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Abstract

The [ornntlation of planning as heuristk: search with
heuristics derived from problem representations ]nas
turned out to be a fruitful approach for cla..,...ical plan-
ning. In this paper, we, pur.,,ue a sinnilar idea in Ihe
context pLa.nning with incomplete inh)rmation. Plan-
ning with incomphit.e iTnforntalion can be formulatvd as
a pmbh’nt of search in &.liqf space, where b(l&f stat~ 
can be ell her .~ t.~ oS stutrs or more generally probability
distribution or,er statcs. %Vlnile the form.httion {as the
formulation of clas.qeal plannitlg as heurisli<- search)
is not particalarly novel, the contribution of this pa-
per is It) rlta.ke! if explicit, to lest it ow,r a mlmber of
domains, and to extend it to ta.,~ks like planning with
sensing where the standard search algorithms do not
apply. "[’he resulting planner appears to be Colnpeti-
tive with the nLO.-,I, recent conformant and conlingent
pla.nners (e.g., CGF’, SGF’, anti (’MIll’) while at the same
time is ntore getteral as it can h~tndh’ prol)abilistic :w-
I.ions an(I sensing. (liffer(-’nt action costs, anti ,:piMenti(:
goal~.

Introduction
The formulation of classical planning a.s heuristic search
has turned out to Im a fruitful approach leading to pow-
erful plantmrs and a perspective oil plaxming wht, rl, th,’
extraction of good heuristics is a key issue (McDermott
1996; Ben,;(,. Loerincs, &: Geffner 1997: Reran|dis & Vla-
hawi.s 1999). In this paper, we tiLke this idea |me the
domain of plannin 9 with incomplete informalio,. Plan-
t|Jig wit it incoml)let~’ information is (list inguisiwd front
classical planniuig in the type and allLOIlll[ Or ilufi)ruuta-
tion available at. planning and execution ti.nte. In clas-
sical planning. (.he initial state is cornph’l.ely kvLown,
aii<l no informal.ion ix availabl,, from sensors. In phm-
ning with incomplete inform~Ltion, the initial state is
not known, but. set,sot infornmtion may be avaihd>le at
exectttion t inw.

Con.[ormant plannin.q, a term coined in (Sntith 
Wehl 1!1!114), refers to planni,ng with inconlldete infor-
mation but no sensor feedback. A conformanl plan
is ~1, Se(lllt,ilCe of actions that a(’hiew’s the goal from
any initial state compatible with the available infor-
nmtion. The problem has been addressed in (Smith 
Wekl 1998) with an algorithni based on the ith’a.s of
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C;ral)hplanl (l’llulln &Furst 1.9!)5) lliav I,uilds S,’l);tr;ttP
I)hui gralths for each possilde initial stale an(I sear(’h(,s
all graphs simull.atlt,Olisly. The approach was I~,sl.(-.cl
Ol-t a nllllll)er of proldems and I)r(w(.n I¢~ s(’alo I,.H.er
than conf()rmanl, i)hmners bas,,(I (m lh,, ideas ,)f partial-
or(h’r I)hmnilig (l(ushull,.ri(’k, Ilanks, ,k" Wehl l.q.tlF):
Ih’ot I(.l(.iS). ("l)ll[’f)rlllalll anll eolltillg(’lll plann(,rs bas,,d
on variatitms (,f the sa’[" I,)rvnulali(m (Kaulz &" .%,l-
nlan I.(-196)are r,,imrt,,(I inn (Ma.ji,rcik ,k" I, ittm;m 1!1!18:
I{inlant,n I t.).t).t) 

l"roltl a nlathenlalical l)f)iuit ,X view. lit,. Im)hh’m 
¢’onfon’lLUaUtt I)hmning cau I),, si,Pii as the im.,I,h,m ,d’ fin(l-
ing a s,’(llt,’lt,’<’ ,)f actions t lnat will ina.l) an i,d,tl &h,f
slat+ into a Ior!pt b+li+fMah. A I,.,liefstat,, in Ihis co|l-
text ix a .++l of.~tatr.+: the initial I+elir,f I,c. is lh,’ set or
po.~sibl+ |nil ial states, trod th<’ target l)eli,.fi~ ar,, lh,, sets
that (’ontain gt,al sl.~ttes (.)lily. ,.%(’ti(+nlS ixt this s+.lting
vnap otu’ lu,lit,f statc inl<~ ariel.her.

(’onfornia.ill. i)lans can I,t’ f(llitttl in this b, li,f .~pa,’(
by either blin,I or h,,uristic s,,ar(’h Innel.lnods. [’" ,, a
breadth first s,.ardt will gcnerat.e Ill’st. all t,,’li,’f slates
at a distat,’e one t’rotn bcl. lhen all I,db,f stat,.s at a
distance two, fred s,) tin, until a target I-’licf ix t’,mnd.
W~.’II see lhat for lllany of Ihe ex:unl)les ctmsi,h.r(,d ill
the literature this approa(’h actually works (luito well.
()lit, I’east.)lt I’or this is thai I.h,, n(,(h’s in Ihis type 
searc’ln ¢’avl I)e gex,’rate(I w,rv I)tst wiihuut th(, over-
head of mor{. sophisti(’ated st, arches. This is an im-
portant I,,sson froln the recent i)hutt.,n’s suwh as (irapln-
l)lan (f3hml &Forst 1.995). 131ackl.)ox (Kautz ,k" .’qehtian
1!)99), and liSP (13on,.( ,k- (;(,tTiler ]9!)9): ruilt-lhlle )-
era(ions have to be [’asl. even if lhat requires a suil;’,ble
alll()llltt of prepro(’esSillg.

I}readlh-lirsl. s,,;-trch ill bdief sp;l(’, ~ is lhe siralegy
used I.)y lhe planLner.., based un Inod(,l-,’l.,cki.g te(’h
ni(lues (( ’iniatti .k" I-lov(,ri ]t)!)~); (.;iu]ichiglia ,it’ 
L999). The niodel-checking parl I,r, wid,’s I.h,, da.ta
structures all(l algorit.hlris for lilakhig Ill(’ iJl)erat.i,)ns
Oil I)eliet~ (sets of stales) ntore el-ficit.nl.. In (lilt 
proach, the l,,w,rage does nol (’OlliO frolii thv rcl)res(,li-
tat|on of I),’lief~ bill from tile lift’ of h( uri.,li(’a’. We illus-
trat.(: tl,e benefits ~k’~ well a.s th,, costs of u...ing (lonlain-
independ,-nt heuristics over a nunlt,er of problenls.

