sub problems:

rain z_ = p_fy'_

s/t p"Tr" " Dy" = d" + B"x (2.22)

y,o >_ O,w E f_, hboxe.g, f_ = {1,2,...,K},

where p_zr_* is the optimal dual solution of subproblem w.
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The cuts:

g = E,. P"_r_*d_ = E(rc"*d'_), (2.23)
G = F.._p"r"*B" = E(rr"*B'),

s t = 0 for a feasibility cut, s z = 1 for a optimality cut. (2.24)

By solving the master problem (2.21), where cuts are initially absent and then
1 1rp

sequentiall:y added, we obtain a _,rial solution &. Given & we can .5,ve i, eubproblems

w E ,Q(2.22) to compute a cut (2.23). The cut is a lower bol_,d on the expected value

of the second-stage costs represented as a function of x. _uts are sequentially added

to the master problem and new values of & are obtained until the optimality criterion

is met. We distinguish between two types of cuts: _easibility cuts and optimality cuts.

The first type refers to infeasible subproblems for a given & and the latter to feasible

and optimum subproblems, given &.

If the expected values z: G_ and g are computed exactly, that is, by evaluating all

scenarios w E f_, we refer to i' as the universe case. As we will see later the number

of scenarios easily gets out of hand and it is not always possible to solve the universe

case. Therefore methods are soTlght that guarantee a satisfactory solution without

having to solve the universe case. We employ Monte Carlo sampling techniques to

obtain accurate estimates of the expected values z, G, and g.

2.3 NIONTE CARLO SAMPLING

2.3.1 Multidimensional Integration

The computation of the expected future costs z, the coefficients G and the right-hand

side g of the cuts requires the computation of multiple integrals or multiple sums.

The expected value of the second-stage costs, e.g. z = Ez _ = E(C), is an expectation

of functions C(v'),w e O_,where C(v '_) is obtained by solving a linear program. Y

(in general) is an h-dimensional r_ndom vector parameter, V = (V_,..., Vh), with

outcomes v '_ = (vi,..., rh)". For example, in expansion planning problems of electric

power systems, _z_represents the percent of generators of type i down for repair or

transmission lines of type i not operating, and v_ is the observed :'andom percent

outcome. In portfolio management problems, Vi might represent the random value of

the independent factor i used to describe the random value of returns of the universe

of assets in a portfolio, and v_ the observed outcome. The vector v_ is also denoted

by v, and p(v") alias p(v) denotes the corresponding probability. _ is the set of all

possible random events and is constructed by crossing the sets of outcomes: _/ =

_1 × ft2 × "'" × _h. We assume independence of the stochastic parameters V1,..., Vh.

With P being the probability measure, the integral E C(Y) = f C(v_)P(do.. ,) takes

the form of a multiple integral E C(V) = f... f C(v)p(v)dvx... dvb, or, in the case

of discrete distributions, the form of a multiple sum E C(V) = _,,_... _,, C(v)p(v).

Based on the independence assumption, p(v) = p_(vi)'" ph(Vh).
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In the following discussion we concentrate on discrete distributions. This is not

a restriction as the approach can be easily adapted for continuous distributions. In

practical applications we may assume that all distributions can be approximated with

sufficient accuracy by discrete ones. In practical problems the number of terms in the

multiple sum computation becomes astronomically large and therefore the evaluation

of multiple sums by direct summation is not practical. This is especially true because

the evaluation of each term in the multiple sum requires the solution of a linear

program. For example, in order to compute the expected values of the subproblem

costs, the coefficients and right-hand sides of the cuts, a linear program has to be
solved for each outcome w E f_ .

The expected value of the subproblem costs is denoted by

z = E C(v _) = E fy*_, w _. _, (2.25)

with y*_ being the optimum solution of subproblem w. The number of elements of _ is

determined by the dimensionality of the stochastic vector V = (V1,..., Vh). Typically
the dimension h of V is quite large.

For example, in expansion planning problems of electric power systems, one com-

ponent of V denotes the availability of one type of generator or one demand of power

in a node of a multi-area supply network, or the availability of one type of transmis-
sion line connecting two nodes. Consider several nodes and arcs and oi._edemand and

some options of generators at each node. The number of scenarios K in the universe

case quickly gets out of hand, even if the distribution of each component of V is

determined by just a small number K i of discrete points. Suppose e.g. that h = 20

and K i = 2, i = 1,..., 20. This refers to the case that 20 components of the system

are either in operation or down for repair. The resulting number of scenarios is as

large as 220 _ 106. Alternatively, suppose that h = 20 and K i = 5, i = 1,...,20.

Then the total number of terms in the expected value calculations is K = 520 _ 1014,
which is not practically solvable by direct summation.

In portfolio management problems, one component of V may denote the value

of an orthogonal factor. Usually up to 80 factors are used to describe the random

outcomes of up to several thousand assets. Suppose, for example, we used 80 factors,
and discrete stochastic parameters with only 3 outcomes each. Then the number of

possible scenarios would be as much as 3s° _ 103s, an astronomically large number.

Monte Carlo methods appear promising for the computation of multiple integrals

or multiple sums for h large (Davis and aabinowitz (1984) [32]). See Hammersly and

Handscomb (1964) [59] for a description of Monte Carlo sampling techniques.

2.3.2 Crude Monte Carlo

Suppose v_,w = 1,..., N, are scenarios sampled independently from their joint prob-
ability mass function. Then C_' = C(v _) are independent random variates with
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expectation z.
N

= (l/N) _ C_' (2.26)
w-'l

is an unbiased estimator of z, and its variance is

2 = a2/N, (2.27)O'_,

where a 2 = var(C(V)). Thus the standard error decreases with sample size N by

N -°'s. The convergence rate of 5 to z is independent of the dimension h of the
random vector V.

2.3.3 Importance Sampling

We rewrite

C(v_°)P(V")q(v'°) (2.28)
z = c(<)p(<)=wEf_ wEf_

by introducing a probability mass function q(v_'). We can view q as a probability
mass function of a random vector W that assumes the same outcomes as V but with

different probabilities. Therefore by change of variables,

z = E C(W)p(W)
q(W) (2.29)

We obtain a ne_-, estimator of z,

& C(w_)p(w _)

= -_ 2_, q(_) ,
(2.30)

oa-'l

which has a variance of

var(2) = ,,,_ - z q(w"). (2.31)

Choosing q*(w _) = C(w'°)p(w')/F_,,oea C(w')p(w') would lead to var(2) = 0,

which means we could get a perfect estimate of the multiple sum just by one single

observation. However this is practically useless, since to sample Cp/q we have to know

q and to determine q we need to know z = _,_ea C(w_)p(w"), which we eventually

want to compute. Nevertheless this result helps to derive heuristics of how to choose

q: it should be approximately proportional to the product C(w")p(w '°) and have a

form that can be integrated analytically. For instance, using the additive (separable

in the components of the stochastic vector) approximation of (2.32),

h

C(V) ,_ __, C_(V_), (2.32)
i--1
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could be a possible way to compute a proper q:

(2.33)h
E -i

In this case one has to evaluate only/z 1-dimensional sums instead of 1 h-dimen-

sional sum. Depending on how well the additive model approximates the original

cost surface, the above-mentioned estimator will lead to smaller variances compared

to crude Monte Carlo sampling. Of course, if the original cost surface has the property

of additivity (separability), no sampling is required, as the multiple sum is computed

exactly by h 1-dimensional sums.

The advantage of this approach lies in the fact that even if the additive model is

a poor approximation to the cost surface, the method still works. The price that has

to be paid is a high sample size. The variance reduction compared to crude Monte

Carlo will be small. For the theory of importance sampling we refer to Glynn and

Iglehart (1989) [58]. See also Dantzig and Glynn (1990) [24].

R. Entriken and M. Nakayama in Dantzig et al. (1989) [25] developed an impor-

tance sampling scheme using an additive model to approximate the cost function

E C(V). In particular, C(v) is approximated by a marginal cost model, considering

marginal costs in each dimension i of V and a base case, the point from which the

ai,proximation is developed. We will use this approach here. As we employ impor-

tance sampling within the Benders decomposition algorithm, the costs C(v,_), the

approximation of the costs r(v, &) and thus the importance distribution of q(v,&) de-

pend also on &, the current solution of the master problem. Introducing the costs of

the base case C(r,&) makes the model more sensitive to the impact of the stochastic
variables V:

h

C(V,_c) ._ F(V, _) = C(r,_c) + y_ Ui(Vi,&), (2.34)
i=1

Mi(Vi,_c) = C(rl,...,ri_l,Vi, ri+l,...,rh,_c)-C(r,&). (2.35)

The vector r = (ra,..., rh) can be any arbitrarily chosen point out of the set of values

vi, i = 1,..., h. For example we choose ri as the outcome of V_ that leads to the

lowest costs. Figure 2.1 represents schematically the true cost function C(V) and the

additive approximation function I'(V) for the case of only two dimensions.

Note that the second-stage costs are computed by a linear program, where the

uncertain parameters appear in the right-hand side. Therefore the second-stage costs

are convex in the stochastic parameters V. In the most general case of a convex

function C(Vx,...,Vh,&) the choice of the base case r = (rl,...,rh) to be these

values of (Va,..., Vh) that minimize the function C(V_,..., Vh, k) for given _, requires

the solution of a convex minimization problem (with discrete variables V). This is

impractical, and another choice of a base case is taken. In many cases the base case

of lowest costs can be found easily. For example, in the context of expansion planning

of power systems, choosing the base case of lowest costs means selecting respectively

lowest demands and highest availabilities of generators and transmission lines.
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C(wl,w2)
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I _Jl

(o,o1

Figure 2.1: Additive approximation versus true cost function

Defining

Mi(_.) = E Mi(V_,:_)= _ Mi(v'_,&)p(v_') (2.36)
weft,

and

F(v" :})= C(vW'_)- C(r,),) (2.37)h

£_=,M,(,_,_)

wherewe assume that hF_,i=,Mi(vT,Sc) > 0, so that at least one Mi(vT, &) > 0, we can

express the expected value of the costs in the following form:

h .. Mi(v(,3c) h

z(_)= c(_,_)+_ M,(_)_ F(_,_) _7_-,(_H pJ(_;). (2.3s)i=l wE_ j=l

Note that this formulation consists of a constant term and a sum of h expectations.

Given a fixed sample size N we partition N into h sub-samples, with sample sizes Ni,



2.3 Monte Carlo Sampling 23

i = 1,..., h such that :£.Ni = N and Ni >_1, i = 1,..., N where Nk is approximately

proportional to A:/i. The h expectations are separately approximated by sampling

marginal densities. The i-th expectation corresponds of course to the i-th component

of V. Generating sample points in the i-th expectation we use the importance density

(pi M_/Jl/I_) for sampling the i-th component of V and the original marginal densities

for any other components. Denoting

1 Ni

= 2/, (2.39)
j=l

the estimate of the i-th sum, we obtain

h

= c(-,-, + (2.40)
i=l

the estimated expected value of the second-stage costs.

Let _Y_(_) be the sample variance of the i-th expectation, where a_(_) = 0 if

N/= 1. The estimated variance of the mean, a_(_), is then given by

h irT/2(i)#_(i) (2.41)
i=l

Using importance sampling one can achieve significant variance reduction. The

experiment of M. Nakayama in Dantzig et al. (1989) [25] claims a variance reduction

of 1:20000 using importance sampling versus crude Monte Carlo sampling. For a given

optimal & the second-stage costs of a multi-area expansion planning model with 192

universe scenarios were sampled with a sample size of 10 using both methods and the

results compared.

The derivation above concerned the estimation of the expected second-stage costs

z(&). To derive a cut we use an analogous framework. Note that a cut is defined as

an outer linearization of the second-stage costs represented as a function of x, the

first stage variables. At &, the value of the cut is exactly the expected second-stage
costs z(&). Note also that any choice of q is a valid choice and leads to an unbiased

estimate. As we do not want to derive different importance distributions for the

coefficients and the right-hand side of a cut, we use the q already at hand from the

cost estimation. Therefore we employ directly the cost approximation scheme and

the importance distribution to compute the gradient and the right-hand side of a cut.

With B(v _) := B w and d(v '_) := d'_ being the outcome of B and d in scenarios w E fl

and 7r'(v_, _):= _r_*(_), the optimum dual solution in scenario w, we define

Fa(v_,2) = r'(v'_,k)B(v _) - 7r*(r, k)B(r)
_=, M,(v'_, _) ' (2.42)

F,(v,_,Sc) = _r'(v_,&)d(v _) - 7r*(r,$)d(r)h , (2.43)
})



24 Chapter 2. Benders Decomposition and Importance Sampling

and compute

h h

G(&) = Tr'(7",&)B(r) + __IgIi(&) y_ FC(v '' &)Mi(v_,&) yi pj(v,f), (2.44)
' "

h

9(&)= rr*(r,&)d(r)+ y_.]f/,(&)y_ Fg(o',&) Mi(v_)

h

i=a _ec )tS//(&)) 1-I pj(v_'), (2.45)j:l

the coefficients and the right-hand side of a cut. We estimate the expected values

again by sampling using the sample points at hand from the computation of 2.

Using Monte Carlo sampling we obtain 5(k), G(&), 0(&), which are approximations

of the expected values z(&), G(&), g(k). We also obtain the estimated variance of the

mean of the second-stage costs cr_(k). The impact of using approximations instead

of the exact parameters on the Benders decomposition algorithm is analyzed in the

following section.

2.4 PROBABILISTIC CUTS

2.4.1 The Influence of the Estimation Error

Employing Monte Carlo sampling techniques means not solving all problems w E f_,

but solving problems w E S, S being a subset of Ft. Instead of the exact expected

values z(&), G(&), g(&) we compute the estimates 2(&), G(&), _(&) by importance

sampling. We also estimate the error of the estimation of z(&) by the variance
2

var(2(&)) = ac(&). Thus for example in the case of the second-stage costs the es-

timation results in an estimated mean with some error distribution. There is good

rea.son to assume that the error is normally distributed (Davis and Rabinowitz (1984)

[32]). We define _(&) to be normally distributed with mean 2(&) and variance a_(&):

_(&) := N(2(&), _-_(&)). (2.46)

A cut obtained by sampling differs in general from a cut computed by solving the
universe scenarios. The outer linearizations

L(&,z) = G(&)x + g(&) (2.47)

with respect to the universe case, and

.L(&,x) = G(&)z + _(&) (2.48)

with respect to the estimation, differ in the gradient and the right-hand side. At

z = &, the value at which the cut was derived, L(&,&) = z(&) and L(&,&) = 2(&).

Thus if a true cut obtained by solving the universe case is binding at the solution

x = &, the variable 0 takes on the value

0 = L(&,&)= z(&). (2.49)
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In the case of using Monte Carlo sampling we assign 0 to be the value of the estimated

costs at _, L(k,k) = 5(k), and correct for the estimation error at the right-hand side.
Thus

0= (2.50)
which we write as

0 = L(_, _)+ e(_). (2.51)

Equation (2.50) represents a valid statement for a solution x = k. The correction

term e(k) = z(k) - 5(&) corrects for the estimation error. Of course, we do not know

the difference z(k) - 5(k) explicitly for each cut when we compute it. However we

can obtain an estimate of the distribution of e(k) by the estimation process. Using

Monte Carlo importance sampling we obtain an unbiased estimate of z(:_), 5(_), with

variance a_(k). Thus e(k)is normally distributed with mean 0 and variance a_(k)

2
e(k) := g(o,a_.(_)). (2.52)

Suppose next that^ a cut L(k, x) = G(_)x + ._(k) was computed at x = _, but is
binding at a solution k where _ ¢ _. Applying the correction for the estimation error

resulting from using Monte Carlo sampling instead of computing the expectations
exactly, we obtain

0 = L(k,x) + e(x). (2.53)

The correction term for the estimation error is clearly the true value of the cut^

at x = _, obtained by solving the universe case, minus the value obtained by the
sampling procedure:

e(_) = L(&, _)- L(k,_). (2.54)

Again we do not know the difference L(&,x) 7 L(&,x) when we compute the cut.
Also the distribution of the estimation error e(k) at x = x is not known directly by

the estimation procedure but can be computed. Thus, initially, and sufficiently for
all practical purposes, we assume that

e(x) _ e(k) for x _ _. (2.55)

This implies that the error distribution e(x) is assumed to be approximately con-

stant with respect to x. We will show empirically that this assumption is valid for
most practical problems. Intuitively one can see it is valid because the value of x

changes only little before we terminate at the final solution. In general the set of
2 is small.observations S is a sufficiently large subset of fl so that the variance a_

Note that cuts computed by sampling do not necessarily meet the condition of

outer linearization. They may intersect and separate parts of the feasible region of

the second-stage problem. A sampled cut is therefore not necessarily a valid cut.

The correction term e(i), however, accounts for the error we make when using Monte
Carlo sampling instead of solving the universe case.
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2.4.2 The Estimation Error of a Cut as a Function of x

Using Monte Carlo sampling we estimate the coefficients Gi, i = 1,...,n and the

right-hand side g and obtain G and _ by averaging G_' = G_',..., G_ and gW. For

example, in the case of crude Monte Carlo sampling a sample of size N would be

obtained by sampling G_', g_', w = 1,...,N from the original distribution p(w),

w E ft: , and an estimate of G and g would be computed by their means G, _. In the

case of importance sampling a different and more complicated weighting scheme is
used. We do not discuss this here and continue with the case of crude Monte Carlo.

For each sample w, w = 1,...,N, we obtain independent observations of the

mutually dependent coefficients and the right-hand side of a cut:

G'{, . . . , G_, g"'. (2.56)

Let us denote by R the n+ 1 xN matrix composed of the observations of the coefficients

and the right-hand side of the cut, subtracted by the mean of the observations:

R= '-Gn ... Gg-Gn " (2.57)

Ggl _ _ ... gW _

An estimate of the variance of the mean value of L(i,x) = G(i)x + ._(i) can be

obtained by

1 1 (xT,1)RTR(xT1)T" (2.58)var(L(_,x)) = N g - 1

Defining

y""= R'(zT,1) T, w = 1,...,N, (2.59)

where/_' refers to the column in R that represents the observation w,

R" = - 0,,..., a: - O, ,g - (2.60)

we can write the estimated variance of the value of the cut at x as

1 1 N

var(L(&,x)) - g N - 1 _-_(y_)2. (2.61)

This estimate can be easily computed. It follows that with knowledge of the

matrix R of observations of the coefficients and the right-hand side of a cut we are

able to compute an estimate of the variance of the value of the cut, var(L(_:, x)), for

any value of x. Clearly,

var(L(:_, k))= var(_.(_:)). (2.62)

Using the estimation procedure we obtain an estimate of the distribution of the
correction term:

e(x) = N(0, var(L(&, x)), (2.63)
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where we also denote

a2L(x) := var(L(_,x)). (2.64)

The error term _(x) now correctly represents an estimate of the distribution of the

difference L(_.,x)- L(&, x) as a function of x.

While it seems to be impractical to store the matrix R to obtain the error estimate

of each cut as a function of that particular solution of the master problem x at which

the cut is binding, a Taylor approximation of var(L(&,x)) appears to be sufficiently
accurate.

