From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Planning with Incomplete Information
as Heuristic Search in Belief Space

Blai Bonet and Héctor Geffner
Departamento de Computacion
Universidad Simén Bolivar
Caracas 10R0-A. Venezuela
{bonet hector} adilde.ush.ve

Abstract

The formulation of planning as heuristic scarch with
heuristics derived from problem representations has
turned out to be a fruitful approach for classical plan-
ning. In this paper, we pursue a similar idea in the
context planning with incomplete information. Plan-
ning with incomplete information can be formulated as
a problem of search in belic f space, where belicf states
can be either scts of stutes or more generally probability
distribution over states. While the formulation {as the
formulation of classical planning as heuristic search)
is not particnlarly novel, the contribution of this pa-
per is to make it explicit, to test it over a number of
domains. and to extend it to tasks like planning with
sensing where the standard search algorithms do not
apply. The resulting planner appears to be competi-
tive with the most recent conformant and comtingent
planners (e.g., CGP, sGP, and ¢MBP) while at the same
time is more general as it can handle probabilistic ac-
tions and sensing, different action costs, and epistemic
goals.

Introduction

The formulation of classical planning as heuristic search
has turned out to he a fruitful approach leading to pow-
erful planners and a perspective on planning where the
extraction of good heuristics is a key issue (McDermott
1996; Bonet. Loerines, & Geffner 1997: Refanidis & Vla-
havas 1999). In this paper, we take this idea into the
domain of planning with incomplete information. Plan-
ning with incomplets information is distinguished from
classical planning in the type and amount of informa-
tion available at planning and execution time. In clas-
sical planning. the initial state is completely known,
and no information is available from sensors. In plan-
ning with incomplete information, the initial state is
not known. but sensor information may be available at
execution time,

Conformanl planning, a term coined in (Smith &
Weld 199R8), refers to planning with incomplete infor-
mation but no sensor fecdback. A conformant plan
is a sequence of actions that achieves the goal from
any initial state compatible with the available infor-
mation. The problem has been addressed in (Smith &
Weld 1998) with an algorithim based on the ideas of

Copyright © 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights rescrved.

52 AIPS-2000

Graphplan (Bluom & Furst 1995) that builds separate
plan graphs [or cach possible initial state and searches
all graphs simultancously. The approach was tested
on a number of problems and proven to scale better
than conformant planners based o the ideas of partial-
order planning (Kushmerick, Hanks, & Weld 19495:
Peot 1993). Conformant aml contingeut planners based
on variations of the saT formulation (Kautz & Sel-
man 1996) are reported in (Majereik & Littinan 1198;
Rintanen 19499).

From a mathematical point of view. the problem of
conformant planning can be seen as the problem of find-
ing a sequence of actions that will map an intheal belie f
stale into a farged belic f state. A beliet state in this con-
text is a scl of states: the initial helief b is the set of
possible initial states, and the target beliels are the sets
that contain goal states only. Actions in this setting
map one belief state into another.

Conformant plans can be found in this bolicf spaece
by either blind or henristie search methods. F.e.. a
breadth first search will generate first all helief states
at a distance one from by, then all belief statis at a
distance two, and so on, until a target beliel is found.
We'll see that for many of the examples considered in
the literature this approach actually works quite well.
One reason lor this is that the nodes in this type of
search can be generated very [ast without the over-
head of more sophisticated searches. This is an imn-
portant lesson from the recent planners such as Graph-
plan (Blum & Furst 1995). Blackbox (Kautz & Selinan
1999), and use (Bonet & Geffuer 1999): run-time op-
erations have to be fast oven it that requires a suirable
amount of preprocessing,

Breadth-first search in belief space is the strategy
usedd by the planuers based on model-checking tech-
niques (Cimatti & Roveri 1999; Giunchiglia & Traverso
1999). ‘The maodel-checking part provides the data
structures and algorithms for making the operations
on belicts (sets of states) more efficient. In our ap-
proach. the leverage does not come from the eepresen-
tation of beliefs but from the use of heuristics. We illus-
trate the benefits as well as the costs of using domain-
independent henristies over a number of problems.

In the presence of sensor feedback, the problem of
planning with incomplete infortation is no longer a
deterministic scarch problen in belief space. Sinee the
vbservalions cannot be predicted. the effect of actions

ovon; bels ooto mecoeamucs pgnoeruuinistis ivlabiorg). Al righsselihiay. to n deterministic control problom is a e

selection of actions must be conditional on the obser-
vations gathered. We show that this problem can be
formulated as a search problem in belief space as well,
and that while standard heuristic search algorithms do
not apply, a generalization of Korf's (1990) LRTA* al-
gorithm due to Barto ¢! al. (1995) does. The result-
ing planner appears competitive with the most recent
contingent planners and applies with little modification
to problems where actions and seusors arc probabilis-
tic. Such problems are known as PoMDPs (Sondik 1971;
Kaebling. Littman, & Cassandra 1998).!

The formulation of planning with incomplete infor-
mation as heuristic search in belicf spacc (as the for-
mulation of classical planning as heuristic scarch in
state space) is not particularly original, and follows
from viewing these problems as variations of the general
PoMDP model (and see also (Genesereth & Nourbakhsh
1993)). The contribution of the paper is to make the
formulation explicit, to test it over a number problems,
and to extend it to tasks like contingent planning where
the standard heuristic search algorithms do not. apply.
Preliminary results were presented in (Bonet & Geftner
1998a). Here we expand those results by considering
probabilistic and non-probabilistic models, and a sig-
nificantly larger set of experiments.

The paper is organized as follows. First we focus on
the mathematical models underlying the various plan-
ning tasks (Sect. 2) and the algorithms and language
needed for solving and expressing them (Sect. 3 and 4).
Then we report results over a number of experiments
(Sect. 5) and draw somne conclusions (Sect. 6}.

Mathematical Models

We consider first the models that make precise the se-
mantics of the different planning tasks in terms of the
type of the action dynamics, sensor feedback, and prior
information available.

Classical Planning

Classical planning can be understood in terms of a state
model defined over a discrete and finite state space,
with an initial situation given by a single state sp. a
goal situation given by a non-empty set of states Sg,
and a finite number of actions that deterministically
map each state into another. This is a standard model
in Al (Nilsson 1980) that for convenicnce we call the
deterministic control problem model (Bertsckas 1995)
and is characterized by

Si. A finite state space S,

S2. an initial situation given by a state sy € S,

S3. a goal situation given by a non empty set Sq C S,
S4. actions A(s) C A applicable in each state s € S,

$5. a dynamics in which every action a € A(s) deter-
ministically maps s into the state s, = f(a, s), and

56. positive action costs ¢(a, s) for doing a in s.

