
Planning with Pattern Databases

Stefan Edelkamp
Institut für Informatik

Albert-Ludwigs-Universität
Georges-Köhler-Allee, Gebäude 51

D-79110 Freiburg
eMail: edelkamp@informatik.uni-freiburg.de∗

Abstract

Heuristic search planning effectively finds solutions
for large planning problems, but since the estimates
are either not admissible or too weak, optimal solu-
tions are found in rare cases only. In contrast, heuris-
tic pattern databases are known to significantly improve
lower bound estimates for optimally solving challeng-
ing single-agent problems like the 24-Puzzle or Rubik’s
Cube.
This paper studies the effect of pattern databases in the
context of deterministic planning. Given a fixed state
description based on instantiated predicates, we provide
a general abstraction scheme to automatically create ad-
missible domain-independent memory-based heuristics
for planning problems, where abstractions are found in
factorizing the planning space. We evaluate the impact
of pattern database heuristics in A* and hill climbing
algorithms for a collection of benchmark domains.

Introduction
General propositional planning is PSPACE complete (By-
lander 1994), but when tackling specific benchmark plan-
ning instances, improving the solution quality usually re-
veals the intrinsic hardness of the problems. For example,
plan existence of Logistics and Blocks World problem in-
stances is polynomial, but minimizing the solution lengths
for these planning problems is NP-hard (Helmert 2001).
Therefore, we propose a heuristic search planner that finds
optimal plans. If challenging planning problems call for ex-
ponential resources, the planner can be tuned to approximate
optimal plan length.

Optimal Planning Approaches
Graphplan (Blum and Furst 1995) constructs a layered plan-
ning graph containing two types of nodes, action nodes and
proposition nodes. In each layer the preconditions of all op-
erators are matched, such that Graphplan considers instanti-
ated actions at specific points in time. Graphplan generates
partially ordered plans to exhibit concurrent actions and al-
ternates between two phases: graph extension to increase the

∗Institute for Artificial Intelligence, Universität Bremen, Am
Fallturm 1, D-28359 Bremen, Germany, eMail: edelkamp@tzi.dex
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

search depth and solution extraction to terminate the plan-
ning process. Graphplan finds optimal parallel plans, but
does not approximate plan lengths; it simply exhausts the
given resources.

Another optimal planning approach is symbolic explo-
ration simulating a breadth-first search according to the bi-
nary encoding of planning states. The operators unfold the
initial state and an efficient theorem prover then searches
for a satisfying truth assignment. A Boolean formula ft de-
scribes the set of states reachable in t steps. If ft contains a
goal state, the problem is solvable with the minimal t as the
optimal plan length.

Two approaches have been proposed. Satplan (Kautz and
Selman 1996) encodes the planning problem with a standard
representation of Boolean formulae as a conjunct of clauses.
The alternative in the planner Mips (Edelkamp and Helmert
2001) is to apply binary decision diagrams (BDDs); a data
structure providing a unique representation for Boolean
functions (Bryant 1985). The BDD planning approach is in
fact reachability analysis in model checking (Clarke, Grum-
berg, and Peled 2000). It applies to both deterministic and
non-deterministic planning and the generated plans are op-
timal in the number of sequential execution steps. Usually,
symbolic approaches cannot approximate. Though promis-
ing, recent results with symbolic best-first search (Edelkamp
2001) are still not as good as the ones obtained with explicit
heuristic search engines; our next topic.

Heuristic Search Planning
Directed exploration is currently the most effective approach
in classical AI-planning: four of five honored planning sys-
tems in the general planning track of the AIPS-2000 com-
petition at least partially incorporate heuristic search. How-
ever, in traversing the huge state spaces of all combina-
tions of grounded predicates, all planners rely on inadmis-
sible estimates. The currently fastest deterministic planner,
FF (Hoffmann 2000), solves a relaxed planning problem
at each each encountered state. The obtained relaxed plan
length is not a certified lower bound for the optimal plan
length, but a good approximation. Pruning rules in FF like
helpful action and goal ordering cuts additionally help to
avoid local optima in the underlying hill-climbing algorithm
and to quickly escape encountered plateaus. Completeness
in undirected problem graphs is achieved by omitting prun-

84

Proceedings of the Sixth European Conference on Planning

ing in case of backtracks. The daunting problem for FF
are directed problem graphs with dead-ends from which its
move committing hill-climbing algorithm cannot recover.