In the presellce t,f .~¢n.~or frcdba<k, the Im)bl,’nl of
lllanning wilh incontldete inl’ornlali,m is i,i [<,tiger a
&termi,i.~tic search lirobh’nl hi belier Slm.,’(’. Siti(’e the.
t~b~t rl,all0li.~ CilllnOl. lit., predicted, t li,. elrccl or acli,ns
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over belief states becomes nou-detcrministic, and the
selection of actions must be conditional on the obser-
vations gathered. We show that this problem call be
formulated as a search problem ill belief space ,as well,
and that while standard heuristic search algoritl,ms do
not apply, a generalization of Korf’s (1990) LRTA* al-
gorithm due to Barto el al. (1995) does. The result-
ing planner appears COml)etitive with tile most. recent.
contingent planners and applies with little modificatiol,
to problems where actions and sensors arc probabilis-
tic. Such problems are known as VOMDeS (Sondik 1971;
Kaebling. Littman, &. Cassandra 19.98))

The formulation of planning with incomplete infor-
mation as heuristic search in bchef space (as the for-
mulation of classical planning as heuristic search in
state space) is not particularly original, and follows
from viewing these problems as variations of tilt, general
I’OMDP model (and see also (Genesereth & Nourbakhsh
1993)). The contribution of the paper is to make the
fornmlation explicit, to test it over a number problems.
and to extend it to tasks like contingent planning where
the standard heuristic search algorithms do not apply.
Preliminary results were presented in (Boner & Geffner
1998a). Here we expand those results by considering
probabilistic and non-probabilistic models, anti a sig-
nificantly larger set of experiments.

The paper is organized a-s follows. First we focus on
the mathematical models underlying the various plan-
ning tasks (Sect. 2) and the algorithms and language
needed for solving and expressing them (Sect. 3 and 4).
Then we report results over a number of experiments
(Sect,. 5) and draw some conclusions (Sect. 

Mathematical Models
We consider tirst the models that make precise the se-
mantics of the different planning tasks in terms of the
type of the action dynamics, sensor feedback, and prior
information available.

Classical Planning

Classical planning can be understood in terms of a state
model defined over a discrete and finite state space,
with an initial situation given by a single state so. a
goal situation given by a non-empty set of states SG,
and a finite number of actions that deterministically
map each state into another. This is a standard model
in AI (Nilsson 1980) that for convenience wc call the
deterministic control problem model (Bertsckas 1995)
and is characterized by

SI. A finite state space S,
$2. an initial situation given by a state So E S,
$3. a goal situation given by a non empty set Sa C_ S,
$4. actions A(s) C_ applicable in each state s ES,
$5. a dynamics in which every action a E A(s) deter-

ministically maps s into the stal,c Sa = f(a, s), and
$6. positive action costs e(a, s) for doing a in s.

1POMI)P stands for Partially Observable Markov Decision
Process.

A solution to a deterministic control problem is a se-
quence of actions no. ox ..... an that generates a state
trajectory s0. sl = f(so) .... , sn+l - f(si,ai) such
that each action ai is applicable in si and S,+l is a goal
state, i.e., ai E A(si) and sn+l E ,S’~. The solution is
optimal when ttle total cost )"~=0 c(si,ai) is minimal.
In planning, it’s common I o assume that all costs c(a. s)
are equal and focus on the plans with minimal length.
While we don’t need to make this assumption here, it.
will be convenient for simplicil.y to assume that actions
costs do not depend on the state and thus can be writ-
ten as c(a). The generalization to state-dr,pendent cosls
is straightforward.

Classical planning is a deterministic control prolflem
that can bc solved by searching the state-space S! -$5.
This is the approach taken by heuristic search plan-
ners such ms liSP (Bonet &. Geffucr 1999). (’lassical
planning, however, can be formulated and solved in a
number of other ways: e.g., as a SAT problem (Kautz
&’. Seiman 1996), as a Constraint Satisfaction Problem
(Beek & then 1999), a,s an Integer Programming prob-
lem (Vossen ct al. 1999). etc. In any case. regardless
of the formulation chosen, the mo,lel SI-$5 provides a
clear description of the semantics of the task; a descrip-
tion that is also useful when we move to non-classical
planning.

Conformant Planning
Conformant planning i.ntroduces two changes: first, the
initial stare is no longer assumed to be known, and sec-
oral, actions may be non-deterrni~is’¢ic. "the lirst change
can be modeh’d by defining lhe ini.riial’ situ’ation as a
set of states ,q0, and the second by changing the d~’-
terministic transition function f(a, s) in $5 into a non-
deterministic fimction F(a, s) that maps a and s into a
non-empty set of states. Conferment planning can also
be conveniently formulated as delerministic planning in
belief space as we show below (see also (Genesercth 
Nourbakhsh 1993)).

We use the term belief state to refer to sets of slates.’-’
A belief state b stands for the states that the agent
executing the policy deems possible at. one point. The,
initial belief state b0 is given by tile set ,5’0 of possible
initial states, and if b expresses the belief state prior to
performing action a. the belief state b, drscribing the
possible states in the next situation is

b~ = {s I s ̄  i.’(a..41 and s’ ¯ b} (1)
The set A(b) of actions that can be satbly applied 

a belief state b are the actions a that can be applied in
any state that is possible according to b:

A(b} = {a I a E A(s) for all s ¯ b} (2)

The task in conferment planning is to find a sequence
of applicable actions that maps tile initial belief state
b0 into a final belief state containing only goal stales.
That is, the set BG of target beliefs is given by

BG "-{b I suchthatforalls¯b,s¯Sa} (3)

’~’Fhe terminology is borrowed from the logics of.knowl-
edge (Fagia et el. 1995) and POMDPs (Kaebling, Littman,

Cassandra 1998).

Bone~ 53

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved. 



l’rovid<+d with these defiilitions, the probl<+m of
conf’orlllant planning with deterministic and non-
deternfinistic actions, can lie fornmlat<+d ~.,~ a delc rm.in-
islic co,lroi problem ov{,r behef space Riven by

CI. Tim finito space B of belief stoics b over S.

C2. an initial sitltation given by a belief state be, E B,

(’3. a goal situation given by the target beli,,fs (:l).
(’.1. actions A(b) C_ ..’t applicalii<+ in b giv,’n by (2).

("+5. a dynanlics in which every action a E .-lib) det<+r-
ndtli.~t.ieally maps b into b,~ as in ([). and

C6. positive action co’sts e(a).

The search ni(’thods thai. are usod for "solving (letertnin-
islic cr)ntrol prol)h,ms over sial+.,, (’an then lie used f¢~r
solving d{,i.Prnlinisl ic control probl<+ilis ovor be li+f.~.

The Inode[ above can i)e oxtend{.+d to elprt,s.,-i ¢.iJi.,,-
remit goals such a.s finding out wheth*r a propositiou
p is trim or not This requires a changr in i.h,’ tlelhlitlon
(3) of I.ho lai’gel; li<+li<+fs. For OXaliil)h, if the .~lalo~ 
l.riilh-v:.-ihiations, the goal or knowing whether p is trm,
Gin I)e Pxpre.~s<+d by d<+fining tim t.llrget beliet~ a.~ l,h~
,sets of sttitos in which i.h<+ vahl<+ c,l" p i,~ uniforilLiy triie.
or unifornlly l’al.~<+.:l

Contingent Planning
In tit< + I)r,’s¢’nc{’ tif .,++o.~or ficdback tit<:’ ino<h’l for con-
fornialit plalilling iie<+ds tO b+: ext,’n(h’d as actions iiiay
prodli¢<+ ob.f~f rra/ioll.~ thai atfi:’el. Ih(, sl.alt’s of belief alld
the selection of the il{’XI adion~.