!poMDP stands for Partially Observable Markov Decision
Process.

quence of actions ay. a;. ..., a, that generates a state
trajectory sg. &1 = f(Sp), ... Sp41 = f(s;,4a;) such
that each action ; is applicable in s; and s,4) is a goal
state, i.e., a; € A(s;) and s, 41 € S¢. The solution is
optimal when the total cost Y"1, c(si,a;) is mininal.
In planning, it’s common to assume that all costs ¢(a. s)
are equal and focus on the plans with minimal length.
While we don’t need to make this assumnption here, it
will be convenient for simplicity to assiime that actions
costs do not depend on the state and thus can be writ-
ten as c(a). ‘The generalization to state-dependent costs
is straightforward.

Classical planning is a deterministic control problem
that can be solved by searching the state-space S1-S5.
This is the approach taken by heuristic search plan-
ners such as usP (Bonet & Geffner 1999). Classical
planning, however, can be formulated and solved in a
number of other ways: e.g., as a SAT problem (Kautz
& Selman 1996), as a Constraint Satisfaction Problem
(Beek & Chen 1999), as an Integer Prograimming proh-
lem (Vossen et al. 1999). etc. In any case. regardless
of the formulation chosen, the model S1-S5 provides a
clear description of the seantics of the task; a descrip-
tion that is also useful when we move to nen-classical
planning.

Conformant Planning

Conformant planning introduces two changes: first. the
initial state is no longer assumed to be known, and see-
ond, actions may be non-determimistic. The first chauge
can be modeled by defining the initial situation as a
sel of states Sy, and the second by changing the de-
terministic transition function f(a, s) in $5 into a non-
deterministic function F(a,s) that maps a and s into a
non-empty set of states. Conformant planning can also
be conveniently formulated as decferministic planning in
belief space as we show below (sce also (Genesercth &
Nourbakhsh 1993)).

We use the term belief state to refer to scts of states.”
A bclief state & stands for the states that the agent
executing the policy deems possible at one point. The
initial belief state bg is given by the set Sp of possible
initial states. and if b expresses the belief state prior to
performing action a. the belief state b, describing the
possible states in the next situation is

by = {s|s€ F(a.s') and s’ € b} (n

The set A(b) of actions that can be safely applied in
a belief state b are the actions a that can be applied in
any state that is possible according to b

A(b) = {a | a € A(s) for all s € b} (2)

The task in conformant planning is to find a sequence
of applicable actions that maps the initial belief state
bo into a final belief stale containing only goal stalcs.
‘That is, the set Be of target beliefs is given by

Bg = {b| such that forall s €b.s € S} (3)

2The terminology is borrowed from the logics of knowl-
edge (Fagin et al. 1995) and poMDPs (Kaebling, Littman,
& ("assandra 1998).

Bonet 53

confortmant planning with™ deterministic and non-

determintstic actions, can he formulated as a dete rmin-

istic conlrol problem over belief space given by

("1. The finite space B of belicf states b over S,

(2. an initial situation given hy a belief state b; € B,

3. a goal situation given by rthe target beliels (3).

“1. actions A(b) C A applicable in b given hy (2).

5. a dynamies in which every action a € A() deter-
ministically maps b into b, as in (1). and

(6. positive action costs e(a).

o~~~

The search methods that are used for solving determin-
istic control problems over stafes can then be used for
solving deterministic control problems over belicfs.

The model above can be extended to express epis-
temic gouals such as finding out whether a proposition
p is true or not This requires a change in the definition
(3) of the target beliefs. For example if the states are
truth-valuations. the goal of knowing whether p is true
can be expressed by defining the target beliefs as the
sets of states in which the valne of p is uniformly true.
or uniformly false.?

Contingent Planning

In the presence of sensor fredback the model for con-
formant planning needs to be extended as actious may
produce obscrrations that affect the states of belief and
the selection of the next actions.

Seusing can be modeled by assuining that every ae-
tion a produces an observation o(a,s) when the real
state produced by the action is 5. This observation
provides information about the state s but does not
necessarily identifv it uniquely as the observation o a, s)
may be equal 10 the observation o(u.s") for a state
&' # s (this is often called “perceprual aliasing’: (Chris-
man 1992)). On the other hand. upon gathering the
ohservation o = a(a.s), it is knowu that the reol state
of the environment is not 5" i 0 # ofu, s').

We call the funetion o(-.-) the scnsor model. This
model is quite general for noise-free sensing and can be
further generalized by making the observation o(a. s)
depend on the state =" in which the action @ is taken. A
generalization of this model is used for defining *noisy”
$eNSOrS in POMDPs (see helow).

Prior to performing an action a in a belief state b,
there is a set of possihle observations that way result
from the execution of a. as the observations depend
on the (unobservable) state s that resalts. This set of
possible observations. that we denote as O(a, b). is given
hy

O(a.b) = {ola.5) | for s € b,} (1)

*If there are actions that can change the value of p. then
a ‘dummy’ proposition p' that does not change and is equal
to p in the initial state. mnst be created. Then. the tar-
get beliefs should be defined in terms of p'. This “trick” is
needed because no explicit temporal information is kept in
the model, so a way to find out the truth-value of pis to set
p to a given value.

"Normally o(a, s) will be a colleetion of primitive obser-
vations but this makes no difference in the formulation.

54 AIPS-2000

From: Mpayidool prodtlididdeseoplabiiisioass, Adw umablsaioref Al rightd flstigels done one of these observations o must obtain.

allowing the agent to exclude frow b, the states that are
not. compatible with o. We call the resulting belief b2:

by = {s € 5| s €b, and o =o(a.s)} ()

Since the observation o that will be obtained cannot
be predicted, the effect of actions on beliefs is non-
determinestic and thus action @ in b can lead to any
helief b, lor o € O(a.b).

Contingent planuning can thus be modeled as a non-
deterministie control problem over beliel space given
by
T'l. The linite space B of belief states b over S,

T2, an initial sitnation given hy a belief state by,

T3. a goal situation given by the target belicfs (3).

T-1. actions A(b) C A applicable in b given by (2).

TH. a dynamies in which every action a noun-
deterministically maps & into 82 for o € O(a. b).

