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Abstract

Background: The Andes-Amazon basin of Peru and Bolivia is one of the most data-poor, biologically rich, and

rapidly changing areas of the world. Conservation scientists agree that this area hosts extremely high endemism,

perhaps the highest in the world, yet we know little about the geographic distributions of these species and

ecosystems within country boundaries. To address this need, we have developed conservation data on endemic

biodiversity (~800 species of birds, mammals, amphibians, and plants) and terrestrial ecological systems (~90;

groups of vegetation communities resulting from the action of ecological processes, substrates, and/or

environmental gradients) with which we conduct a fine scale conservation prioritization across the Amazon

watershed of Peru and Bolivia. We modelled the geographic distributions of 435 endemic plants and all 347

endemic vertebrate species, from existing museum and herbaria specimens at a regional conservation practitioner’s

scale (1:250,000-1:1,000,000), based on the best available tools and geographic data. We mapped ecological

systems, endemic species concentrations, and irreplaceable areas with respect to national level protected areas.

Results: We found that sizes of endemic species distributions ranged widely (< 20 km2 to > 200,000 km2) across

the study area. Bird and mammal endemic species richness was greatest within a narrow 2500-3000 m elevation

band along the length of the Andes Mountains. Endemic amphibian richness was highest at 1000-1500 m

elevation and concentrated in the southern half of the study area. Geographical distribution of plant endemism

was highly taxon-dependent. Irreplaceable areas, defined as locations with the highest number of species with

narrow ranges, overlapped slightly with areas of high endemism, yet generally exhibited unique patterns across the

study area by species group. We found that many endemic species and ecological systems are lacking national-

level protection; a third of endemic species have distributions completely outside of national protected areas.

Protected areas cover only 20% of areas of high endemism and 20% of irreplaceable areas. Almost 40% of the 91

ecological systems are in serious need of protection (= < 2% of their ranges protected).

Conclusions: We identify for the first time, areas of high endemic species concentrations and high irreplaceability

that have only been roughly indicated in the past at the continental scale. We conclude that new complementary

protected areas are needed to safeguard these endemics and ecosystems. An expansion in protected areas will be

challenged by geographically isolated micro-endemics, varied endemic patterns among taxa, increasing

deforestation, resource extraction, and changes in climate. Relying on pre-existing collections, publically accessible

datasets and tools, this working framework is exportable to other regions plagued by incomplete conservation

data.
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Background
Numerous global conservation prioritization schemes

have been developed that are centered on biodiversity,

endemism and vulnerability (e.g. [1-5]). Characterizing

global areas of high biodiversity under threat as “hot-

spots” [1] or “priority ecoregions” [6], for example, has

identified priorities using a variety of weighting schemes

(e.g. [3,4]). However, the information that underlies

these prioritizations in the best cases can consist of

coarse scale species range maps, typically hand-drawn

by knowledgeable researchers from available locality

data [7-10]. In less than ideal cases, lists of known spe-

cies by large areal units such as ecoregions are used

[11]. Although the range maps are convenient accompa-

niments for species accounts in field guides, they are

too coarse for landscape-level conservation planning

(Figure 1). There are often errors in the locality infor-

mation that is used to generalize range maps, and they

typically overestimate areas of occupancy because of the

coarse scale at which they are drawn [12,13]

Global prioritization areas themselves are typically too

large to protect in their entirety (e.g. the Andean ‘hot-

spot’ sensu [1], covers an area over four times the size

of Germany and crosses over seven Andean countries),

and are not practical nor intended for use in national or

departmental planning. For many data-poor countries

however, global datasets such as these are the only con-

sistent estimates of biodiversity that are available. Effec-

tive on-the-ground conservation efforts and decisions

require planning and biodiversity information at a much

finer scale [14].

Endemic species are restricted to a particular geo-

graphic area-occurring nowhere else-and are important

components in most global conservation prioritizations.

A focus on endemic species richness can provide unique

information about biodiversity patterns [3,15] compared

to all-encompassing species richness that is dominated

by generalist (non-endemic) species [4], which are typi-

cally the lowest priority for conservation. Areas high in

endemism are especially valuable because they may

represent areas of high past speciation in evolutionary

hotspots [16]. The forces that create areas of high spe-

cies endemism and richness are still not well under-

stood, which is one argument for their preservation for

further study [17]. Another reason for preservation is

that these areas may function as species refugia during

future climate changes, as they may have in the past.

Globally, areas of high endemism are currently underre-

presented by the protected area network [2].

The Andes region of South America harbours one of

the largest assemblages of endemic plant and animal

species and is one of the most biodiverse and threatened

areas of the world [1-5]. Explanations for such a con-

centration of endemics include past climate shifts, geo-

tectonic events, modern ecological interactions, and

limited dispersal. This area was historically isolated from

the lowlands by the Andean uplift, which created a com-

plex mosaic of high mountains and deep inter-Andean

valleys. Researchers generally agree that this ancient

uplift and isolation were important drivers in speciation,

resulting in high concentrations of endemic birds

[18-22], mammals [23], and plants [24-27]. Analyses of

Andean amphibians are limited but indicate similar dri-

vers of environmental divergence [28-30] and coloniza-

tion from different regions [31]. Recent climatic stability

influenced by topography has created ideal conditions

Figure 1 Comparison of hand drawn vs. modelled species distribution map. Hand-drawn range map (a) used in many continental studies

with (b), a modeled species distribution for Cycanolyca viridicyanus in southwestern Peru (Vilcabamba). National protected areas (white), and

department boundaries (black lines) and elevation as backdrop.
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for high biodiversity (very humid areas) and endemism

(dissected topography creating isolated dry valleys) [32].