St’iiSlill can lie inotieled by ‘a~,SUliillig lhat. every ac-
tion (! i)rodut’t,s an ol),~t,r’iiitioll o{it,.s) whim th{, 
stale pi’Odil{’ed liv the. acliOli is s. 4 This ol)servaliOli
provid<+s [nforolaltoli aliolil, i h{, stal,t, .,+ blil thl{,s not
ii<+eessarily i<l<+ntit) it unliluely as the olis<+rval.ion o((t, 
ina.y I.)t + <+llilal Io ih<’ oli.qervat.ion o(il., ,¢#) for it .’-;lilt{’
~+ :fi ,4 (ibis is orl.en call<+d "il<+rc<+l)liiill itliitsilig’: ((’hri’s-
inaii 1097)). On ihP other hand. upon gatheviug the
olisevvalion o : o(ii..+), it is kll()Wil flial, ih<’ #’tal sl,~+i{,
of tilt, Piivironiii{’ni is rlol .~’ if o 7 o(., .s#).

ll’Vl’ call the fliti¢lion O(-, .) Ih<+ .st’il,lor lilod(L This
mod<+l is quih’ g,.’neral for nois{,-fl’oe s{,nsiiig alld (’all bt’
rilrili~,r genoralized by niaking the observation o(<t..~)
depond oil tim state .<~ in whi,’h lho acii<)ii o. is lak(,li. ,.%
gen<+ralization of tlli.~ nlod<+l is u’sed for d<+fining qioisy"
s~,ilsors in POMI)Ps (s,,e below).

Pr/or to l){,rfornihig an action <l ill a I.,lief :.;fatl, b,
tho.ro is a s<+l of pos.~ilil,, ()l).~,rvalif)ns that ill;l)" r~,sult

from lh<+ e.~l,r’ution +:)f o. ‘a,4 Ih,, otlservalions th.,t)<+lid
Oil t.h+’ (ilnoli’s<+rvablP) state .,+ I.hai ri+mllts. Thi’s s<+t 
I,ossilih’ oliservations, that we tlt, lioll, as O(a, b). is gi,+l,ii
hy

O(a.b)= {o(a..~) I for.,,E b,,} (1)

~If ihere are aclions that can change the value of p. then
a ~dunttny" propo.~ilion p~ that dlle.~ not chang(." and is <,llual
Io p in lh(’ initial .~l.ltte, innsi, b+., ci’ealt,(l. Then. the lar-
gel belk’fs .~houid b(. dr’lined in iernis of i/. ]’lii.~ "irick" i>
lil~t:ded beCallSe no explk’h ielnporal in[ormai.ion is kept ill
the.. model, ~o it Wli.%" I.o lind out {tit, trulh-v:lhi(, ol’p is t.o sei.
p to it given value.

¯ 1Nornially o(a, s) will be collection ol ilr imitive obs er-

vli, Lion.~ lllit lhis inakes no difference iii ihe [ornllllal.ion.
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<.|fie.ca is {ion+, oil(:’ ()f l.hese ot+si’rvatious o must ohl ain,
allowing the itgent l.o ex(’hld<+ froui b:~ tim stilt(is that art’
nol. colnpal ible with o. Wo call the resiihing Iwlh’f b+°+:

t,:; : I a,l<i ,i= (:,)
.qince tho ob’s<+rvation o that will lie olltained cannol.
I.io prPdicted, the ell’cot of i.l<.’tioii.,i Oil I.,liefs is non-
delerllliniMic rand l, hu’s action (! in b can h’ad l<~ an!/
helief b’<~ for o ~ O(a. b).

(’.onlingent planning can thus li,, nlodeh,d ,as a non-
d(lcrmini.slic control prol,I,.,ln ow, e belief space given
by

TI. "rh+, liniie space /3 of belief states b over N,
"!’2. all initial ,sit ilal.ion given hy a b,’li<+f sial.{: b0.
T3. a goal +itualion giw,n by the largot li<+li(’t~ (3).
]’.1. actions ..l(b) C A applieal)h, in b given I,)" (2).

"1"5. a <]ynaiiiics iii which ev<,rv a¢lion a non-
<lPl.erniiui,stically Illail’s ill hilo b</l for o E O(a. b).

"I"6. positiw, action co’sis e(a), and

’i"7. ol)serwdions o E O(a, b) ;lfl.(,r doiiig (t 

One’ way liJ eh;.iracterize the .+o/u/ion.+ o1’ l.his liiod<+] is
ill IPrili’s or (/r’ap#t,+ wh(,r<, no(l<>,s b sl.aiid I’or b,,Ih,fs, node
labPl’s a(b) ,slliiid Ibr the aetioli hi b. and <,very iiod~’ 

has its sii(’t’<+,sSOl’, <~ ihe node,~ b~ for the beli+,fs l.hal can
result from a(b) in b. The t<+rnlinal nodes are tht. larg+’t
b,qi,,fs, tIVht,n lhe r,’,sull.ilig graphs are arycltc, slaii-
dard del~llhion+ can I)P iisetl Ibr cllarax’lerizing the so-
luliOU and oplimal .solulloo graphs, an<l heuristic search
a]goril]ilns Sll(’h as Ao" (N[lsson L.t)80) Cltli I),’ us<+d Io
s<+;+Lrch r(,r thenl, tlow{,ver, often th<+ graph is not acv¢lic
as (.lilt’+,r(.nl. llalh.s itiay h,a{I Io Ihe sa, itie li(’licl~s. ~ A
IILOr<+ g(?liPra[ al)l)roa, ch in that (’as{. can t){, ol,lain,,d 
illg th(’ i(It~.l~ (;)t" dl.lnal#li¢" p~’o.q~’amlllilP(] (Plil.(’rlllalL 199,1:
Bcrt s,’ka.s 1995).

hi ~-I dynaliiic progrannning foriltiilalioll, l.h~ I’t)t’ti’s i,s
Oil Ilio i’undiou l"(b) iha, i i, Xl)i’ess,,s I.hP oplim.al cos!
or reaching ;l 1;trge~l. Iwli<+f from ally belief b. For I,h,,
noii-det<,rlnilii,sii(’ ¢+)nl,rol prolil<+ni given by T I "1"7 and
assuining that w<+ are iuterested in finding "plaii,~" ihal
illilllllli"e worm po.’i.’~lblf (’o.~t. Ihis eO,sl fllliClilln is t’h;.lr-
act,(,rized I)% i.ho rollowing I}{,llnian t,(llml.io~i:’;

l"(b)=-: nlin (e(a)+ nl,tx V’(b::)),,~...ll~l ,,~Ol,,..~1 (6)

with V’(b) --- 0 for b ~ BG. Pro~hl,,d with liiis value
furlction i.", an opl.inia] "p]ali" t’0.1’i li<, ol)tain(.(I I)y ~,:-
hwi,[llg ill I’;l(.’tL beli,’f b th,’ a(’l.ion a := ;r’(b) giv{.it 

,T’(b)=arglllin(e(a)+ iilaX l’*(b.~)) (7)
aE AI b I ~,1~ Or a,b )

"()It(’ W;I.y getrideof cycles in the graphis I)y Ire atin
(liti’er(’nl o<-currenc~.s of the sam(. belie[" as (lifferont nodes. 
thai case. the decision graphs will be larger bul. :dgorilhm~
such a..~ Ao" I Nilsso,, 1980) calt I)e u~cd. A relitted i(h:it 
t(, ext(.nd Ao" for ha,riling cyclk: graphs. This ha:~ been
pro[,os{.d r(.cently i, (Hansen & 7.ilb(.r.~tein 1998).