T6. positive action costs ¢(a), and

T7. observations o € O(a, b) after doing a in b,

One way to characterize the solutions of this model is
in terws of graphs where nodes b stand for belicfs, node
labels a(b) stand for the action in b. and every node b
has as successors the nodes 6% for the beliefs that can
result from a(b) in b, The terminal nodes are the target
beliefs. When the resulting graphs are acyclic. stan-
dard definitions can be used for characterizing the so-
lution and eplimal solulion graphs. and heuristic search
algorithms such as A0™ (Nilsson 1980) can be used to
search for them. However. often the graph is not. acyclic
as different paths may lead to the same beliefs.” A
more general approach in that case can he obtained us-
ing the ideas of dynamic programming (Puterian 1994:
Bertsekas 1995).

In a dynamic programming formulation. the focus is
on the function V'7(b) that expresses the optimal cost
of reaching a target belief from any belief 6. For the
non-deterministic control problem given by 'T'1 TT7 and
assuming that we are interested in finding “plans’ that
minimize waorst possible cost. this cost function is char-
acterized by the following Bellman equation:®

V(8 == min (r'(a)+ max V"(b:,')) (6)
)

aeAh wEQah

with 1*(b) = 0 for b € Bg;. Provided with this value
function 17, an optimal "plan’ can be obtained by se-
lecting in each belief b the action a = 7 (§) giveu by

77 (b) = argmin ((‘{n) + max V(b)) (7)
Q€AY 0EQia,h)

"One way to get ride of cycles in the graph is by treating
different occurrences of the same belief as different nodes. In
that case. the decision graphs will be larger but algorithms
such as A0* (Nilsson 1980) can be used. A related idea is
to extend A0® for haudling cyclic graphs. This has been
proposed recently in {Hansen & Zilberstein 1998).

“For V'* to be well defined for all beliefs b, it is sulficient
to assume a “dummy’ action with infinite cost that maps
every state into a goal state.

"Flagn:-Tnpes koo Procealings. alspyagiitadiogoocansti takes abhirorg). Allthits asdiques this with minimum ezpected cost. Such

optimal solution of the contingent planning problem.
The *plan’ can be obtained by unfolding 7*: first. the
action @ = 77(b) is taken for b = bg. then upon getting
the observation o, the action a’ = x°(b%) is taken, and
s0 on. The graphs discussed above can be understood as
the representation of the policy 7. A policy, however,
can also be represented by a list of condition-action
rules. The formulation above makes no commitiient
aboul representations: it just describes the counditions
that the optimal policy must obey. We will sce that
these conditions can be used for computing policies that
use a tabular representation of 17*.

Probabilistic Contingent Planning

Problenis of contingent planning where actions and sen-
sors are probabilistic can be modeled as POMDPs with
transition functions replaced by transition probabilities
P,(s’|s) and the sensor model o(a. s) replaced hy sen-
sor probabilities Py(o]s) (Astrom 1965 Sondik 1971;
Kaebling, Littman, & Cassandra 1998). POMDPs are
partially observable probletus over state space, but like
the models considered above, they can be formulated
as fully obscrvable problems over bclief space. In such
formulation, belicf states are no longer sels of states
but prebability distributions over states. The probabil-
ity that s is the real siate given a belicf & is expressed
by b(s). The effect of actions and observatious on he-
liefs is captured by equations analogous to (1) and (5)
above that are derived from the transition and sensor
probabilities using Bayes® rule:

ba(s) =) Pals]s")b(s) (®)
s'€ES
bas) = Da(o]s)ba(s)/ba(o) : for ba(0) #0 (D)

Hete b,(0) stands for the probability of ubserving o after
doing action @ in & and is given by

bato) = Y Palols)ba(s) (10)

SES

As hefore, the target beliefs are the ones that make
the goal (7 certain. while the set A(b) of applicable ac-
tions arc those that are applicable in all the states that
are possible according to b.
The problem of probabilistic contingent planning
then becomes a fully observable probabilistic control
problem over belief space given by
P1. The infinite space of belief states b that are proba-
bility distributions over S,

P2. an initial belief state bg.

P3. a non-empty set of target beliefs,

PA. actions A{b) C A applicable in each b,

P5. a dynamics where actions and observations map b
into 4% with probability b,(0) given by (10),

P6. positive action costs e(a, s), and

P7. observations o after doing action a in b with prob-
ability b, (o).

A “plan’ in this setting must map the initial belief
bo into a target belief. The opfimal ‘plan’ is the one

plans can he formalized with a dynamic programming
formulation similar to the one above (Sondik 1971;
Kaebling. Littman. & Cassandra 1998). The Bellman
equation for the optimal cost function 17 is

177(h) = 12]41?},, (c(a) + Z l""(bf,)bu((?)) (11)

veEQ

'with V=(b) = 0 for b € Bg;, while the optimal policy 7=
is

7~ (h) = argruin (t‘(a) + Z V=(by) ba(o)) (12)

a€A(b) ey

The computation of the optimal cost function and
poliey is more difficult than before because the belief-
space in P1 P7 is infinite and continuous. As a result.
only small problems can usually be solved to eptimal-
ity (Kachbling, Littman, & Cassandra 1998). A common
way to compute approrimale solutions is by introducing
a suitable discretization over the belief space (Lovejoy
1991; Hauskrecht 1997). Below we'll follow this ap-
proach.

Algorithms

We have shown that the problems of conforinant and
contingent planning can be formulated as deterministic,
non-detcrminstic. and probabilistic control problems in
a suitably defined belief space. These formulations are
not particularly novel. and all can be considered as spe-
cial cases of the belicf-space formulation of POMDPs (As-
trom 1965; Soudik 1971). Our goal in this paper is to
use these formulations for solving planning problems
and for comparing the results with the best available
planners. In this section we turn to the algorithms for
solving these models, and in the next section we discuss
an action language for expressing them conveniently.

A*

The model C1-CC6 for conformant planning can he
solved by any standard search algorithm. In the exper-
iments below we use the A* algorithm (Nilsson 1980)
with two domain-independent heuristics. The first is
the trivial heuristic h = 0. In that case, A" is just
uniform-cost search or breadth-first. search if all costs
are equal. The second is an heuristic derived frow the
problem by a general transformation. Basically, we
compute the optimal cost function Vg, over the states
of the ‘relaxed’ problem where full state observability
is assumed. Such function can be computed by solving
the Bellman equation:

[S R H " e rmog ! .
Vap(s) = Jnin (c(a) + x| Vip(s)) (13)
with l-’;p(s) =0 for s € S¢;. where S denotes the goal
states and F(a,s) denotes the set of states that may
follow a in s. This computation is polynomial in |S],
and can be computed reasonably fast if |S] is not too
large (v.g., |S] < 10°) (Puterman 1994; Bertsekas 1995).