The best admissible estimate that has been applied to
planning is the max-pair heuristic (Haslum and Geffner
2000) implemented in the HSP planner. It pre-computes a
table in which an approximation of the combined goal dis-
tances for each atom-pair is stored. The relaxation is derived
by simplifying the Bellman equation for optimal plans. For
the overall heuristic estimate the atom-pair distance values
are maximized. However, even by sacrificing admissibility
by adding atom-pair values and scaling the influence of the
heuristic evaluation function with factor 2, in the AIPS-2000
competition this estimate turned out to be too weak com-
pared to the FF-heuristic. Moreover, own experiments with
improvements to max-pair were discouraging. We used a
minimum matching algorithm on a graph with nodes corre-
sponding to atoms and with edges weighted with atom-pair
distances.

This paper proposes a pre-computed admissible heuristic
that applies a different strategy, and that projects the problem
into a simpler one by excluding a set of atoms. The heuris-
tic estimates are stored in a large look-up table, the pattern
database. To build the databases we exhaustively search all
state-to-goal distances in tractable abstractions of the plan-
ning state space. The retrieval of the lower bound estimators
with perfect hash functions is is almost constant time opera-
tion, allowing very fast node expansions. After studying the
pattern database framework, we present experiments with a
sizable number of planning problems and draw concluding
remarks.

Planning Space Representation
For the sake of simplicity we concentrate on the STRIPS
formalism (Fikes and Nilsson 1971), in which each operator
is defined by a precondition list P , an add listA, and a delete
listD, but the presented approach can be extended to various
problem description languages which can be parsed into a
fixed state encoding. We refer to state descriptions and lists
as sets of atoms. This is not a limitation since all state-of-the-
art planners perform grounding; either prior to the search or
on the fly.
Definition 1 Let F be the set of atoms and O be a set of
grounded STRIPS operators. The result S′ of an operator
o = (P,A,D) ∈ O applied to a state S ⊆ F is defined
as S′ = (S \ D) ∪ A in case P ⊆ S. All states span the
planning space1 P .

We exemplify our considerations in the Blocks World do-
main of AIPS-2000, specified with the four operators pick-
up, put-down, stack, and unstack. For example, the grounded
operator (pick-up a) is defined as

P = {(clear a), (ontable a), (handempty)},
A = {(holding a)}, and
D = {(ontable a), (clear a), (handempty)}

1The planning space P is in fact smaller than the set of subsets
of atoms, but includes the set of states reachable from the initial
state.

• G1 = {(on c a), (on d a), (on b a), (clear a), (holding a)},
• G2 = {(on a c), (on d c), (on b c), (clear c), (holding c)},
• G3 = {(on a d), (on c d), (on b d), (clear d), (holding d)},
• G4 = {(on a b), (on c b), (on d b), (clear b), (holding b)},
• G5 = {(ontable a), true},
• G6 = {(ontable c), true},
• G7 = {(ontable d), true},
• G8 = {(ontable b), true}, and
• G9 = {(handempty), true},

Table 1: The partition into atom groups for the example
problem.

The goal of the instance 4-1 is defined by
{(on d c), (on c a), (on a b)} and the initial state is given
by {(clear b), (ontable d), (on b c), (on c a), (on a d)}. The
first step to construct a pattern database is a domain analysis
prior to the search. The output are mutually exclusive atom
groups, for which in each reachable state exactly exactly
one will be true. In general this construction is not unique
such that we minimize the state description length over all
possible partitionings as proposed for the Mips planning
system (Edelkamp and Helmert 1999).

Table 1 shows the inferred 9 groups for the example prob-
lem, where true refers to the situation, where none of the
other atoms is present in a given state.