I;l’or ’["* to be well defined for all I’,elief.,, b. it is sullicil;’.nt
tO assume a "diililllly’ a(’lion with inlinite c()st lltlit iiiaps
every .~tal, e into it goal .’+tittc.
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The flmction r °, calh,d also a policy, constitutes tile
optimal solution of the contingent planning problem.
The "plan’ can be obtained by unfolding ,a’*: first, the
action a = z’(b) is taken for b = b0. then upon getting
the observation o, the action a’ = z’(b °) is takf-n, and
so on. The graphs discussed abcwe can be understood a.s
the reptvse.ntation of the policy ,-r*. A policy, however,
can also be repre~nted by a list of condition-action
rules. The formulation above makes no conmfitment
about, representations: it just describes the cottditions
that the optimal policy nmst obey. We will see that
these conditions can bt, nsed for contputiug policies that
nse a t abnlar representation of 1,’*.

Probabilistie Contingent Planning
Problems of contingent t)lalming where actions and sen-
sors are probabilistic Call be modeled as POMDPs with
transition functions replaced by transition i~rolmbilities
Pats’Is) and the sensor model eta. s) replaced by sen-
sor probabilities Patois) (Astrom 1965: Sondik 1971;
Kaebling, Littman, &: (..’.assandra 19981. POMDPs are
partially ob~’rvable probletus over state space, but like
the models considered above, they can be fornml;xted
as fully observable problems over belief space, lu such
formulation, belief states are no longer sets of states
but probaMiity distributions over states. The probabil-
ity thai. s is the real state given a belief b is expressvd
by b(s). The effect of actions and obserwltions on be-
liefs is captured by equations anMogol,s to (1) and (.5)
above that are derived from the transition and sensor
probabilities using Bayes’ rule:

I,,,(s) = ~ p~(sl.4)b(s’) (s)

b,°,(s) = l~(ols)b.(s)/b.(o) : for b.(o) # 0 (9)

~e~e bate) stands for the probability of observing o after
doing action a in b and is given t)y

bAo) = ~ t’(ol.,)b~(s) (10)
sES

As before, the target beliefs are the ones tl,at make
the goal (.; certain, wl,ile the set A(b) of applicable ac-
t.ions are those that. are applicalfle in all the states that
are possible according to b.

The problem of probabilistic contingent planniug
then becomes a fully observable probabilistic control
problem over belief space given by

PI. The infinite space of belief states b that are proba-
bility distributions over S,

P2. an initial belief state bt~.
P3. a non-empty set of target beliefs,
P4. actions A(b) C A applicable in each 
P5. a dynamics where actions and observations map b

into b~ with prolmbility b~(o) given by (10),
P6. positive action costs eta, s), and
P7. observations o after doing action a in b with prob-

ability b~(o).

A "plan’ in this setting must map the initial belief
b0 into a target belief. Tile optimal ’plm¢ is the one

that achieves this with mininmm expected cost. Such
plans can be formalized with a dynamic programming
fornndation similar to the one above (Sondik 1971;
Kaehling. Littman. &" Cassandra 19981. The Bellman
equation tbr the optimal cost function V" is

V’(b)= min c(a)+ZV’(b:)ba(°)),~E.4~b, ( 111
oEO

with V=(b) = 0 for b E B(;, while the optimal policy ,’r"
is

r’(b}=argmin(c(a)+ZV’(b°a)b~(°))a~;t(b, oeo (12)

The computation of the optimal cost fimction anti
polic.v is more difficult titan before because tim belief-
space in P1 P7 is infinite and continuous. As a result.
only small problems can usually be solved to optimal-
ity (Kaebling, Littman, & (".assaodra 1998). A common
way to compute approximate solutions is by it,troducing
a suitable discretization ow’r the belief space (I.ovejoy
1991; 1tauskrecht 1997). Below we’ll follow this ap-
proach.

Algorithms
We haw’ shown that the problems of conformant and
contingent planning can be fi)rmulated as deterministic.
non-deterministic, and probabilistic control problems in
a suitably defined belief space. These fornmlations art,
not particularly novel, attd all can be considered as spe-
cial cases of the belief-space formulation of tOM DPs (As-
trom 1965; Sondik 197l). Our goal in this paper is to
use these fornmlations h)r solving planning probh’ms
aml lbr comparing the results with the best availabh,
pla,mers. In this section we turn to the algorithms h)r
solving tl,ese models, and in the next section we disct,ss
an aclion language for expressing them conveniently.

A*
The model Cl-(.’.6 for conformant pimming cau be
solved by any standard search algorithm. In the exper-
iments below we use the A" algorithm (Nilsson 19801
with two domain-independent heuristics. The first is
the trivial heuristic It = 0. In that ease, h" is just
uniform-cost search or breadth-first search if all costs
are equal. The second is an heuristic derived from the
problem by a general transformation. Basically, we
compute th,~ optimal cost function t’~’p over the states
of the "relaxed’ problem where full slate observabilily
is assumed. Bitch function can be computed by solving
the Bellman equation:

¯ ( )t,#,(s)= rain c(a)+ max ~,(.s’) {13)
afiAt s ) s’ E F’t a.s )

with t.~’p(s) = 0 for s E ,5’tj, wl,ere S’~ denotes the goal
states and F(a, s) denotes the set of states that may
follow a in s. This computation is polynomial in INI,
and can be computed reasonably fast if Ib’l is not too
large (p.g., IS] < 105) (Puternmn 1994; Bertsekas 19951.
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With the fimction ~, available, tit<, heuristic bdp(b]
for estimating the cost of reaching a target belief [’rot,,
a,y belief b is <le/ined as

hay(b) a,.f= ,,,ax L~,(,~) (14)
sEb

It is simpl,, to show that this heuristic is admissibh’ and
hence th," sole,,;<ms foun<l by .x" are guarantt,ed to be
opt im a l ( N ilsson 1980).