Despite the agreement among scientists about the ori-

gins and existence of the extremely high endemic diver-

sity of this region, it remains scientifically understudied

[33]. We have very limited knowledge of current patterns

of Andean species distributions and diversity within this

globally prioritized area [14]. National-level efforts to

prioritize conservation in Peru and Bolivia have pre-

viously explored gaps in protected area coverage, but

have been hindered by the limited information available

on species status and distribution [34,35]. The informa-

tion available is primarily of bird diversity patterns rather

than other taxon groups [36-40]. Yet even the most

recent endemism studies of birds were delimited by a 1/

4° grid (~28 × 28 km) as the unit of analysis [36,37]. Stu-

dies of the spatial pattern of Andean endemic mammal

richness are lacking, possibly due to unstable taxonomy

and incomplete knowledge about distributions [41]. A

worldwide distributional analysis at a coarse scale with a

1° grid (~111 × 111-km) showed a relative concentration

of endemic mammal species along the east side of the

Andes in Peru and northern Bolivia [5]. As well, a regio-

nal study in Peru corroborated this pattern [42]. We are

unaware of spatially explicit analyses of amphibian ende-

mic patterns, although several authors have suggested

that higher concentrations of endemics should be found

in montane regions [43-45]. Knowledge of endemic

plants in this region varies widely by taxonomic group.

Analyses of a few better-known groups suggest peaks of

diversity and endemism in the eastern Andes [17,46-49].

Vegetation and land cover maps of this region have vari-

able coarse spatial and classification detail; different

regions employ distinct classification schemes and meth-

ods that make joining maps along borders difficult.

The development of computer-aided models to predict

species distributions presents an opportunity to develop

distribution information at the scale necessary for in-coun-

try conservation planning [50,51]. With the goal of produ-

cing relatively fine resolution species and ecosystem data

within a repeatable framework of methods, we created

geographic distributions of endemic birds, mammals,

amphibians, plants, and mapped their ecosystems on the

eastern slope of the Andes in Peru and Bolivia at a scale

applicable to conservation planning (1 km2 grid, less than

< 1/60°, 1:250,000 - 1:1,000,000). This multiple taxon

approach enables a broader characterization of diversity,

given that one taxonomic group or species is not always

representative of other taxa [15,52,53]. By geographically

integrating this data, we identify areas of high endemic

concentrations and irreplaceable areas (greatest number of

narrowly distributed endemics) across the study area [54].

We characterize the ecological systems where endemic

species reside and perform a gap analysis to identify

species ranges, endemic concentrations and ecological sys-

tems currently located outside of established national-level

protected areas. In addition to pinpointing candidate areas

for future protection efforts, the results highlight several

challenges to conservation in the region.

Methods
In addition to the following descriptions of endemic dis-

tribution modelling, mapping of ecological systems and

geographical analysis of all the overlapping datasets, the

Supporting Information Additional Files 1, 2, 3, 4, 5, 6,

contain further method details.

Study Area

Our study focused on the Amazon basin of Peru and

Bolivia, from treeline in the eastern Andes (~3500 m),

downslope to the Amazon lowlands and extending to the

Brazilian border (Figure 2). The southern limit extends to

the edge of the southern subtropical uplands where the

biogeographic province of the chiquitanía begins. The

area hosts a wide range of ecosystems from the wetlands

of the Beni savanna and the Iquitos várzea, to xeric habi-

tats of inter-Andean valleys and humid montane forests

along much of the eastern Andean slope. Many areas are

difficult to access because of lack of transportation infra-

structure, entrance restrictions into indigenous lands and

patrolling of illegal crops [36]. The study area extends

from 5°23’ to 18° 15’ S latitude and from 60° 23’ to 79°

26’ W longitude and covers 1,249,282 km2.

Endemic Species and Locality Data

More than a century of collecting in South America has

yielded large numbers of plant and animal specimens

that provide locality data for species geographic distribu-

tion predictions. To represent a diverse suite of species,

we modelled the geographic distributions of all bird,

mammal, and amphibian species that are endemic to

our study area [7-9] (Table 1). We identified which spe-

cies were endemic based on pre-existing hand drawn

range maps [8,9,55] and consultation with regional

experts. We also modelled distributions of endemic

plants but limited our analysis to 15 representative focal

groups (families or genera) generally well known, and

relatively well sampled in both countries (details on cri-

teria for inclusion can be found in Additional File 1):

Acanthaceae, Anacardiaceae, Aquifoliaceae, Brunellia-

ceae, Campanulaceae, Chrysobalanaceae, Cyatheaceae,

Ericaceae, Inga (Fabaceae), Mimosa (Fabaceae), Loasa-

ceae, Malpighiaceae, Marcgraviaceae, Fuchsia (Onagra-

ceae), and Passiflora (Passifloraceae). As with the

vertebrates, we modelled distributions for all species in

these groups that are endemic to the study area.

For each of the 782 species of endemic plants and ani-

mals, we compiled locality records from an exhaustive

Swenson et al. BMC Ecology 2012, 12:1

http://www.biomedcentral.com/1472-6785/12/1

Page 3 of 18



search of specimen records in 81 local and international

natural history collections and herbaria, published

records, and for birds and mammals only, observational

data. Specimen searches were carried out 2004-2006

with Peruvian, Bolivian and international institutions,

individuals, and from published sources (see Additional

File 5). The majority of specimens were collected in the

1990’s and 2000’s, yet dates ranged wider for published

sources that we validated with national gazetteers of col-

lecting locations [56]. The oldest localities for example,

were collected for mammal species in the early part of

this century [57]. Because many specimen labels did not

include global positioning system-based coordinates for

the collecting locations, we identified the most reliable

localities based on their described location and geo-

referenced them using standardized methods [58], and

additional resources such as consultation with the col-

lector, and geographic gazetteers (e.g.[56]). To further

assure the creation of an accurate locality database, we

then asked taxonomic specialists familiar with the spe-

cies and geography to review mapped localities to

ensure the creation of an accurate locality database. We

buffered the study area by 100 km for the endemic spe-

cies data gathering and modelling to avoid edge effects.

