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Abstract: The increasing demand for natural, safe, and sustainable food preservation methods drove
research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This
review article comprehensively discussed the potential applications of plant extracts, essential oils,
and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of
several plant-derived substances against foodborne pathogens and spoilage microorganisms, along
with their modes of action, factors affecting their efficacy, and potential negative sensory impacts,
were presented. The review highlighted the synergistic or additive effects displayed by combinations
of plant antimicrobials, as well as the successful integration of plant extracts with food technologies
ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise
emphasized the need for further research in fields such as mode of action, optimized formulations,
sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and
consumer education. By addressing these gaps, plant antimicrobials can pave the way for more
effective, safe, and sustainable food preservation strategies in the future.
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1. Introduction

The use of natural antimicrobials in the food industry is gaining attention due to
the consumers’ demand for environmentally friendly production systems and products
with clean labels, promoting the use of natural antimicrobial preservatives rather than
synthetic ones [1,2]. Indeed, synthetic food preservatives such as nitrates, benzoates,
sulfites, sorbates, and formaldehyde are known for allergic or carcinogenic effects [3].
Microbial food spoilage is responsible for about 25% of food losses [4]. According to the
Food and Agriculture Organization (FAO), wasted food costs approximately 680$ billion
in industrialized countries and 310$ billion in developing countries, with a high emission
footprint for meat products [5]. Moreover, the growing consumption of fresh, minimally
processed, and ready-to-eat foods increases the chance of microbial contamination by
spoilage and pathogenic microorganisms [1]. Therefore, natural antimicrobials should be
promoted to extend the shelf life of perishable foods, and to ensure the product’s microbial
food safety.

Plant antimicrobials represent the main group of natural preservatives, including sec-
ondary metabolites targeting microbial cells. Different parts of plants, such as seeds, fruit,
peels, leaves, and roots are rich in plant antimicrobials such as phenolic compounds (e.g.,
simple phenols, phenolic acids, anthocyanins, flavonoids, quinones), tannins, essential
oils and terpenoids, glucosinolates derivatives, alkaloids, and thiols [6,7]. Most of the
plant extracts are generally recognized as safe (GRAS) and were granted the qualified
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presumption of safety (QPS) status in the USA and EU, respectively [8]. Plant extracts,
such as moso bamboo (Takeguard™) with benzoquinone derivatives and tannin, or an
antifungal blend (Biovia™ YM10) with green tea (Camellia sinensis L.) extract and mustard
(Brassica nigra W.D.J. Koch) essential oil, are commercially available as alternatives to chem-
ical preservatives [1]. Moreover, the European Food Safety Authority (EFSA) authorized
rosemary (Rosmarinus officinalis L.) extract, endowed with antimicrobial activity, as a food
additive (E 392) [9,10].

Plant antimicrobials were proposed to control the growth of microbial spoilage popula-
tions and foodborne pathogens. As regards the control of spoilage microorganisms, several
applications were described in animal-based foods. In fish products, grape (Vitis vinifera L.)
seed extract, tea polyphenols, thyme essential oil, and rosemary extract delayed the growth
of lactic acid bacteria, Enterobacteriaceae, hydrogen sulfide-producing bacteria (HSPB), and
psychrotrophic bacteria, well known to produce off-flavours [11]. In meat products, tannic
acid or catechin showed good antimicrobial activity in camel sausages, whereas ethanolic
extracts of rosemary and clove (Syzygium aromaticum L.) reduced spoilage bacterial counts
in raw chicken meat. In beef sausages, the use of Ziziphus leaf extracts, rich in vanillic and
ellagic acids, inhibited the growth of spoilage bacteria during cold storage [12]. Among
essential oils, the application of Ziziphora clinopodioides Lam., rich in carvacrol, thymol,
p-cymene, and γ-terpinene, showed the best antimicrobial activity against spoilage bac-
teria in beef patties [13]. In plant-based foods, as reviewed by Patrignani et al. [14], citral,
hexanal, and 2-(E)-hexenal showed antimicrobial activity against yeasts responsible for
spoilage of fresh-cut fruits, soft drinks, and fruit-based salads, whereas citral-based films
or the application of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) oil
during the washing step reduced spoilage bacterial populations on salad. The antimicrobial
action of plant extracts against foodborne pathogens is well documented [1–3,7,15–17].
In particular, phenolic extracts and essential oils showed remarkable antibacterial action
against Gram-positive and Gram-negative bacteria, including spore-forming bacteria. In
addition to the effect against viable cells, plant antimicrobials inhibited the production of
microbial toxins [18,19] and biofilm formation [20–22].