Greedy Policy

A* and th,’ st+u,<lard search algorithms do not al)ply
to contingent I,hmni,tg probh’n~s wh<,re solutions ar,.’
not sequ<..nces of actions. Algorithms lik,, ..’to" (Nilsson
1!.)8()) (.’all bt, applied to prol,h,ms that do not involve
cycles, and <,xtensi(ms of Ao" for cycli<" graphs have
been rec~,ntly prol)osed ([|ansen &" Zill,’rsteitl 1.q9.8).
The bvt.<.fit of t heso algoritl,ms is they are opt imal. t he
l.~rol)letn is that may need a long t inxe aml lot of mernory
for finding a st,Jut;el,. Th+.,so litnitations are t’Vl’ll Iltore
pron<mnced antong l It<, opt imal algoril httts for I"oM liP..-;
(e.g., (Kaoblitlg. [,ill.in;,n. &." (’assandra 199,+,)). 
haw, thus be+:n exploring th,’ us,, of an anytim+" algo-
rit hnt that ca.It solve l)hutning probhqus rea..-;ontd)ly fast
+l, ti(] Call also i]nprov(, with titne. A convenit’nt way for
introducing such algorithm is as a variation of the sim-
ph’ .qrt cd.q polie!l.

TIw greedy policy z:, takes ;lit heuristic function b
ovvr belief slates ;us input, and in tqtch stale b .,,elects
the action

,’rh(b) = argmin (c(.) + maxb(b’2)’~ (15)
aE..Idb) .EO " ]

¢ .) 

Wh(b) =~lrglllill ((’(tl).~ Z b{b:i)b,l(c))) 
aE ,1( b j ,:E()

according Io whvthvr wc are minimizing .’orst p,)ssi-
I)1o cost (non-deterministic cont.ingem platming) or ~J’-
p(cted cost (probabilistic contingent p]mming). In bolh
cases, if tin," heuristic ftmction b is mlual 1.o the, optitv,al
cosl. functitm l,", tim grevdy poli(’y is opt;thai. Other-
wise. it may not he oi,timal or m~Lv ev,+n fail to solw,
the probh’m.

Real Time Dynamic Programming
Tim probl~’ms wilh the greedy policy are two: it may
h:ad to th<’ goal througln very long paths, or it may get
trapp+,<l into Iool>S and not lead Io lh+. goal at all. A
simple ntodilication tilt+’ to Kt)rf (1990) an<l g,,neralized
by Barto el al (1995) shires thesv two t)robh’nts when
the heuristic h is adtnissible and th+, space is finite. The
rem.hing algorithm is called 1.al-tim¢ dy..mic pro.qram-
mi.g as it combim,s a real-l.imo (gr,.Pdy) search with
dynamic programming Ul)(lates (s~,+, Mso ([3ertsekas 
Tsitsiklis 1996)).

The RTDP alger;shin is obtained fro,it the gre,’dy p,)l-
icy by regarding the heuristic b as the initial ost.iutato
of a cost function V titter is us~,d to guide the re,arch.
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I. Evaluate-at’h acli<m. :q)l,li<’+tl)l,. in b :.ts

Q(a. b) = c(a) max.,¢o L’(b:I ) (i,on-,I,’l)
QCa. b) = r(a) )-~+,,~¢) b,~(o)~’(b:;) (i)rob)

2. Apply action a that miniwfizes Q(a. b) I)r,,aking
ties rat,<l()tntly

3. Update l’(b)t<, Q(a. 
¯ 1. Gent,rate ol)servalion o randomly I’r<,ttl (.)(it. 

(m)n-th.t). or wil.h I)rt,I)al)ility b++(o) 
5. Exit il’b;; is ta, rgf’t I,cIM’. ,’Is(’ sot b t(, b:’+ aml go

It) 

I"ignnv’,’ 1: It’ll)l’ ov+,r heliel:’~ (prt)halfilistir and tl,)tt-
,l,,ternlinisl it’ vi,rsit)ns)

Tht.n. (,w,ry tim<’ an a(’t.it,n , is s,,h.t’t,.d in b. tin,’ vahm
of th(’ cost function I. ft)r b is Ul)dat(’d 

or

i(b) := tt’in v(’) +y~b(b’i)b’’(°)),t~..t,:,,, , I,~)
¯ ’ ,’E()

;tc,’ording t,) whotl.,,r wo are tuinilnizing :rots! I)ossi-
hie. cosl (mm-dPt,.rministi(" (.onling,,m Idamdng)()r 
I):rhd (’,)st (prol)al+ilisvi(" c(.,nl.ivtg,’nl, plaunill~,). "I’h,’
grt.ody p<Jli,’y n’t and l.h,. t,l+tlal.,,s art. then alqdit.d t,)a
su(’(’,,ss(+r 21;tt~, b[;. and I h,’ cyt’h, repeals until a t-u’gel
h,,IM" is r<.;u’l,,’<l. Sinc,’ t" is initially C,l,al t() h. the’
policy r,+. l++’hav<,s initially likt. tl,. grPt,<ly l),.,li(’y ,T;,.
y,’t tl,e lw~, l+,)licies g<’t apa,’t a.-, a ro.,.,llh <)1"IIi,. updates
C)li ~,’.

IA,’hen th,, I,oli,,f space is fil,ih,, it fi~lh~ws from tho
rv..,uhs in (Korf 1990: Barto, Bradwk,.. & Siugh [.q.qS:
B,,rtsokas &" Tsilsiklis 19!)1i) thin ~[DP will m>l b,,
trappvd Jut,)loops am[ will evenlually reach Ihe goal.
"l’l,is i~. whal’s called a sit,gle itrDP Irial. hL addition,
after vo..~+r,t~vr D’uds, the grevdy policy ,’rv can by
shown to ev+’ulttally al)proa<:h the :+ptivnnal l)<dicy ~".
l"or this il ix necessary thar tile h,,clrisl/c b b,’ mhuissi-
l,le (llall-Ovt.r<,s| ;mating). ~3.’<. m)t.t- l.hal, the beli,.f spa<’,,
in n,m-d ?l+,rtninistic c~mt.ingont l)htnnit+g is linite, white
the l)eli,~fslmC<, it+ probahilistic (’onl ingellt planning c;ul
b, mad,, fin;t,, I+3" a sui~a.ble dis¢l’otizati,)ll. I~, ,hal t’ase.
l.h,, COllV,,rgOllCP R.II)I ~ does not gllaralllOe t he ~q+l.iln;tl-
ily of tlt, resulling policy, hut if the discr,.t.izati(,n ix
line +.,no~gh. tlt,. ro.,+tillittg p,,li<’y will appr(mch the op-
l.ittta[ I)<+licy. The advatxtage <)1" l,l+fl.)], ovvr ()l ]wr I)I)MI.I,I’

aJg,)rit hms (,’.g.. ( l,ov~:i(+y t 99 L ). is that il <’;m solve ./Pit+’
d+.s(’r+l+.:,O+,+,,s by using a suital)h, h,.urisl.[c l’utwl.it)n 
fi+cusing the Ul)(la.tos on the stat,’s tha.l are ttl(+st r,’h’-
Vallt.