Predictive Distribution Modelling

We used spatial environmental layers describing climate,

topography, and vegetation within our study area at 1-

Figure 2 Study area. The Amazon basin of Peru and Bolivia with current protected areas. Protected areas information from INRENA-Peru, and

FAN-Bolivia, elevation from Shuttle Radar Topography Mission.

Table 1 Summary of endemic species groups and modeled ranges

Species
group

Number
species

Number
genera

Total
number
localities

Median number
records per species

No. data sources
collaborating
Institutions

Number Maxent
models formed

Median
distributional area,
(km2)

Amphibians 177 30 1060 2 9 85 399

Birds 115 69 2437 15 15 99 21,075

Mammals 55 29 618 7 12 47 24,156

Plants 435 66 3040 3 50+ 264 3543

Swenson et al. BMC Ecology 2012, 12:1

http://www.biomedcentral.com/1472-6785/12/1

Page 4 of 18



km2 resolution together with the field locality data to

develop species distribution models (Table 2). The

WorldClim climate data [59] is currently the best avail-

able for this region yet it has its own inaccuracies as

will any future downscaled version, because meteorolo-

gical information is scarce in many areas of the study

area. To maintain consistent spatial resolutions, we

resampled the most accurate elevation data for the

region (NASA’s Shuttle Radar Topography Mission,

SRTM [60]) to match the 1-km2 resolution of the cli-

mate data. Vegetation characterizations were made with

a 3-year seasonal time series of satellite-derived MODIS

vegetation indices and per cent tree cover [61] at the

same resolution. Mapping of detailed ecological systems,

discussed below, was conducted separately as an inde-

pendent characterization at a higher spatial resolution

based on NASA’s Landsat Thematic Mapper satellite

sensors.

There are drawbacks to predictive distribution model-

ling-for example, models may overestimate species’ geo-

graphic ranges [62,63]-as well as advantages, such as

reducing the effect of uneven collecting efforts [64].

Nonetheless, distribution modelling is arguably the best

approach at present when reliable locality and environ-

ment data are available [65]. We chose Maximum

Entropy ("Maxent”) [66], a statistical mechanics

approach, as our modelling algorithm because of its

documented success at modelling species with limited

locality data, a common problem when working with

endemic species [65,67-69]. To ensure that Maxent was

best suited to modeling distributions of Andean species,

we compared the success of Maxent and two new pro-

mising methods: Mahalanobis Typicalities (a method

adopted from remote sensing analyses), and Random

Forests (a model averaging approach to classification

and regression trees). We found that Maxent produced

more consistent predictions across varying climatic con-

ditions for 16 species [67]. Two to seven taxonomic spe-

cialists reviewed each model output to determine

thresholds to convert continuous predictions into pre-

sence-absence maps based on known areas of absence,

and to remove areas of known over-prediction (i.e.,

where the species was known not to occur). Specialist

review is especially necessary when modelling with small

sets of locality data [52,67,70]. For species known from a

single or very few localities, we ran “rule-based” models

(instead of Maxent) consisting of the geographic inter-

section of known ranges in elevation and other environ-

mental variables such as temperature and precipitation.

Areas of Endemism and Irreplaceability

Traditionally, ecologists have overlain distribution maps

of species to identify areas of high endemism or species

richness [39]. We followed this approach to identify

areas of high endemism for each vertebrate and plant

group. To identify discrete areas of high endemism we

chose an arbitrary threshold value of two-thirds the

maximum number of overlapping species for each group

and compared these patterns with previous studies,

where they exist. This simple threshold could be chan-

ged depending on the desire to be more or less inclusive

in identifying areas of high endemism.

To highlight areas harbouring species with very

restricted ranges, and therefore of potentially greater

conservation significance, we created maps of summed

irreplaceability for each group using the C-Plan Software

[71]. Summed irreplaceability is the likelihood that a

given analysis unit should be protected to achieve a spe-

cified conservation target for the study area [54]. We

used 10-km2 analysis pixels and defined 25 of these pix-

els for each species as a conservation “target”. If a given

species was found present in < 25 of the 10-km2 pixels,

Table 2 Environmental predictors and data sources for species distribution modelling

Variable Data Source

Mean annual temperature, mean temperature diurnal range,
isothermality, precipitation of wettest and driest month, precipitation
seasonality

Worldclim, (Hijmans et al. 2005. www.worldclim.org), 1-km resolution

Topography: Elevation Shuttle Radar Topography Mission digital elevation data provided by
CGIAR (http://srtm.csi.cgiar.org/) resampled to 1-km resolution

Slope Degree of slope (maximum rate of change in elevation from each pixel to
its 8 neighbors) derived from the SRTM digital elevation data

Topographic exposure Expresses the relative position of each pixel on a hillslope (e.g. ridge,
valley, toe slope). Using methods of Zimmermann (2000) on the SRTM
digital elevation data with three neighborhood windows of 3x3, 6x6 and
9x9

Percent tree cover MODIS global vegetation continuous fields sourced from http://glcf.umiacs.
umd.edu/data/modis/vcf/data.shtml (Hansen et al. 2003) 1-km resolution,
and summarized within 3- and 5- km moving windows

Enhanced Vegetation Index (EVI)
Principal component 1
Principal component 2

MODIS vegetation indices 16-Day data product sourced from the NASA
EOS data gateway; Principal component analysis of 3 years of 16-day
composites. MODIS EVI data summarized within 5 km moving window
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we set the target as the number of pixels in which the

species occurs. For each species, irreplaceability for each

pixel ranges from 0 to 1. Low values of irreplaceability

indicate that for a species there are many other (replace-

able) sites that may be conserved (in other words that a

species occurs in many pixels), whereas high values indi-

cate there are very few sites available (irreplaceable)

because the species have very narrow ranges. The final

irreplaceability number is the result of summing irrepla-

ceability values for all species occurring at each location,

thereby emphasizing the locations with the higher num-

ber of narrow-range endemics.