Bonet 55

From: NPtlpobe Hisnstisysh ﬁOW@Hi@hbdd!%m‘(WWhéwl&ej- All rights fes@#etluate cach action a applicable in b as

for estimating the cost of reaching a target belief from
any belief b is defined as

def REL))
ha(b) = 1}.1&1’;\‘,,,,(.») (1

It is simple to show that this heuristic is admissible and
hience the solutions found by A" are guaranteed to he
optimal (Nilsson 1930).

Greedy Policy

A and the standard seacch algorithins do not apply
to contingent planning problems where solutions are
not sequences of actions. Algorithms like A0™ (Nilsson
1980) can be applied to problems that do not involve
eveles. and extensions ol A0™ for cyclie graphs have
been recently proposed (Hansen & Zilberstein 1998).
The benefit of these algorithins is they are optimal. the
problem is that may need a long time and lot of memory
for finding a sulution. These limitations are even more
pronounced among the optimal algorithis for POMDPS
(e.g.. (Kaebling. Littman., & Cassandra 1998)). We
have thus been exploring the use of an anytime algo-
rithm that can solve planning problems reasonably fast
and can also improve with time. \ convenient way [or
introducing such algorithm is as a variation of the sim-
ple greedy policy.

The greedy policy m, takes an heuristic function A
over beliel states as input, and in each state b selecrs
the action

Th(b) = argmin (('(u) + maxh(b)) (15)
[=1¢]

a€Aih)
or
mp(b) = argmin | ~(a) + Z h(b)b, (0) (16)
acAth) vEQ

according to whether we are minimizing worst possi-
ble cost (non-deterministic contingent planning) or er-
peeted cost (probabilistie contingent. planning). In both
cases. if the heuristic function b is equal 1o the optimal
cost. function V=, the greedy policy is optimal. Other-
wise. it may not be optimal or may even fail to solve
the problem.

Real Time Dynamic Programming

The problems with the greedy policy are two: it may
lead to the goal through very long paths. or it may get
trapped into loops and not lead to the goal at all. A
simple modification due to Korf (1990) and generalized
by Barto ef al (1995) solves these two problems when
the heuristic h is admissible and the space is finite. The
resulting algorithm s called real-time dynamic program-
ming as it cotnbines a real-time (greedy) search with
dynamic programming updates (see also (Bertsekas &
Tsitsiklis 1996)).

The rTDP algorithm is obtained from the greedy pol-
icy by regarding the heuristic b as the itial estimmate
of a cost function V° that is used to guide the search.

56 AIPS-2000

Qla.b) = ela) + max,co V(8]) (non-det)
Qa. by = cla)+ 37, o balo)V(85) (prob)

Apply action a that minimizes Qe b) breaking

ties randomly

3. Update V(b) to Qla. h)

1. Generate observation o randomly from (O{a. b)
(non-det). or with probahility #4(0) (prob)

3. Exit il b} is target belief, else set bio b and go

|

re

Figure 1: wrop over beliefs (probabilistie and non-
deterministic versions)

Then, every time an action « is selected in b, the value
of the cost function UV for b is updated ta

a€Aih

Vib) ;= min (c-(u)+ng:.}l'(l_';)) (17

or

V(h) := min
Q€ Aih)

cla) + D hib)ba(o) (1%)

ve()

according to whether we are minimizing worst possi-
ble cost (non-deterministic coutingent planning) or ¢ -
peefed cost (probabilistie contingent planniug). The
greedy poliey v and the updates are then applicd to a
successor stiate b0 and the exele repeats until a target
heliol is reached. Sinee V' is initially equal 1o o, the
policy sy hehaves initially like the greedy poliey .
yet. the fwo policies get apart as a result of the npdates
on b,

When the belief space is finite, it follows frotn the
results in (Korf 1990: Barto, Bradike, & Singh 1995:
Bertsekas & Tsitsiklis 1996) that Ripp will not be
trapped iuto loops awd will eventually reach the goal.
This is what's called a single vrpe trial. In addition,
after conseculive Irals, the greedy policy v can be
shown to eventually approach the optimal policy ==,
For this it is necessary that the heuristic b he adimissi-
ble (non-overestimating). We note that the beliel space
in non-deterministic contingent planning is finite, while
the belief space in prababilistic contingent planning can
he made finite by asuitable diseretization. In that case,
the convergenee RTDP does not guarantee the optimal-
ity of the resulting poliey. but if the diseretization is
fine enough, the resulting poliey will approach the op-
titmal poliey. The advantage of RYDP over other POMDP
algoritheus (e.g.. (Lovejoy 1991). is that it can solve fine
descrchizalions by using a suitable heuristic funetion for
focusing the updates on the states that are most rele-
vant.

In the experiments below. we use the hy,. henristic
delined above for non-deterministic problems, and a
similar heuristic Ay for probabilistic problems. ‘The
heuristic hypgp is obtained hy solving a “relaxed” prob-
lem similar to the one considered in Sect, 3.1 but with

traaxAralneso replasailgby pypeatedovalnes (Bawelaakorg). All right&FRESR) d

Geftner 1998b).

The RTDP algorithm is shown in Fig. 1. For the im-
plementation of RTDP, the values V' (b) are stored in a
hash table and when a value V(b) that is not in table
is needed, an entry for V(b) set to h(b) is allocated.

Language

We have considered a number of models and some al-
gorithms for solving them. Planning problems how-
ever are not expressed in the language of these models
but in suitable action languages such as Strips (Fikes
& Nilsson 1971). The mapping of a classical planning
problem expressed in Strips to the state model S1- 55
is straightforward: the states s are collection of atomus,
the applicable actions A(s) are the actions a for which
Pree(a) C s, the state transition function is such that
f(a,8) = s — Del(a) + Add(a), ctc. We have developed
a language that extends Strips in a number of ways
for expressing all the models considered in Sect. 2 in a
compact form. The main extensions are

e {unction symbols, disjunction. and negation

e non-deterministic and probabilistic actions with con-
ditional effects

e logical and probabilistic ramification rules
s observation-gathering rules
e cost rules

We have developed a planner that supports these exten-
sions, and maps descriptions of conformant or contin-
gent planning problems, with or without probabilities.
into the corresponding models.” The models are then
solved by the algorithms discussed in Sect. 3. The log-
ical aspects of this language are presented in (Geflner
1999). while some of the other extensions are discussed
in (Bonet & Geffner 1998a; Geffner & Wainer 1998).
All the experiments reported below have been modeled
and solved using this tool that for convenience we will
call GPT.