In the experimeltlS below, we tls~. th+’ b,+v heurislic
,h’lizwd above r(,r tJlOll-dPlerlllilliSli¢ prol)l,,ms, and a
~illli]{.tr hollriSli(" h,,~dP f(:lr pr()bal)ilistic prol~l+,nm. 
heuristic /~,,,tj+ is ol)lairled t)y s<dving a ’relax(,d" prob-
lem similar to the orm coilsi<h’r,’(I ill ..%.’{’<’I. 3.1 but with
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’max’ values replaced by expected vahtes (Bonet&:
Geffner 1998b).

The rtTDP algorithm is showu in Fig. 1. For the im-
plementation of RTDP, the values V(b) are stored in 
hash table and when a value [’(b) that in not ill table
is needed, all entry for V(b) set to h(b) is allocated.

Language

We have considered a number of models and some al-
gorithms for solving them. Planning problems how-
ever are not expressed in the langoage of these models
but in suitable action languages such as Strips (Fikes
& Nilsson 19"/’1). The mapping of a classical planning
problem expressed in Strips to the state model SI-$5
is straightforward: the states s are collection of atoms,
the applicable actions A(s) are the actions a for which
Prec(a) C_ s, the state transition fimctiou is such that
f(a, s) = s - Del(a) + Add(a), etc. Vfe have developed
a language that extends Strips in a number of ways
for expressing all the models considered in Sect. 2 in a
compact form. The main extensions are

¯ function sylnbols, disjunction, and negation
¯ non-deterministic and probabilistic actions with colt-

ditional effects
¯ logical and probabilistic ramification rules
¯ observation-gathering rules
¯ cost rules

",,",re tlave developed a planner that supports these exten-
sions, and maps descriptions of confornmnt or contin-
gent planning problems, with or without probabilities.
into the corresponding models.7 Tim n,od,’ls are then
solved by the algorithms discussed in Sect. 3. The log-
ical aspects of this language are presented in (Geffner
1999). wifile sortie of the other extensions are discussed
in (Bonet& Geffner 1998a; Geffner & Wainer 1998).
All the experiments reported below have been modeled
and solved using this tool that for conwmience we will
call OPT.

Results

GPT accepts problem descriptions in a syl|lax based on
PI)DL (McDernmtt 1998) and converts these, descrip-
tions into C++ code. This translation roger her wit h the
translation of C++ into oat ive code takes in the order
of 2 seconds. The experiments were run on a Sma Ultra
with 128M RAM running at 333Mhz. We take a num-
ber of exantples from (Staith &" Weld 19.(18), ((’,imatti
&: R.overi 1999), and (Weld, Anderson. & Smith 1998)
where the conformant planners ct’;e and CMBP. and the
contingent planner SGP are presented, co, l, and SGP

7The observation-gatherh,g rules are "all deterministic
and cannot by themselves represent ’noisy" sensing. Noisy
sensing is represented by the combination of observation-
gathering rules and ramification rules; e.g.. if action a makes
the value ¢1.1: a variable r known with probability p, then we
write that a makes the value of a "dummy" variable .t/known
with certainty, and use ramification rules to express x and
y are equal with probability p. This is a general transfor-
mation: noisy sensing is mapped into noise-free sensing of a
correlated variable.

problem sequent ial parallel
name IsI I PI olaf arT{ h ) arT( 0 ) cGr

BT( .’2 4 2 0.000 0.047 0.05S I 0.000
BTi 4 ) 8 4 0.000 0.II50 0.048 I 0.0110
B"F(~) l~ 6 0.l)~0 0.l|6-’! 0.0G8 l 0.010
BT(8) 16 g 0.150 o. 13f., 0.15"/" 1 0.020
BT{ 10 ) 20 10 1.330 11.610 0.6,g3 1 1 .U20
n’]to(6) 24 ll 1.1.160 0.064 0.087 II 0.~60
BTO(T) 28 13 0.-520 0.107 0.122 13 2.1)80
rite(8) 32 15 1.850 0.17q 0.186 I..5 13.690
BTC(91 36 t7 6.u20 0..115 0.359 IT 41.01fl
BTO(10) .I0 l’.l D].020 0.796 0..,35 19 157.591"1

’Table 1: Rest,Its for BT and B’[’c problems

are parallel planners based on the idtras of Graphplan
(Blurt1 & Furst 1995), while CMBP is an optimal se-
quenl.ial planner based on model checking techniques.
We take the resuhs for CGP and C.MBP from (Cimatti
& Revert 1999) where an extensive comparison is pre-
sented. Those rein,Its were obtained on a Pentituu-II
with 512M of RAM running at 300Mhz. CMBP is im-
plenwnted in C. whih, CGP and st;p are imlflenlented
in Lisp. We also inchlde a number of problems of our
own to illustrate the capabilities of our planner and
contribute to the set of benchmarks used in the area.

Conformant Planning
We consider three types of conforntant phoning prob-
lems. The resuhs art" shown in Tables 1 to 3. The
colu,,, I.-’,’1 refers to the size of the state space, while
IPI (ILl) refers to the length of the sequential (paralh, I)
plans found. GP’r solves these problems hy using the A"
algorithnl. The cohtmn Gl"l’(h) refi,rs to tim r~,sults ob-
tained by running a" with the hat, heuristic, while the
cohmm ¢;pr(0) refers to the results with tht.. heuristic
h = 0. Long dashes (--) in the tables indicate that the
planner exhausted memory or time (2 hours).

BT Problems. The first, problems are variations of
the ’bomb in the toilet" problem. Following (Cimatti
&Row, ri 1999). the probh, ms are called s’r(p). BTC(p),
BTUC(p}, and BMTC(p. t). ST(p) is tile standard prob-
lenl where the bomb call I)e ill any of p packages and
the bomb in disarmed by dunking it into the toilet. In
parallel planners, this problem can i)e solved in one step
by dunking all packages in parallel. H’I’C(p) is the se-
quential variation where dunking a package clogs the
toilet and dunking does not disarm the bond) until the
toih’t is lh,shed. BTUt’(p) is a non-deterministic vari-
ation where dunkit,g may or may not clog the, toih’t.
Finally, BMTC(p, t) involves p packages and t toih’ts. 
the ’low uncertainty" case, the location of the bonlb is
not known and toilets are known to be not clogged; in
the "high uncertainty" cast,, none of these condit ions are
known. The results for these probh,ms are ix, Tabh,s 1.
2, and 5 (last page). (;PT appears to seth’ better than
CGP and CMBP ill all problems except the BT(p) prob-
lems that are trivial for a parallel planner like cGP. The
heuristic, however, does not help in these examples, but
does not lmrt either (the heuristic nlay hurt when it’s
expeusive to compute and does not intprove the search).