Pattern Databases
A recent trend in single-agent search is to calculate the es-
timate with heuristic pattern databases (PDBs) (Culberson
and Schaeffer 1998). The idea is to generate heuristics that
are defined by distances in space abstractions. PDB heuris-
tics are consistent2 and have been effectively applied to solve
challenging (n2 − 1)-Puzzles (Korf and Felner 2001) and
Rubik’s Cube (Korf 1997). In the (n2−1)-Puzzle a pattern is
a collection of tiles and in Rubik’s Cube either a set of edge-
cubies or a set of corner-cubies is selected. For all of these
problems the construction of the PDB has been implemented
problem-dependently by a manual input of the abstraction
and associated perfect hash functions. In contrast, we apply
the concept of PDBs to general problem-independent plan-
ning and construct pattern databases fully automatically.

State Abstractions
State space abstractions in the context of PDBs are concisely
introduced in (Hernadvogyi and Holte 2000): A state is a
vector of fixed length and operators are conveniently ex-
pressed by label sets, e.g., an operator mapping 〈A,B, _〉

2Consistent heuristic estimates fulfill h(v)−h(u)+w(u, v) ≥
0 for each edge (u, v) in the underlying, possibly weighted, prob-
lem graph. They yield monotone merits f(u) = g(u) + h(u) on
generating paths with weight g(u). Admissible heuristics are lower
bound estimates which underestimate the goal distance for each
state. Consistent estimates are admissible.

85

to 〈B,A, _〉 corresponds to a transposition of the first two
elements for any state vector of length three. The state space
is the transitive closure of the seed state S0 and the opera-
tors O. A domain abstraction is defined as a mappingφ from
one label set L to another label set K with |K| < |L| such
that states and operators can be simplified by reducing the
underlying label set. A state space abstraction of the search
problem 〈S0, O, L〉 is denoted as 〈φ(S0), φ(O),K〉. In par-
ticular, the abstraction mapping is non-injective such that
the abstract space (which is the image of the original state
space) is therefore much smaller than the original space. The
framework in (Hernadvogyi and Holte 2000) only applies to
certain kinds of permutation groups, where in our case the
abstract space is obtained in a more general way, since ab-
straction is achieved by projecting the state representation.

Definition 2 Let F be the set of atoms. A planning space
abstraction φ is a mapping from F to F ∪ {true} such that
in each group G either for all f ∈ G : φ(f) = f or for all
f ∈ G : φ(f) = true.

Since planning states are interpreted as conjuncts of
atoms, φ can be extended to map each planning state of the
original space P to one in the abstract space A. In the ex-
ample problem instance we apply two planning space ab-
stractions φodd and φeven. The mapping φodd assigns all
atoms in groups of odd index to the trivial value true and,
analogously, φeven maps all atoms in groups with even in-
dex value to true. All groups not containing a atoms in
the goal state are also mapped to true. In the example,
the goal is partitioned into φeven(G) = {(on c a)} and
φodd(G) = {(on a b), (on d c)}, since the groups G4 to G9

are not present in the goal description.
Abstract operators are defined by intersecting their pre-

condition, add and delete lists with the set of non-reduced
atoms in the abstraction. This accelerates the construction
of the pattern table, since several operators simplify.

Definition 3 Let φ be a planning space abstraction and δφ
be the shortest path between abstract states and/or sets of
abstract states. Furthermore, let G ⊆ F be the goal con-
dition in P . A planning pattern database (PDB) according
to φ is a set of pairs, with the first component being an
abstract planning state S and the second component being
δφ(S, φ(G)), i.e.,

PDB(φ) = {(S, δφ(S, φ(G))) | S ∈ A}.
PDB(φ) is calculated in a breadth-first traversal starting

from the set of goals in applying the inverse of the opera-
tors. Two facts about PDBs are important. When reducing
the state description length n to αn with 0 < α < 1 the
state space and the search tree shrinks exponentially, e.g. 2n
bit vectors correspond to an abstract space of 2αn elements.
The second observation is that once the pattern database is
calculated, accessing the heuristic estimate is fast by a sim-
ple table look-up.