Ecological Systems

To complement the endemic species information, we

produced a detailed map of natural vegetation types at a

scale of 1:250,000 (25 ha minimum mapping unit). We

applied a hemisphere-wide vegetation classification sys-

tem [72] that is the terrestrial classification employed as

a standard in North America in U.S. federal mapping

projects [73,74] and an emerging standard in Latin

America [75]. The classification relies on the concept of

terrestrial ecological systems [73], which are groups of

vegetation communities that tend to co-occur in land-

scapes as a result of the action of common ecological

processes, substrates, and/or environmental gradients.

The ecological system classification allows for effective

integrated vegetation mapping, at desired levels of the-

matic detail, permitting planners to prioritize across

borders and across large regions. The species distribu-

tion models did not use this map as a predictor variable,

thus the map provides an independent characterization

of areas where endemics reside. In addition to analysing

protection gaps and representativeness of the systems,

we examined the overlap between ecological systems

and areas of high endemism. Our goal was to identify if

any systems were disproportionally represented in ende-

mic areas compared to their distributions across the

study area.

To create the ecological systems map, we incorporated

existing vegetation maps where possible, and with in-

country mapping teams of local field and botanical

experts; we applied one cohesive classification system

across the two countries. The mapping relied on field

work, visual interpretation of Landsat TM and ETM+

satellite images in the Peruvian lowlands and areas of

Bolivia, and spatial modelling and image classification

for upland areas in Peru. Though more advanced map-

ping methods exist (e.g., [76]), we found our methods to

be appropriate for these landscapes and the limited data

availability, as well as more accessible to the in-country

mapping teams. For ecological system characterization

as well as accuracy assessment, we developed a rapid

field survey protocol for more than 2000 points across

the study area using spatial optimization to identify can-

didate clusters of points. Field observations and aerial

transects of high-resolution digital photos of remote and

inaccessible areas provided the basis for map validation

and accuracy assessment. Details of the mapping meth-

ods, classification system and accuracy assessment can

be found in Additional File 1.

Gap Analysis

We conducted a gap analysis (sensu [77]) by examining

the representation of terrestrial ecological systems, spe-

cies distributions, and areas of high endemism and irre-

placeability with respect to existing national-level

protected areas. We included all designated nationally

administered areas corresponding to World Conserva-

tion Union (IUCN) categories I-VI (IUCN 1994), as well

as those that have not yet been scored against the IUCN

criteria. This covered national parks, communal

reserves, protected forests, integrated management

areas, and other national sanctuaries. Rather than limit-

ing our analysis to those areas with IUCN categories

reflecting the strictest levels of protection, we took an

inclusive approach, recognizing that in this region effec-

tive protection can vary in any category. We used digital

maps of protected area boundaries from 2007 provided

by our in-country collaborators as they were more cur-

rent than the World Database of Protected Areas

WDPA [78] at the time. National level protected area

boundaries have not changed in the region at the time

of publication of this article; however improvements

have been made to the WDPA information. Regional

protected areas have experienced shifts in jurisdiction,

area, and level of protection. While including regional

protected areas in this analysis would be advantageous,

information on protection levels and boundaries of

regional areas is incomplete in some areas and inconsis-

tent across country borders.

Results
The datasets and individual species maps for most of

the analyses described here are publically accessible (in

both graphic and geospatial format) on the project web-

site (http://www.natureserve.org/andesamazon). The

supporting Additional Files 1, 2, 3, 4, 5, 6, contain sup-

plementary results in detail.

Endemic Species

We compiled 7154 unique records of existing specimen

localities to create distribution models for all 115 birds,

55 mammals, 177 amphibians, and 435 plants included in

our endemic species analysis (Table 1; see Additional File

1). Sample sizes of unique localities for modelling distri-

butions of individual species were highest for birds, fol-

lowed by mammals, plants, and amphibians. There were
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3 mammal and 3 bird species having just one reliable

locality, whereas 123 plant and 65 amphibian species

were limited to one location, none of which were pre-

dicted with distribution modelling. Modelled distribution

sizes varied from just 2 km2 for the plant Centropogon

bangii, to 690,992 km2, or 55% of the study area, for the

frog Colostethus trilineatus. On average, endemic mam-

mals tended to have the largest geographic distributions,

followed by birds, plants and amphibians (Figure 3).

Maxent models produced satisfactory distribution maps,

according to expert reviewers and model evaluation tech-

niques, for 67% of the species. We produced distributions

for the remaining species, which had too few known

localities for Maxent models, using rule-based models.

Expert review was essential for eliminating areas from

the distribution where the species was known not to

occur for reasons of competition or geographic isolation.

Areas of Endemism and Irreplaceability

Areas with the highest numbers of endemic species lie

along mid to upper elevations on the eastern slope of

the Andes, yet patterns vary by taxonomic group. Both

birds (25-38 species per 1-km2 grid cell) and mammals

(17 - 20 species per cell) followed this trend (Figures 4a,

b) with peaks of endemic richness encompassing eleva-

tions between 2500 and 3000 m and extending almost

the entire length of the study area. Amphibians, by con-

trast, displayed peaks of endemism (21 - 29 species per

1-km2 cell) on lower slopes, between 1000 and 1500 m

elevation. These areas were concentrated in southern

Peru, northern Bolivia, and in an isolated endemic area

in the northern Peruvian department of San Martin

(Figure 4c). Combining all vertebrate species reveals

high concentrations between 2000 and 3000 m elevation

(Figure 5) with highest concentrations (75 to 78 overlap-

ping species) in Bolivia’s Cochabamba and Tiraque

Cordilleras (mountain ranges) and extensive areas of

high value along Peru’s Vilcabamba Cordillera. We

found that the different plant groups varied widely in

endemic patterns among themselves and with respect to

vertebrates. Areas of high Fuchsia endemism, for exam-

ple, were at similar elevations as birds and mammals,

but with local concentrations in the departments of

Cusco (Peru), and Cochabamba (Bolivia) (Figure 4d).