Navigation. The second class of problems sq u a rtE(n 
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,a,u,: 151 IPI c"xlm, t;Pl’(h) (.il-"r(O)
13"I’UC{ (:;) 24 l L I). 171) I).091 1.1.1.190
Ir]’t;c{7) 28 13 11.53i) ILl It4 0.126
13’t’tlt’(~I 32 15 1.8311 1).247 1"1.2"11
it’I’UL’(9) 36 IT fi.()2{) 0.497 11:i83
13’1’L’(’(lai)40 19 17.730 1.095 I .li63

Table 2: Results for BTUC probh’ms

ISl I#’1 C;P’l’(h) tie’r(0)
sQtbXlll,:(L2) I.t,I ’2’2 ILl 1~ 2.q!)5
SQI:AllE{ 14) 1!16 76 II. I-)!l T.iLI’I
~QIARE(16) 25fi 3£1 11.2 IlJ 14.90;J
.~QLAIIE( l~ll 32.1 3.1 11.:2!ill 79.5811
SQt’AliE(71Ji ,1(11) 38 11.386 53.851
CUUE(6) 216 15 li.165 6.022
C’IerW.(7) 3.13 /~ li.’~66 20.347
(:i’lll.:(8) 517 71 11.,t511 68.53!J
(’l’liE(!l) 729 2.1 li.6."l.l
(’UBE( 10l lii(It) 27 i).9!11
SORTN(3) 6 3 [).061 0.061
SOIi’rN(4) 24 5 0.06t) 0.065
SOllTN(5) 120 9 0.688 11.li53
sOll.l’N ( 6 721i 12 1 ] 9.5,l.I I(i4.482
SORI’N(T) .-5(14 II

Tidfle 3: Results for SQIIAItI.;. (’IBE. and SOltl’N i)roh-
If’illS

and (’lltE(tt) deals with a navigation lirohleni in a
sqli~lre or cllhe wii.h shle n. 1"lie goal is to reach a givell
corner given l, hat tht’ hlitial location is conlplelely un-
klloWn. There tire ,1 actions in SQIJAILI.;(n) alld 6 actions
in (’UBI,;(n.) thai correspond to the possible <lir~elions.
.Moves agahlst a l)OilllCial’y ll,av(, the ag~lit in the ,~a.llll?
posit.lOll. The opihnal sohltion is liven hy lit - l iiiovp-
inl,nts along each axis ill the dii’[,etion e,f the goal. The
worst possible cost of this plan is 2(n- l ) for f4ql.Altl.i(n)
and 3(n- 1) fi)r (’ul~i-;(n). This is a l~rohlenl taken 
(Parr ,t" Russell 1995). The results in ’l’ahl,, 3 show that
the heuristic h</p iiiltk(,s a suh.~t.anl.ial difference ill tliis
case.

Sorting Networks. A sorting network reft,rs to a
sorting algorithm in which contliarisons and swaps are
llie, rged into r-i single operation that tak~,s two entries i
aml j and swaps theiu if and only if l, hey are, nol or-
dered. A COllfOrlllltlll plan is given by the Se(ll.lOliCe i’)f
pairs i and j till which t.o aliply this operation. The
nilniher of siai.es hi tile liroiile,tn is liven hy the pos-
sible ways iu which the entries can he ordered: I.his is
n! fur SOliTN(n). ’I’ll[, optinlal (’ost of these l~roldems
is known for sinall vahws of n ouly (n _< 8 according
to (Knuth 1973)). The Ile,uristic does uot hell) nnlch
in this type of problenls, still hoth GPT(h) and GPT(0)
lind optimal sohll.ions in a couple of IllinutPs for n’s tip
to 0 (Tahh, 3).

Planning with Sensing
We consider now l)rol)lelns that involve se,nsilig. Some
o[" these proble’nls art’ non-dete’rniinistic and others are
probabilistic. ’The, results were obtaine’d with the proh-

abilistic version of RTDP assiiinillg uniform probability
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....... N~,,,<, .l:t,:i..L..!"!.b~i...l..;!i~.j~!_J ,t,..i)c IZ’.l.!.
MEDJt:AI,(2) 21i / 3.()(111 20/ 3.(Ilill 0.720 i
II.IEDICAI,(’I) 32 / .l..l:l:l[ ~/ ,t.3:i:i 1.17:1I
MEI)Ic’.%I,{-I) :16 | 5.(illl) 751 5.()(111 I.:115 n
MI.: )ICAL(5) 2it / .1.1-;Ill} I 751 .t.6(111 1.7,’-~9__.]

Table .I: [~eslills for MEIiICAL prohh,nis

distributiollS for the" iion-d~,te’rulini,~tic i)rohlexllS. ~ The
resuh s for these prohh,iliS art, shown hi Tahh, <1, 6 and 7.
and Fig. ,4 (lasl page). ItllJP is a stochastic alg, oriihnl
I.hat Ilia)" llroihl(’e diff<,rt,ill i)olich,s in differl,lil, rllllS.
and al, the sanie" I, inie. hi non-delerniiilistic or liroba-

ldlisiic dOlllailis, the Sallle l)olh’h,s Ilia)’ prcl(hlce dilt’e’r-
fill r<+Slllt.s. ~,V(’ thus a.ssf,ss the iJt, rforlllaac¢ of ILIIiP.
hy taking averages and sl.andard deviations ow,r many
runs. The nleastlre’s of interest thai are disphly+,d in tilt,
tahles are

¯ the average cost it) r[’ach tile goal inl a giX’ell trial,
d+.note,l as a,’tl(ll"l).

¯ Ill,’ average tinll, ;lcclnnnilated nip t.o and includiug
thai trial,

¯ the Slli’C’O.’4S rat[" ill tlial I rial (iil,rcent o[~sitllUlalions
in which the goal was rea(’lil,d wil.hin a given nUllilier
of st.el)S)!’, a, ud

¯ I.he changing cost est,inlate I,’(bri) of the iuitial slate.

The liieaSllre l’(bli) is iliiliOrl;lilt hecailsl, it’s a lower
lloulid oil the optimal expected cost of l.hl, prohlem
V’(bu). Since" L’(bu) < ["(b0) alld l"(b0) "l ’q(l/’l).
l’(bil) ~ [it I’y( I P|) nornlally indicates COIiVe’rg<’ll(’l’ I,O 

otlliuia.l l)olicv. The suhlhqv tholl~h is thai as w~, rlln
IITI)P on a discreiize’d beiie’fspace1 i,h," lipdales lie not
gllaralilOe I.hal. |’(bti) re’tllains always a lower htiun(l 

l"(b/i). None,l,lleh,ss, this is oftl,ll true. and ill tile +’x-
amples h,,low this can h+ veritied since the optinial ex-
pecil,d costs V’(bii) Call he" coinpute’d analyli(’ally.