Moreover, PDBs can be reused for the case of differ-
ent initial states. PDB(φeven) and PDB(φodd) according
to the abstractions φeven and φodd of our example prob-
lem are depicted in Table 2. Note that there are only three

((clear a),1)
((holding a),2)
((on b a),2)
((on d a),2)

((on d c) (clear b),1) ((on a b) (clear c),1)
((on d c) (holding b),2) ((clear c) (clear b),2)
((on d c) (on d b),2) ((on a b) (holding c),2)
((on a c) (on a b) ,2) ((clear c) (holding b),3)
((clear b) (holding c),3) ((on a c) (clear b),3)
((on d b) (clear c),3) ((holding c) (holding b),4)
((on b c) (clear b),4) ((on a c) (holding b),4)
((on c b) (clear c),4) ((on d b) (holding c),4)
((on a c) (on d b),4) ((on b c) (holding b),5)
((on a b) (on b c),5) ((on d b) (on b c),5)
((on c b) (holding c),5) ((on a c) (on c b),5)
((on c b) (on d c),5)

Table 2: Pattern databases PDB(φeven) and PDB(φodd) for
the example problem.

atoms present in the goal state such that one of the pattern
databases only contains patterns of length one. Abstraction
φeven corresponds to G1 and φodd corresponds to the union
of G2 and G4.

Disjoint Pattern Databases
Disjoint pattern databases add estimates according to dif-
ferent abstractions such that the accumulated estimates still
provide a lower bound heuristic.

Definition 4 Two pattern databases PDB(φ1) and PDB(φ2)
are disjoint, if the sum of respective heuristic estimates al-
ways underestimates the overall plan length, i.e., for all
S ∈ P we have δφ1

(φ1(S), φ1(G))+ δφ2
(φ2(S), φ2(G)) ≤

δ(S,G).

To include groups, which are not present in the goal state,
into PDB calculations, we generate all possible instances for
the atom set. In fact, this is the approach that is applied in
our implementation.

PDBs are not always disjoint. Suppose that a goal con-
tains two atoms p1 and p2, which are in groups 1 and 2,
respectively, and that an operator o makes both p1 and p2
true. Then, the distance under abstraction φ1 is 1 (because
the abstraction of o will make p2 in group 2 true in one step)
and the distance under φ2 is also 1 (for the same reason).
But the distance in the original search space is also only 1.

Definition 5 An independent abstraction set I is a set of
group indices such that no operator affects both atoms in
groups in I and atoms in groups that are not in I . The ac-
cording abstraction φI that maps all atom groups not in I to
true is called an independent abstraction.

Theorem 1 A partition of the groups into independent ab-
stractions sets yields disjoint pattern databases.

Proof Each operator changes information only within
groups of a given partition and an operator of the abstract
planning space contributes one to the overall estimate only

86

if it changes atoms in available atom groups. Therefore, by
adding the plan lengths of different abstract spaces, each op-
erator on each path is counted at most once. �

For some domains like Logistics operators act locally ac-
cording to any partition into groups, so that the precondition
of Theorem 1 is trivially fulfilled.

Perfect Hashing
PDBs are implemented as a (perfect) hash table with a table
look-up in time linear to the abstract state description length.

According to the partition into groups a perfect hashing
function is defined as follows. Let Gi1 , Gi2 , . . . , Gik be the
selected groups in the current abstraction and offset(k) be
defined as offset(k) =

∏k
l=1 |Gil | − 1 with |Gi0 | = 1. Fur-

thermore, let group(f) and position(f) be the group index
and the position in the group of atoms f , respectively. Then
the perfect hash value hash(S) of state S is

hash(S) =
∑
f∈S

position(f) · offset(group(f)).

Since perfect hashing uniquely determines an address
for the state S, S can be reconstructed given hash(S) by
extracting all corresponding group and position informa-
tion that define the atoms in S. Therefore, we establish a
good compression ratio, since each state in the queue for
the breadth-first search traversal only consumes one inte-
ger. The breadth-first-search queue is only needed for con-
struction and the resulting PDB is a plain integer array of
size offset(k + 1) encoding the distance values for the cor-
responding states, initialized with ∞ for patterns that are
not encountered. Some states are not generated, since they
are not reachable, but the above scheme is more time and
space efficient than ordinary hashing storing the uncom-
pressed state representation. Since small integer elements
consume only a few bytes, on current machines we may gen-
erate PDBs of a hundred million entries and more.