Endemic species of Aquifoliaceae, Chrysobalanaceae,

Inga, Loasaceae, and Malpighiaceae were concentrated

in the northern portion of the study area, whereas ende-

mic Brunelliaceae, Campanulaceae, Ericaceae, Marcgra-

viaceae, Mimosa, and Passifloraceae were concentrated

in the south. We found concentrations of endemic

Acanthaceae in both the north and south. Endemic spe-

cies of Anacardiaceae, Chrysobalanaceae, Inga, and Mal-

pighiaceae were concentrated in the lowlands, whereas

Acanthaceae and Cyatheaceae occurred largely at mid

elevations (around 1000 m); endemic species in the

remaining nine groups occur mostly above 2000 m

(maps of all plant species can be found here: http://

www.natureserve.org/aboutUs/latinamerica/maps_plant-

s_intro.jsp).

Summed irreplaceability analysis which highlights

areas with the greatest numbers of narrow-ranging spe-

cies, shows different key areas than the endemic areas

analysis. Similar to the endemic areas, many of the

peaks of summed irreplaceability occurred in the higher

elevation slopes along the Andean cordillera (Figure 6a-

d, areas over threshold value shown). Endemic richness

of birds and mammals overlapped more than other

groups yet summed irreplaceability showed differences

between these two taxonomic groups, as well as for

amphibians. The northern portion of the study area in

the Peruvian department of Amazonas (Cordillera de

Colán and Alto Mayo) is highly irreplaceable for plants,

amphibians, and birds but was not identified as an ende-

mic area by the simple overlay of species ranges (Figures

4a, c, d); this emphasizes the large number of very

restricted range species that occur there. Summed irre-

placeability also highlighted some lowland areas for spe-

cies groups in which most other species occurred at

higher elevations. For instance, birds have high irrepla-

ceability in north-eastern Peru, where a number of spe-

cies are restricted to the lowland white-sand forests near

Iquitos. Similarly, there are two restricted range primate

species in the Beni savanna of Bolivia, emphasizing the

irreplaceability of that region for mammals. Detailed

descriptions of locations of the areas of high endemism

and irreplaceability for all species groups can be found

in Young et al. (2007).

Discrete centres of endemism (Figure 7), covered

23,844 km2 for birds, 11,655 km2 for mammals, 2781

km2 for amphibians, and 67,676 km2 for plants. (We

Figure 3 Distribution of predicted range sizes by species

groups
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only included 13 groups for plants as Anacardiaceae and

Cyatheaceae did not have more than two co-occurring

endemic species anywhere in the study area.) Combining

all plant and animal endemic areas results in a region

covering 78,790 km2 or 6.3% of the study area. In con-

trast, the intersection of endemic areas for the three

vertebrate groups covers a mere 140 km2, highlighting

differences among these groups.

Ecological Systems

We distinguished 91 unique ecological systems and

complexes across the basin, ranging from flooded

 

 
 
 
 
 
 
 
 
 
 
 

b)  a)  

c)  d)  

Figure 4 a-d - Endemic species richness. Overlapping distribution maps for different species groups: a) birds, b) mammals c) amphibians d)

Fuchsia genus plant species. Fuchsia is shown as an example of one of the 15 groups modelled (See http://www.natureserve.org/andesamazon

for maps of individual species and all plant groups).
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savanna systems to xeric shrub types (Figure 8 shows an

area in detail for northern Peru; see [79] for a descrip-

tion of each ecological system). The systems represent

unique vegetation communities, further distinguished by

bioclimate, geomorphology, substrate, flooding regime,

river type (black, white, mixed water) and regional com-

positional differences. Half of the ecological systems

consist of different forms of wetlands and cover 30% of

the study area and systems with bamboo-dominated for-

ests cover over 71,500 km2. Forty-two of the ecological

systems are unique to the Amazon basin of Peru and

Bolivia. The Andean uplands region of Peru, typified by

steep elevation gradients and subsequent vegetation

zonation [80], represents only 12% of the study area yet

harbours 37% of the different ecological systems. Accu-

racy of the ecological system map varied by region and

the type of validation data. For detailed classes of ecolo-

gical systems (not including areas converted to human

uses), accuracy ranged from 62 to 91% by mapping

region, while a map legend of 20 coarser groupings of

systems defined by ecological similarity had accuracies

ranging from 81 - 90% (See Additional File 1 and 4).

Combining the areas of endemism of the three verte-

brate groups creates a region covered by 16 ecological

systems (Table 3). The montane pluvial forest of the

Yungas (montane and cloud forests of the Andean-Ama-

zon slope in Peru and Bolivia) covers ~36% of the verte-

brate endemic area, yet only makes up 1.7% of the study

area. This ecosystem together with the three other Yun-

gas forest types, (lower mountain pluvial forest, montane

humid pluviseasonal, upper montane pluvial forests)

cover an overwhelming proportion, (77%) of the verte-

brate endemic areas but themselves cover just 7% of the

study area. Ecological systems that occurred in highly

irreplaceable areas, were more evenly distributed in

terms of system type (Table 3 second column); western

Amazon sub-Andean evergreen forest covered the high-

est percentage (12.6%) of highly irreplaceably areas

followed by the Yungas lower mountain pluvial forest

(9.3%).