Despite the antimicrobial action of plant antimicrobials, their use in the food industry is
hampered by chemical instability, limited dispersibility in food matrices, limited availability
of ready-to-use commercial formulations, or unacceptable flavour profiles [6]. For these
reasons, several stabilization techniques, such as nano-emulsions, encapsulation, and
inclusion in active packaging, were proposed [6,23,24]. Moreover, these stabilization
techniques ensure, in some cases, better antimicrobial activity of the bioactive compounds,
and a controlled release during food storage.

However, some challenges remain, including potential negative sensory impacts,
variations in antimicrobial effectiveness, and concerns about the possible development of
microbial resistance. To address these issues, researchers explored synergistic combina-
tions of plant antimicrobials and the application of hurdle technologies, which involve
the simultaneous or successive use of multiple preservation techniques. Although plant
extracts showed considerable potential in food preservation, limited information is avail-
able concerning their safety. In some instances, these extracts can be contaminated with
various hazardous substances, such as heavy metals [25], mycotoxins [26], or crop pro-
tection residues [27]. The levels of contamination in plant extracts are affected by several
factors, including the cultivation practices employed, the geographical location of the
cultivation site, and the application of crop protection products. Further research is needed
to establish proper guidelines and regulatory frameworks that can help minimize the risks
associated with contaminants in plant extracts, ultimately ensuring the safe application of
these natural preservatives in the food industry. Further research is also necessary to under-
stand the modes of action of plant antimicrobials alone or in combination to optimize their
formulation and the delivery of bioactive compounds. Addressing these gaps will help the
acceptance of plant extracts as food preservatives and their use in different food industries.
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This review aims to summarize the applications of plant antimicrobials in the food
sector. After that, an overview of different classes of plant antimicrobials, antimicrobial
activity against spoilage, and pathogenic microorganisms in different foods is described.
Then, the stabilization techniques of plant extracts are presented followed by their use in
different food matrices. This review also discusses the additive and synergistic effects of
various combinations of plant antimicrobials, as well as the integration of plant extracts into
different hurdle technologies, including mild or non-thermal treatments, to enhance food
preservation. Finally, safety aspects and regulation related to the use of plant extracts are
introduced. By providing a comprehensive overview of the current knowledge, this review
aims to contribute to the ongoing development and optimization of food preservation
techniques based on plant antimicrobials.

2. Classification and Antimicrobial Activity of Plant Antimicrobials

A great diversity of structures among plant secondary metabolites (PSMs) occurs in
nature (e.g., more than 12,000 known alkaloids, more than 10,000 phenolic compounds, and
over 25,000 different terpenoids) [1]. From a structural point of view, plant antimicrobials
can be divided in two classes: PSMs with one or several nitrogen atoms into their structures,
such as alkaloids, glucosinolates, and PSMs without nitrogen, such as terpenoids and
phenolic substances. Alkaloids, glucosinolates, and phenolic substances are water-soluble
compounds, whereas terpenoids are lipophilic PSMs [28]. The following sections summa-
rize the different classes of plant antimicrobials and their antimicrobial action against main
food-related microorganisms.

2.1. Polyphenols

Polyphenols are PSMs produced by higher plants, sharing a common chemical struc-
ture characterized by at least one aromatic ring with one or more hydroxyl groups [29].
Polyphenols can be classified as flavonoids and nonflavonoids. The latter includes the
phenolic acids (e.g., derivatives of benzoic acid and cinnamic acid), stilbenes (e.g., resvera-
trol), tannins (e.g., proanthocyanidins, gallotannins, and ellagitannins), and lignins (e.g.,
secoisolariciresinol). Flavonoids can be divided into six subclasses: flavonols, flavones,
flavanones, flavanols, anthocyanins, and isoflavones [30].