Clustering
In the simple example planning problem the combined
sizes of groups and the total size of the generated pattern
databases PDB(φeven) and PDB(φodd) differ considerably.
Since we perform a complete exploration in the generation
process, in larger examples an automatic way to find a suit-
able balanced partition according to given memory limita-
tions is required. Instead of a bound on the total size of all
PDBs together, we globally limit the size of each pattern
database, which is in fact the number of expected states. The
restriction is not crucial, since the number of different pat-
tern databases is small in practice. The threshold is the pa-
rameter to tune the quality of the estimate. Obviously, large
threshold values yield optimal estimates in small problem
spaces.

We are confronted with a Bin-Packing variant: Given the
sizes of groups, the task is to find the minimal number of
pattern databases such that the sizes do not exceed a certain
threshold value. Notice that the group sizes are multiplied in

Figure 1: Time performances of A* and Enforced Hill
Climbing in the Logistics domain with respect to the PDB
and FF heuristic on a logarithmic scale. PDB construction
time is included in the overall search time.

order to estimate the search space size. However, the corre-
sponding encoding lengths are additive. Bin-Packing is NP-
hard in general, but good approximation algorithms exist. In
our experiments we applied the best-fit strategy.

Results
All experimental results were produced on a Linux PC, Pen-
tium III CPU with 800 MHz and 512 MByte. We chose the
most efficient domain-independent planners as competitors.
In Logistics, the program FF is chosen for comparison and
in Blocks World, the pattern database approach is compared
to the optimal planner Mips.

Logistics
We applied PDBs to Logistics and solved the entire problem
set of AIPS-2000. The largest problem instance includes 14
trucks located in one of three locations of the 14 cities. To-
gether with four airplanes the resulting state space has a size
of about 314 ·144 ·6042 ≈ 8.84223 ·1085 states. All compet-
ing planners that have solved the entire benchmark problem
suite are (enforced) hill-climbers with a variant of the FF
heuristic and the achieved results have about the same char-
acteristics (Hoffmann 2001). Therefore, in the Figures 1 and
2 we compare the PDB approach with the FF-heuristic. In
the enforced hill climbing algorithm we allow both planners
to apply branching cuts, while in A* we scale the influence
of the heuristic with a factor of two.

The effects of scaling are well-known (Pearl 1985):
weightening A* possibly results in non-optimal solution, but
the search tends to succeed much faster. In the AIPS-2000
competition, the scaling factor 2 has enhanced the influence
of the max-pair heuristic in the planner HSP. However, even
with this improvement it solves only a few problems of this
benchmark suite.

The characteristics of the PDB and FF heuristics in Fig-
ure 1 are quite different. The number of expanded nodes

87

Figure 2: Numbers of expansions in A* and Enforced Hill
Climbing for the Logistics domain with respect to the PDB
and FF heuristic on a logarithmic scale. with respect to FF
and A* and one order of magnitude with respect to FF and
hill climbing, while the effect for the number of expansions
is the exact opposite.

is usually larger for the former one but the run time is
much shorter. A* search with PDBs outperforms FF with
hill climbing and branching cuts. The savings are about two
orders of magnitude.

In the example set the average time for a node expansion
in PDB-based planning is smaller by about two orders of
magnitude compared to FF.

On the other hand, in larger problem instances enforced
hill climbing according to the PDB heuristic generates too
many nodes to be kept in main memory. In a few seconds
the entire memory resources were exhausted. This suggests
applying memory limited search algorithm like thresholding
in IDA* and alternative hashing strategies to detect move
transpositions in large search depths. We summarize that hill
climbing is better suited to the FF heuristic while weighted
A* seems to perform better with PDBs. The plan qualities
are about the same as Figure 3 depicts.

Blocks World
Finding approximate plans in Blocks World is easy, 2-
approximations run in linear time (Slaney and Thiebaux
2001). Moreover, different domain-dependent cuts drasti-
cally reduce the search space. Hence, TALPlanner (Kvarn-
strom, Doherty, and Haslum 2000) with hand-coded cuts and
FF with hill climbing, helpful action and goal ordering cuts
find good approximate plans to problems with fifty Blocks
and more. FF using enforced hill climbing without cuts is
misguided by its heuristic, backtracks and tends to get lost
in local optima far away from the goal. We concentrate on
optimal plans for this domain.