Let a(&) be the vector of local derivatives at &:

0

c_(:_):-[_z (var(L(£ x)))]_, (2.65)

where

_x/(Var(L(k, x)))= (G(_)x + (2.66)

2(N 1)
g(T))(_i.

N

Using a first order Taylor approximation we can write var(L(_:,x)) in the following
form:

a2L(Z)=var(L(k,z)) ,_ var(t(k,_)) + a(k)(x-k)

= var(5(_)) + a($)(x-$). (2.67)

The estimate of the variance var(L(_, x)) as a function of x is represented as a sum

of two terms, the estimated variance of the second-stage costs, at _, var(5(:_)), plus

the linear term that represents the change of the variance, if x _ 3. The latter term

is assumed to be small, as a(_) is small.

We will continue with the assumption that the error is approximately constant

with respect to x. That means we see the error mainly concentrated in the right-hand

side of the cut and we assign the constant error term e(i) rather than the variable

correction term c(x) to the right-hand side. We then take

- Gx + 0 >_._ + e(_) (2.68)

to be approximately a valid cut. Note that we can expect in the final solution of the

Benders decomposition procedure that cuts will be binding at an x very close to the

where they were originally derived.

2.4.3 Upper and Lower Bounds

For random second-stage costs _(_t) and random right-hand sides Ot+ct, l = 1,... ,L

the upper and lower bounds of t} e problem as provided by Benders decomposition

algorithm are probabilistic.
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The Upper Bounds

U-Bt := c}t + _(_t), I = I,..., L (2.69)

are random parameters, normally distributed with means U-Bt and variances

U'Bl '= N(U-B t, a_(&t)) l= 1,..., L. (2.70)

We define the lowest upper bound to be the upper bound with the lowest mean

~L -, k
UBmi_ := UB_a,, k E argmin {U-Bt, l= 1,..., L}. (2.71)

with corresponding variance 2dr /, .

U-Bmi n

The Lower Bounds

The lower bounds are obtained from the solution of the master problem. To determine

the distribution of a lower bound, consider the master problem at iteration L:

LBL = _,_ = min sL = cx + 0

s/tp °" Ax = b

p,. -Glz + 0 >_ _l +e,
(2.72)

pL. --GLx + 0 > _Lq__L

x, 0 >_ O,

where L optimality cuts have been added to the originally relaxed master problem.

We do not consider feasibility cuts in the following argument, as they are exact. The

vector pOand the scalars pt I = 1,..., L denote the dual prices. The right-hand sides

_t + et, l = 1,...,L, are independent stochastic parameters, normally distributed.

We assume independence as the cuts are generated from independent samples, and

neglect the weak dependency due to _:t, l = 1,... ,L, via the Benders decomposition

algorithm.

With the random parameters et, l = 1,..., L in the right hand side the optimum

solution £,_ will be random. One could experimentally obtain the distribution of _,_

by randomly varying the right-hand sides according to N samples j = 1,..., N drawn

from the normal distributions of et, l = 1,..., L and by solving the master problem

for all N samples. One could estimate the mean and the variance of the distribution

from the samples j = 1,..., N. As this is a very expensive way to obtain an estimate

of the lower bound distribution, we proceed instead in the following way. We have

already stated that we choose a sample size [SI such that the variances _,'_ l = 1,. .., L

are small. In this case we can then perform a local error analysis and assume that for

all outcomes of the random right hand sides el, l = 1,..., L, the optimum solution of
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the master problem has the same basis. Then we can define the optimum solution of

the master problem

_ := N(_,_, var(£,_)) (2.73)

to be a random parameter, normally distributed with mean _,_ and variance var(_),
and compute the mean of the lower bound estimate,

£,_ = min zL = cx + 0

s/t pO. Ax = b

pl. -01x + 0 > .#1
• . (2.74)

j •

pL. --GLx + 0 > pL

x, 0 >__O,

by substituting the means _l = 0, l = 1,... ,L for the random right-hand sides. We

compute the variance var(_) by using the dual formulation of the master problem:

L

var(;_t ) = _"_(pt)2a_(_/). (2.75)
/--1

As the lower bound means increase monotonically with the number of iterations, we

obtain the largest lower bound by

L-BL -.L (2.76)-" ZM,

which is normally distributed"

L'BL := N(I[BL, var(L'BL)). (2.77)

The local error analysis can be easily extended to the case where we consider the

error terms ct(z) as a function of the decision variables x instead of constant. As

before, we assume the variances a_(x) to be small so that for ali outcomes of the
random right-hand sides el(x), l = 1,..., L, the solution of the master problem has

the same basis. We obtain the mean of the lower bound estimate by solving the
master problem (2.74), with the means e|(x L) =,-0, l = 1,...,L replacing the random

terms in the right-hand side. Assuming the variance of the error terms et(zL) to

be approximately constant in a small neighborhood of xL, we obtain the variance
var(5.._) by using the dual formulation of the master problem:

L

var(_t ) = E(pl)2ai(xL). (2.78)
/=1
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2.4.4 Stopping Rule

By analogy to the deterministic Benders decomposition algorithm, we stop if the

upper and lower bound are sufficiently close. In the case of probabilistic bounds,

the algorithm has to be stopped if the upper and lower bound are indistinguishable

in distribution. Using a student t-test we determine if sz > 0 with 95% probability,
where

st= U-Bt- L-Bl + TOL (2.79)

and TOL being a given tolerance.

The employment of the student t-test requires independence of the upper and

lower bound distributions. As independence is not ensured in the first place as an

upper bound, and a binding cut in the master problem could be obtained from the

same set of samples, we obtain independence by re-sampling the lowest upper bound

before employing the student t-test. The } corresponding to the lowest upper bound

and the corresponding importance distribution have to be stored. In each iteration

we check if upper and lower bounds are close to each other, where we use the student

t-test without fulfilling the independence requirement. If the bounds are close, we

use new samples to compute an independent upper bound. Now we check if s z > 0

by the t-test.

2.4.5 Confidence Interval

After passing the student t-test in the last iteration, which means that the upper and

lower bound means are indistinguishable, we obtain the optimum solution _L, /_from

the master problem. We derive from the distributions L'B L and U'B L a 95% confidence

interval: on the left side by using the lower bound distribution and on the right side

by using the upper bound distribution. We define

Cleft = 1.96_/var(L-BL), Cright = 1.96_/var(U'B L) (2.80)

and obtain the confidence interval

L-B- Cleft _<Z" < U-B+ Cright (2.81)

for the final solution Z'. If

(Cleft + Cright)/I.-B L <_Ctol, (2.82)

where Cto 1 is a predefined quality criterion for the confidence interval, the present
solution is satisfactory. Otherwise the sample size has to be increased and the problem

solved again.
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2.4.6 Improvement of the Solution

Suppose the solution with a certain sample size was not satisfying. Instead of starting

from the beginning with an increased sample size we want to use the information,

which we have already collected. To do this, we look for the binding cuts in the

final solution, increase the sample size and recompute the binding cuts at the same
^l

X , they were originally computed. This of course means that one has to store the

values of _a and the associated importance distributions or recompute the latter. The

enlarged sample size leads to smaller variances of the binding cuts and eventually to

a smaller confidence interval of the final solution. Berry-Ess_en, e.g. Hall (1979),

give upper bounds on the rates of convergence in the central limit theorem. Solving

the master problem again with the improved binding cuts will in general not result

in an intersection of the lower and upper bound. Therefore some more iterations are

necessary to obtain the optimal solution according to the increased sample size. This

improvement procedure could be employed iteratively until a satisfying solution is

obtained. It is a possible way to improve a non satisfying solution. It may not be

very efficient and there may be better ways to do so. In general we choose a sample

size such that the obtained confidence interval is satisfying.

2.5 THE ALGORITHM

We can state now the algorithm as follows:

Step 0 Initialize:

/=0, U-B° = ¢x_.

Step 1 Solve the relaxed master problem and obtain a lower bound:
L-Bt= c_ + bi.

Step 21=I+1.

Solve subproblems and obtain an upper bound:

U-Bl = min{U-Bt-1, c_ t + 5(_t)}. Compute and add a cut to the master problem,

using Monte Carlo (importance) sampling.

Step 3 Solve the master problem and obtain a lower bound:
L-BI= c_l + _l.

Step 4 Compute s = U-Bl- L-B_+ TOL.

If s > 0 (student t-test) go to Step 2.

Step 5 Compute confidence interval and obtain a solution Z', $, (_. Stop.

Improvement of the solution

Step 6 If (Cleft + Cright)/L-B < Ctol, stop,
otherwise go to Step 7.
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Step 7 Increase the sample size and initialize U-B° = oo.

Step 8 Recompute binding cuts.

Upper bound: U-Bt = min{U-BZ-1,C_ + 5(3ct).

Step 9 Go to step 3

2.6 A CLASS OF MULTI-STAGE STOCHASTIC LINEAR

PROGRAMS

Large-scale deterministic mathematical programs, used for operations and strategic

planning, are often dynamic linear programs. These problems have a staircase matrix

structure. Multi-s:age stochastic linear programs are tne stochastic extension of these

programs. In general, the size of these programs can be extremly large because

the number of scenarios grows exponentially with the number of periods. We will,

however, address a certain restricted class in which the number of scenarios grows

linearly with the number of stages (see Dantzig and Glynn (1990) [24] and Dantzig

and Infanger (1991)[28]). The problem (whose constraints are stated below) breaks

down into two parts: a deterministic dynamic part and a stochastic part. We call the

deterministic part the master problem. It is a dynamic linear program with T stages.

The vectors c_ and b_. and the matrices Br-1 and At, are assumed to be known with

certainty.

min _T=I ctxt + _T=I E(f_y_")

-Bt-lXt-x + Atxt --= bf, t = 1,...,T, Bo = 0 (2.83)
-F_t 'xt + Dty_' = a_t', t = 1,...,T, wt E f_t

zt, y_" >_ O.

Each stage is associated with a stochastic subproblem. Uncertainty appears in the

transition matrix F_' and in the right-hand side vector d_t', where wt denotes an

outcome of the stochastic parameters in period t, with f_t denoting the set of ali

possible outcomes in period t. The subproblems in each stage are assumed to be

stochastically independent. The subproblem costs ft and the technology matrix Dt

are assumed to be deterministic parameters, k/

Facility expansion planning is an example of this type of formulation. The master

problem models the expansion of the. facilities over time. The decision variables are

the capacity built and the capacity available at time t. The subproblems model the

operation of these capacit:ies in an uncertain environment. Take for example the case

of expansion planning of power systems: The expansion or replacement of capaci-

ties of generators and transmission lines are determ;.ned in the master problem. The

capacities at each period t are made available to the system for operation. The sub-

problems model the power system operation, the optimal scheduling of the available

c_,:'acities to meet the demand for electricity. The availabilities of generators and
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transmission lines and the demands are uncertain and not known at the time when

the expansion decision is made.

The approach is primarily "here and now" (Dantzig and Madansky (:961) [29])

and justified by high investment costs and long lead-times for capacity expansion.

However, as the operations subproblems are stochastically independent and only the

expected operation cost rather than the state of the system after period t affects the

expansion plan (as failures of equipment get repaired, and uncertainty in the demands

are interpreted as deviations from a demand path), "here and now" is equivalent to

"wait and see". This means that the optimal decision iv period t + 1 depends only

on the capital stock on hand at the start of period t + 1 and is independent of any

observed outcomes in period t; i.e., the same optimal capacity expansion decision

would be made before and after period t operations. Thus the facility expansion plan

can be laid out at the beginping for the whole planning horizon based on the expansion

co._ts and the expected operation costs. This permits the multi-stage problem to be

treated as if it were a two-stage problem. The first "stage" concerns the single decision

of what, facility expansion there will be in all future periods without knowledge of the

particular outcomes of the uncertainty parameters in future periods. The second

"sta_e" concerns the operations problems, where the recourse decisions made depend

on the realizations of the stochastic parameters. Note that for T = 1, the problem is

exactly a two stage stochastic linear program with recourse. For T > 2 the problem is

a two "stage" problem with the second stage consisting of T independent subproblems.

Figure 2.2 represents ;he decision tree corresponding to the special class of "here and

now" multi-stage problems.

Wl E _1 032 E _2 WT G _T

2

t = 1 t = 2 stage 1 t = T

Figure 2.2: Decision tree for the special class of "here and now" multi-stage problems

Using Benders decomposition we decompose the special class of "here and now"

multi-stage problems as follows:
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The master problem

z L = min _T=I ctzt + ETl 0t

-Bt-lxt-1 + Atzt = bf, t = 1, . . . , T, Bo = 0 (2.84)
-G_z, + alOt >__g_, t=l,...,T, l=l,...,L

zt > O,

where the latter constraints, called cuts, are initially absent but are added in later

iterations. The master problem is optimized to obtain an approximate optimal feasible

solution zt = i:_ that is used as input to the subproblems.

The subproblems for wt in period t

z_"(_) = min ftY'_'

r_"(_c_) " Dty_' = _' + F_"'3c't, wt e at, t= 1,...,r (2.85)

y_' > 0, _ given,

where r_' = r_'(_) are dual multipliers corresponding to the constraints and z_' =

z_'(_) is the value of the objective as a function of _I. These are used to generate

the next cut for the master problem.

The cuts

For t = 1,2,...,T,

a', = E(_'B_'), 91 = E(r_'_'), z,,(_',) = E(z_'), ,¢ = ,_'(_',). (2.86)

Lower (LBL) and upper (UB c) bounds to the problem

T

LBL = zL, UBL = min{UBL-',_(ct_'t + zt(_T/t))},VS 0 -- ¢:x). (2.87)
t=l

The solution procedure works analogously to the regular two-stage case. _ is

the optimal solution of the master problem in iteration l, and r_'(_) is the optimal

dual solution of subproblem wt, given _. a_ = 0 corresponds to feasibility cuts and

c_tt= 1 to optimality cuts. Solving the master problem in iteration l we obtain a trial

solution _, which we pass to the subproblems. By solving a sample of subproblems

wt, wt E Nt, t = 1,..., T, according to the importance sampling scheme we compute

estimates of the second-stage costs zt and estimates of the gradients G_ and the right-

hand sides gl of the cuts. Note that there is one cut for each period t. The cuts are

added to the master problem and the master problem is solved again. As before, the

objective function value of the master problem gives a lower bound estimate, and the

total expected costs of a trial solution _, t = 1,..., T, gives an upper bound estimate

of the objective function value of the problem. If the lower and the upper bound are

sufficiently close according to a student t-test, the problem is considered to be solved.

A 95% confidence interval of the optimal solution is then computed.
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2.7 NUMERICAL RESULTS

The method we have described above has been implemented. The FORTRAN code

for solving general large-scale two-stage stochastic linear problems with recourse using

Benders decomposition and importance sampling uses MINOS (Murtagh and Saun-

ders (1983) [99]), which has been adapted for this purpose, as a subroutine for solving

the linear programs of the master problem and the subproblems. Alternatively the

code can also use a modified version of Tornlin's (1973) [120] LPM1 code of the revised
simplex method as a subroutine. Versions of the code are installed on several com-

puters, including the IBM 3090 mainframe, workstations such as Digital Equipment's

DECstation 5000 and IBM's RS6000, and on different personal computers.

All following test results are computed on a Toshiba T5200 laptop personal com-

puter. First we present an illustrative example, a toy problem of expansion planning
of power systems, which we discuss in detail. Then we derive numerical results from

small test problems found in the literature. These problems are small enough that we

are able to solve the universe case. Finally we demonstrate the solution of large-scale
test problems with numerous stochastic parameters.

2.7.1 Illustrative Example

The illustrative example, test problem APL1 P, is a model of a simple power network
with one demand region. There are two generators with different investment and

operating costs, and the demand is given by a load duration curve with three load

levels: base, medium and peak. We index the generators with j = 1,2, and the

demands with i = 1,2,3. The variables xi, j = 1,2, denote the capacities that can

be built and operated to meet demands di, i = 1,2,3. The variable Yij denotes the

operating level for generator j in load level i with operating cost fij. The variable

Yis defines the unserved demand in load level i that can be purchased with penalty

co_t fis > fij. The subscript s is not an index, but denotes only an unserved demand

variable. The per-unit cost to build generator j is cj. Finally, the model is formulated

with complete recourse, which means that for any given choice of x, demand is satisfied
for all outcomes.

In this model, building new generators competes with purchasing unserved de-

mand through the cost function, yet there is a minimum capacity bi that has to be

built for each load level. The availabilities of the two generators, /3j, j = 1, 2, and
the demands in each load level, di, i = 1,2, 3, are uncertain. Generator one has four

possibilities, while generator two has five, and each demand has four. All of the data
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values are given in Table 2.1 and the problem can be formulated as follows:

min 2 _Ej=icizs+ E{E_=I 3 3Ei=l fiJYii + Ei=l fisYi8 }

s/t x i > bj j = 1,2

-a_zj + Ei_IY_j < 0, j= 1,2
2

Ei=l Y_ + Y5 > tiT, i= 1,2,3

xi, y_, y_ >_ O, j=l,2,

i= 1,2,3.

(2.88)

Table 2.1: Model APLIP, test problem data

Generator Capacity Costs (10s$/(MW, a))

cl =4.0, c2=2.5

Generator Operating Costs (10sS/MW, a)

fxx = 4.3 f21 = 8.7

f12 = 2.0 f22 =4.0

fx3=0.5 f23=1.0

Unserved Demand Penalties (1055/MW, a)

f_,=A,= f_,= _o.o
Minimum Generator Capacities (MW)

bx = b2 = I000

Demands (MW)

# I 2 3 4
Outcome 900 1000 1100 1200

Probability 0.15 0.45 0.25 0.15
Availabilities of Generators

Generator 1 (#1)

# 1 2 3 4
Outcome 1.0 0.9 0.5 0.1

Probability 0.2 0.3 0.4 0.1

Generator 2 (&)

# 1 2 3 4 5
Outcome 1.0 0.9 0.7 0.1 0.0

Probability 0.1 0.2 0.5 0.1 0.1

We will take w E f_ when solving the universe problem and w E S when solving a

problem with sampling.

The number of possible demands and availabilities results in 4 • 5 • 43 = 1280

possible outcomes in _, and thus 1280 subproblems have to be solved in each iteration
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of Benders decomposition for the universe case. We compare the universe solution

with solutions gained by the importance sampling algorithm. Table 2.2 shows the

results in the case of 20 samples out of the possible 1280 combinations and without

an improvement phase. 100 replications of the same experiment with different

Table 2.2: Model APL1P, 20 samples (100 replications of the experiment)

correct mean 95% conf bias

% %
#univ 1280

#iter 7.6
G1 1800.0 1666.5 57.0 -7.4

G2 1571.4 1732.5 52.5 10.2

theta 13513.7 13729.4 21.3 1.6

obj 24642.3 24726.7 2.1 0.3

est. conf (%) left 1.5

est. conf (%) right 1.9

coverage 0.90

seeds were run to get statistical information about the accuracy of the solution and

the estimated confidence interval. The mean over the 100 replications of the objective

function value (total costs) differs from the universe solution by 0.3%. From the

distribution of the optimum objective value derived from the 100 replications of the

experiment a 95% confidence interval is computed: +2.1%. In each replication a

95% confidence interval of the solution is estimated. The mean over all replications

of the estimated confidence interval is 1.5% on the left side and 1.9% on the right

side. In the worst case an objective function value of 26233.9 was computed. This
is about 6.4% off the correct answer. The estimated 95% confidence interval in this

case did not cover the correct answer. The coverage rate of 90% expresses that in

90% of the 100 replications the correct answer of the universe solution is covered

by tile estimated confidence interval. This shows that if using a sample size of 20

we are slightly underestimating the confidence interval: if the computation of the

95% confidence interval were exact, we would expect a coverage rate of 95%. The

reason for the underestimation of the 95% confidence interval in the case of sample

size 20 lies in the underlying assumptions of the estimation method, e.g. a normal

error distribution for a sample sizes of 20, constant error distribution along a cut,

and the same basis for all outcomes of the random right hand sides of the cuts.