2.1.1. Phenolic Acids

Phenolic acids are divided into hydroxybenzoic acids (e.g., vanillic, gallic, salicylic,
syringic, and protocatechuic acid) and hydroxycinnamic acids (ferulic, rosmarinic, p-
coumaric, chlorogenic, cinnamic, and caffeic acid) [31]. The main phenolic acids showing
antimicrobial action are gallic acid, ferulic acid, and p-coumaric acid [31]. A minimum
inhibitory concentration (MIC) of 1000–2000 µg mL−1 was found for gallic acid and fer-
ulic acid against Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes [32].
Ferulic acid and p-coumaric acid showed MIC values of 500–1000 µg mL−1 against
Salmonella enteritidis [33]. Li et al. [34] recently found that p-coumaric acid controlled
the contamination of Alicyclobacillus acidoterrestris in apple juice. However, the antibacterial
action of phenolic acids can be enhanced considering their derivatives, as demonstrated
for alkyl ferulate and gallate esters against L. monocytogenes and E. coli, respectively [35,36].
Regarding the antifungal action, ferulic acid and p-coumaric acid showed antifungal activ-
ity against Botrytis cinerea and Alternaria alternata [37,38]. As reported for the antibacterial
action, ester derivatives of phenolic acids showed enhanced antifungal action compared
to phenolic acids. In particular, ethyl p-coumarate showed interesting antifungal activity
against Alt. alternata [39].

2.1.2. Stilbenes, Tannins, and Lignins

Other polyphenols endowed with antimicrobial activity are stilbenoids, tannins,
and lignins. Stilbenes such as resveratrol showed antibacterial action against foodborne
pathogens, with MIC values of 100–200 µg mL−1 for S. aureus and Enterococcus faecalis, and
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>200 µg mL−1 for E. coli and Sal. enterica [40]. Cai et al. [41] found that pterostilbene had
higher antifungal activity against ochratoxin A (OTA)-producing Aspergillus carbonarius
than piceatannol and resveratrol. As regards tannins, they are classified into hydrolysable
and condensed tannins. Hydrolysable tannins such as ellagitannins showed antibacterial
action against S. aureus and E. coli. In particular, increased free galloyl groups enhanced
antibacterial action against S. aureus, while large molecular size positively affected the
antimicrobial effect against E. coli [42]. Condensed tannins such as proanthocyanidins from
persimmon [43] or chokeberry [44] showed MIC values of 0.7–5 mg mL−1 against S. aureus.
Regarding the antibacterial activity of lignin, different sources and extraction processes
can result in different antibacterial performances. However, the ethanol fractionation of
bamboo kraft lignin enhanced the antibacterial activity compared to non-fractionated lignin,
and the ethanol fraction showed a MIC value of 2 mg mL−1 against Bacillus subtilis and
S. aureus [45].

2.1.3. Flavonoids

Flavonoids are the main dietary polyphenols. They show a characteristic phenyl-
benzopyrone structure and can be classified into anthocyanidins, flavan-3-ols, flavones,
flavanones, flavonols, and isoflavonoids [29]. Among them, flavan-3-ols, flavonols, and
flavanones showed the highest antibacterial activity against foodborne pathogens [31].
In particular, flavan-3-ols such as epigallocatechin-3-gallate showed antibiofilm activity
against L. monocytogenes [46], and bactericidal effect against E. coli [47]. The main flavonol
endowed with antibacterial activity is resveratrol. Resveratrol showed a MIC value lower
than 10 mg mL−1 against E. coli O157:H7 and Sal. enteritidis [48] and 300–600 µg mL−1

against methicillin-resistant S. aureus [49]. However, the presence of rhamnose and ad-
ditional hydroxyl groups in the flavonoids myricetin-3-O-rhamnoside and quercetin-3-
O-rhamnoside resulted in reduced antibacterial activity compared to quercetin [31]. As
regards the antifungal activity of flavonoids, quercetin at 0.25 mg mL−1 inhibited mycelial
growth of Penicillium expansum [50] and showed a MIC value of 505 µg mL−1 against
Aspergillus flavus [51]. Flavanones belong to a sub-class of flavonoids. The most in-
teresting antibacterial activity was found for sophoraflavanone G against methicillin-
resistant S. aureus, with MIC values ranging from 0.5 to 8 µg mL−1 [52]. Recently, other
flavonoids, such as the mono-prenylated isoflavonoids showed high antifungal activity
against Zygosaccharomyces parabailii, a spoilage yeast of acidic food products, with a mini-
mum fungicidal concentration (MFC) of 12.5 µg mL−1 [53].