BTCS Pi, olrilelns. The first set +Jr ilrohh’nls is frolll
(Wehl. Anderson, &~ Smith 1998) and involve a SellS-
in14 variant (if the "honih in the ch)gged toilet" proli-
l<:iilS BT("(Ir) ) whore there are a nunil)er of" sensors for
(tpte(’ting whether a package coutains ihe honlh. Wchl
t/ al. hOle I.ilal. the tiinc for SGP to solve these proh-
l~,lns scah,s lim,arly with nulnbe’r of sensors, and for five
packages and folnr sensors il is 0.5 seconds. TIw r,,suits
for Rrl)P are iu Table 6 (hist page). For tilts proh[enl,
the Ol)tilnal expe(’t~d cost i"(b0) is given by the 
ilillla (p’-’ + 3p - 2)/2p which for p = 4,6.8 results in
3.251J, ,I.,I,13 and -i.375. As it. (’all he se,en [’rl.llll I.he ilthl~,,
Ihese, values are closely al)l)roxinlah’d hy r.q(IPi) whe,u

""’.<S(IP|) and ],’(bt)) cou|ve,rge,. Also, the, average, costs
of the policies derived in the fir.~-# trial are never more

.Minimizing expc(:t.ed costs as.~uzning uniform prtlbahili-
ti~s, however, is not equivalent to minimizing worst-pos.,,ible
(’osl. live inse this fornnll;ttion as it applies I.o all problems.
prob,’lbilistic or ilOl.

9For all the experimeni.~, lhe (’uto|l" used wa.-i 250: i.e..
trials taking, lilOr[, than 251} .~t[,ps to reach the g, oal were
aborted and counted as failures.

rain the exp~:riments, probability vMues are discrelized
into III intervals.
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Figure 2: Map for grid problem

than 3 steps away from the optimal cost. The first, trial
takes less t.h,xn 0.6 seconds in most cases. "rile curves
for ovg(lPI) and V(bu) as a functiou of ttle number 
trials for p = 8, is showll in Fig. 4 (last page).

Medical. The MEDICAI.(n) problem is also from (Weld.
Anderson. ,f," Smith 1998) This is a problem that in-
volves a patient that call be heathly or nlay have !1~
diseases. The medication cures tile patient if he has
the right disease but kills the patient otherwise. SGP
solves these problems for n = 2.3,4.5 in .020..040.
.230, and 2.6 seconds. The results for R’rDP are in Ta-
ble 4. RTDP takes more time in the sn.aller problems
but scales more smoothly and solves the larger problenls
faster. The optimal policy is derived in less than 30 tri-
als and 1.7,5 seconds. The success rate for MEDICAI.(/~)
and BTCS(n) is 10{)% froth the lirst trial.

Grid. Tl,is is a navigation problem over the grid
showed io Fig. 2 due to S. Thrun. Au agent starts
iu positiou 6 in tile grid and has t.o reach a goal that is
at position 0 or 4. The position that is not the goal is a
high penalty state. At position 9 there is a sensor that
reports the true position of the goal with probability p.
When p = 1, the optimal solutiou is to go to position 9.
’read" the sensor once, and head up for the goal. Wlwn
p < 1, the agent has to stay Iong~,r in t3 accumulat-
ing information from the sexlsor before heading for the,
goal. Successive readings of tile sensor arc assumed to
be independent. Fig. 3 shows the average cost to the
goal as a function of tim mmlber of trials for p = 0.75.
Table 7 shows results for this and other values ofp. For
t’ = 0.75 the aw,rage cost of the policy obtained after a
single trial is 35.675 while after 400 trials is 17.265. In
all cases couvergence is achieved io less than 2 seconds.
Also all trials reacl, the goal.

Omelette. The final probh’m is from (I,evesqt,,, lt)96)
aml was modeled and solved in (Bonet k" Geffner
1998a). The goal is to have 3 good eggs and no bad ones
in one of two bowls. There is a large lille of eggs, and
eggs can be grabbed and broken into a bowl. while con-
tents of a howl can be discared or passed to the other
I,owl. etc. There is also a sensing action for testing
whether a bowl ctmtains a bad egg or not. We assum~
that sensing is noise-free and that eggs are good with a
probability p equal to 0.25.0.5 or 0.75. The results for
this problem are shown in Table 7 and l"ig. 4 (both in
last. page). As it. can be seen from thv l.abh,, the success
rate during the first iteration in these problems is very
low. For p = 0.25 only 4.6°/c of the first trials reach
the goal. llowever, after a sufficient number of trials,
a success rate of 100th, is achiew,d iu all cases, with an
average cost that corresponds to the policy that gets
a good egg in the target bowl first., and then uses the

Grid problem for p = 0.75
40 _

eontrolier --’-
35 i V(b_O) ........... _

30 - .......

25 .....

~ 15-..

10 -

5 .....

0 I I I I I I I I I

0 50 100 150 200 250 300 350 400 450 500
Trial number

Pigttre 3: Curve for an instance of GRIt) problem.

other bowl as the buffer where eggs are inspected attd
passed to the target bowl if good, and arc discarded
otherwise. It can be shown that this policy has an ex-
pect0,d cost given by the expression 11 + 12(i -p)/p
which for p = 0.7,5, 0.5 and 0.25 yields 15, 23, and
¯ 17 steps respectively. These values are closely approxi-
mated by the asymptotic values of avg(]Pl) and V(b0)
in ’l-able 7 in less than 76.33 seconds.

Discussion
We have shown that planning with incomplete informa-
tion can be formulated as a problem of heuristic search
in belief" space. When there is no sensor feedback, the
plans can be obtained by standard search algorithms
such as A" and the r~’sults are competitive with the
best conformant planners. Ill the presence of sensor
feedback, the standard search algorithms do not ap-
ply, but algorithms like R’rl)P, that combines heuris-
tic search with dynantic l)rogratmning updates, can be
used and yiehl contpetitive results as well. An addi-
tional benefit of this approach is that it is quite flexible
as it. can accontmodate probabilistic actions and sens-
ing, actions of different costs, attd epislentic goals. The
lintitations, on tile other hand, are mainly two. First,
R’rDP is not an optimal search algorithm like a’; it’s
guaranteed to yiehl optimal policies only ~ymptoti-
cally, and if tile (belief) space is finite. In non-finite
spaces such as those arising froth probabilistic beliefs.
this is not guaranteed. The secottd lintitation is that
tile contplexity of a number of preprocessing and run-
tinte operations in GPT scale with the size of the state
space. So if the state space is sufficiently large, our ap-
proach does not even get. off the ground. In spite of
these limitations, the approach appears to offer a per-
formanco and a flexibility that few other approaches
currently provide, ht tile near future we wouhl like to
explore tile issues that must be addressed for modeling
and solving a nmnber of challenging problents such as
Mastermind, Minesweeper. the Counterfeit (’oin prob-
lem, and others. Many of these probh’ms are purely in-
formation gathering problems for which the heuristics
we haw: considered are useless. Other general heuris-
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ties, however, can be devised. Imlecd, if all nctions
are purely information gathering actions, and none pro-
duces more than ]o] observations, the cost of finding the
true state s ill an initial belief state b can be bounded by
the function IOglol(]b]). This function is an admissible
heuristic that can be used for solving a wide range of
slate-identification problems like the (’,ounterft,il. Coin
problem in (Pearl 1983).
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