Especially the latter assumption is only true, if the variances are small. A larger

sample size reduces the variances and we expect a better coverage rate of the 95°_

confidence interval. The bias and the confidence interval of the optimum strategies

(the loads x to be installed) are larger than those of the optimum objective function
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value. The objective function near the optimal solution appears to be flat: several

different strategies lead close to the optimum costs. Confidence intervals for the two

components of z of about 57% and 52% are computed. In the above example a sample

size of 20 was chosen. Note that additional computational effort is also needed to

obtain the importance distribution, e.g. 17 subproblems have to be solved in each

iteration to obtain the marginal costs Mi. Compared to the universe solution the

method achieves with about 2.9% the computational effort a solution that is with
95% confidence within an interval of 4-2.1% of the correct answer. We conclude that

importance sampling seems to be a promising approach to solving stochastic linear

programs.

Table 2.3 represents the results when using 200 samples. One can see decreas-

ing bias, decreasing confidence intervals and improving estimations of the confidence

intervals with increased sample size. The coverage of the 95% confidence interval,

computed by 100 replications of the experiment with different seeds, is now 95%.

Table 2.3: Model APL1P, 200 samples (100 replications of the experiment)

correct mean 95% conf bias

% %
#univ 1280

#iter 7.9

G1 1800.0 1728.7 3!.5 -4.0

G2 1571.4 1681.7 29.2 7.0

theta 13513.7 13554.7 12.2 0.3

obj 24642.3 24673.8 0.4 0.1

est. conf (%) left 0.4

est. conf (%) right 0.7

coverage 0.95

2.7.2 Test Problems from the Literature

We investigate the performance of the algorithm on two other examples from the

literature, which are small enough to compute the universe solution. PGP2, derived

from Louveaux and Smeers (1988) [88], is a power generation planning model used

to determine the capacities of various types of equipment required to ensure that

consumer demand is met. The demands in 3 demand regions are stochastic and rep-

resented by discrete random variables with 9, 9 and 8 outcomes. CEP1 is a capacity

planning model for a manufacturing plant in which several parts are produced on

several machines. If the demand for the parts exceeds the production capability the

residual parts are purchased from external sources at a price much higher than the
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production costs to meet the demand. There are 3 stochastic parameters (demands

for parts), with discrete and uniform distribution with 10 outcomes each. The for-

mulations and data for CEP1 and PGP2 may be found in Higle, Sen and Yakowitz

(1990) [63].

In the case of PGP2 we obtained very accurate results using a sample size of 50. By

computing 100 replications of the experiment we find that the mean of the objective
function values differs 0.1% from the correct answer. The 95% confidence interval of

the objective function value, computed by the 100 replications of the experiment, is

-t-0.76%. The mean of the confidence intervals estimated in each replication is 0.62%

on the left side and 0.9% on the right side. In 98% of the cases the correct solution

is covered by the 95% confidence interval. In the worst case the solution differed by

0.77% from the correct answer and was not covered by the 95% confidence interval.

In the case of CEP1 a higher sample size is needed to obtain accurate results.

The estimation of the second-stage costs appears to be more difficult. The reason lies

in the fact that the (penalty) costs of buying parts from external sources are much

higher than the costs of production. For this problem the additive approximation

function is not a very good approximation to the true cost function, as it does not

cover the very high costs in scenarios where all 3 demands are high. The estimated

confidence interval seems to be large. We computed 4.65% on the left side and 4.62%

on the right side (mean over 100 replications of the experiment). The estimations

of the confidence interval are accurate as indicated by the coverage rate of 95% of
the correct answer by the 95% confidence interval. In the worst case a difference of

8.07% of the objective function value to the correct answer was computed. The worst

case solution is not covered by the estimated confidence interval. In this example it

is easier to compute the value of the first stage variables than to estimate the second-

stage costs. In most cases the correct answer of the first stage variables was obtained.

We have developed methods that adaptively improve the approximation function if

sample information shows that the variance of the estimation is too large. Table 2.4

and Table 2.5 represent the computational results of PGP2 and CEP1 and show the

size of the test problems.

2.7.3 Large-ScaleTest Problems

In thefollowingwe reporton thesolutionoflarge-scaletestproblemswithseveral

stochasticparameters.These problemsaresolargethatitisimpossibletocompute

theuniversesolution.

Facility Expansion Planning

WRPM is a prototype multi-area capacity expansion planning problem for the west-

ern USA and Canada. The model is detailed, covering 6 regions, 3 demand blocks, 2

seasons, and several kinds of generation and transmission technologies. The objective

is to determine optimum discounted least-cost levels of generation and transmission
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Table 2.4: Model PGP2, 50 samples (100 replications of the experiment)

correct mean 95% conf bias

% %
#univ 648

#iter 9.1

obj 392.2 392.5 0.76 0.1

est. conf (%) left 0.62

_t. conf (%) right 0.9

coverage 0.98

comp. time (min) 0.28
Problem Size

Master: rows 3

columns 7

nonzeros 16

Sub: rows 8

columns 16

nonzeros 52

facilities for each region of the system over time. The model minimizes the total

discounted costs of supplying electricity (investment and operating costs) to meet the

exogenously given demand subject to expansion and operating constraints. A de-

scription of the model can be found in Dantzig et al. (1989) [25] and Avriel, Dantzig

and Glynn (1989) [3]. In the stochastic version of the model the availabilities of gen-

erators and transmission lines and demands are subject to uncertainty. There are 13

stochastic parameters per time period (8 stochastic availabilities of generators and

transmission lines and 5 uncertain demands) with discrete distributions with 3 or 4

outcomes. The operating subproblems in each period are stochastically independent.

WRPM has been developed in three flavors. The test problem WRPM1 covers a

time horizon of 1 future period, and WRPM2 covers 2 future periods of 10 years

each. WRPM1 and WRPM2 are reduced versions of WRPM3, the largest problem

with the most realistic formulation. There are differences in the parameters between

WRPM1, WRPM2 and WRPM3. Note that in the deterministic equivalent formula-

tion the problem would have more than 1.5 billion (WRPM1) and more than 3 billion

(WRPM2) equations.

Computational results for these large-scale test problems are represented in Table

2.6. Besides the solution of the stochastic problems, Table 2.6 shows the results

from solving the expected value problem. In this case the stochastic parameters are

replaced by their expectations to obtain a deterministic problem. The expected value

solution is then used as a starting point for the stochastic solution. We also report
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Table2.5:Model CEPI, 200samples(I00replicationsoftheexperiment)

correct mean 95% conf bias

% %

#univ 1000

#iter 6.4

obj 57790.7 58832.7 4.63 1.8

est. conf (%) left 4.65

est. conf (%) right 4.62

coverage 0.95

comp. time(rain) 0.28

ProblemSize

Master: rows 12

columns 10

nonzeros 36

Sub: rows 9

columns 16

nonzeros 53

on the estimated expected costs of the expected value solution. These are the total

expected costs that would occur if th," 'xpected value solution were implemented in

a stochastic environment. The objective value for the true stochastic solution must

lie between the objective value of the expected value solution and the expected costs

of the expected value solution.

In all cases (WRPM1, WRPM2 and WRPM3) we chose a sample size of 100.

The estimate of the objective function value of the stochastic solution (289644.2 in

case of WRPM1 and 143109.2 in case of WRPM2) is amazingly accurate. The 95%

confidence interval was computed as 0.0913% on the left side and 0.063% on the right

side (WRPM1) and 0.0962% on the left side and 0.1212% on the right side (WRPM2).

Thus the objective value of the stochastic solution lies with 95% probability within

289379.7 < z* < 289826.0 (WRPM1) and 142971.5 < z" < 143282.6 (WRPM2). In

both cases the expected costs of the expected value solution and the expected costs

of the stochastic solution differ significantly. The solution time on a Toshiba T5200

laptop PC with 80387 mathematic coprocessor was 75 minutes (WRPM1) and 187

minutes (WRPM2). During this time about 7500 (WRPM1) and 15700 (WRPM2)

subproblems (linear programs of the size of 302 rows and 289 columns) were solved.

The realistic model WRPM3 covers a time horizon of 3 future periods of 10 years

each. Thus the total number of stochastic parameters is 39. The number of universe

scenarios is larger than 5.106 per period. In the deterministic equivalent formula-

tion the problem, if it were possible to state it, would have more than 4.5 billion
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Table 2.6: Large test problems: computational results for power planning

WRPM1 WRPM2 WRPM3

# iter stoch. (exp. val.) 139 (82) 13i (83) 197 (129_

sample size 100 100 100

exp. vah solution obj 286323.2 140041.0 196471.4

exp. val. solution, exp. cost 295473.7 147227.3 202590.3
stochastic solution 289644.2 143109.2 199017.4

est. conf. left % 0.0913 0.0962 0.0292

conf. right % 0.063 0.1212 0.067

solution time (min) 75 187 687
Problem Size

Master rows 44 86 128

columns 76 151 226

nonzeros 153 334 413

Sub rows 302 302 302

columns 289 289 289

nonzeros 866 866 866

# stochastic parameters 13 26 39

# universe scenarios 5038848 10077696 15.106

constraints.

The stochastic WRPM3 was solved by using a sample size of 100 per period.

It took 129 iterations to obtain the expected value solution and an additional 68

iterations to compute the stochastic solution. The objective function value of the

stochastic solution was estimated as 199017.4 with an remarkably small 95% confi-

dence interval of 0.029% on the left side and 0.067% on the right side. Thus the

optimal solution lies with 95% confidence between 198959.3 _< z" _< 199164.1. The

expected costs of the expected value solution (202590.3) and the objective function

value of the stochastic solution differ significantly from the expected costs of the op-

timal stochastic solution. The problem was solved in 687 minutes on the Toshiba

T5200. This includes time to solve 26295 linear subproblems with 302 rows and 289

columns, and 197 master problems.

Note that the solution time of WRPM1, WRPM2 and WRPM3 does not increase

linearly with the size of the system. WRPM3 takes significantly longer to be solved
than WRPM1 and WRPM2. We have used LPM1 to solve WRPM1 and WRPM2

and MINOS for solving WRPM3. While the LPM1 code is less sophisticated and

less reliable than MINOS, it solves a series of subproblems, where we start each opti-

mization from the optimal solution of the previous subproblem, faster than MINOS.

This is primarily because LPM1 has less computational overhead than MINOS. In
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addition to tile difference in the code used for solving the problems, WRPM3 takes

more iterations than WRPM1 and WRPM2, which results in more computational

work to be performed and in a larger solution time.

Portfolio Management

Computational results from portfolio management problems can be found in Table

2.7. FI12 is an example, formulated as a network problem. It is a modified version

Table 2.7: Large test problems' computational results for financial planning

FI12 LP42

# iter stoch. (exp. val.) 4 (2) 4 (6)

sample size 200 600

exp. val. solution obj 1.0766 1.611

exp. val. solution, exp. cost 1.172 2.334

stochastic solution, obj 1.169 2.329
est. conf. left % 0.454 0.536

conf. right % 0.371 0.767

solution time (min) 2 209
Problem Size

Master rows 48 49

columns 33 83

nonzeros 130 133

Sub rows 61 178

columns 45 309

nonzeros 194 570

# stochastic parameters 26 52

universe scenarios 2.5 • 1012 6.1024

of test problems found in Mulvey and Vladimirou (1989) [96]. The problem is to select

a portfolio that maximizes expected returns in future periods taking into account the

possibility of revising the portfolio in each period. There are also transaction costs

and bounds on the holdings and turnovers. The test problem FI12 covers a planning

horizon of two future periods. The returns of the stocks in the two future periods are

stochastic parameters. The problem is formulated as a two-stage problem. Rather

than solving the problem by looking at a certain number of preselected scenarios

(18 to 72 in the case of Mulvey and Vladimirou) we instead assumed the returns

of the stocks in the future periods to be independent random parameters, discretely
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distributed with 3 outcomes each. As there are 13 stocks with uncertain returns, the

problem has 26 stochastic parameters. The universe number of scenarios (2.5.1012 ) is

very large, so that the deterministic equivalent formulation of the problem has more

than 1014 rows. The stochastic parameters appear in the B matrix as well as in the
D matrix.

A sample size of 200 was chosen for solving test problem FI12. The problem was

solved in only 4 iterations. The objective function value of the stochastic solution

is computed as 1.1695 with a 95% confidence interval of 0.454% on the left side and

0.371°£ on the right side. Thus with 950£ probability the optimal solution lies in

the range 1.164 < z I < 1.174. The estimated expected costs of the expected value

solution (1.172) lie within the 950£ confidence interval of the costs of the stochastic

solution. However, in this case the expected costs of the expected value solution and

the expected costs of the stochastic solution differ significantly.

LP42 is also a portfolio management test problem, formulated as a network prob-

lem. It is a modified version of test problems found in Mulvey and Vladimirou (1989)

[96] and of the same structure as FI12 but much larger. Again, there are transaction

costs and bounds on the holdings and turnovers. The test problem covers a planning

horizon of four future periods. The returns of the stocks in the four future periods

are assumed to be independent stochastic parameters, discretely distributed with 3

outcomes each; this formulation differs from that of Mulvey and Vladimirou who re-

stricted the problem size by looking at a certain number of preselected scenarios. As

in Mulvey and Vladimirou the multi-period problem is viewed as a two-stage prob-

lem, where all future periods are included in the second stage. With 13 stocks with

uncertain returns, the problem has 52 stochastic parameters. The universe number

of scenarios 6.1024 is very large, so that the deterministic equivalent fornmlation of

the problem if expressed explicitly would have more than 1.9 × 102Trows. Here, the

stochastic parameters appear in the B matrix as well as in the D matrix. Due to

the stochasticity of the D matrix cuts from the expected value problem are not valid

for the stochastic problem. The expected value problem and the stochastic problem

were solved separately. A sample size of 600 was chosen, and the solution (objec-

tive function value 2.329) was obtained in 4 iterations. The 95% confidence interval

is very small given the large number of stochastic parameters, namely 0.536% on

the left side and 0.767% on the right side. Thus with 95% confidence the objective

value of the optimal solution lies within 2.316 < z* < 2.347. The expected costs of

the expected value solution are significantly different from the expected costs of the
stochastic solution.
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Using Parallel
Processors

In collaboration with James K. Ho we have explored how our approach for solving

two-stage stochastic linear programs can be effectively implemented on a parallel

(Hypercube) multicomputer (Dantzig, Ho and Infanger (1991) [26]).

3.1 HYPERCUBE MULTICOMPUTERS

Advances in VLSI (very large-scale integration) for digital circuit design are leading

to much less expensive and much smaller computers. They have also made it possible

to build a variety of "supercomputers" consisting of many small computers combined
into an array of concurrent processors. We shall refer to such an architecture as mul-

ticomputers. Each individual processor is called a node. Typically, the nodes are the

same kind as those used in high-end microcomputers and are relatively inexpensive.

Significant computational power can be obtained by making many of them work in

parallel at costs that are much lower than an equivalent single processor. Obviously,
the effectiveness of the approach depends on whether an application can be reduced

to a well-balanced distribution of asynchronous tasks on the nodes. Linear program-

ming and especially stochastic linear programs solved by decomposition naturally fit
into this framework.

A Hypercube multicomputer is essentially a network of 2_ processors intercon-

nected in a binary n-cube (or hypercube) topology. The connections for n < 4 are

illustrated in Figure 3.1. Each processor (or node) has its local memory and runs

asynchronously of the others. Communication is done by means of messages. A node

can communicate directly with its n neighbors. Messages to more distant nodes are

routed through intermediate nodes. The hypercube topolr_gy provides an efficient bal-

ance between the costs of connection and the benefits of direct linkages. Usually, a

host computer serves as an administrative console and as a gateway to the hypercube
for users.

For the work reported here, we used an Intel iPSC/2 d6 with 64 nodes at the

Oak Ridge National Laboratory. Each node consists of Intel's 32-bit 80386 CPU (4

MIPS) coupled with an 80387 (300 Kflops) numeric coprocessor for floating-point

acceleration. It has 4 MBytes of local memory. The hypercube (or Cube) is accessed

via a host (or System Resource Manager) which is also a 80386-based system with 8

MBytes of memory and a 140 MByte hard disk. The operating system on the host

45
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n--I • .................• .. ,

n=2 n=4

Figure 3.1: Hypercube multicomputers of dimensions n _<4

is the Unix System V/386 (Release 3.0). The data transfer rate between the System

Resource Manager and the Cube has a peak value of 2800 KBytes/sec.

Althoagh the nodes are physically connected as the edges of a hypercube, a

trade-marked routing network called DIRECT-CONNECT provides essentially uni-

form communication linkages between all the nodes. Therefore the hypercube can be

programmed as an ensemble of processors with an arbitrary communications network

in which each node caa communicate more or less uniformly with ali other nodes.

The host machine allows the user to perform the following tasks:

- To edit, compile and link host/r ode programs.

- To access and release the cube (or a partition thereof).

- To execute the host program.

- To start or kill processes on the cube.

Operations peculiar to the hypercube are controlled either by Unix-type commands

(iPSC/2 commands) or by extensions to standard programming languages such as

Fortran and C (iPSC/2 routines). The iPSC/2 commands and routines for the Fortran
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programming environment are documented in Intel (1988) [74] and [75]. To execute

a typical parallel program, the following steps are used.

- Compile and link the host and node programs to create executable modules.

- Obtain a partition of the cube (a sub-cube) of suitable size. For example, a call
for a sub-cube of dimension 3 allocates to the user an exclusive sub-cube of 8

processors identified by the node numbers 0,1,2,..., 7.

- Run the host program. Node programs are loaded on to the appropriate nodes at

runtime in response to calls in thc host program.

- On termination, kill all node processes and flush messages.

- Relinquish access to the sub-cube.

Internodal and host-to-node communication is done by subroutine calls in the

corresponding programs.

3.2 THE PARALLEL ALGORITHM

The Hypercube computer has the architec'_ure of loosely coupled multiprocessors.

The nodes of the cube are independent processors, where each processor has its own

operating system and its own memory. The nodes are connected via a communica-

tion network. Information is exchanged between nodes only by sending messages.

The hyperc,,be architecture defines which nodes are directly connected and which

nodes are only indirectly connected via third nodes. Message routing systems of

modern Hypercube computers, like the !_teI iPSC/2 computer that we are using,

ensure that communication between indirectly connected nodes is very fast. Thus

the difference in the communication time between directly and indirectly connected

nodes is negligible. However, the time spent for communication can be significant

if much information is exchanged between nodes. Therefore the design of a parallel

algorithm for loosely connected multiprocessors should be laid out in such a way that

only minimum amounts of information have to be exchanged between nodes.