Since any n-Tower configuration is reachable from the
initial state, the state space grows exponentially in n, and
indeed, optimizing Blocks World is NP-hard. Graphplan is
bounded to about 9 blocks and no optimal heuristic search

Figure 3: Plan quality of A* and Enforced Hill Climbing
in the Logistics domain with respect to to the PDB and FF
heuristic.

engine achieves a better performance, e.g. HSP with max-
pair is bounded to about 6-7 blocks. Model checking engines
like BDD exploration in Mips and iterative Boolean satisfia-
bility checks in Satplan are best in this domain and optimally
solve problems with up to 12-13 blocks. Tables 4 depict that
PDBs are competitive.

Moreover, better scaling in time seems to favor PDB
exploration. However, in both approaches space consump-
tion is more crucial than time. In the bidirectional symbolic
breadth-first search engine of Mips the BDD sizes grow very
rapidly and large pattern databases with millions of entries
still lead to millions of node expansions. When searching for
plans to 13-block benchmark problems memory resources in
both planning approaches become exhausted.

Other Domains
Gripper (AIPS-1998) spans an exponentially large but well-
structured search space such that greedy search engines find
optimal plans. On the other hand, Gripper is known to be
hard for Graphplan. Both FF with hill-climbing and cuts and
PDB with weighted A* find optimal solutions in less than a
second.

Like Logistics, the NP-hard (Helmert 2001) Mystery do-
main (AIPS-1998) is a transportation domain on a road map.
Trucks are moving around this map and packages are be-
ing carried by the mobiles. Additionally, various capacity
and fuel constraints have to be satisfied. Mystery is par-
ticularly difficult for heuristic search planning, since some
of the instances contain a very high portion of undetected
dead-ends (Hoffmann 2001). In contrast to the most effec-
tive heuristic search planner GRT (Refanidis and Vlahavas
2000), the PDB planning algorithm does not yet incorpo-
rate manual reformulation based on explicit representation
of resources. However, experiments show that PDB search
is competitive: problems 1-3, 9, 11, 17, 19, 25-30 were op-
timally solved in less then 10 seconds, while problem 15
and 20 required about 5 and 2 minutes, respectively. At least

88

Figure 4: Time performance of BDD expoloration and PDB
planning in Blocks World. PDB construction time is in-
cluded in the overall search time.

problem 4,7, and 12 are not solvable. Time performance and
the solution qualities are better than in (Refanidis and Vla-
havas 2000). Scaling the effect of the heuristic estimate re-
duces the number of node expansion in some cases but has
not solved any new problem.

The start position of Sokoban consists of a selection of
balls within a maze and a designated goal area into which
the balls have to be moved. A man, controlled by the puz-
zle solver, can traverse the board and push balls onto adja-
cent empty squares. Sokoban has been proven to be PSPACE
complete and spans a directed search space with expo-
nentially many dead-ends, in which some balls cannot be
placed onto any goal field (Junghanns 1999). Therefore,
hill climbing will eventually encounter a dead-end and fail.
Only overall search schemes like A*, IDA* or best-first pre-
vent the algorithm from getting trapped. In our experiments
we optimally solved all 52 automatically generated prob-
lems (Murase, Matsubara, and Hiraga 1996) in less than five
seconds each. The screens were compiled to PDDL with a
one-to-one ball-to-goal mapping so that some problems be-
come unsolvable. Since A* is complete we correctly estab-
lish unsolvability of 15 problems in the test set. Note that
the instances span state spaces much smaller than the 90
problem suite considered in (Junghanns 1999) with prob-
lems currently too difficult to be solved with domain inde-
pendent planning.

As expected, additional results in Sokoban highlight that
in contrast to the PDB-heuristic, the FF-heuristic, once em-
bedded in A*, yields good but not optimal solutions. BDD
exploration in Mips does find optimal solutions, but for some
instances it requires over a hundred seconds for completion.

Conclusion
Heuristic search is currently the most promising approach
to tackle huge problem spaces but usually does not yield
optimal solutions. The aim of this paper is to apply re-
cent progress of heuristic search in finding optimal solutions
to planning problems by devising an automatic abstraction

scheme to construct pre-compiled pattern databases.
Our experiments show that pattern database heuristics are

very good admissible estimators. Once calculated, our new
estimate will be available in constant time since the esti-
mate of a state is simply retrieved in a perfect hash table by
projecting the state encoding. We will investigate different
pruning techniques to reduce the large branching factors in
planning. There are some known general pruning techniques
such as FSM pruning (Taylor and Korf 1993), Relevance
Cuts and Pattern Searches (Junghanns 1999) that should be
addressed in the near future.