Gap Analysis

National protected areas cover approximately 12% of the

study area, resulting in variable levels of protection for

endemic species and their ecosystems. Of the endemic

species examined, 327 (42%) have less than 10% of their

distributions within protected areas (Table 4 see Addi-

tional File 3). About a third of all endemic species (226)

occur completely outside of protected areas. As for dis-

crete areas of endemism, amphibian areas receive the

greatest protection: 67% of the area occurs within exist-

ing protected areas. Protection for the other endemic

areas was lower (birds, 7%; mammals, 29%; plants, 24%).

Only 20% of the combined endemic centres occurred

within national-level protected areas (Figure 7). Fewer

than 20% of all combined irreplaceable areas are under

national protection, with protection varying by species

groups (birds, 17%; mammals, 18%; amphibians, 17%;

plants, 15%) (Figures 6a-d). Five of the seventeen ecologi-

cal systems that cover the areas of endemism (Table 3)

have less than 5% of their extents protected across the

study area. About half of the 91 ecological systems have

10% or less of their extents covered by protected areas,

with 26 of these systems having less than 2% under legal

protection (Table 5; Figure 9; see Additional File 3).

Several areas of endemism and irreplaceability without

current national-level protected status are worth highlight-

ing (Figure 7). In northern Peru, areas near the cities of

Iquitos and Tarapoto host unique concentrations of ende-

mic plants. The Tarapoto region also has a large irreplace-

able area for amphibians. The Carpish Hills in the

Department of Huanuco host many endemic plants

(Acanthaceae, Aquifoliaceae and Fuchsia) and are highly

irreplaceable for endemic birds (up to 32 ranges overlap)

but are completely unprotected. The Cordillera de Vilca-

bamba is a major area of endemism for birds, mammals

and plants (Fuchsia). It also constitutes the largest cohe-

sive irreplaceable area for birds and mammals in the study

area, and is highly irreplaceable for some plants. Currently

the Cordillera of Vilcabamba has only one protected area,

the Machu Picchu Historical Sanctuary, which covers just

326 km2, and is highly impacted by tourism. The north-

eastern corner of the Department of Puno has numerous

endemic birds and mammals and is also unprotected.

However, many of the ranges of these species extend into

Bolivia where they are protected in Madidi National Park.

In Bolivia, the cordilleras near La Paz have high levels

of bird, mammal and plant endemism (8 of the 13 plant

groups analysed), and scored as highly irreplaceable for

endemic mammals and plants. Most of these cordilleras

are not protected, although a small area that is irre-

placeable for amphibians coincides with the 608-km2

Endemic Vertebrate Richness

78 overlapping species

> 3 overlapping species

0 150 Km

Figure 5 Endemic vertebrate species richness . Combined

endemic mammal, bird, and amphibian richness over a three-

dimensional oblique perspective. Viewpoint is from northeastern

Peru looking south across the Amazon basin towards the southern

Peruvian and northern Bolivian Andes.
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Cotapata National Park (Figure 5). In central Bolivia,

unprotected endemic areas for birds, mammals, and

amphibians occur in the Cordillera de Cocapata-Tiraque

and Cochabamba Department, between protected areas.

Discussion
Our results, at a conservation practitioner’s scale, iden-

tify geographic areas in the eastern slopes of the Peru-

vian and Bolivian Andes with high concentrations of

a) b)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

d)  c)  

Figures 6 a-d - Summed irreplaceability analysis for different species groups; a) birds, b) mammals c) amphibians d) plants from all 13

groups.
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endemic species, areas with high irreplaceability, gaps in

protection for both species and ecosystems, and ecologi-

cal systems where these endemic species reside. Our

focus on a variety of vertebrate and plant groups under-

lines the variation in spatial distribution patterns among

different taxa. The geographical extents and levels of

current protection of the ranges of species, endemic

areas, irreplaceable areas, and key ecological systems

also vary widely.

Mapping species distributions is inherently limited in

terms of a true representation of biodiversity. As a one

dimensional map of potential habitat based on climate,

elevation and vegetation, the distribution modelling

omits species interactions such as predation and compe-

tition, effect of human edges along habitat, and the

effects of climate change [63,81]. However it is a large

step forward for this region where current conservation

analyses are obliged to rely upon generalized hand-

drawn maps of species ranges, or species lists for very

large multi-country geographical units (e.g. Hotspots or

Ecoregions) that were not intended nor appropriate for

regional or landscape level applications [11]. Our map-

ping of ecological systems, for example, identified ~90

ecological systems; the same area is covered by parts of

12 ecoregions (sensu [82]).

The locations of high endemism (Figure 4) agree with

past studies for taxa that have been examined pre-

viously, yet earlier studies were conducted with much

less data availability and at much coarser spatial resolu-

tion. The high levels of endemic bird richness found in

the northern part of the study area are consistent with

previous work [36,40,83]. However, our study revealed

previously unrecognized areas of bird endemism in

Peru: the southern Huánuco region, the western Cordil-

lera de Vilcabamba, and the region along the Río Mapa-

cho-Yavero east of Cuzco (Figure 4, 7; see [84] for

details). This study is the first to reveal detailed patterns

of endemic species for mammals and amphibians (see

[85] for location descriptions), and therefore few com-

parisons with past studies can be made. However the

Figure 7 Biodiversity indicators. Discrete centres of vertebrate endemism and high levels of summed irreplaceability (all species groups), and

ecological systems with less than 10% of their ranges protected.
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areas of high endemic mammal richness in Peru corro-

borate the one regional study of similar scope [42] and

the mid-elevation concentration of endemic amphibians

coincides with the less spatially explicit suggestions of

[44] and [45]. Centres of plant endemism varied among

groups and families, yet the pattern for one group (Eri-

caceae) did correspond to a previous study [49]. Other

existing analyses use such coarse resolution (e.g., the

1°×1° Flora Neotropica grid [47]) that comparisons are

too general to be meaningful. For most plant groups,

this study is the first to assess spatial patterns of ende-

mism in the eastern Andean basin of Peru and Bolivia.