The main work is in the repeated solving of the master problem, and also the

solving of the subproblems in the preparatory phase and in the sample phase. Ali

other tasks are comparatively unimportant with respect to computing time. We

assign processor 0 to be the master processor. Besides its main task of solving the

master problem, the master processor also controls the computation and synchronizes

the algorithm. The other processors (1-63) were assigned to be sub processors, with

the main task of solving subproblems. This design requires communication between

the master processor and the sub processors. No information needs to be exchanged

between different sub processors.

In addition there is a host processor that has access to data storage devices and

manages data input and output. The execution of the parallel program follows the
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followinggeneralsteps.The hostprocessorloadsthehostmodule (theexecutablefile

forthehostprocessor)intoitsmemory and startstheexecution.Next theexecutable

filesforthemasterprocessorand thesubprocessorsareloadedintothehostand then

senttothemasterprocessorand thesub processorsrespectively.The masterpro-

cessorand thesub processorsaftertheyreceivetheirmodulesstartexecution.After

processingtheinputdataand sendingittomasterand subs,thehostremainsinactive

and waitsuntilitreceivestheoptimalsolutionfrom themasterprocessor.During

thistimethealgorithmisperformedentirelyinthecube and the masterprocessor

controlstheexecutionoftheprogram.Afterreceivingtheoptimalsolution,thehost

processoroutputsthesolutiontothedisk,stopstheexecutionoftheprogramsofthe

master and sub processors, and releases the cube, terminating the parallel program.

The problem data includes the problem specification of the master and the sub,

the stochastic information and control parameters for the execution of the program.

The input data for specifying the master problem and the subproblem are given in

the form of an MPS file. Internally the problems are stored in the form of the data

structures used by the linear programming solver, which we use as a subroutine. We

adapted LPM1 (Tomlin 1973) [120], a linear programming optimizer, for our purposes.

Clearly, the master processor only receives the data for the master problem and the

sub processors only get the data for the subproblem. Thus no switching between

different problems is necessary, as it would be in a serial implementation. Both master

and sub processor receive the complete stochastic information. The stochastic data

include the identification of the stochastic parameters within the problem and their
distributions.

An index vector u_ = (ul,..., uh)_' completely defines a scenario w. We define

ui E fli or ui = 1,...,ki, i = 1,...,h. For example u_ = (1,3,2) would denote

a scenario given by the first outcome of random parameter 1, the third outcome of

random parameter 2 and the second outcome of random parameter 3. Thus only

the index vector u_ is transmitted from the master processor to a sub processor to

identify the scenario subproblem to be solved. For example, for h = 20 and a 4-byte

integer representation, 80 bytes have to be sent. Besides the scenario information u_

the current solution of the master problem _l is needed to set up the scenario problem

w. We only pass k t to each sub processor j once per iteration at the beginning of

the preparation phase. The flag I, E {0, 1} tells the sub processor if an :_ has to be

received (1) or not (0).

Now sub processor j looks up the outcomes of the stochastic parameters corre-

sponding to u to set up the vector b(u) and the matrix B(u). Using i the right hand

side b(u) + B(u)_, is computed and the subproblem is solved.

In ali cases the optimal objective function value z(u) has to be sent to the master

processor. Dual information for the coefficients G and the right-hand side g of the

cut is all that is needed from the base-case scenario and all sample scenarios. In this

case we compute the products G(u) = B(u)Tr(u) and g(u) = b(u)r(u) and send the

result to the master processor. The flag I_ tells the sub processor if the computation
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and the sending of G(v) and g(v)is requested (1) or not (0).
In our design the sub processors do not have any information of the status of the

algorithm. The sub processors set up and solve the subproblems and post-process the
solution. The computation is controlled by the master processor through the flags Ix
and lc.

The master processor runs the entire algorithm except for obtaining solutions
of subproblems. An important task concerns the controlling of the assignment of
subproblems w to sub processors j in the case where more sample subproblems have to

be solved per iteration than there are sub processors available. Assigning subproblems

in equal proportions to sub processors is not always possible for all sample sizes,
nor is it most efficient. Different subproblems need different amounts of time to be

solved. The solution time mainly depends on how many columns of the starting basis

(from which the solving procedure is started) differs from the optimal basis of the
subproblem. Clearly, it makes sense and is convenient to use as starting basis the
optimal basis of the subproblem that was last solved on the same processor.

We implemented an algorithm to adaptively balance the work load of the sub
processors. In our scheme the master processor keeps track of whether a sub processor

j is busy or idle. At the beginning of each solving phase (preparatory and sample

phase) all sub processors are idle. The master processor starts a sub processor working

by sending the first message (Ix, lc) to it. At this time the sub processor is set to busy.
lt is set to idle again when its solution has arrived at the master processor. Given a
queue of subproblems to be solved, the first subproblem in the queue is assigned to

the next idle sub processor. The master processor keeps switching between sending

out problems and receiving solutions until all subproblems are solved. Of course the
mapping ca_ j is not unique because different subproblems caare solved by one sub

processor j. However, because we only send a new problem after the solution of the

previous problem has been received, the solution of a subproblem cacan be identified

as uniquely coming from sub processor j.
We can now summarize and state the algorithm. Step 2 is computationally the

most expensive part and is the part performed by using parallel processors.

The Algorithm

Host processor

Step H: 0.0 Load host executable module from disk ......

Step H: 0.1 Load master module from disk. .......
Send master module to processor 0...... •........
Load sub module from disk ....-..

Send sub module to processors j, j = 1,..., J.

Step H: 0.2 Read data and from disk.

Send control data and stochastic data to processors j, j = 0,..., J.
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Send master problem data to processor 0.

Send subproblem data to processors j, j = 1,..., J.

Step H: 6 Receive optimal solution.

Write solution report.

Kill cube. Stop.

Master Processor

Step M: 0 Receive master module from host processor.

Receive control and stochastic data from host processor.

Receive master problem data from host processor.

Initialize: l = 0, UB° = ct.

Step M: 1 Solve the relaxed master problem.
Obtain a trial solution _t and a lower bound LB_.

Step M: 2.0l=l+1.

Step M: 2.1 Determine preparatory scenarios u_ = (vi,... ,Uh)_,w = 1,... ,nprep.

Step M: 2.2 w = 1,...,nprep :
Determine ca _ j.

Send I j, I_' to sub processor j.

Send _t to sub processor j.

Send uw to sub processor j.

ca = 1,...,nprep :
Receive z _ from sub processor j.

If I_' = 1: Receive Gw, gWfrom sub processor j.

Step M: 2.3 Compute the importance distribution.

Step M: 2.4 Sample scenarios u _'= (ul,...,Uh)"',ca = 1,...,n from the importance
distribution.

Step M: 2.5 For ca = 1,...,n :

Determine ca _ j.

Send I j, I_' to sub processor j.

Send uw to sub processor j.

Forca = 1,...,n :

Receive z_ from sub processor j.

Receive Gw, gWfrom sub processor j.

Step M: 2.6 Obtain estimates of the expected second stage cost, the coefficients

and the right-hand side of the cut. Add the cut to the master problem. Obtain

an upper bound UBt.
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Step M: 3 Solve the master problem. Obtain a trial solution _l and a lower bound
LBt.

Step M: 4 s = UBt- LBt + TOL

If s > 0 (student t-test) go to Step 2.

Step M: 5 Obtain a solution and compute confidence interval.

Step M: 6 Send optimal solution to host processor.

Sub Processor j:

Step S: 0 Receive sub-module from host processor.

Receive control and stochastic data from host processor.

Receive subproblem data from host processor.

Step S: 2.1 Receive Ix, Ic from the master processor.

If I_ = 1: Receive 3: from the master processor.

Receive v from the master processor.

Step S: 2.2 Compute B(v), b(v) and the right-hand side b(v)+ B(v)_c.

Step S: 2.3 Solve scenario subproblem v.

Step S: 2.4 Send z(v) to the master processor.

Step S: 2.5 If Ic = 1:

Compute G(v) = r(v)B(v), g(v) = 7r(v)b(v).

Send G(v), g(v) to the master processor.

Step S: 2.6 Go to Step S: 2.1

3.3 PERFORMANCE MEASURES

The main purpose of parallel processing is to reduce computing time relative to con-

ventional sequential computation. In the case when large sample sizes are necessary

in order to obtain good approximate solutions to stochastic linear programs, parallel

processing is an important part of the solution technique, because the solution times
on sequential computers may be excessive.

Assuming that a number p of processors are available and allocated to solve the

problem at hand, we compare the parallel time utilizing p processors to the sequential

time using only one processor. We define the parallel time tp the duration from start

to finish of the solution process in the parallel implementation. In terms of CPU times,

tp covers the disjoint union (non-overlapping total) of CPU times of all processors.

We define the sequential time ts to be the sum of all CPU times of all processors.

The sequential time ts differs from a sequential time obtained by actually solving the
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problem on one processor. This would require a different implementation and would

not be directly comparable. In a serial version no messages are sent. On the other

hand, computing resources are needed for alternately switching between solving the

master problem and the subproblems.

The speedup S in using p processors instead of one is given by

S = t_. (3.1)
tp

The efficiencyisdefinedby

S
E =- x 100%. (3.2)

P

A simp]e set of algebraic formulae can be used to predict the sequential time t_

and the parallel time t_. We denote by tMA the mean duration to compute the

tasks assigned to the master processor per iteration. We define tSUB to be the

mean duration to compute the tasks assigned to a sub processor (mainly solving

one subproblem) when starting from the optimal solution of the previously solved

subproblem and t_u B the mean duration if solving a subproblem from scratch. Thus
with L being the number of iterations,

= tMA + t_US + (nprep + n)fsc s (3.3)

and

(_prep+_)
t__ tMA +t_UB + p-_ _SUB, if n, nprep >_p-1; (3.4)

(l+n)a

L tMA + t_U B + p--_:U,SUB, if n > p- 1, nprep < p- 1.

If the sample size n is smaller than the number of sub processors the parallel algorithm

is not efficient because not all computer resources are utilized. Using the above

formulae, we can compute the efficiency for the case of n, nprep _>p- 1, for example,
as

E = tMA + t_vB + (nprep + n)tsu B (3.5)
P tMA + P t_u B + p-_--7_1(nprep + n)tsu B

One can see that for a fixed number of processors the efficiency approaches 100% as

the sample size increases. This is obvious because increasing the sample size means

adding computational work that can be conducted in parallel. Thus the parallel

implementation is most efficient when solving problems with large sample sizes. On

the other hand one can also see that for a given sample size the efficiency decreases

with increasing number of processors. The maximum number of processors that can

be utilized meaningfully is 1 + max{nprep,n}.
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3.4 NUMERICAL RESULTS FOR THE PARALLEL IM-

PLEMENTATION

Experiments were conducted to validate the parallel implementation and to obtain

measures of computing time, speedup and efficiency. Test problems taken from the

literature are usually small with a small number of stochastic parameters. We tested

our parallel processing methodology on a truly large-scale problem, BIGNEW, which

is a modified version of the capacity expansion planning model WRPM, as already dis-

cussed in the previous results section. There are 11 stochastic parameters (8 stochastic

availabilities of generators and transmission lines and 3 uncertain demands) with dis-

crete distributions with 3 or 4 outcomes. While other implementations of WRPM

cover up to 3 future time periods, BIGNEW covers a planning horizon of only one

future time period and is formulated as a two-stage stochastic linear program with

recourse. The problem is large-scale, though it is by far not the largest we have solved

serially. The number of universe scenarios is about 106; the equivalent deterministic

formulation of the problem (if it were possible to state it explicitly) would have more
than 0.3 billion constraints.

This test problem has been solved repeatedly using different numbers of proces-

sors and different sample sizes. The parallel implementation has been improved as

we learned more about its characteristics. For example, we varied the sample size

within the range 20 to 63, where we always have at least as many processors at hand

as there are subproblems to be solved in one parallel phase. Table 3.1 summarizes

the results. The computing time (measured in CPU minutes per iteration) is ap-

proximately constant at a level of 0.12 minutes per iteration for sample size 20 up to

29. Then it jumps to a level of approximately 0.17 min per iteration, where it again

remains approximately constant.

In the test example the number of preparatory subproblems to compute the impor-

tance distribution is 29. Figure 3.2 shows how the algorithm parallelizes. It schemat-

ically shows busy and idle times for different processors with sample size 63 during

the first two iterations. Note the two phases of solving subproblems:,the preparatory

phase and the sample phase. In the preparatory phase only 29 subproblems have..to

be solved, compared to 63 subproblems in the sample phase. Each optimization is

started using the basis for the optimal solution of the problem previously solved on

the same processor. At the beginning, all problems are started from scratch as no

basis is available. In the first iteration processors 1 to 29 start from scratch in the

preparatory phase but use the optimal bases from the preparatory subproblems in

the sample phase. Processors 30 to 63 do not solve subproblems in the preparatory

phase; thus the sample subproblems assigned to these processors are started from
scratch.

Solving a subproblem from scratch takes considerably more time than solving

it with a good starting basis (warm start). The master processor starts operation

when all necessary subproblems are solved completely, both in the preparatory phase
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Table 3.1: Warm start all subs

nodes CPU CPU

reset, p n iter (min) time/it (min)time/it obj
32 32 20 66 7.898 0.120 7.898 0.120 188382

32 32 24 63 7.502 0.119 7.502 0.119 188025

32 32 26 61 7.866 0.129 7.866 0.129 188236

32 32 27 56 6.219 0.111 6.319 0.111 188232

32 32 28 52 6.434 0.124 6.434 0.124 188195

32 32 29 60 7.303 0.122 7.303 0.122 188492

32 32 30 64 11.173 0.175 7.770 0.121 188271

32 32 31 60 10.767 0.179 7.331 0.122 188301

64 33 32 64 12.409 0.194 N/A N/A 188347

64 36 35 59 10.334 0.175 N/A N/A 188295

64 41 40 63 10.898 0.173 7.516 0.119 188261

64 51 50 63 11.034 0.175 7.528 0.119 188378

64 61 60 70 12.035 0.172 8.374 0.120 188549

64 64 63 75 12.645 0.169 8.821 0.118 188492

and the sampling phase. The computing time in each phase is determined by the

maximum duration spent for solving a subproblem. In the first iteration processors

30 to 63 are idle during the preparation phase and solve subproblems from scratch in

the sample phase; the maximum time spent in the sample phase by these processors

is much larger than the maximum time spent by processors 1 to 29. The duration of

the sample phase in the first iteration is therefore much larger for sample sizes larger

than 29, the number of preparatory subproblems. The jump in the computing time

at sample size 30 is due to this effect.

Besides the impact of the starting basis in the first iteration, there is also an

impact in all other iterations. A basis from the optimal solution of a subproblem of

the current iteration is expected to be a better starting basis than a basis from the

optimal solution of a subproblem of the previous iteration. Note that the effect only

occurs if nprep < p- 1 and n > nprep. We overcome this effect by supplying a

proper basis to sub processors 30 to 63. In general one could copy the optimal basis

of the subproblem that has finished first in the preparatory phase to processors 30 to

63 to warm start all subproblems in the sample phase. As idle processors are not used

for any other tasks and cannot be used in a timesharing mode by other users it is

more efficient (as no communication is necessary) to assign an arbitrary preparatory

subproblem (e.g. subproblem 1) also to processors 30 to 63 and solve it on each of the

processors to have the optimum starting basis ready for the sampling phase. Table
3.1 also shows the results for warm starting all subs. The computing time remains

approximately constant over the whole range of sample sizes. The results show that
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Figure 3.2: The parallel algorithm

the effect of the jump in the computing time is completely compensated. No time

differences resulting from nprep < n can be observed. Thus the model for determining

the parallel time tp is valid for ali numbers of preparatory problems nprep.

The analysis so far has concerned previous implementations where the assignment

of subproblems to sub processors was hardwired. In our current implementation,

subproblems are sent to the next idle node. This implementation allows for any
number of subproblems nprep and n per iteration and divides up the number of

subproblems efficiently among the processors available. If necessary the warm start

procedure is used. In the following we are interested in the efficiency of the method

with respect to both the sample size and the number of processors.

For determining the efficiency we use the formulae developed in the previous

section. Varying the sample size over a sufficiently large range, we estimate the

paIameters for determining the computing time. Table 3.2 gives results for sample

sizes from 100 to 600 using 64 processors representing the parallel computation time
versus the sample size for both the actual time measurements and the estimates from

the formulae. One can see that the algebraic formulae give an excellent estimate of

the actual parallel computing time. We estimate tMA + t_u B to be 0.0962 and tSU B
to be 0.0149. Using these parameters we compute the corresponding serial time ts,
the speedup S and the efficiency E, which are also reported in Table 3.2. While the

efficiency is low for small sample sizes it rapidly improves with increasing sample size.
In the case of sample size 600, we obtain a speedup of about 37.5, which means that

with 64 processors we reduce the computation time by a factor of 37.5. The total
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Table 3.2: Speedup and Efficiency

n iter tp tp ts S E

est. by

actual formula speedup efficiency
100 63 0.132 0.135 2.024 14.99 23.456

200 72 0.159 0.159 3.519 22.13 34.674

300 76 0.182 0.182 5.014 27.55 42.973

400 84 0.213 0.206 6.508 31.59 49.360

500 69 0.229 0.230 8.003 34.80 54.428

600 69 0.250 0.253 9.497 37.54 58.547

parallel time is 17.3 minutes while in a serial implementation the time to solve the

problem would be 652 minutes. Figure 3.3 shows the dependency of the efficiency

upon the sample size when 64 processors are used.

Using estimates based on the formulae for the parallel time, we compute the

efficiency as a function of the number of processors used. Figure 3.4 gives a graphical

representation. For small numbers of processors the effect of only p- 1 processors

operating in parallel when using p processors dominates the result. For example when

using 2 processors we switch between the master processor and only one sub processor.

There is no parallel overlapping in the computation. In this case we perform a serial

computation distributed to 2 processors. The efficiency hence is 50%. The efficiency

increases until the above-mentioned effect is no longer dominating. For example,

for sample size 600 and 12 processors, the efficiency is about 82%. The efficiency

decreases with increasing numbers of processors beyond 12. Using 64 processors, we

obtain an efficiency of 58.54% when the sample size is 600.

For the runs documented in Table 3.2, Table 3.3 I'k_! rts on the optimum objective
function value and the 95% confidence interval. Th__lower bound distributions have

less variance than the upper bound distributions; hence the confidence interval is

asymmetric. Using a sample size of 100 (out of about 1 million universe scenarios)

we obtain an optimal solution of 188348.7 with a 95% confidence interval of 0.08% on

the lower side and 0.018% on the upper side. Even with only small sample sizes we

obtain highly accurate results. The parallel time to run the problem was 8.3 minutes

on the Hypercube.

The optimal objective function value remains stable when increasing the sample

size. That again shows that we obtained good estimates. The confidence interval

decreases with increasing sample size and the rate of n -°'5 is verified by the compu-
tational results.