Although PDB heuristics are admissible and calculated
beforehand, their quality can compete with the inadmissi-
ble FF-heuristic that solves a relaxed planning problem for
every expanded state. The estimates are available in a sim-
ple table look-up, and, in contrast to the FF-heuristic, A*
finds optimal solutions. Weighting the estimate helps to cope
with difficult instances for approximate solutions. Moreover,
PDB heuristics in A* can handle directed problem spaces
and prove unsolvability results.

One further important advantage of PDB heuristics is the
possibility of a symbolic implementation. Due to the repre-
sentational expressiveness of BDDs, a breadth-first search
(BFS) construction can be completed with respect to larger
parts of the planning space for a better quality of the esti-
mate. The exploration yields a relation H(estimate, state)
represented with a set of Boolean variables encoding the
BFS-level and a set of variables encoding the state. Algo-
rithm BDDA*, a symbolic version of A*, integrates the sym-
bolic representation of the estimate (Edelkamp 2001). Since
PDBs lead to consistent heuristics the number of iterations
in the BDDA* algorithms is bounded by the square of the
solution length. Moreover, symbolic PDBs can also be ap-
plied to explicit search. The heuristic estimate for a state can
be determined in time linear to the encoding length.

Acknowledgments We thank J. Hoffmann for the So-
koban problem generator, M. Helmert for eliminating ty-
pos, the anonymous referees for helpful comments, and
P. Haslum for fruitful discussions on this research topic.

References
Blum, A., and Furst, M. L. 1995. Fast planning through
planning graph analysis. In IJCAI, 1636–1642.
Bryant, R. E. 1985. Symbolic manipulation of boolean func-
tions using a graphical representation. In DAC, 688–694.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artificial Intelligence 165–204.
Clarke, E. M.; Grumberg, O.; and Peled, D. A. 2000. Model
Checking. MIT Press.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(4).
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge
in planning problems to minimize state encoding length. In
ECP, LNCS, 135–147. Springer.

89

Edelkamp, S., and Helmert, M. 2001. The model checking
integrated planning system MIPS. The Artificial Intelligence
Magazine 22(3):67–71.
Edelkamp, S. 2001. Directed symbolic exploration and
its application to ai-planning. In AAAI Symposium (Model-
based Validation of Intelligence), 84–92.
Fikes, R., and Nilsson, N. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:189–208.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. In Artificial Intelligence Planning and
Scheduling (AIPS), 140–149.
Helmert, M. 2001. On the complexity of planning in trans-
portation domains. In ECP. This volume.
Hernadvogyi, I. T., and Holte, R. C. 2000. Experiments with
automatic created memorybased heuristics. In SARA.
Hoffmann, J. 2000. A heuristic for domain independent
planning and its use in an enforced hill climbing algorithm.
In ISMIS, LNCS, 216–227. Springer.
Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis. In IJCAI. To appear.
Junghanns, A. 1999. Pushing the Limits: New Developments
in Single-Agent Search. Ph.D. Dissertation, University of
Alberta.
Kautz, H., and Selman, B. 1996. Pushing the envelope: Plan-
ning, propositional logic, and stochastic search. In AAAI,
1194–1201.
Korf, R. E., and Felner, A. 2001. Disjoint pattern database
heuristics. Artificial Intelligence.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s cube
using pattern databases. In AAAI, 700–705.
Kvarnstrom, J.; Doherty, P.; and Haslum, P. 2000. Extending
TALplanner with concurrency and resources. In ECAI, 501–
505.
Murase, Y.; Matsubara, H.; and Hiraga, Y. 1996. Automatic
making of Sokoban problems. In Pacific Rim Conference on
AI.
Pearl, J. 1985. Heuristics. Addison-Wesley.
Refanidis, I., and Vlahavas, I. 2000. Heuristic planning with
resources. In ECAI, 521–525.
Slaney, J., and Thiebaux, S. 2001. Blocks world revisited.
Artificial Intelligence 119–153.
Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate nodes
in depth-first search. In AAAI, 756–761.

90