Despite the increased level of detail in spatial scale

that our dataset provides, continued work needs to

Figure 8 Ecological systems detail of subarea in northern Peru.
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focus on refining these biodiversity data to even finer

spatial scales (e.g. 1:100,000) and higher levels of accu-

racy. The dataset and analyses we have produced are

tied to the time of specimen collections and to the qual-

ity of available data. As more specimen locations are

collected in the future with increasingly accurate loca-

tional and elevational information (using a precise global

positioning system), distribution models could be re-run

and models validated. Geographical collection bias, a

problem for presence-only distribution models could be

addressed in future modelling efforts by the selection of

pseudo-absence data having similar bias as the presence

data [86]. More precise geographical climate data could

refine the spatial resolution of model predictions; there

will be an increasing prevalence of ‘downscaled’ geogra-

phical climate data thanks to higher spatial resolution

digital elevation models (SRTM and ASTER). However

the overall limitation is the lack of adequate meteorolo-

gical stations in the region. Other layers that would be

useful to incorporate upon their refinement would be a

characterization of soils or geology. We successfully

modelled all endemic vertebrates yet, additional models

of plant species distributions should be realized. Consid-

ering there are over 5000 endemic plant species in the

country of Peru (of which approximately 3200 fall

within the altitudinal range of our study area) [87], our

435 species represents a small fraction of endemics to

Peru and/or Bolivia in the Amazon watershed.

Our country wide analysis could be refined to depart-

ment scale using land tenure information and local to

regional protected areas and resource concessions.

Table 3 Ecological systems that overlap vertebrate endemic areas and irreplaceable areas.

Ecological system Percent of endemic
area covered by

system

Percent of irreplaceable
areas covered by system

Percent of study area
covered by system

Percent of system
range that is
protected

Montane pluvial forest of the Yungas 35.7 1.3 1.7 34

Lower montane pluvial forest and palm
grove of the Yungas

16.1 9.3 3.5 41

Montane humid pluviseasonal forest of
the Yungas

14.9 6.3 1.1 13

Upper montane pluvial forest of the
Yungas

10.4 1.4 0.6 22

Upper montane pluviseasonal forest of
the Yungas

5.2 2.6 0.6 9

Converted lands 4.6 14.7 6.0 4

Low montane subhumid pluviseasonal
forest of the southern Yungas

3.3 0.8 0.6 16

Lower montane humid pluviseasonal
forest of the Yungas

3.3 2.3 0.8 18

Southwestern Amazon subandean
evergreen forest

2.8 5.2 5.9 42

High-Andean and upper montane pluvial
grassland and shrubland of the Yungas

2.3 3.4 0.4 30

Western Amazon subandean evergreen
forest

0.0 12.6 5.0 38

Southwestern Amazon piedmont forest 0.0 7.4 2.6 39

Southwestern Amazon subandean
evergreen seasonal forest

0.0 5.6 1.7 48

Western Amazon semideciduous azonal
forest

0.0 5.4 1.0 1

Lower montane humid pluviseasonal
forest of the Yungas

0.0 2.3 0.8 18

Lower montane pluvial forest of the
Condor Mountain Range

0.0 2.0 0.2 42

Systems shown cover at least 2% of vertebrate endemic (2,7676 km2) or irreplaceable areas (150,500 km2); ordered by coverage of endemic areas.

Table 4 Coverage of endemic species ranges by national-

level protected areas; IUCN l - VI (IUCN, 1994)

Percent range in IUCN I-VI
protected area

Birds Mammals Amphibians Plants

> 75 3 3 21 15

51 to 75 5 2 11 23

26 to 50 40 23 33 97

10 to 25 44 13 29 92

< 10 23 14 83 207

No protection 5 5 72 144

Total number of species 115 55 177 435
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Current maps of forest deforestation and degradation

would aid in calculating the remnant ranges for each

species as well as ecological systems. Further analysis

could be made in terms of the complementarity of spe-

cies assemblages and their relationship to ecological sys-

tems and levels of protection, whose results could

further guide priorities. However, the greater battle for

biodiversity conservation lies in managing elements

beyond our datasets and analyses, as described below.

The geographical patterns of endemism, irreplaceabil-

ity, and ecosystems revealed here pose several challenges

for conservation planning in the region (Figure 7). The

most obvious challenge is the geographic configuration

of the locations of endemic or irreplaceable areas.

Although we mapped only a small subset of the biodi-

versity that occurs in the region, we found striking geo-

graphic differences in endemic species concentrations

across taxonomic groups. The difficulty of using surro-

gates of one species group for another has been recog-

nized [15,52,53], and our findings underscore the need

for a large portfolio of protected areas and other protec-

tion mechanisms to conserve diverse elements of

biodiversity.

Second, the gap analysis demonstrates that many areas

where concentrations of endemic species occur remain

unprotected today. Considering ongoing threats in the

region from infrastructure development [88], oil extrac-

tion [89], gold mining [90,91], illicit crops [36], and the

continually advancing agricultural fronts, more carefully

situated protected areas and novel land use regulation

strategies will be necessary to safeguard substantial

amounts of biodiversity.

Third, although we use protected area coverage to

evaluate conservation coverage, we acknowledge that

protection status does not necessary translate into actual

protection on the ground. Indeed, resource extraction

and degradation is continuing in many legally protected

lands in the study area [92]. Nevertheless, these reserves

have the potential to protect important segments of

endemic and irreplaceable areas, suggesting that

strengthening the capacity of relevant authorities to

improve protection is an important and continuing

challenge.