Using a sample size of 600 we obtain an optimal objective function value of
188351.8 with a 95% confidence interval of 0.04% on the left side and 0.06% on
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Figure 3.3: Efficiency versus sample size

the right side. Thus the optimal solution with 95°£ confidence satisfies 188276.7 _<

z° <_188473i:0. All solutions reported in Table 3.3 fall within this range. The compu-
tation time On the Hypercube was 17.3 minutes. It is interesting to note that during
the process of solving the problem about 43400 subproblems with 289 rows and 302
columns each and 69 master problems were solved.
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Table 3.3: Optimal Solution

95% confidence interval

n iter obj lower upper total % CPU
lower of obj (min)

+upper
100 63 188348.7 153.0 344.4 497.4 0.26 8.3

200 72 188390.9 144.8 161.8 306.6 0.16 11.4

300 76 188344.9 100.5 180.2 280.7 0.15 13.8
400 84 188328.4 79.9 153.7 233.5 0.12 17.9

500 69 188304.0 78.0 131.1 209.0 0.11 15.8
600 69 188351.8 75.1 121.2 196.3 0.10 17.3



Chapter 4 ,,.

Techniques for Solving

Multi-Stage Problems

4.1 MULTI-STAGE STOCHASTIC LINEAR PROGRAMS

The use of stochastic programming techniques for solving large dynamic systems

under uncertainty has been hampered until recently by the sheer size of the problems

constructed when they are restated as deterministic linear programs. To solve them

it has been necessary to keep the number of scenarios representing uncertainties fairly

small. Only a few attempts have been made to solve practical multi-stage decision

models whose future events are spread over several periods. In this section we extend

the methodology developed for solving two-stage problems to multi-stage problems.

Multi-stage planning problems can often be formulated as linear programs with

a dynamic matrix structure which, in the deterministic case, appears in a staircase

pattern of blocks formed by non-zero sub-matrices. These blocks correspond to and

are different for different time periods. System (4.1) below shows the structure of a

dynamic linear program of T periods.

minz =

clxl -_- c2x2 -f ". . T CT-lXT-i % CTXT

s/t
Al:el = bl

-Blzl + A2z2 = b2 (4.1)

--BT-lXT-1, + ATXT = bT

Xl _ X2 _. . . _ XT-1 _ XT __ O.

In the stochastic case, the blocks of coefficients and right-hand sides in different

time periods are functions of several parameters whose values vary stochastically

according to dependent and independent distributions, which we assume to be known.

The resulting problem is a multi-stage stochastic linear program. Even for a problem

with a small number of stochastic parameters per stage, the size of the multi-stage

problem, when expressed in equivalent deterministic form, can get so large as to

appear intractable.

59
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The multi-stage stochastic extension of a deterministic dynamic linear program
can be formu',ated as follows:

min z =

clxl + E(c2x'_ 2 +...+ E(cT_lX_,r..-11.....w2 q. E(CTX_T ....._)))

s/t
Alxl = bl

-B_ xl + A2z_ 2 = b_2

--'_r-l'_'r-l"WT_wr-1 .....w2 ___ ATX_T ....,w2 ._. b_r

wr_,....._,_ Z_rr'''''_'_ > 0XI , X_ 2 ,. • • _ XT_ 1 ,

(4.2)
w, E _t, t = 2,...,T.

While the first-stage parameters cl, Al, bl are known to the planner with cer-

tainty, the parameters of stages 2,...,T are assume,_ to be known only by their

distributions. We consider uncertainty in the coefficients of the transition matrices

B(', t = 1,...,T- 1 and of the right-hand sides b_', t = 1,...,T. We assume the

coefficients of the technology matrices At, t = 1,..., T, and the objective function

coefficients c_, t = 2,... ,T, to be known with certainty. The assumption of deter-

ministic technology matrices and objective function coefficients _uses the presentation

but is not crucial to the solution method, which we have developed. The goal of the

planner is to minimize the expected value of present and future costs.

In a general model, one has to allow the stochastic parameters of the transition

matrices B_" and the right-han,i sides b_" to be dependent both within a certain stage

and between stages. In the latter case the distributions of the stochastic parameters

in period t depend on the outcomes of the stochastic parameters in perb _ t - 1.

The underlying "wait-and-see" decision-making process is as follows" The decision

maker makes a first-stage ,'ecis:,on xi before observing any outcome of the random

parameters. Then he wait_ ur !1 an outcome of the second-¢_,age random parameters

is realized. The second-stage ,Jecision is then made based on the knowledge of the

realization _2 but without observing the outcome of any random parameters of stages

3....,T, and so forth. As the state (the actual outcome) is carried forward to the

following period, the decision tree grows exponentially with the number of stages.

The corresponding decision tree is given in Figure 4.1. The figure represents the

ex_'r, _le of a f lr-stage problem with only 3 outcomes per stage.

i_e consider discrete distributions of random parameters with a finite number of

out,_ Jmes, e.g., wt E fit, fl_ = {1,..., Kt}, t = 1,..., T. With K_ being the number

of scenarios in period t, the total number of scenarios for all T stages is I-IT=IKt. The

number Kt is expect_ d to be large, as it is derived from crossing the sets of possible

outcomes of the different random parameters within a period. For example, if the
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Figure 4.1: Decision tree of a general class of "wait and see" multi-stage problems

dimension of the random vector in period t is ht and f_{contains k{ elements, then
Kt ht t: I']j-'l kj.

For example, in the hydro power control problem of Section 4.8.1, consider the case

of prediction error in 10 inflows, modeled as independent random parameters with 3
outcomes each: the number of scenarios per period is 31° _. 60,000. If we consider

only 3 periods of "wait and see" type planning ahead and neglect uncertainties of
periods further ahead, then the total number of scenarios that have to be examined

is in the order of 109. As another example, in the asset allocation problem of Section

4.8.2, consider the case of 20 independent factors (used to describe the returns of,
say, 500 assets) modeled as random parameters with 5 ot,tcomes each: the number of

scenarios per period is 52o,_ 1014. If there are only 3 periods, then the total number

of scenarios grows to 102s. The dimensions of an equivalent linear program of an asset
allocation problem with a universe of about/500 assets is approximately 5.103o rows

and 1.5.10 31 columns. It is of course impossible to write down this linear program
exphcitly.
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4.2 DEPENDENCY AMONG STOCHASTIC PARAME-

TERS

We model dependency between stochastic parameters both within a certain stage

and between stages. We refer to the former kind of dependency as intra-stage

dependency and to the latter as inter-stage dependency.

We define the vector Wt to be the vector of ali dependent random parameters of

stage t. Wt contains both the random parameters in the transition matrix Br-1 and

the random parameters of the right-hand side bf. We will use the notation

w, = b,) (4.3)

to express that ali random parameters in the transition matrix Bt-x and ali random

parameters i., th_ right-hand side bt are organized in the random vector Wt. Each

component of Wt refers uniquely to an element of the matrix Bf-1 or to an element

of the vector bf. We define inverse operations of Wt = vec(Bt_a, br) as

Bt-l(Wt) = vec_X(Wt) (4.4)

and

b,(w,)= (4.5)

to express that, given the random vector Wt, the corresponding random elements

in Bf-1 and bt are uniquely determined. With rnt+x x nt being the dimensions of

the transition matrices Bt and mt being the dimension of the right-hand side br, the

dimension of the dependent random vector Wt is at most mt+l × nt "t- rnt+l. We

denote the dimension of Wt with ht, thus Wt = (W_,t,..., WL,t). With respect to the
solution procedure discussed later we formulate a special kind of dependency model

which is based on linear intra-stage and inter-stage dependency.

4.2.1 Intra-Stage Dependency

We describe correlation of random parameters within a stage by a linear relation,

i.e. outcomes of the ht uncertain dependent parameters (W_,t,...,Wh,,t) can be
obtained by multiplying outcomes of a vector of independent random parameters

Vt = (V_,t,..., Vh,,_) by a matrix/3,(h, x h,),

Wt = _tVt. (4.6)

We denote an outcome of the independent random vector Vt by vt or vT', where

wt E _tt. We denote an outcome of an individual random parameter in period t, say

VtJ': by v_', also denoted as vj''_l, where w_' E f't_', with corresponding probability

p(v_') = prob (Vrj' = v_'). The set of all possible outcomes in stage t is constructed

by crossing the sets of possible outcomes of the components of Vr, FlY',jt = 1,..., ht

as f/t = g/_ × f_ × ... x f_'. Because of the independence of the individual random
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parameters of Vr, p(vt) = p(vlt)p(v2t)...p(vat'). The corresponding outcomes of the

dependent random vectors Wt are denoted by wt or w_".

The linear intra-stage dependency model generates dependent scenarios based on

random variations of independent random parameters. This property will become par-

ticularly important when implementing samphng for generating scenarios. In many

applications the number of independent random parameters per stage, ht, is expected

to be much smaller than the number of dependent random parameters, ht.

4.2.2 Inter-Stage Dependency

For expository purposes we consider an equal number of independent random pa-

rameters in each of the different stages and denote this number as h. We consider

inter-stage dependency as a Markovian process (linear dependency).

..... - 0vP +-- t-I rf'''" + flt-2W 2 (4.7)

The matrices ri0,fll,..., _r-2 are matrices of dimension (h × h). If they are di-

agonal matrices the value of an outcome of the random parameter Wti is a weighted
i and the valuessum of some independent random variation in period t, denoted by vt

of the observed outcomes in the previous periods t- 1, t - 2,..., T- 2. If the ma-

trices rio,ft1,..., fiT-: are non-diagonal matrices, the outcome of each element in Wt

is dependent upon the outcomes of all elements in Wt-1, Wt_2 back to W2 and the

independent random variations of Vr. Given observed outcomes of Wt_l, Wt-2 back to

W2 one can easily generate a scenario of Wt by independent random variations of Vr.

One can see that a scenario in period t is determined based on the observed historical

outcomes of the dependent random parameters and by the variations of the indepen-

dent random parameters in period t. We refer to our linear dependency model as
an auto-correlative model. The class of auto-correlative models is a wide class of

dependency models that is well studied in the literature. Many different applications

in practice can be formulated using the auto-correlative approach. The parameters of
the auto-correlative model can be estimated based on historical observations of the

outcomes of the stochastic parameters. We can now state the auto-correlative model

in the notation of the formulation of the multi-stage stochastic linear program:

t-2

Bt_,(wt ''''''_) = vec_'(floVt' ) + _ vecb '''_ v 'B _''-" _'-__,p, ec( t-¢-,,,,t-¢ )), (4.8)
T--1

t--2

..... = v¢(Pr Cl,l:_t-.r-l,"t-_- )). (4.9)
r---1

While the general auto-correlative model fully applies to all the discussions that

follow, we will additionally present a special case of the auto-correlative model where

we make assumptions in order to simplify the presentation. We treat the random

matrices Br-1 and the random right-hand sides bt separately. That means we assume
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that either the transition matrices Br-1 are random or that the right-hand sides bt

are random, but not both at the same time. We consider further instead of matrices

fir, r = 0,... ,T-2, scalars _, r = 0,... ,T-2, for modeling dependency of elements

of the transition matrices .Br-1 or scalars fib r = 0,..., T-2, for modeling dependency

of elements of the right-hand sides br. With these assumptions the simplified linear

dependency model can now be formulated in the case of randomness in the transition
matrices as:

r_,_,,...,,_2_ _os_,, + fl_ S_,_ + fl_ _,_,-2 + +z._t_ 1 -- . .. ,

or in the case of randomness in the right-hand sides as:

b_'....._2 ,_b _,, obz._,-_ ;_b_,-2=o,7, + + + ... +  L bT. (4.11)

In this formulation _t represents a matrix of the same dimensions as Bt-1 whose

elements are functions of random parameters which are independent of the random

parameters of all previous periods, and 7/t represents a vector of the dimension of

bt whose elements are functions of random parameters which are independent of the

random parameters of all previous periods.

4.3 DUAL DECOMPOSITION

A description of how Benders (1962) [6] decomposition algorithm can be applied

to solve two-stage stochastic linear programs can be found in Van Slyke and Wets

(1969) [122]. Sirge (1985) [9] extended the two-stage concept for solving multi-stage

stochastic linear programs by using a nested Benders decompositio_u scheme.

Using dual decomposition we decompose the problem into subproblems for differ-

ent stages t. In the most general case, in which there is a dependency of stochastic

parameters between stages, the number of subproblems is equal to the number of sce-

narios in each stage t. To distinguish one subproblem from another, each is indexed

with wt,... ,w2, where wt is the random event in stage t and w_-l,... ,w2 is the path

of previous events which gave rise to the particular subproblems in stage t.

For expository purposes, we assume initially that the random events occuring

in one stage are independent of those that happened in the previous stage. In the

independent case, scenarios wt+l E flt+l in period t + 1 are identical for each scenario

wt E f_t in period t. The history is only carried forward through optimal decisions

_'-_'""_ from previous periods.t-1

The idea of using dual decomposition is to express in each stage t, and scenario wt,

the expected future costs (the impact of stages t + 1,..., T) by a scalar 6t. The value

of 0t is constrained by a set of "cuts", which are necessary conditions for feasibility

and optimality expressed solely in terms of the stage t decision variables xt and 0t.

Cuts are initially absent and then sequentially added to the stage t problems. Each

scenario subproblem collects the information about expected future costs by means
of the cuts.
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The relation between the different stages and scenarios in the decomposed multi-
stage problem is summarized as follows:

The Stage 1 Problem:

mJn zl = clxj + 01

s/t

Tri" AlXl = bl (4.12)
p_'" -G_'x, + a_'O, > g_', ll=l,...L,

xi > 0.

The Stage t, t = 2,...,T- 1, Problems:

min z_' = ctx'_' + tg'_'

s/t
_" " Atx?' bT' + _' " .= Bt-lxt-1 (4 13)

_h rj_t > g_,, lt = 1 Lt+ _ ,...,
z_' > O.

The Stage T Problem:

min z_.r = CTX_rr

s/t
_,r ^ (4.14)

7r_r" ATx_rr = b_rr + BT_lXT-1
WT

ZT >_ O.

min zl represents the optimal objective function value in the first stage, and

xi, _1 represent the optimal solution. The vector _'1 denotes the optimal dual prices

associated with the original first-stage constraints, and the scalars p_l are the optimal

dual prices associated with the cuts, which have been added so far in decomposi-
tion iterations 11 = 1,..., L1. In later stages, the optimal objective function values

rain z_' = min z_"(:_t-1), the optimal dual prices _-_"= r_'(_t-1) associated with the
original stage t constraints, and the optimal dual prices P't'"' = Plt'"'(_t-1) associ-

ated with the cuts are all dependent upon zt-1, the optimal solution passed as input

from the previous stage t- 1. According to the scenario evolution in the previous

stages, an optimal solution Xr-1 is actually indexed by the scenario outcomes of all

previous stages and is therefore denoted as _t_ _....,_2 For the sake of exposition,

we suppress the scenario history and present the optimal solution of subproblems in
stage t, scenario wt as a function of the input zt-1.

We compute the expected future costs as

_,_,+i (4.15)Zt+l -- Ewt+: zt+ 1 :
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the right-hand sides of the cuts as

Lt+z

{ _._t+ zhwt+ z ^lt+ z,wt+ z_le+ zgl' Ew,.l ,+1v,+l += e,+l ), (4.16)
/t+l=l

and the coefficients of the cuts as

Wt+la'/ -- Ew,+,7rt+z B_t'+' (4.17)

where

WT

PT = 0, G_.r = 0, and g_r = 0. (4.18)

A subproblem in stage t and in scenario wt interacts with its predecessors and

descendants by passing cuts backward and optimal solutions forward. Dual decom-

position splits the multi-stage problem into a series of two-stage relations which are

connected overall by a nesting scheme. We call the stage t, scenario wt problem the

current master problem. It receives from its ancestor in period t - 1 a solution it-1.

The current scenario is determined by the outcome wt of the random parameters in
wt

stage t, which are reflected in the right- hand side b_' + Bt-zit-1. As stated above,

it-1 imbeds a history. This history has to be considered when nesting several stages.

Given and subject to xr-1, we solve the stage t problem in scenario wt and pass the ob-

tained solution i_' to the descendant problems. By solving all problems wt+z E f_t+i

(referred to as the universe case), we can compute exactly the expected value of the
lP 71-w_+z T:_wt+ z_'+_ and the coefficients Gt = -w,+_ t+z _t+zdescendant stage costs zt+z = E_,+zzt+z

and right-hand side gt Ew,+1" _,+1_,+_ v,n,+l ^z,+1,_,+1 t,+_-- (_7t't+l Ut+l -]- /--,/,+1=1 Pt+l gr+l) of a cut. The cut
is added to the current master problem (stage t, scenario wt), and by solving this

problem again, another trial solution is obtained.

The optimal trial solution of the current master problem in stage t, scenario wt

gives a lower bound, and the expected cost of this trial solution gives an upper bound

for the expected costs of all scenarios descendant from stage t scenario w_. If the

lower upper bounds are sufficiently close, the current master problem is deemed to

represent adequadly the future expected costs and contains (by means of a sufficient

number of cuts) all the information needed from future scenarios. In this case we say
the current master is balanced with its descendant problems.

Note that the current master problem represents the expected future costs only

subject to the trial solution zt-1. which was passed from its ancestor, and subject to

the current scenario wt. Furthermore we have implicitly assumed that the descendant

problems in stage t + 1 are also balanced with their descendant problems. Note,

however, that the solution of the current stage t scenario wt problem gives a lower

bound for the expected costs of all descendant scenarios regardless of having collected

a sufficient number of cuts. We shall exploit this fact.
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4.4 PROPERTIES OF THE CUTS

First we discuss various properties of cuts in the case of independence of stochastic

parameters between stages. Then we extend the discussion to the case of Markovian

dependency and restate the derived properties for the dependent case.

4.4.1 The Case of Independence of Stochastic Parameters Between Stages

The following properties of cuts are crucial for the solution procedure.

Cuts derived from any trial solution _:_' are valid in ali scenarios wt E f_t.

The cut 0t > E_,+lTrw'+l t,+l,_,+l.j,+_- t+l B_ ''+' zt + E_,,+, (_r_'.' 1,'0,+, v'L,+,t+l vt+l 21" A..,/t+l--1 Pf+I .Yt+X ) is a con-
straint whose coefficients do not depend on xr; hence, it is valid for all values of xr.

We exhibit this property via the example of cuts generated for the stage T- 1 master

problem and show that these cuts are valid for all values x_._:'__. We employ dual

(Benders) decomposition theory to obtain the relation between the stage T- 1 mas-

ter problem and the stage T subproblems. First we re-state the stage T- 1 master

problem of the multi-stage stochastic linear program in the following form:

The Stage T- 1 Relaxed Master Problem:

zr-a = min CT_lXT_ 1 + ZT(XT-a)

s/t (AT-lXT-1 = b_,r_.]' + B_,r_.'_lk,T_2) (4.19)
XT-1 _ O.