2.2. Terpenes and Essential Oils

Essential oils (EOs) are complex blends of aromatic metabolites extracted from differ-
ent plant parts, including leaves, bark, flowers, and roots, using solvents, distillation, or
microwaves [54]. Volatile compounds represent 90–95% of EOs, including monoterpenes,
sesquiterpene hydrocarbons and their oxygenated derivatives, aldehydes, alcohols, and es-
ters. The non-volatile portion (5–10% of the whole EO) comprises hydrocarbons, fatty acids,
sterols, carotenoids, waxes, cumarines, and flavonoids. The main antimicrobial compounds
present in EOs can be divided into different groups: terpenes (e.g., p-cymene, limonene),
terpenoids (e.g., thymol, carvacrol), and phenylpropenes (e.g., eugenol, vanillin) [30].

Rosemary EO, rich in the monoterpenes α-pinene, 1,8-cineol, and camphor, showed
antibacterial action against E. coli and S. aureus [55,56]. A recent study [57] showed that the
geographic origin of rosemary EOs affected their composition and antimicrobial activity.
EOs extracted from Salvia officinalis L., Lavandula dentata L., and Laurus nobilis L., rich in
1,8-cineol, inhibited the growth rate of A. carbonarius and the OTA production [58].

EOs with terpenoids such as thymol and carvacrol as main compounds paid great
attention due to their broad spectrum of antimicrobial activity and potential applica-
tion through direct contact and vapour phase. Oregano and thyme EOs showed an-
tibacterial activity by direct contact against drug-resistant Gram-positive pathogens such
as S. aureus and Enterococcus faecium, and Gram-negative pathogens such as E. coli and
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Sal. thyphimurium [59,60]. These EOs showed antimicrobial activity in vapour phase,
with MIC values of 0.16–4.00 µg mL−1 of air against E. coli and Penicillium expansum [61].
Moreover, oregano and thyme EOs vapours showed antifungal activity against different
species of the genera Aspergillus, with MIC values of 15.6–62.5 µL L−1 of air [62]. Regard-
ing p-cymene, this monoterpene has low antibacterial activity, high MIC values, and no
antifungal action against Rhizopus oryzae and A. niger [63]. Similarly, in B. cinerea, P. italicum,
and Alt. alternata, p-cymene showed higher MIC values than other monoterpenes such as
thymol and γ-terpinene [64].

Phenylpropanoids such as eugenol and isoeugenol, both present in clove EO, showed
antibacterial action against E. coli and L. monocytogenes with MIC values in the range
312.5–625 µg mL−1 [65]. Clove oil, with eugenol as the main compound, inhibited P. italicum
growth on citrus fruit when applied at concentrations ranging from 0.05% to 0.8% (v/v) [66].
Other phenylpropanoids, such as vanillin, showed a bacteriostatic effect against foodborne
pathogens, but MIC values were higher than that of pure compounds belonging to terpenes
or terpenoids [67].

Other bioactive compounds occurring in EOs are the aldehydes citral and cinnamalde-
hyde, found in lemongrass (Cymbopogon citratus Stapf) EO and cinnamon (Cinnamomum verum
Presl) bark EO, respectively. Free citral showed a MIC value of 0.8 mg mL−1 against B. cereus
and 2 mg mL−1 against E. coli and S. aureus [68]. However, the main application of citral is
its use as an antifungal agent, as demonstrated against different fungal strains [69–71]. As
regards cinnamaldehyde, it showed higher antibacterial activity than cinnamon oil against
Gram-positive bacteria [72]. Cinnamaldehyde at 150 µg mL−1 inhibited the spore produc-
tion and mycelial growth of A. niger [73] and showed antifungal activity and alternariol
reduction at 0.200 µL mL−1 against Alt. alternata [74].