Results

GPT accepts problem descriptions in a syntax based on
PDODL (McDermott 1998) and converts these descrip-
tions into ('++ code. This translation togerher with the
translation of ("++ into native code takes in the order
of 2 seconds. The experiments were run on a Sun Ulira
with 128M RAM running at 333Mhz. We take a num-
ber of examiples from (Stnith & Weld 1998), (Cimatti
& Roveri 1999), and (Weld, Anderson. & Sinith 1998)
where the conformant planners c¢Gp and cmBp. and the
contingent planner sGp are presented. <GP and sGp

"The observation-gathering rules are all deterministic
and cannot by themselves represent ‘noisy” sensing. Noisy
sensing is represented by the combination of observation-
gathering rules and ramification rules; e.g.. if action @ makes
the value of a variable r known with probability p, then we
write that @ makes the valne of a "dummy’ variable y known
with certainty, and use ramification rules to express r and
y arc equal with probability p. This is a general transfor-
mation: noisy sensing is mapped into noise-free sensing of a
correlated variable.

sequential parallel
name |P) CMBP apT(h) epT()) |L] caP
BT(2) -1 2 0.000 0.047 0.034 1 0.000
BT(1) B 4 0.000 0.050 0.048 1 0.000
BT(H) 12 6 0.020 0.064 0.0%8 1 0.010
BT(8) 16] 0.150 0.135% 0.157 1 0.020
BT({10) 20 10 1.330 0.10 0.683 1 1.020
BTO(S) 24 11 U180 0.064 Q087 11 (1, 1311]
BTO(7) 28 13 0.520 0.107 0.122 13 2080
BTC(8) 32 15 1.8350 0.1749 0.186 15 13.640
BTC(Y) 36 17 £.020 01156 0.35% 17 41.010
BTC(10) 40 14 16.020 0.746 0.765 19 157.590

Table I: Results for BT and B¢ problems

are parallel planners based on the ideas of Graphplan
(Blum & Furst 19935), while ¢AMBP is an optimal se-
quential planner based on model checking techniques.
We take the results for ¢GP and cMBP from (Cimatti
& Roveri 1999) where an extensive comparison is pre-
sented. Those results were obtained on a Pentium-I1
with 512M of RAM running at 300Mhz. cMBP is imn-
plemented in ¢ while cGP and sGpP are implemented
in Lisp. We also include a number of problems of our
own to illustrate the capabilities of our planner and
contribute to the set of benchmarks used in the area.

Conformant Planning

We consider three types of conformant planning prob-
lems. ‘The results are shown in Tables 1 to 3. The
column || refers to the size of the state space, while
|P] (JL]) refers to the length of the sequential (parallel)
plans found. 6Pt solves these problems by using the A~
algorithm. The column GPr1(h) refers Lo the results ob-
tained by running A™ with the hgp heuristic. while the
colnmn GP1(0) refers 1o the results with the henristic
h = 0. Long dashes (—) in the tables indicate that the
planner exhausted memory or time (2 hours).

BT Problems. The first problems are variations of
the *homb in the toilet™ problem. Following (Cimatti
& Roveri 1999). the problems are called BT(p). BTC(p),
BTUC(p), and BM1C(p.t). BT(p) is the standard prob-
lem where the bomb can be in any of p packages and
the bomb is disarmed by dunking it into the toilet. In
parallel planuners. this problen can be solved in one step
by dunking all packages in parallel. BTG(p) is the se-
quential variation where dunking a package clogs the
toilet and dunking does not disarm the bomb until the
toilet is flushed. BTUC(p) is a non-deterministic vari-
ation where dunking may or may not clog the toilet.
Finally, BMTC(p, t) involves p packages and t toilets. In
the ‘low uncertainty’ case, the location of the bomb is
not. known aud toilets are known to be not clogged; in
the “high uncertainty’ case, none of these conditions are
known. The results for these problems are in Tables 1.
2, and 5 (last page). GPT appears to scale better than
CGP and CMBP in all problems except the BT(p) proh-
lems that are trivial for a parallel planner like cGP. The
heuristic, however, does not help in these examples, but
does not hurt cither (the heuristic may hurt when it's
expensive to compute and does not improve the search).

Navigation. The second class of problenmis SQUARE(n)

Bonet 57

From:

rackHdingd” EopyrRAEE

BTUC(6) 24 11 0170 1.091 0.090
BrLe(T) 28 13 0.530 0.11% 0.126
BTUC(8) 32 15 1.830 0.247 n.241
RTUC(Y) 36 17 6.020 0.497 0.483
Bree(ln) 40 19 17.730 1.095 1.063

Table 2: Results for BTuc problems

name [ST 1Pl «pr(h) Ger(0)
SQUARE(L?) 114 22 (L11R 2,995
SQUARE({14) 196 26 01549 7.103
SQUARE(16) 256 30 0.219 14.904
SQUARE(1Y) 324 34 0,290 29.530
SQUARE(21)) A0 38 0.386 53.851
CUBE(6) 216 13 0165 6.022
CUBE(T) 3318 0266 20,347
CURBE(8) a2 21 0.450 66.539
CUBRE(Y) T 24 0.654
CUBE(10) 1000 27 0,941
SORTN(3) 1] 3 0.061 0.061
SORTN(4) 24 5 0.060 0.065
SORTN(H) 120] 0.683 0.653
SORTN(6) 720 12 119544 164.482

SORTN(T) 5040

Table 3: Results for sQUARE. CUBE. and SORIN prob-
lems

and CUBE(n) deals with a navigation problem in a
square or cube with side n. The goal is to reach a given
corner given that the initial location is completely un-
known. There are 4 actions in sQUARE(n) and 6 actions
in cuBE(n) that correspond to the possible directions.
Moves agaiust a boundary leave the agent in the same
position. The optimal solution is given by n — 1 move-
ments along each axis in the direction of the goal. ‘The
worst. possible cost of this plan is 2(n—1) for sQUARE(n)
and 3(n— 1) for cuBE(n). This is a problem taken from
(Parr & Russell 1995). The results in ‘Table 3 show that
the heuristic hg, makes a substantial difference in this
case.

Sorting Networks. A sorting network refers to a
sorting algorithm in which comparisons and swaps are
merged into a single operation that takes fwo entries i
and j and swaps them if and only if they are not or-
dered. A conformant plan is given by the sequence of
pairs i and j on which to apply this operation. The
number of states in the problew is given by the pos-
sible ways in which the entries can be ordered: this is
n! for SORTN(n). The optimal cost of these problems
is known for small values of n only (n < 8 according
to (Knuth 1973)). The heuristic does not help much
in this type of problems, still both GpT(h) and GpT(0)
find optimal sohitions in a couple of minutes for n's up
to 6 (Table 3).