System (4.19) represents the relaxed stage T- 1 master problem, where no cuts

have been added so far. As an initial step, we also relax the stage T- 1 original
BWr-1constraints (AT-lXT-1 -- b_T'__ + T-2 kT-2), as indicated by setting them between

p__zentheses. This is to make the stage T- 1 problem independent of the different

scenarios WT-1 and independent of any history that is represented by XT-2 passed

from the previous stage. Thus we can interpret the stage T- 1 master problem as

being completely cut off from the previous stages. The expected (future) stage T

costs, ZT(XT_I) , are represented as a function of the stage T- 1 decision variable

XT-1.

Instead of stating the primal stage T problem, we state its dual problem. The

dual stage T problem in (4.20) includes all KT scenarios WT E _T. Note that the

stage T-. 1 decision, :_T-1, appears as a given parameter of the stage T subproblem.



68 Chapter 4. Techniques for Solving Multi-Stage Problems

The Stage T Dual Subproblem:

ZT(ZT-l) "--

1 1 _KT ,..KT { hKT "
max PT_rT(b_.+B__l&y_l) +.... FT "T t,VT +B_T--I&T-1)

s/t

r_.AT <_ CT (4.20)

r_.'TAT <_ CT.

We assume the stage T dual subproblem to be finite for all values of &T-1 passed

from the previous period. We define

7rJT"= (_r_"J,. . . ,r_'r'J), j = 1, . . . ,qT (4.21)

to be the vertices of the dual feasible region of the stage T subproblem (4.20). We

rewrite the stage T subproblem (4.20) by expressing it in terms of the dual vertices.
By doing so we also can write the maximum expected costs ZT(ZT-1) aS a function of

ZT-I, rather than having ;he problem parameterized by &T-I'

ZT(ZT_I) -- max pT,tT (UTr B_._lXT_I). + ( + ). (4.22)
l<j<qT

Using 6T-1 to represent the smallest upper bound for the stage T costs,

rain 0T-1

0T-1 > maxl<'<q _.1_1,j( --KT"'KT'j b_ "r B_'T1 1),-- _3__r FT'fT _b_ + B)r_lXT_I) .... . PT "T ( . _ XT-

(4.23)
we can state the stage T- 1 master problem as a full master problem with ali possible
cuts added.

The Stage T- 1 Full Master Problem:

mJn ZT-1 = CT-IXT-I . OT-1

_ bWT-1 I:7_T-1s/t (AT-iZT-1 W-1 +'T-, XT-2) (4.24)
ZT-, >_ 0

OT- 1 > ,,.,1 ,.. 1 ,j [ hl "- eT"T _VT+ B_"-lXT-,)+ "'" + PTKr_rTKrJ(b_"r + B_r-aXT-1) J = 1,...,qT.
(4.25)

In the full master representation for stage T- 1, each cut corresponds to a vertex
of the dual feasible region of the stage T subproblem. The set of all cuts represents

a complete outer linearization of the expected stage T costs as a function of XT-_.
Each cut is valid for each value of XT-1 because it is derived from a dual feasible

price vector, one of the dual vertices _, j = 1,..., qT. Taking now the stage T- 1
bWT-1 ]:_T--1constraints (AT-lXT-1 = T-1 . *"T-2 &T-2) into consideration, we see that the

piecewise-linear representation of the expected stage T costs remains unaffected by
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the stage T- 1 constraints. The stage T- 1 constraints have different right-hand sides

in each scenario WT-1 and for each value of XT-2 passed from the previous period•

Therefore they represent a different set of feasible solutions for :fT-1 in each scenario

WT-1 and for each value of XT-2. The piecewise-linear representation of the stage

T expected costs by means of the cuts is valid for any scenario WT-1 and any value

of $T-2 passed from the previous period. Of course, different cuts will be binding

in different scenarios WT-1. For example, a cut can be a support of the recourse

function, the minimum expected costs ZT(ZT_I) as a function of the stage T- 1

decision variables ZT-I, in a particular scenario and may be way below the recourse
function in another scenario.

Having stated the full master problem in stage T- 1 in equation (4.24 - 4.4.1),

we now extend the argument for all stages. Analogously to before, we state the dual

problems in stages t, where t = 2,..., T- 1. We assume that the subproblem in stage

t under consideration contains a complete representation of the stage t + 1 expected

costs, represented by the set of cuts -Gtt'x_ ' + 0'_' >_ gl', lt = 1,•..,qf, and that

these cuts also have been derived from subproblems with a full representation of their

respective future expected costs.

The Stage t, t = 2,..., T- 1 Dual Subproblem:

z,(_,_l)=

_x p,(_,,l(bl+B;__,_,)+p_9,)+-..+ :_'(_"(b,_''+B__'_',_,-a)+p,_"g,)
s/t

rr:At - p_Gt < ct

rrtK'A, -ptK'e, < ct

p_l = 1

p_" 1 = 1

pl, ..., pK, >_o.
(4.26)

As before, the stage t- 1 master problem in the full master representation can be
stated as"

The Stage t- 1 Full Master Problem:

min zt-x = ct-lxt-1 + Or-1

s/t (At-lXt-, -- -,-1_'-_+--'t-2r_"-':_t-2) (4.27)
zt-1 > 0
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0t_ 1 >

,J J .. _ " ,J( BtK_.,lx t_ l ) + pt_'' J+ +., +... + hK,+ g,),
j= 1,...,qf.

(4.28)

Equation (4.28) represents a complete outer-linearization of the future costs as a

function of xt-1. It is valid for ali possible values of Xr-1. The stage t - 1 constraints

have different right-hand sides for different scenarios w,-i and for different values of

zt-2 passed from the previous stage. They represent a different set of feasible solutions

of Xr-1 in each scenario wt-1 and for each value of Xr-2, but the outer linearization of

the stage t + 1 costs is valid in any scenario w,-i and for each value of Xr-2 passed from

_h-lxWt-1 t}_,-_ > 1,-1 lt-1 1 Lt-1the previous period. Therefore all cuts -,--t-1 t-1 + vr-1 _ gr-1, = ,...,

are valid for all scenarios wt-1 E _t-l.

A cut derived from a non-extreme dual feasible point is a valid cut.

In the full master representation of the stage t - 1 problem in (4.27) and (4.28)

each cut has been derived from a vertex of the dual feasible region of the stage t

subproblem. A cut derived from a dual extreme point is efficient in the sense that

it supports the expected future cost function zt(zt-1) at that value of zt-1 for which

the dual extreme point is optimal. Of course, not every dual extreme point need be

optimal for some value of Xr-1. A cut derived from a point within the dual feasible

region, which is not an extreme point, cannot be a support of zt(xt-1) for any value of

Xr-1, because a point within the dual feasible region, which is not an extreme point,

is never dual optimal. Therefore, it is not efficient in the above sense.

For example, any point of the feasible region of the stage t dual subproblem of

(4.26) can be represented by a linear combination of the extreme poim_3, e.g.,
qt qt

(r°,p °) = _ A"(r't',p','), _ A"= 1, A" > 0. (4.29)
lt=l lt=l

For any value of zt - 1 the outer linearization of the expected stage t costs, based on

the dual interior point ;ro, po,

z°(xt__)= E_,(;rt"°(bt'+ B_",xt__)+ pt"°gt), (4.30)

is less than the outer linearization corresponding to the extreme point _maxt,,O_nax

which maximizes the dual problem for a particular zt-_:

_,, w,.m_,_, (4.31)z°(xt-1) <_ Ew,(_rt"maS(b_" -4- Bt_lXt-1)-4- pt gt),

where

E_,,(Trt"m""(bt ' + Btz_xt__ ) + pt"maXgt) -- max E_,,(rrt"J(b_ '' + B'j..z,x,_,) + pt"igt).
.7

(4.32)

It follows that a cut obtained from a dual feasible point that is not an extreme

point of the dual feasible region in (4.26) is weak, but valid for any value of xr-1 of

the stage t - 1 master problem.
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An extreme point of the dual feasible region of a subproblem that is not
balanced with its decendent stage is also an extreme point of its dual

feasible region when it is balanced with its descendent stage.

We analyse now the case where the stage t subproblem is not fully balanced with the

stage t + 1 subproblem, that is, when not ali cuts have been generated and added

to the stage t subproblem to fully represent the expected stage t + 1 costs, Zt+l(Xt),

given St-1 passed to the stage t problem and for ali scenarios wt E flt in stage t. To

determine, if the cuts added so far to the stage t subproblem fully represent the stage
t + 1 expected costs, we define Omin(Zt)as the smallest upper bound of the value of
the stage t + 1 costs by means of the stage t cuts in the stage t subproblem:

omln(xt) = min Or, Ot > Gtr'zt + gl' lt = 1 Lt. (4.33)

If

_min(Xt) "- Zt+l(Xt), (4.34)

then the cuts added so far in stage t fully represent the stage t + 1 expected costs,
and the stage t subproblem is balanced with the stage t + 1 subproblem. Other-

wise, additional cuts have to be generated for stage t in order to obtain a complete
representation of the stage t + 1 expected costs.

The case of the stage t subproblem not being balanced with the stage t + 1 sub-
problem can be interpreted in these terms: the dimension of the vector of dual prices

pr, corresponding to the number of cuts added so far to the stage t subproblem, is

smaller than its dimension would be if ali cuts were added to fully represent the ex-

pected future costs zt+l(xt). For example, the stage t full master problem had qt cuts

but only Lt cuts have been added so far. The stage t subproblem then can be seen as

having qt- Lt relaxed constraints, whose coefficients and right-hand sides are zero.
The dual variables associ'_ted with these relaxed constraints are defined to have the

value zero. In the dual representation of the stage t subproblem these relaxed rows
appear as zero-columns. An extreme point 7rr_,p_ of the dual feasible region corre-

sponding to Lt cuts and with qt- Lt zero-columns is also an extreme point of the dual
feasible region corresponding to qt cuts and for which P_t>--0, for j = Lt -4-1,..., qt.

This is because if (_t, p_,..., pL,), is an extreme point of the relaxed dual, then the

constructed dual solution (Trr,p_,..., pL,, pL,+1 = 0,..., ptq' = 0)could not be formed
from a linear combination of other extreme points of the full system by vertue of the

non-negativity of pr. A cut obtained from a dual extreme point is efficient in the
sense that it has the potential to be support of the recourse function for some value

of zt. Therefore a cut obtained from stage t + 1 subproblems, which are not balanced

with its descendent subproblems in stage t + 2 is an efficient cut. It is suboptimal for
this particular value of St at which it was derived but it may be optimal for another

value of zt. Note that this result has an important implication: No matter at which

stage cuts are computed, regardless of the corresponding subproblems being balanced

or unbalanced with their decendent stage, the obtained cuts are always efficient cuts.
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They are potentially support of the recourse function at some value of Xr. Note that

cuts computed in the first stage are efficient cuts, even if no cuts have been added in

stages 2,..., T- 1, that is, if no information about the future is collected.

Cuts obtained from expected value subproblems are valid cuts.

Bt-1, , •..,By replacing all stochastic parameters w, b_' t = 2, T by their expected values
Wf

B E = Ew,(Bt_l) , bE = E,,,,(b_') we obtain from the multi-stage stochastic lineart-I

programof(4.2)a deterministicmulti-stagelinearprogram(4.35),whichwe referto

asitsexpectedvalueproblem.

The expected value problem:

min z =

ClXl -_ C2X 2 -!-... -}- CT_lXT_ 1 .Jr- CTX T

s/t
Alxl = bl

--BExl "t- A2x2 = b_ (4.35)

E bE--BT_IXT-1, "Jr" ATXT =
> O.Xl _ X2 , • . . _ ZT-1 _ XT __

In order to demonstrate the properties of cuts obtained from expected value sub-

problems, we apply dual (Benders) decomposition to (4.35). Corresponding to the

stage t subproblem (4.13) of the multi-stage stochastic linear problem is the stage t

subproblem (4.36) of the decomposed multi-stage expected value problem:

The stage t expected value subproblem:

min zE(Sct_l) = mSn CtXt + Ot

s/t
7rE. Atx, = bE + BE_,_,_, (4.36)

+ o, >_
> O.$t

In the stochastic case we have defined the expected stage t costs as a function of xt-1
as

zt(xr-1) = Ew,(Zt'(zt-_)), (4.37)

where z_"(xt-1) is a convex function. From this it follows (based on Jensen's inequality

for convex functions) that

zt(xr_,) > zE(xt..,). (4.38)

Equation (4.38) is true for all values O_'xt.,.:.

)
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By the usual argument for Benders decomoposition, a cut derived from the ex-

pected value subproblem is an outer linearization of the stage t expected value sub-

problem costs zfi(zt_l). To show this we assume that problem (4.36) is feasible for all

values of _t-1 and define r E'j, pffJ, j = 1,..., qff to be the extreme points of its dual

feasible region, where qff denotes the number of dual vertices. The outer linearization

then is represented as

L_(zt-l) = m axrffJ(b E + stF'_lz,-1) + PffJgt, j = 1,...,qff. (4.39)
3

With

>_ (4.40)

we can state

z,(z,_,) __kL_(x,_,). (4Al)

This is a valid statement for all values of Z,_l and is unaffected by any additional

constraints on x,-i in the stage t - 1 subproblem. It follows from (4.38), then, that

cuts obtained from the stage t expected value subproblem are valid but weak cuts for

any stage t - 1, wt.-1 subproblem of the decomposed stochastic linear problem. Indeed,

they are used to guide our solution algorithm at the beginning. For example, we first

solve the expected value problem (4.35) using nested dual decomposition and collect

cuts at each stage t, t = 1,..., T- 1. Then we solve the stochastic problem, where

the expected value cuts are initially present but are gradually replaced by stronger
stochastic cuts.

Summary of properties of cuts

Different scenarios wt in stage t are distinguished by different right-hand sides of the

original stage t constraints, e.g., Atxt = b'_' + Bt_lxt-1. The set of cuts -Gtr'zt + Ot >_

gl',l, = 1,...,Lt, represents an outer linearization of the expected future costs that

is independent of stage t scenarios and is valid for ali scenarios wt E fit. The outer

linearization defined by the set of cuts equals the expected future cost function if
Ez_¢'__(Zt) = _t, where 0, is the value of 0_corresponding to the solution _t of any stage

t problem. If _'-_'+'_zt+l (z_") = 0_", for all wt E fit, then a sufficient number of necessary

cuts has been generated to represent the expected future costs for all solutions }_'

of scenarios ovt E l'lt in stage t, and we say that stage t is balanced with stage t + 1.

In any stage t- 1, t -- 2,..., T- 1, we can obtain cuts from stage t subproblems

which are not balanced with their descendent stage t + 1 subproblems. The resulting

cuts are valid, weak at that xr_:, at which they are derived, but potentially efficient

at some other value of xr-1. Cuts obtained n any stage t - 1, t = 2,...,T - 1 from

expected value subproblems in stage t are valid for any scenario wt-1. They are weak,

but can be used to guide the algorithm at the beginning.
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4.4.2 TP, e Case of Dependency of Stochastic Parameters Between Stages

In the c_se of inter-stage dependency of stochastic parameters the coefficients and

the right-hand side of the cuts depend on the scenario history. Simple sharing of cuts
between different scenario subproblems wt E fit is no longer possible. However, for

linenr (Markovian) dependency, cuts can be easily adjusted to fit different scenarios.

(See Pereira and Pinto (1989) [103] for a treatment of a class of additively dependent

right-hand sides.)

['or the auto-correlative dependency model, cuts in any stage t can be

adjusted to be valid in any scenario wt E 12t.

In the auto-correlative model developed in Section 4.2.2, the transition matrix

and the right-hand side in stage t, based on the scenario history _-l,...,w2, are

expressed as
_

t-2

S_" ....._2 = vec_l(_0v_,)+ _vec_l(_.vec(St_-;,l,b_'_.;.")), (4.42)
"r'-I

_, t--2
!1

_ (flCvec(Bt_¢_l, vt_¢ ,), (4.43)b_'....._ - ve¢_-_(_o__')+ _ w¢_-' _'-" _'-'_
"!"--1

where y represents the index of the time lag. We compute a cut from the (dual) stage

t problem as:

__ j_oJt,...,¢¢2 -.- .e,__> E_,(_'(b_'....._ +._,__ _,__)+ p_,g_',,_) (4.44)

Including the inter-stage dependency according to the auto-correlative model by sub-

stitution leads to the following formulation:

Or-1 >_

t-2
(E_,Tr_')(E_=, vec:' _'-" _'-" (4.45)(Z_v_(B,____,_,__)))+

(E,,,_V' '-_ (/_¢v_¢(B,_¢_l_"'-",_,,_,))z,_,)+

- E,,,,(p_'gT' ....."_).

The obtained cut consists of two parts: The first part reflects the contribution of

the outcomes of the stage t independent random vector v_", the ,,econd part reflects

the contribution of the observed outcomes in stages 2,..., t- 1. Still, a cut based

on the auto-correlative dependency model cannot be shared directly between the

subproblems in stage t - 1. This is, because the coefficients and the right-hand side

of a cut from stage t depend on wt-1 and also on the full history of realizations
"i

wt 2,...,w2. However, one can see (easily) that the cut can be adjusted to the

- current scenario w__l,... ,w2 if the expectation (E_,_r_') is known. Note the notation

_

=

_
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of g_"....._2 to indicate that the right hand sides of the cuts in stage t + 1 have a history

because of _,_'+_....._ However, based on the linear dependency model we can compute_t+l

the stage t impact analogously to the derivation above.

In order to adjust the cut to a given scenario wt-l, we only have to specially

compute the second and wt_l-dependent part of the,cut formulation. The first part

remains the same for each scenario wt-l,... ,w2. Note that the computationally ex-

pensive expected value computation is required in both parts. As part one remains

the same for each scenario wt-1,... ,w2, we store the calculation and adjust the cut

for a giiven scenario by adding part two using (E_,,Tr_"), the expected value of the

dual prices already obtained and stored during the computation of part one.

We exhibit this procedure by considering first the simplified example of the auto-

correlative model of (4.11) with uncertainty occurring only in the right-hand sides

according to a Markovian dependency of a time lag of 1"

b_'-_ (4.46)

where r/_" represents a vector (of the dimension of bf) of independent random param-

eters and rio, til are scalars. The corresponding cut,

0t-1 __> Zwt 71"tr (&?] _t -+- Bt-lXt-1) -+ Ew,f('g_" + (Ew, r_ ''_'_)lJlut_lku¢'-I , (4.47)

only needs to be adjusted in the right-hand side by specializing the term (Ew,_r_")til b_''-'t-1

to the stage t - 1, w,-1 scenario subproblem which we currently want to solve.

Alternatively, consider the simplified example of the auto-correlative model of

(4.10) in which uncertainty occurs only in the transition matrix, according to a Marko-

vian dependency with a time lag of 1"

'_ B w'-x (4.48)= + ,-2--1

where ¢fi" is a matrix (of the dimension of Bf-1) of independent random parameters

and rio, 31 are scalars. The corresponding cut,

_,,,_, "-- rr'_,_ D_,,-, (4.49)0,_, _> E,,,,x't'(bt + flofTtxt-_) + ..-,,,,,vr:_t + (EL, t m,_t-2 zt_,,

only needs to be adjusted in its coefficients by specializing the term (E_,r_")fll_w'-'_'t-2

to the stage t- 1, wt-1 scenario subproblem which is to be solved.