Fourth, large reserves will probably be insufficient to

maintain all biodiversity. Although large reserves often

provide the best means for maintaining well-functioning

Table 5 Terrestrial ecological systems having less than 2% protection in the study area

Ecological system Area
(ha)

Percent of study
Area

Area protected
(ha)

Percent
protected

Complex of non-alkaline savannas of the Beni transitional to the
Cerrado

2,221,743 1.8 459 0

Cerrado complex of the northern Beni 1,766,905 1.4 0 0

Western Amazon semideciduous azonal forest 1,276,552 1.0 14,533 1

Complex of non-alkaline savannas of the Beni 585,143 0.5 0 0

Central-south Amazon Palm dominated forest 578,331 0.5 0 0

Chiquitania and Beni seasonally flooded herbaceous oligotrophic
savanna

506,966 0.4 0 0

Beni seasonally flooded palm grove and savanna of the alkaline
flatlands

226,672 0.2 6 0

Chiquitania and Beni “Cerradão” 214,452 0.2 0 < 1

Beni seasonally flooded herbaceous mesotrophic savanna 208,539 0.2 217 < 1

Montane interandean xeric forest and shrubland of the Yungas 205,749 0.2 40 < 1

Interandean xeric scrub of the Yungas 152,396 0.1 0 0

Beni and Chiquitania open hydrophytic savanna 145,912 0.1 0 0

Lower montane xeric forest and shrubland of the northern Yungas 137,919 0.1 101 < 1

Beni mixed-water riparian vegetation and forests complex 120,637 0.1 0 0

Northern Yungas dry submontane complex 95,189 0.1 0 0

Cerrado hydrophytic savannah with termite mounds 63,280 0.1 0 0

Chiquitania and Beni semideciduous subhumid forest 48,789 < 0.1 0 0

Beni clear and dark-water riparian forests and vegetation complex 35,684 < 0.1 0 0

Central-south Amazon ridges lithomorphic scrub 21,028 < 0.1 0 0

Northern Yungas dry montane and submontane complex 19,602 < 0.1 0 0

Yungas ridge pluviseasonal forest 16,994 < 0.1 325 1

Montane lithomorphic vegetation of the Yungas 10,296 < 0.1 0 0

Western Beni seasonally flooded thorn forest of the alkaline flatlands 10,009 < 0.1 0 0

Upper montane pluvial Polylepis forest of the Yungas 8423 < 0.1 73 1
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ecosystems [93], the pattern of endemism we document,

in which microendemic species are scattered across the

landscape and not always concentrated geographically,

will require multi-pronged conservation efforts.

Restricted-range species that occur far from the major

areas of endemism or irreplaceability, such as the two

primates in the Bolivian Beni, would benefit from a

wider network of smaller reserves, perhaps established

by departmental, provincial, or municipal governments

or private entities. Current trends toward the decentrali-

zation of responsibility for natural resource management

to provincial governments may provide a useful institu-

tional context for the establishment of some of these

smaller, but nonetheless critical reserves [94].

Our finding that highly endemic areas disproportion-

ally occupy a handful ecological systems presents yet a

fifth challenge. Ecological systems characterize broad,

integrated units of biodiversity and can be used as a

coarse filter for conservation. While maintaining repre-

sentation of all systems in landscape-level protection

plans [95], planners may need to balance the need to

protect endemic species with the need for a representa-

tive sample of ecosystem type and function as well as

other targets such as endangered species or carbon

sequestration. On the other hand, these particular

ecological systems could be considered surrogates for

areas of high endemism. The systems are advantageously

close together in the Yungas region, are relatively lim-

ited in extent (totalling 7% of the study area), and have

individual ranges that are < 35% protected.

A final challenge is continued climate change. We

know that because of climate change, the ranges of

many species will shift across the landscape and possibly

out of protected areas [96,97]. Evidence is accumulating

that along the Andean slope, species shifts are already

occurring [98,99]. Yet the variation in projections of

future South American climate makes assessment of the

effects on species’ distributions difficult [100]. The steep

elevation (and therefore climate) gradients in the Andes,

where most endemic species are located, suggest that

such displacements may take place over relatively small

distances. Extinctions are most likely in species inhabit-

ing the highest-elevation habitats, which occur above

our study area [100]. Nevertheless, planners should con-

sider adding upslope buffers to conservation areas desig-

nated using current distributions of endemic species,

and future research could model these species distribu-

tions under future climate scenarios.

To complement the further creation and effective

management of protected areas, other alternative

Figure 9 Ecological systems protection. Percentage of each system’s range protected in study area.
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approaches, which will result in the maintenance of key

ecosystems, should expand and continue. These

approaches include, strategic conservation on private

lands and brokering conservation agreements with pri-

vate companies, effective land use planning and possibly

carbon accounting at the regional government level for

both public and private lands, and payments for ecosys-

tem services (e.g. water provision, ecotourism recreation,

carbon storage through forests: Reducing Emissions

from Deforestation and forest Degradation, REDD).

However priority areas for ecosystem services conces-

sions may not necessarily overlap with priorities for bio-

diversity conservation (e.g.[101]).

Conclusions
We believe these spatial datasets provide a substantive

base upon which to make decisions and move forward

for further protection. The approach to developing

these datasets described here, relying on existing envir-

onmental data sources, data in natural history collec-

tions, and in-country expertise to identify endemic

species distributions, concentrations and gaps in pro-

tection across national borders is applicable to many

regions of the world where survey efforts are incom-

plete. Our results demonstrate that even under these

conditions, conservationists can develop spatial data-

sets for multiple taxonomic groups at a scale useful to

guide planning.
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