Planning with Sensing

We consider now problems that involve sensing. Some
of these problems are non-deterministic and others are
probabilistic. The results were obtained with the prob-
abilistic version of RI'DP assuming uniform probability

58 AIPS-2000

LISV 18] | Trial [Aeg(fP])] Time
MEDICAL(2) 20 3.000 20 J.000 | 0.720
MEDICAL{3) 32 4.333 25 4.333 1.173
MEDICAL(1) 36 2.000 25 5.000 1.315
MEDICAL(3) | 20 4.600 25 4.600 | 1.759

Table 4: Results for MEDICAL problems

distributions for the non-deterministic problems.® The
results for these problems are shown in Table 4. 6 and 7.
and Fig. 4 (last page). RIDP is a stochastic algorithm
that may produce different policies in different. runs,
and at the same time. in non-deterministic or proba-
hilistie domains, the same policies may produce differ-
ent results. We thus assess the performance of RTDP.
by taking averages and standard deviations over many
runs. The measures of interest that are displayed in the
tables are

e the average cost 10 reach the goal in a given trial,
denoted as arg{}P|).

e the average time accurnulated up to and including
that trial,

e the suceess rate in that trisd (percent of siruntations
in which the goal was reaclhied within a given nmber

. t

of steps)”, and

e the changing cost estimate V(by) of the initial state.

The measure V(by) is important because it's a lower
hound on the optimal expected cost of the problem
17*(by). Since Vi(hy) < V(bo) and V=(by) < arg(]P]).
V' (by) = avg(|P]) normally indicates convergence o the
optital policy. The subtlety though is that as we run
rrDP on a discretized belief space!” the updates do not
gnarantee that 1 (by) remains always a lower bound on
1*(by). Nonetheless, this is often true. and in the ex-
amples below this can he verified since the optimal ex-
pected costs V7 (by) can he computed analytically.

BTCS Problems. The first set of problems is from
(Weld. Anderson, & Smith 1998) and involve a sens-
ing variant of the “howb in the clogged toilet”™ prob-
lerns BTC(p) where there are a number of sensors for
detecting whether a package contains the bomh. Weld
¢t al. note that the time for SGP to solve these prob-
lems scales linearly with number of sensors. and for five
packages and four sensors it is 0.3 seconds. The results
for RTDP are in Table 6 (lust page). For this problem,
the optimal expected cost 17*(by) is given by the for-
mula (p* + 3p — 2)/2p which for p = 1.6.8 results in
3.250, 4.333 and 5.375. As it can be seen from the table,
these values are closely approximated by avg(|P}) when
arg(|P]) and V{by) converge. Also, the average costs
of the policies derived in the first trial are never more
*Minimizing expected costs assuming uniform probabili-
ties, however, is not equivalent to minimizing worst-possible
cost. We nse this formulation ax it applies to all problems.
probabilistic or not.

IFor all the experiments, the cutoff used was 250: pe..
trials taking more than 230 steps to reach the goal were
aborted and counted as failures.

I the experiments. probability values are discretized
into 10 intervals.

—0

From: AIPS Zdﬁé) Pi ceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

5 iL‘[; 8 |9

Figure 2: Map for grid problem

- T
W [2%]

than 3 steps away from the optimal cost. The first trial
takes less than 0.6 scconds in most cases. The curves
for avg(|P|) and V(by) as a function of the number of
trials for p = R, is shown in Fig. 4 (last page).

Medical. The MEDICAL(n) problem is also from (Weld.
Anderson. & Smith 1998) This is a problem that in-
volves a patient that can be heathly or may have n
diseascs. The medication cures the patient if he has
the right discase but Kkills the patient otherwise. sGp
solves these problems for n = 2.3.4.5 in .020. .040.
230, and 2.6 seconds. The results for RTPP are in Ta-
ble 4. RTDP takes more tine in the smaller problems
but scales more snioothly and solves the larger problems
faster. The optimal policy is derived in less than 30 tri-
als and 1.75 seconds. The success rate for MEDICAL(n)
and BTCS(n) 1s 100% from the first trial.

Grid. This is a navigation problem over the grid
showed in Fig. 2 due to S. Thrun. Aun agent starts
in position 6 in the grid and has to reach a goal that is
at position 0 or 4. 'The position that is not the goal is a
high penalty state. At position 9 there is a scnsor that
reports the true position of the goal with probability p.
When p = L. the optimal solution is to go to position 9.
‘readl’ the sensor once, and head up for the goal. When
p < 1, the agent has o stay longer in 9 accumulat-
g information from the sensor before heading for the
goal. Successive readings of the sensor are assnmed to
be independent. Fig. 3 shows the average cost to the
goal as a function of the number of trials for p = 0.75.
Table 7 shows results for this and other values of p. For
p = 0.75 the average cost of the policy obtained after a
single trial is 35.675 while aflter 400 trials is 17.265. In
all cases convergence is achieved in less than 2 seconds.
Also all trials reach the goal.

Omelette. The final problem is from (Levesque 1996)
and was modeled and solved in (Bonet & Geffner
1998a). The goal is to have 3 good eggs and no bad ones
in one of two bowls. There is a large pile of eggs, and
eggs can be grabbed and broken into a bowl. while con-
tents of a howl can be discared or passed to the other
bowl. ete. There is also a sensing action for testing
whether a bowl contains a bad egg or not. We assume
that sensing is noise-free and that eggs are good with a
probability p equal to 0.25. 0.5 or 0.75. The results for
this problem are shown in Table 7 and Fig. 4 (both in
last. page). As it can be seen from the table, the success
rate during the first iteration in these probleins is very
low. For p = 0.25 only 4.0% of the first trials reach
the goal. However. after a sufficient nuinber of trials,
a success rate of 100% is achieved in all cases, with an
average cost that corresponds to the policy that gets
a good egg in the target bowl first. and then uses the

Grid problem for p = 0.75

40 —— r r — v v r
controller —-

s ; V(®_O) =

30 : -

avg. cost to goal
(&)
S
L}

15 - -
10 - -
5 - -
0 .) L .
[} 50 100 150 200 250 300 350 400 450 500
Trial number

Figure 3: Curve for an instance of GRID problem.

other bowl as the buffer where eggs are inspected and
passed to the target bowl if good, and are discarded
otherwise. It can be shown that this policy has an ex-
pected cost given by the expression 11 4 12(1 — p)/p
which for p = 0.75, 0.5 and 0.25 yields 13, 23, and
A7 steps respectively. These values are closely approxi-
mated by the asymptotic values of arg(|P]) and V(bp)
in Table 7 in less than 76.33 seconds.