4.4.3 Summary

Taking advantage of the above stated properties, we actually only need to store

one subproblem per stage t. For different scenarios wt and different solutions :_,-1

passed from the previous stage we determine the right-hand side of the subproblem

accordingly. Cuts generated by stage t + 1 subprobiems are valid for all scenarios

w_ E f_t in the case of independence of the stochastic parameters between stages.

Generated cuts are adjusted in the gradient and right-hand side according to the
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actual scenario wt in the case of Markovian dependency between stages. Therefore it

is easy to generate any wt subproblem. Future information is represented in the cuts

which have been generated so far and can be efficiently used in any scenario wt E fit

independently of which scenario originated the cut.

4.5 PROBABILISTIC LOWER BOUNDS

4.5.1 Estimates of Expected Values

For calculating the expected values of the future costs, the gradients, and the right-

hand sides of the cuts in each stage t, we use Monte Carlo importance sampling

as discussed in Section 2.3.3 in Chapter "Benders Decomposition and Importance

Sampling for Stochastic Linear Programs" for two-stage stochastic linear programs.

Employing Monte Carlo sampling techniques means not solving all problems wt+l E

_t+l but solving problems Wt+a E St+l, where St+i is a subset of f}t+l. Instead of the

exact expected values zt+l(Zt), Gt(Zt), gr(Zt), we compute estimates 5t+l(Zt), Gr(Zt),

_t(Zt) using the importance sampling procedure. We also estimate the error in the

estimation of zt+l(Zt) by the variance

(4.50)Zt+l

Thus, given a particular Zt, we obtain from the importance sampling procedure an

estimate of the mean of the stage t + 1 costs and the associated error distribution.

For sample sizes larger than g0 (see, for example, Davis and Rabinowitz (1984) [32]),

one can assume that the error of the estimation is normally distributed. Therefore,

we define the estimate of the stage t + 1 costs Zt+l(Xt) for given :_t to be a random

parameter, normally distributed with mean _'t+l(xt) and variance a 2 •_.t+l

;-t+,(Zt) := N(_'-t+a(&t),a 2 (Zt)) (4.51)_t+ 1

A cut with estimated coefficients and right-hand sides differs from a cut obtained

by computing the expected values of the coefficients and right-hand sides exactly.
The outer linearization

Lt(_t,xt) = Gr(Zt)xr + gr(Scf) (4.52)

with respect to the universe case and

Lt(_t,xt) = Gt(k,)z, + _t(kt) (4.53)

with respect to the estimation differ in the gradient and in the right-hand side. At

zt = &t, the value at which the cut was derived, Lt(kt,kt) = zt+l(kt) and Lt(kt,&t) =

5t+l(kt). Thus, if a true cut obtained by solving the universe case is binding at the

solution xt = kt, the variable 0t takes on the value

0t = Lt(:_t,Zt)= Zt+l(kt). (4.54)
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In the case of using Monte Carlo sampling, we relate Ot to the estimated value of

the stage t + 1 costs at it, Lt(_t,_t) = _.'t+l(_:t), and correct for estimation error by

adjusting the right-hand side. Thus we can state

Ot= Lt(i,, St)+ ct(St). (4.56)

Equation (4.55) represents a valid statement for a solution xt = it. The correction

term ct(it) = zt+x(_t) - 5,+1(_t) corrects for the estimation error. Of course, we do

not know the difference zt+l(d'.t) - 5t+_(_t) explicitly for each cut when we compute it.

However, we can obtain an estimate of the distribution of the correction term from

the estimation process. Recall that by using Monte Carlo importance sampling, we

obtain an unbiased estimate of zt+l(:h), 5t+l(_t), with variance a_,+l_ (it). Therefore,
et(_t) is normally distributed with mean 0 and variance 2

et(it) := N(0,a_,+,2 (it)). (4.57)

Suppose that a cut Lt(it,xr)= Gt(i)x + _(i), computed at xt = it, is binding at
a solution xt where it # it. Applying again a correction for the estimation error we
obtain:

0t -- L,(&t, xr)+ et(xt). (4.58)

The correction term for the estimation error is clearly the true value of the cut atA

xc = it, minus the value obtained by the sampling procedure:

et(x) = Lt(d:t, x)- Lt(it,x). (4.59)

Again we do not know the difference Lt(it, _)- Lt(it,x) when we compute the cut.
The distribution of the estimation error, et(i) at xt = d_t,can be computed based on

the observations G_ and g_', which have been obtained by the estimation procedure.

See Section 2.4.2 in Chapter "Benders Decomposition and Importance Sampling for

Stochastic Linear Programs" for computing the estimation error of the value of a cut
as a function of x.

For most practical problems it is a sufficiently close approximation to assume that

ct(_t) _ et(_,t) for xt _ it. (4.60)

This means that we assume the error distribution et(:_t) to be constant with respect

to xr, rather than taking into account correctly et(xt) as a function of xr.

4.5.2 The Lower Bound Estimate

In each stage t, t = 2,..., T- 1 a lower bound for the stage t expected costs (subject

to scenario wt and the solution it-1 passed from the previous stage) is represented

by the optimal objective function value of the stage t master problem, z_'. In each
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stage t, t = 2,..., T- 1, the cuts added so far represent an outer linearization of the
expected future costs• For an optimal solution (xr, 0t) of the stage t master problem, 0t

represents a lower bound for the value of the expected future costs. A lower bound for

the total expected costs of the multi-stage stochastic linear program is represented by

the optimal^objective function value of the stage 1 master problem, zl, which includes
a value for 01 representing a lower bound for the value of the expected future costs (in

stages 2,... ,T). If cuts have been obtained in stage t by solving the stage t + 1, wt+l

subproblems, where stage t + 1 is not balanced with stage t + 2 (i.e. the stage t + 1

cuts do not fully represent the stage t + 2 expected costs), then the stage t cuts are

potentially weak cuts. They are not support of the recourse function at that xr, from

. which they were derived, but they have the potential to be support of the recourse

function at some other zt. This situation is the case, if in stage t + 1, for a solution
^Wt+l hOJt+ 1

Xt+I , Vt+l

_wt+l _ ~ [ _wt+at+a - _t+2_+1 ). (4.61)

The corresponding lower bound is then a weak lower bound.

If the cuts are obtained by Monte Carlo sampling rather than by solving the

universe case, the optimal objective function value of the stage t, wt problem, z(',

represents an estimated lower bound for the stage t, wt expected costs (subject to

xr-1 passed from the previous stage). The optimal objective function value of the

stage 1 problem, zl, represents an estimate for the lower bound of the expected costs

of the multi-stage stochastic linear program.

In the following we derive a lower bound estimate for the multi-stage stochastic

linear problem by analyzing the decomposed program, where at stages t = 1,..., T-1,

Lt cuts estimated by Monte Carlo (importance) sampling have been added. We start

with an analysis of the relationship between stage T- 1 and stage T.

The Stage T- 1 Master Problem:

-_r-_ min +"-" C xWT- 1 O_T- 1ZT-1 T-1 T-1 T-1

s/t
- _oar-1 _• A x _r-_ = b_Y__'_:+ "-'t-z

pl ,oaT_l _1 xWT-1
T-_ " - T-x T-a + 0'_r--'_' >-- g:_-x +e_'-i (4.62)

-LT-1 LT-I
' > gr-i + r-aPT-a --'-JT-1 --

z r -x' > O.

The Stage T Subproblem:

min z_r = CTZ_rr

s/t (4.63)oa T

. Arx r = + Br_  r-a
oat > 0XT _ •
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For a given scenario WT-1 and a given solution XT-2 passed from the stage T- 1

problem, the relation between stage T- 1 and stage T corresponds to that of a two-

stage stochastic linear program. We therefore can apply the theory which we have

developed for solving two-stage stochastic linear programs directly.

In the stage T- 1 problem, Lr-1 cuts have been added so far. These cuts have

been obtained by passing solutions _r-, lT- 1, LT-a, to stage T and solving a'"_T-1, 1 --- ''',

sample set ST of stage T subproblems according to the importance samplin_ scheme.
•ST I

By doing so we have obtained estimates of the stage T expected costs ZT(XT-_I) and
_Ir-1

_tr-_and right-handsides9r-i of thecuts.These estimatesareofthegradients'-'r-a

.lr__ _lr__ and -Iz-zdenoted by _r_Xr_l), _'r-_ gr-l" We also have obtained the error correction
_IT-_

terms eZ_ 1 (XT_ 1 ) based on the estimation error at _s_, which for ease of exposition

we assume to be constant with respect to zt. In general their distribution vary with

respect to ZT-1; see Section 2.4.2 in Chapter "Benders Decomposition and Importance

Sampling for Stochastic Linear Programs". However, assuming the error as constant
_ZT-_then arises from a normal distributionwith respect to XT-a, each error term CT__

._ t ^IT_ 1
with mean 0 and variance var(zT_XT_l)). We denote

(lr-1)2 "---var(5 Q_IT-1aT-1 r[ T-, ))' (4.64)

Thus,

IT-I = N(O," IT-1eT_, taT_ ' )2). (4.65)

Based on a local error analysis of the stage T- 1 problem (4.62) in scenario

wr-x given :_r-2, the optimal objective function value ;_r_, is a random parameter,

normally distributed with mean 2Tr_._' and variance var(2_.r_ ' ),

-_r-, _ NtS_r-, var(5_r_:)), (4.66)ZT-1 _ k T-1 ,

where

LT-_

:= ' )= E (4.67)
IT_l=l

The distribution of the st.uge T- 1, scenario WT-a expected costs, ;_wr__, is induced by

the estimation errors in the cuts which have been obtained so far in stage T- 1. The

distribution is different for different scenarios wT-a due to the different dual variables

Next, we discuss the general case of the relation between stage t - 1 and stage t,

t = 2,..., T- 1. In this case, the subproblems in stage t contain cuts which have been

computed by Monte Carlo importance sampling and therefore represent an estimate

of the outer linearization of the future stage t + 1 expected costs.
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The Stage t Subproblem:

s/t

rr'('' A tx _(' = b_" + B t_ lx t-1

p_"_'. -¢_x_" + 0_" > ._ + e_ (4.68)

+ cT' e_
z_" >__0.

In the analysis of the stage T- 1 master problem we concluded that the objective

_-_,r-x is normally distributed with mean _r1_value in stage T- 1, scenario WT-1, ZT__ ,

and variance ')5 _ var(2_r_.], ). In the followingwe show that for any stage t,
t = 2,..., T- 2, the expected costs _" are normally distributed with mean _' and

variance var(2_"), which we will denote by (a_")2:

_.'(' = N(2.'[',(aT')2), (4.69)

where
Lt

(a_,,)2 :=: var(2_")-- _ (p_"t')2(a'/)2 (4.70)
/t=l

and

(al') 2 :-- v&r(z,+x(:_'t')). (4.71)

In order to do so, we discuss the relation between stage t- 1 and stage t, where

the stage t, wt, problems are subproblems of the stage t - 1, wt-1 master problem.

Given a solution xr-1 passed from the current stage t - 1, w,-1 master problem, the

stage t costs, zt, are distributed both with respect to wt and with respect to the error

distributions e, of the right-hand sides of the cuts.

L = (4.72)

The expected value of the stage t costs with respect to the w distribution, zt, can

be computed as

;_,= Ew,(zt [wt)= Zo,,(_") (4.73)

using Monte Carlo importance sampling. Remember that .;_" = Art_,,. v., , var(5_")).

We compute the mean value 2_" by substituting the mean value of 0 of the error

distributions et/. That means, the current estimate of the mean is the current objective
value.

We compute the variance var(2t) based on conditional expectations:

var(}.,) = Ew, (var(zt)[w,) + var_,,(Ee, z, [w,) (4.74)
= Ew, var(_._") + varw, (2_")
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Tt

(at,CVT) 2 (at,SAMPL) 2 (4.75)
future current.

The variance of the estimated mean ef the stage t costs can be seen as being

composed of a sum of two terms. The first term concerns the influence of the error

of the estimated cuts. It is an aggregate of the estimation error of all future periods,

t + 2,...,T. We refer to it as the future term of the estimation error. Clearly,

var(5_") = _tL'=l(pT"h)2(a_') ::. The second term concerns the current estimation
error due to using sampling in stage t. In the case of two-stage problems, only the

second term appears because the subproblems do not contain cuts estimated by Monte

Carlo importance sampling. Given xr-1 passed from the stage t - 1 master problem,

we can define the variance of the estimate var(St) to be

at__ := zttxt__ )) (4.76)

Thus, the expected value of the stage t costs is normally distributed with mean

- _,,lt-1 _ 1t-1)2zttxt_x) and variance kat_l ,

t ^lt--1 l- /^lt--1 I lt--1

,_(xt__ )" N ), ):). (4.77)= kz_txt_ 1 (¢r__x

The error correction terms of the stage t - 1 cuts are represented as

/,-1 N(0," h-,e,_l = tct,_1 )2), (4.78)

where we assume that the error distribution is approximately constant with respect to
ZW¢-Ixr-1. The minimum costs in stage t- 1, scenario w_-l, t-1 are normally distributed

5_'-_ and variance (a_'Li_)2:with mean t-1

= iv t,zt_l , t,a,__ )2). (4.79)

Knowing the distribution of the error terms of the cuts in each stage t, t =

2,...,T - 1, we can compute an estimate of the mean of the stage t costs and the

corresponding estimated variance of the mean value of the costs.

At stage 1 we obtain an estimate zl with corresponding variance var(51), where
• we define

(al) 2 := var(51), (4.80)

and
LI

(al)2= E(/,_)2(a_) 2. (4.81)
11=1

The distribution of the optimal first stage costs,

7-;,= N(21, (a,)_), (4.82)

represents a lower bound estimate for the expected costs of the multi-stage stochastic

linear program.
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4.5.3 The Upper Bound Estimate

To obtain an upper bound for the total expected costs of the multi-stage problem,

we evaluate the expected costs of the current first-stage trial solution 51. This can

be accomplished by sampling paths from stages 2,..., T. For a reference, see Pereira

and Pinto (1989) [103]. To efficiently sample a small number of paths so as to obtain

an accurate estimate of the expected costs associated with 51, we also use importance

sampling. We define a path ,_ = (xx,x2,...,XT) _, w E ft, where fl = {D,2'< f_3 ×

• • ^_' of stage t scenario wt problems,• × fiT}, as a sequence of optimal solutions xt

t = 2,...,T, with xi being the first- stage trial solution. A path is computed by

following the "wait-and-see" paradigm. We pass xi to the second stage and solve the

second-stage problem for scenario w2 to obtain the optimal solution _,2. Next we

pass the obtained second- stage solution _ to the third-stage and solve the third-

stage problem for scenario w3 to obtain _,3. We continue in this way until we obtain

XT^_rin stage T. Note that when solving the stage t problem, no future outcomes

wt+l,... ,WT are used. All future information at each stage is solely represented by

means of the cuts added in stage t so far. The costs of a path _, C(,_), is given by

= _t=l ct}_". The expected value of the costs of all paths sw, E_ _ gives an

upper bound for the costs of a trial solution 51. Figure 4.2 represents schematically

five paths sampled through the four-stage problem of Figure 4.1.

We sample paths by applying the importance sampling scheme to the space of di--
mension T_,=2 ht of all random parameters V_,i,, it = 1,..., hz, t = 2,..., T. For sam-

pling paths the importance density q(V) is computed based on the additive marginal

approximation function analogous to the way it was defined in Section 2.3.3 in Chapter

"Benders Decomposition and Importance Sampling for Stochastic Linear Programs":

T h,

r(v) = +E y,,,,, - (4.s3)
t=l it=l

where V = (Vll,..., Vhtr,Vx2,..., vhT,) and r = (r_,..., r_, rx2,..., r_). Using impor-
tance sampling for the upper bound estimate, we hope to obtain accurate estimates

with a small sample size. Note that the advantage of sampling paths lies in the fact

that we only linearly increase the number of sample points with the number of stages,

whereas the decision tree grows exponentially with the number of stages.

4.6 THE ALGORITHM

By solving a sample of subproblems w,+l according to the importance sampling scheme

we compute estimates of the expected future costs z_'¢1and of the gradients Glt' and

right-hand sides gl' of the cuts in each stage t and scenario wt. The optimal objective

function value for each stage t, scenario wt subproblem gives an estimated lower-bound
^

for the expected costs z_' = ctSc_' + 0_", subject to scenario wt and subject to xr-x,

the (optimal) solution passed forward from the previous stage. The obtained lower-

bound estimate is the tightest lower bound that can be generated, if in stage t + 1
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_' _'_:" _ path 4,

_'_- _ path 5

• . ' . . . . , '0

path2

-0

.......... _ path 1

t=l t=2 t=3 t=4

stage 1 stage 2 stage 3 stage 4

Figure 4.2: Path sampling for upper bounds

a sufficient number of cuts have been added to represent the expected future costs

with respect to stage t + 2 for ali scenarios wt+l E _t+l and is a weaker lower-bound
estimate if there is not a sufficient number of cuts.

We are especially interested in the lower-bound estimate of the first-stage costs,

Which we obtain by solving the first-stage problem. If the first-stage problem is

balanced with the second stage (that is, if the cuts added so far to the first stage

problem fully represent the expected second-stage costs), and if the second-stage is
balanced with the third stage for all scenarios w2 E 12_and ali values of 41, and so

forth until stage T - 1, then the solution of the first-stage problem is the optimum
solution of the multi-stage stochastic linear program. In this case, the lower bound

estimate of zl takes on the value of the total expected costs of the multi-stage problem.

To estimate an upper bound for the total expected costs of the multi-stage prob-

lem, we use the path-sampling scheme with importance sampling to evaluate the

expected costs of the current first-stage trial decision zl. Sampling paths w E f_

according to this importance sampling scheme, we obtain an equal number of sam-

ple points wt E f_t in stages t = 2,..., T. Figure 4.3 represents schematically these

sample points for the example of the five paths of Figure 4.2. At these sample points
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.e ................... •................... • path 5
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'.o ................... • ................... • path 1

t=l t=2 t=3 t-'4
stage 1 stage 2 stage 3 stage 4

Figure 4.3: Sample points obtained from path sampling

we define the current stage t scenario wt subproblems and generate cuts to be added

at stages t = 1,..., T- 1 by employing importance sampling as described above for
cuts.