Discussion

We have shown that planning with incomplete informa-
tion can be formulated as a problem of heuristic search
in belief space. When there is no sensor feedback, the
plans can be obtained by standard scarch algorithms
such as A* and the results are competitive with the
best conformant. planners. In the presence of sensor
fredback. the standard secarch algorithms do not ap-
ply. but algorithms like RI'DP, that combines heuris-
tic search with dynamic programming updates, can be
used and yield competitive results as well. An addi-
tional benefit of this approach is that it is quite flexible
as it can accommodate probabilistic actions and sens-
ing, actions of different costs, and epistemic goals. The
lumitations. on the other hand, are mainly two. First,
RTDP is not an eplimal search algorithm like A™; it’s
guaranteed to yield optimal policies only asymptoti-
cally, and if the (belief) space is finite. In non-finite
spaces such as those arising from probabilistic beliefs,
this is not guaranteed. The second limitation is that
the complexity of a number of preprocessing and run-
time operations in GPT scale with the size of the state
space. So if the state space is sufficiently large. our ap-
proach does not even get off the ground. In spite of
these limitations, the approach appears to offer a per-
formance and a flexibility that few other approaches
currently provide. In the near future we would like to
explore the issues that must be addressed for modeling
and solving a number of challenging problems such as
Mastermind, Mineswecper. the Counterfeit CCoin prob-
lem, and others. Many of these problenis are purely in-
formmation gathering problems for which the heuristics
we have considered are useless. Other general heuris-

Bonet 59

From: AIPS 200p#sbberdings. Copyright © 2000, AAAT (lesswiBaardrgm & rights reserved.

Tigh nncertainty

name |5 ! CABP apT(h) wrr(u) | |L] CGre | P| empr_ | aerih) arrm)
BMTC(7,2 a6 12 2,100).266 0.284 T HORS10 14 3,390 0500 0.513
BMTC(R,2 -1 14 T.960 0.5490 (1.589 7 918,960 16 12,330 1.1.38 1.139
BMTC(9.2) It 16 22826 1.326 1268 18 35.510 2,614 2654
BMTC(10,2) 80 13 72730 2.975 2,464 20 121,740 G095 6.0061
BMTC(7,1) 224 10 14.210 1.547 1.920 3 2.0 14 10,110 14.660 15,420
BMTC(8.4) 256 12 T7.A20 1.64% 1.707 3 5.510 16 932,820 IRT20 1 39778
BMTC(9.4) 2RR 11 11.715 11.695 - IR 95,067 99,715
BAMTC(10,1) 320 16 29,999 30,158 } . 20 240,010 243976
BMTC(H.6) 610 H] 3.080 1.603 2,120 l 0.060 10 40.570 10517 51,285
BMTC{6,6) THY 6 17.4490 1.606 5315 | 0,100 12 1819.520 136,818 15].230
BMTC(7,6) K06 8 hulo.s2o 13.447 14.374 E) 210,720 14 . A01.947 435195
BMTC(R.6) 1024 10 37.R68 39.392 3 1415160
BMTC(9,6) 1152 12 106995 110,629 3 3051.940
BMTC(10.6) 1280 14 21191 26981
Table 5: Results for BMTC probletns with low and high uneertainty
I sense action 2 sense aclions A sense actions
name trial V(bo) Aegi| P_|) ace. time | V{by) _-_'!"!ll'i”” ace, time V(bp) | _.____r_q([P ace. time
BTCS(1) 1 3,225 3124+ 208 0497 [32250 4182+ .1 0486 3.2500 4098141 0.5302
101 3250 3278 £ .071 1.324 -'L'.Z-'")()_ 3306 + .10l 14R3 3.250 3.255 £ 110 2,120
BTes(6) T 3333 6.510 £ .381 0491 T 3333 6.400 £ 140 0512 3333 6166 £.765 0523
1001 4333 4312 £ 262 4,135 4.333 4.86 4+ .123 6.303 ~l.3-}_3 4326 .'.’.'.’l) 11.657
HTUS(8) T 3500 8.017 +.283 0312 | 3500 T.R88 £ 317 612 35000 7155 £ 300 TO5RT
5901 5375 5208+ .23 49.550 | 5375 5.307 =.163 35710 3375 5A6% £ .1T3 161476
Table 6: Results for BTCs problems.
name . t_rial V() Aeg(TPD snce. ace. tine
GRID(L.00) 1710000 £ 000 13.650 £ 0.268 100 £ .000 0312
101 10.000 & 000 10000 £ 0.000 100 4 .000 1145
GRID(0.75) 1 14,3193 .322 35,675 & 3.620 100 £ .000 0. 29%
401 16.464 & .000 17.265 & 2832 100 £ .ﬂ(ll_)_ 1.633
GRID{0.51)) 1 30,500 £ 000 32,230 £ 5.766 1an £ 0010 101,315
401 30.500 £ 000 284910 £ 6.021 Loy £ .000 0.4937
OMELETTE((.25) I 14.277 £ 250 3138 £ 1371 4.6 £ .017 1.623
41001 lb‘)‘m:t 0000 46,072+ 1.575 l(ll)_:}:_;(_)ilp 62,202 _
OMELFETTE((.50) 1 12,945 4 .048 9435 £ 1578 308 £ .042 11.622
4001 23.000 £ .000 22.732 £0.700 100 £ .000 29.951
OMELETTE(1.7T5) i 12.059 £.045 13.097 20419 79.7 £ .005 1).621
15401 14.999 £ .000 15017 & 0.285 110 £ .000 T6.337
Table 7: Results for GRID and OMELETTE problems.
Problem BMTCS(R) Omelette Problem with p=0.75
it . - S— . ' 20 : ——
controller controller —
Vib_0) T Vih)]
) | S Hn
_) 16 d - . -
P - sl -
Z 6 Lo 7 '
i 5.) SppieisstibespfETHE 3 12 -
5 4 - - s 10 -
34 -
2 - - 8- ’
1 . N . . N 6
0 1000 2000 3000 1000 5000 6000 0 2000 4000 6000 8000 10000 12000 14000 6N 1RO00 20000
Trial number Trial number
Figure 4: Curves for instances of BTCs and OMELETTE problems.
60 AIPS-2000

e AiweRR0 PJRBEGIS‘J“Q?e%%‘.ghtﬁi&@@&, AL ABALT)- All MUK IRTERRI M. 1997. Planning and Control in Stachastic

are purely information gathering actions. and none pro-
duces more than |o| observations, the cost of finding the
true state s in an mitial belief state b can be bounded by
the function log, (|6]). This function is an admissible
heuristic that can be used for solving a wide range of
slate-identification problems like the Counterfeit Coin
problem in (Pearl 1983).

Acknowledgments

This work has been partially supported by grant Sl-
96001365 from Conicit, Venezuela and by the Wallen-
berg Foundation, Sweden. Blai Bonet is currently at
UCLA with an USB-Conicit fellowship.

References
Astrom, K. 1965. Optimal control of markov decision
processes with incomplete state estimation. J. Math. Anal.
Appl. 10:174 205.
Barto, A.: Bradtke. S.: and Singh, S. 1945, [Learning
to act using real-time dynamic programming. Artificial
Intelligence 72:81 138.
Beek, P. V., and Chen, X. 1999, CPlan: a constraint
programming approach to planning. In Proc. A4A-99.
Bertsekas, D., and Tsitsiklis, J. 1996. Neuro-Dynamic
Programmning. Athena Scieuntific.
Bertsckas, D. 1995. Dynamic Programming and Optimal
Control, Vols 1 and 2. Athena Scientific.
Blum, A., and Furst. M. 1995. Fast planning through
planning graph analysis. In Procecdings of 1JC"AI-93.
Bonet, B.. and Geffner. H. 1998a. High-level planning and
control with incomplete information using POMDPs. In
Proceedings AAAI Fall Symp. on Clognitive Robotics.
Bonet, B.. and Geffner. H. 1998b. Solving large POMDP=
using real time dynamic programming. In Proc. AAAT Fall
Symp. on POMDPs.
Bonet, B., and Geftner. H. 1999. Planning as heuristic
search: New resulis. In Proceedings of F('P-99. Springer.
Bonet, B.: Loerincs, G.: and Geflner. H. 1997, A robust
and fast action selection mechanism for planning. In Pro-
ceedings of AAAL97, 714 T19. MIT Press.
Chrisman, [.. 1992. Reinforcement learning with percep-
tual aliasing. In Proceedings AAA{-92
Cimatti. A., and Roveri, M. 1999. Conformant planning
via model checking. In Proceedings of EC'P-99. Springer.
Fagin, R.; Halpern, J.: Moses, Y.: and Vardi. M. 1995,
Reasoning about Knowledge. MIT Press.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 1:27- 120,
Gellner, H., and Wainer, J. 1998, Modeling action. knowl-
edge and control. In Proceedings ECAI-95. Wiley.
Geffuer, H. 1999, Functional strips: a more general lan-
guage for planning and problem solving. Logic-based Al
Workshop. Washington D.C.
Genesereth, M., and Nourbakhsh, I. 1993, Time-Saving
tips for problem solving with iucomplete information. In
Proceedings of AAAI-93.
Giunchiglia, F.. and Traverso, P. 1999. Planning as model
checking. In Proceedings of ECP-99. Springer.
Hansen, E., and Zilberstein, S. 1998. Hecuristic scarch in
cyclic AND/OR graphs. In Proc. AAA-93, 412-418.

Domains with Incomplete [nformation, Ph.D. Dissertation,
MIT.

Kaebling, L.; Littman, M.; and Cassandra. 'I". 1998, Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 101(1- 2):99-134.

Kautz. II.. and Selman, B. 1996. Pushing the envelope:
Planning. propositional logic. and stochastic search. In
Proccedings of AAAI-96, 1194 -1201.

Kautz. H.. and Selman, B. 1999. Unifying SAI-based and
(iraph-based planning. In Proceedings 1J(°AI-99.

Knuth, D. 1973. The Art of Compuler Programming. Vol.
HI: Sorling and Scarching. Addison-Wesley.

Korf. R. 1990. Real-time heuristic search. Artificial Intel-
ligence 42:189 -211.

Kushmerick, N.: Hanks, S.; and Weld, D. 1995. An al-
gorithm for probabilistic planning. Artificial Intelligence
T76:230-286.

Levesque, H. 1996, What is planning in the presence of
sensing. In Proceedings AAA1-96. 1139-1146. Portland,
Oregon: MIT Press.

Lovejoy, W. 1991. Computationally feasible bounds for
partially obscerved markov decision processes. Operations
Research 162- 175.

Majercik, 8., and Littman, M. 1998 Maxplan: A new
approach to probabilistic planning. In Proe. A1P5-95. 86—
93.

McDermott, D). 1996, A heuristic estimator for means-
ends analysis in planning. In Proc. Third Int. Conf. on Al
Planning Systems (A1P5-96).

McDermott, D. 1998. PDDL the plan-
ning domain definition language. Available at
http://ftp.cs.yale.edu/pub/mcdermott.

Nilssou, N. 1980. Principles of Artificial Intelligence.
Tioga.

Parr. R., and Russell, S. 19953, Approximating optimal
policies for partially obscrvable stochastic domains. [n Pro-
ceedings 11O AI-95.

Pearl. J. 1983. Heuristics. Morgan Kaufmanu.

Peot. M. 1998. Dccision- Theorelic Planning. Ph.1). Dis-
sertation, Dept. Engineering-Economic Systems. Stanford
University.

Puterman. M. 1994. Markor Decision Processcs: Discrete
Dynamic Stochastic Prograinming. John Wiley.

Refanidis, 1., and Vlahavas, I. 1999. GRT: A domain
independent heuristic for Strips worlds based on greedy
regression tables. In Proceedings of ECP-99. Springer.
Rintanen, J. 1999. Constructing conditional plans by a
thearem prover. J. of Al Research 10:323-352.

Smith, D., and Weld, . 1998. Conformant graphplan. 1n
Proceedings A AAI-98, 889-896. AAAI Press.

Sondik, E. 1971. The Optimal Control of Partially Ob-
servable Markor Processcs. Ph.D. Dissertation, Stanford
University.

Vossen. T'.; Ball. M.: Lotem. A.: and Nau, D. 1999. On
the use of integer programming models in ai planning. [n
Proceedings 1J(’A1-99.

Weld. D.; Anderson, C.; and Smith, D. 1998, Extending

CGrraphplan to handle nncertainty and sensing actions. In
Proc. AAAL-9%, 897 904, AAAI Press.

Bonet 61