The overall procedure works as follows. Solving the stage 1 problem at iteration

1, we obtain a trial solution 41 and a lower bound estimate for the expected costs

zl. Now we employ the path sampling procedure to obtain an upper bound estimate

for the expected costs zl. If the upper bound estimate and the lower bound estimate

are within a given optimality tolerance, we call the first-stage solution the optimal

solution of the multi-stage problem and quit. Otherwise, we generate cuts in stages

1,..., T- 1. The path-sampling procedure used for the upper bound estimate has

produced sample points wt E f_t in stages t = 9-,..., T with corresponding ancestor
solutions 41 and -_'zt in stages t = 2,...,T- 1 to be passed to the current stage

t scenario wt problem. Starting at stage T- 1 and moving backwards to stage 1,

we take each sample problem wt in stage t and finally the stage 1 problem as the

current master problem and compute cuts by again sampling wt+l E f_t+l descendant

subproblems until each scenario problem wt in stage t is balanced with stage t + 1 with

respect to av.cestor solutions xr-1 which have been passed from stage t - 1. Arriving

at stage 1, we obtain a new solution 41 and a new lower bound estimate. We continue

as defined above by sampling new paths for the upper bound estimate. Finally, after

a finite number of iterations, upper and lower bound estimates will be sufficiently

close. Upper and lower bound estimates can be seen as the sum of i.i.d, random

terms which for sample sizes of 30 or more can be assumed normally distributed with

known variances (derived from the sampling process). A 95% confidence interval for

the obtained solution is computed.
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4.7 COMPUTATIONAL EXPERIENCE

Computational results from using Benders decomposition and importance sampling

for two-stage problems and a special class of multi-stage problems are discussed in Sec-

tion 2.7 in Chapter "Benders Decomposition and Importance Sampling for Stochastic

Linear Programs" where we report on the solution of test problems with up to 52

stochastic parameters and a number of universe scenarios exceeding 1024. Using im-

portance sampling and small sample sizes (between 200 and 600) very accurate results

were obtained. Additional tests on these examples showed that the variance reduc-

tion factor obtained by using importance sampling versus crude (naive) Monte Carlo

sampling was up to about 10-6 .

Inspired by these results, we implemented an earlier version of the methodology

described above for the multi-stage case which did not consider dependency between

stages. Instead of the path- sampling procedure for obtaining upper bound estimates,

we implemented a procedure of sampling points which required handling of exponen-

tially growing decision trees. Therefore, even when we used very small sample sizes,

the number of stages that was practical to solve was limited.

We did test up to 3-stage problems. FI3 is a 3-stage test problem derived from a

2-stage financial portfolio problem found in Mulvey and Vladimirou (1989) [96]. The

problem is to select a portfolio which maximizes expected returns in future periods,

taking into account the possibility of revising the portfolio in each period. There are

transaction costs and bounds on the holdings and turnovers. Our test problem covers

a planning horizon of 3 periods whereas the original Mulvey-Vladimirou test problem

was a 2-stage problem that compressed all future periods into a single second stage.

They solved the stochastic problem by restricting the number of scenarios.

We assumed the returns of the stocks in the future periods to be independent

stochastic parameters with 3 outcomes each. With 13 assets with uncertain returns,

the problem had 26 stochastic parameters instead of 39, because after the last- stage

decision is made, the expected money-value of the portfolio can be evaluated. The

number of universe scenarios was 2.5.1012. (The deterministic equivalent formulation

of the problem would have more than 1014 rows and a similar number of columns.)

We obtained an estimated optimal solution of the 3-stage stochast;c problem using a

sample size of only 50 per stage. The optimal objective function value was estimated
to be 1.10895 with an estimated 95% confidence in _rvalof 0.004% on the left side and

0.001% on the right side of the obtained objective function value. Thus the optimal

objective value lies within 1.10881 < z* < 1.10895 with 95% probability. Note how
small the confidence interval is.
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4.8 APPLICATIONS OF MULTI-STAGE STOCHASTIC

LINEAR PROGRAMS

In the following we discuss two potential applications of multi-stage stochastic linear

programs, one in the area of operations planning of power systems and the other in

the area of portfolio optimization.

4.8.1 The Control of Hydro Power Systems

An important problem is the control of the short-term operation of hydro power

systems. A river system can be described as a network of river basins, where outflows
from one basin are inflows to another basin down the river. Powerhouses with different

numbers of turbine-generator blocks operating in parallel for producing electrical

energy are associated with each of the basins. There are two different types of outflows

from basins, powerhouse (or turbine) flows and spill flows. The former go through

the turbines and are used for energy generation; the latter bypass the turbines and.

cannot be used for energy generation. Spill is not desired in regular operation and

is only used in situations when basin capacities and powerhouse-flow capacities are

reached. Inflows into basins either result from outflows from basins up the river or

are ,additioi_al exogenous inflows. The exogenous inflows include all natural inflows

into the river system (for example, rivers not used for power generation) and inflows

resulting from reservoirs operated independently of the system under consideration.

The operating environment can be stated as follows. The river system is operated

by a local load dispatcher as an independent economic entity. Energy produced

by the river system is transmitted into the high-voltage system of a higher level

power company (producer, transmitter and distributor) operated by the principal

load dispatcher. The local load dispatcher receives requests for energy production

from the principal load dispatcher. Prices paid depend on marginal cost calculations

and vary with season and time of day. The local load.dispatcher has to determine a

schedule of operation for the river system which fulfills the requests of the principal
load dispatcher, complies with various restrictions on the operation, and is based on

projections of exogenous inflows and planned operation of independently operated

reservoirs whose outflows are inflows to the river system.

Longer-term operations planning is conducted based on optimizations of planning

horizons of a week, a day or a weekend. Results from these longer-term optimizations

influence short-term control by definiag start and end values for reservoir levels. In

fact the local load dispatcher determines a rough schedule of the operation of the

system for the next day based on planned energy requests and projections of inflows.

Based on this rough daily schedule, on actual changes of the planned requests, and

on short-term hydrological projections of inflows, the operation of the system has to

be controlled for the immediate future. This means controlling actual operation of

the system for the next four hours.

Predictions of natural inflows are usually based on the mean value of inflows of the
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previous day, the actually measured current value of inflow, and the hydrological fore-

cast. While hydrological forecasts are very inaccurate when extended to several days

ahead, they can be reasonably good for shorter horizons, for example the next day.

However, there is still important uncertainty involved as the hydrological forecasts

depend heavily upon local weather conditions, which usually cannot be predicted suf-

ficiently accurately. Inflows resulting from the operation of independently operated

reservoirs are also subject to uncertainty because changes in electricity demand may
result in a different schedule than the one predicted beforehand.

The control of the system has to have the ability to hedge against the stochastic

nature of water availability. It has to protect against situations of shortage so that a

sudden lack of inflow does not result in being unable to nieet energy demand requests.

It also has to be able to take advantage of situations of surplus inflow, so that a

sudden, unforeseen increase in inflow does not result in having to spill water without

being able to use it to produce electricity. It is clear that the system has to be able
to adapt. That means it has to be able to observe when inflows differ from those

projected and be able to take action accordingly.

The short-term control of the operation of the system continuously determines

the levels of all turbine flows and spill flows. Given turbine and spill flows and

given actual observations of all exogenous flows, all other variables of the hydraulic
system are determined, for example, the volumes and levels of water in the reservoirs.

Also, given turbine and spill flows and given the characteristics of the turbines and

generators, the electric power produced by each generator is determined as well as

the total electric power produced by the river system as a whole.

The relations between the different variables are not necessarily linear. The volume

versus level characteristic of a reservoir is non-linear and depends on the shape of the

reservoir. The power of the turbine depends on the turbine flow and the head, i.e.,

the height difference between the levels of the upper and lower reservoir. Even for

constant head, the relation between turbine flow and power produced is non-linear.

The efficiency of a generator depends non-linearly on the power produced by the

turbine. The flow into and out of a reservoir involves certain delays (the time that

water entering the reservoir takes until it is available at the turbines), which in turn

depend on the water level in the reservoir. In river segments between reservoirs, the

velocity of the water flow depends on its volume. Each machine requires a certain

minimum power for operation, for example a machine can either be operated with at

least a certain level of power or has to be shut down and not operated at all. Also the

velocity of load changes in turbines may have to be restricted. The latter operational
constraints are non-convex.

The non-linear and non-convex relations of practical problems can be tackled by

using mixed-integer formulations which represent non-linearities by piecewise linear
functions with a sufficient number of linear segments.

Let xi(t),i = 1,....,k, be the reservoir volumes of the k reservoirs of the hyd:J

system, fti(t),i - 1,...,k, the spill flows from the reservoirs i, ui(t),i = 1,...,k,
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be the turbine flows through the turbines of reservoir i, and ?li(t) be the exogenous

inflows into each reservoir of the hydro system. Let yi(t), i = 1,..., k, be the electric

power produced at each reservoir and y(t) be the total electric power produced by

the system at time t. The optimal control problem of the hydro power system will
be formulated in terms of these variables.

In order to not to blur the insight into the problem by too many details, we

make a few simplifications in the formulation presented below. As a river system, we

consider a series of reservoirs. We consider constant flow times ri, we do not take into

account minimum load requirements for the operation of generator-turbine units, and

we formulate the functions li, which relate the electricity generated to the turbine

flows and the head of the reservoir, by a piecewise linear representation. Under these

simplifications, the hydro system can be represented by a system of linear differential

equations, and the problem appears as linear optimal control problem with a fixed

end-point.

m_x _(t)y(t)dt

subject to

i=l,...,k:

_,(t)= _(t) - _,_(t)- _,,(t)+ _,__x(t- _-_)+u,.x(t- _-_).uo(t)=_,o(t)=o.

o xi(T)=xT given,xi(O)=zl.

Ui _ m

. yi(t) = fi(xi, xi+a, u,:),

k

u(t)= _ u,(t),
i=1

y_"(t)_<y(t)< y_(t).

Note that the inflows _i(t) are uncertain parameters. Initially only a forecast of the

inflows is available. Later, after some time, observations of the random parameters

are made. As the control system is supposed to be able to learn, it has to be able

to recognize differences between the expected values and later observed outcomes of

inflows and adjust the control decisions, ui(t) and _i(t).

Instead of solving the problem directly as a continuous time problem, we dis-

cretize the planning horizon into T discrete time steps. The choice of time-step width

depends on the particular model to be solved and its parameters. For example, in

our application to hydro power systems control, we will probably choose a time-step

width of about 10 minutes. The planning horizon of 3 hours then breaks down into

24 time steps.

By discretizing, the system of linear differential equations can be transformed

into a system of linear equations, and the optimal control problem can be stated as
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a multi-s_,age dynamic linear program. The random right hand sides correspond to

uncertain exogenous inflows. When the control problem is stated and solved only the
predicted values of inflows are known. Due to prediction error the forecasted values

of inflows are random parameters. We can assume that their distribution is known.

In general, we expect dependency between the stochastic parameters both within

a certain stage, and between stages. We describe correlation of random parameters

within a stage by a linear relation, e.g. outcomes of the k uncertain inflows qt can

be obtained by multiplying outcomes of a vector of independent random parameters
V = (V_,..., Vh) by a matrix F(k x h), thus

= FV t.

We consider inter-period dependency as a Markovian process (additive dependency):

_t= FV _+ H:qt-1,

where H(k x k). The value of random parameter i in period t is a weighted sum

of the values of the random parameters in the previous period t- 1, _t-1, plus a

weighted sum of some independent random variation in the current period t, V t.
The parameters of this linear additive correlation model can be estimated based on
historical observations.

4.8.2 The Multi-Period Asset Allocation Problem

In Dantzig and Infanger (1991) [28] we formulated a class of multi-period financial

asset allocation problems related to Mulvey and Vladimirou (1989) [96] and showed

how they can be solved by adaptations of multi-stage stochastic linear programing
methodology. We now outline this application.

At time period 1 a certain amount of wealth is available to a decision maker

invested in assets i = 1,..., n, and in cash which we index as asset n + 1. We denote

xi, i = 1,..., n + 1, to be the dollar value of the initially available assets. The decision

maker has to decide each period how to rearrange his portfolio so to achieve the best

return on his initial investment over time. We consider the problem in discrete time

and define time steps t = 1,..., T, with T being the end of the planning horizon.

At each time period t, the investor can either maintain the level of asset i, buy
more, or sell off part (or all) of it. We denote by y_ the amount sold of asset i in

t the amount of asset i retained in period t. Selling asset i meansperiod t and by xi

t and increasing the value of cash, x_+ 1.decreasing the value of x i t Also, the investor
has the choice of using available cash to buy certain amounts of assets i. The amount

bought in period t is denoted by z_.

Buying and selling entails transaction costs which we assume to be proportional to

the dollar value of the trade. We denote by 100u_ the transaction costs (expressed as

a percentage) associated with buying one unit of asset i and by 100#i the transaction

costs (expressed as a percentage) associated with selling 1 unit of asset i. Buying 1
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unit of asset i requires 1 + ui units of cash, and selling 1 unit of asset i returns 1 - #i
units of cash.

Through buying and selling the investor can restructure his portfolio in each time
ti i .n+period t. Once this stage t decision is made, the post-trade holdings xi, = ,.. ,

1, can be calculated. The shares in the portfolio are then kept constant until the next

t is affected by the returns on the market. For example,time period. The value of xi

t at time t changes in value to t t tRixi, where Ri denotes the return factora holding of x i

from period t to period t + 1.

At time t, when the decision on rearranging the portfolio has to be made, returns

R_, for i = 1,...,n are not known to the decision maker with certainty. Only the
t

return on cash, R,_+I is assumed known. However, we assume we know the probability

distributions of the R_. The problem is of the "wait-and-see" type. While the deci-

sion in period t has to be made on the basis of distributions of future returns R_, for

i = 1,...,n, s = 1,...,T, the values ofprior returns R_, i = 1,...,n, s = 1,...,t-I,

have already been observed. We denote by R t = R_, for i = 1,...,n, the n-

dimensional random vector of returns, with outcomes rr(wt), wt E fit, and corre-

sponding probabilities p_'. fit is the set of all possible outcomes in t. The random

returns R_ of period t are mutually dependent and also dependent on the random

returns in the previous period.

After the last period T, no decision is made. Only the value of the portfolio is

determined by adding the values of all assets, including the last-period returns. We

call this value vT. The goal of the decision maker is to maximize Eu(vT), the expected

utility of the value of the portfolio at the end of period T. The utility function u(v T)

captures the way the investor views risk. If u(v T) is linear, it reflects risk neutrality;

if u(v T) is concave, it models risk averseness. Nonlinear utility functions require non

linear programming techniques for the solution of the problem. Our methodology is

not restricted to linear problems. However, for the sake of ease and computational

speed, we approximate the nonlinear function by a piecewise linear function with a

sufficiently large number of linear segments.

In the model presented here we do not consider short-selling of assets, although

this feature could be incorporated easily. We also do not consider borrowing of cash,

which also could be incorporated easily. The holdings of assets, as well as the amounts

of assets sold or bought have to be positive. In general there are also lower (x__)and

upper (5) bounds on holdings, as well as on amounts of assets to be sold (y_,_) or to

be bought (z_,_), which are given by the investor and/or by the market. For example,

a certain asset may only be available up to a certain amount, or an investor may
want to have a certain asset constitute at least a certain amount of dollar value in the

t <-t t t -t .t < .t <-tportfolio. Therefore in general we formulate _ < x i _ xi, _ < Yi < Yi, ---i- ~, - zi,
0 0givenfori=l, . n+l, t= 1, T.wherex___k0, ylk0, z__k0, r ix i .. , ...,

We can now state the model:
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t = 1,...,T, i= 1,...,n + 1, r°x ° given:

t-1 t-1 t t
-r i x i + x i + y_ - z i = O, i = l, . . . , n

__Ft-1 Xr--1 t n n.+1 .+1 + z.+a - Ei=_(1-_,)y_ + Ei=_(l+v,)z_ = 0,

v'-+_ r_rzT + vr - 0,

max Eu(v T)

mt t t --t t t --t
< < < < < i = 1, . n, t = 1 T.<-xi -xi, Y_,j- Yi - Yi, z i _ z_ _ zi, .. , ,...,

We describe correlation between asset returns using a factor model. Using factors

is common in the financial industry (e.g., Perold (1984) [108]); hence, historical data

of various factors are commercially available. The idea of the factor model is to relate

the vector of asset returns R t = (R_,...,R_) t to factors V t = (V_,..., Vh)t. While

the number of assets, n, is large (a model should be able to handle about 500 to

3000 assets), the number of factors h is comparatively small. Factor models used in

the financial industry typically involve no more than 20 different time series called
factors. The n × h factor matrix F relates R _ to V t "

Rt = FW.

The coefficients of the factor matrix are estimated using regression analyses on histor-

ical data. By linear transformations of historical factors, the transformed factors can

always be determined in such a way that the factors V t are orthogonal. These factors

can then be interpreted as independent random parameters assumed to be nor-

mally distributed or log-normally distributed. Using the factor model, stochastically

dependent returns can be generated on the computer by using these stochastically
t withindependent factors. We denote an outcome of the random factor V/t by vi,

t

corresponding probability p(v_):= prob (V/t= vi).

We also consider inter-period dependency. For example, we may wish to posit a

higher probability of observing a high rate of return in period t if the return was high

in period t- 1 than if it was low in period t- 1. We can model this inter-period

dependency as a Markovian process applied directly on the factors:

t t-1 i=1 h.V i -- Vi q- rl_ _ _..._

The value of factor i in period t is the sum of the value of factor i in period t - 1

plus some independent random variation of the factor in period t, denoted by r/_. The

Markovian model can be estimated based on historical data. Instead of modeling an

additive effect as above, we may prefer to model a multiplicative effect by applying

the Markovian process directly to the logs of the factors. We have not explored this
alternative.

As one can now see easily, the multi-period asset model proposed fits exactly

into the framework of a general class of multi-stage stochastic linear programs with
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recourse. The factor model for generating dependent returns and the Markovian

process for inter-period depeladency define a special class of dependencies betw_n

stochastic parameters which we are able to exploit to solve the problem.



CONCLUSION

We have discussed and developed a novel approach for solving large-scale stochas-

tic linear programs based on a combination of dual (Benders) decomposition and

Monte Carlo importance sampling. Numerical results from large-scale test problems

in the areas of facility expansion planning and financial planning demonstrated that

very accurate solutions of stochastic linear programs can be obtained with only a

small sample size.

The large-scale test problems included various stochastic parameters. For exam-

ple, the largest problem representing expansion planning for multi-area electric power

systems included 39 stochastic parameters. In the deterministic equivalent formula-

tion, if it were possible to state it, the problem would appear as a linear program

with about 4.5 billion constraints and variables. The largest portfolio optimization

problem included 52 stochastic parameters, which in the deterministic equivalent for-

mulation would appear as a linear program with about 102_ constraints and a similar

number of variables. Problems of these size hitherto seemed to be intractable. Using

our method we have been able to solve them on a laptop 80386 computer.

The test results indicate that we have not yet reached the limits of the approach.

The sample sizes turned out to be so small that use of parallel processors is not a

condition sine qua non for solving even large-scale stochastic linear problems. In order

to speed-up the computation time in the case where large sample sizes are required,

we have developed a parallel implementation running on a hypercube multi-computer.

The numerical results show that speed-ups of about 60% can be obtained using 64
parallel processors.

Encouraged by the promising numerical results for two-stage and a restricted class

of multi-stage problems we have developed the theory for a general class of multi-stage

stochastic linear programs. Our approach for solving multi-stage problems, includes

special sampling techniques for computing upper bounds and methods of sharing cuts

between different sub-problems. It will enable us to efficiently solve large-scale multi-

stage problems with many stages and numerous stochastic parameters in each stage.

The implementation is subject to future research. Preliminary numerical results have

turned out to be promising.

Further research includes improved decomposition techniques for large-scale prob-

lems, e.g., optimized tree traversing strategies and passing information based on non-

optimal subproblems, improvements to the importance sampling approach, e.g., using

different types of approximation functions, improved software, e.g., a parallel imple-

mentation of the multi-stage algorithm on distributed workstations, and the testing

of the methodology on different practical problems in different areas.
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