2.3. Glucosinolate Derivatives

Glucosinolates are the main bioactive compounds of Brassica plants. The breakdown
of glucosinolates releases nitriles, thiocyanates, and isothiocyanates. In particular, isoth-
iocyanates, largely occurring in cruciferous vegetables, are the most reactive compounds
endowed with antimicrobial activity. Allyl-, benzyl-, and 4-methylsulfinylbutyl isothio-
cyanates are the main compounds with antimicrobial activity against bacterial pathogens
and fungi [7]. Allyl-isothiocyanate at the concentration of 1 µL L−1 reduced of 4 log cfu g−1

the Sal. thyphimurium load on lettuce [75], whereas at 0.1% v/w inhibited L. monocytogenes
growth in chickpea puree stored for 10 days at 4 ◦C [76]. Allyl-isothiocyanate showed anti-
fungal activity against A. flavus in maize and P. verrucosum in barley, reducing the aflatoxin
B1 and ochratoxin A accumulation, respectively [77,78]. Benzyl-isothiocyanate showed
MIC values ranging from 60 to 160 µM against enterotoxigenic E. coli [79], and 120 µM
against L. monocytogenes [80]. Benzyl-isothiocyanate at 25 µg mL−1 inhibited the growth of
A. carbonarius and A. ochraceus, whereas A. niger was more resistant to both allyl- and benzyl-
isothiocyanates than other aspergilli [81]. Other bioactive isothiocyanates are sulforaphane
(4-methylsulfinylbutyl isothiocyanate) and phenethyl isothiocyanate. Both compounds
showed MIC values of 40–88 mg mL−1 against S. aureus and E. coli [82]. However, their use
for applications in the food sector is limited compared to allyl- and benzyl-isothiocyanates.
Other isothiocyanates demonstrated an interesting antifungal activity. In particular, the
volatile compound 2-phenylethyl isothiocyanate showed a MIC value of 1.2 mM against
Alt. alternata, and reduced the development of the black spot rot on pear [83], whereas
2-(4-methoxyphenyl)ethyl isothiocyanate showed an EC50 value of 4.2 µg mL−1 against
A. niger, and inhibited the spore germination by 95% [84].

2.4. Alkaloids and Thiols

Several plant extracts include alkaloids and thiols as antimicrobial compounds. Alka-
loids are PSMs classified based on their chemical structure and natural origin. Although
more than 18.000 alkaloids are known, mainly represented by plant alkaloids [85], their use
in the food sector is limited due to their well-known toxic and neuroactive effects. Recently,
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berberine, an isoquinoline alkaloid found in roots and stem-bark of Berberis plants, was the
most studied alkaloid exploited for its antimicrobial activity against food-related microor-
ganisms and was proposed as a food preservative [86–88]. In particular, Berberis vulgaris
root and leaf extracts, rich in berberine, showed a MIC value of 150 µg mL−1 against E. coli
and S. aureus, and 60–100 µg mL−1 against different Aspergillus species [86]. Berberine at
1.6 mg mL−1 inhibited mycelial growth and spore germination of P. italicum [88].

As regards thiols, the main antimicrobial compounds are allicin and its derivatives [29]. Al-
licin is a sulphur compound occurring in garlic, effective against spoilage yeasts, Gram-positive
and Gram-negative foodborne pathogens, with MIC values lower than 30 µg mL−1 [89]. The
main oxidation derivatives of allicin are diallyl disulphide and diallyl trisulfide. Diallyl disul-
phide showed antibacterial action against B. cereus and a MIC value of 120 µg mL−1 [90],
whereas diallyl trisulfide treatment reduced, by 1.5 log cfu g−1, the Campylobacter jejuni count
on chicken [91].

2.5. Modes of Action

PSMs described in the previous sections have multiple mechanisms of antimicrobial
action (Figure 1). In particular, different cell targets are affected by exposure to polyphenolic
substances, essential oil compounds, isothiocyanates, alkaloids, and thiols. As regards
polyphenols, the three main mechanisms of action are the modification of the membrane
permeability, the intracellular enzyme inactivation, and the modification of fungal morphol-
ogy. Additional mechanisms of antimicrobial action of polyphenols are the modification of
intracellular pH, the interference with the ATP-generating system, and the inhibition of
DNA synthesis [1].
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Figure 1. Mechanisms of action of plant antimicrobials against foodborne bacteria.

Different polyphenolic classes have specific mechanisms of action. Phenolic acids
mainly interact with the cell membrane intercalating the phospholipid layer, or cross-
ing the membrane, decreasing the intracellular pH, and/or interacting with cellular con-
stituents [92]. The antibacterial action of phenolic acids against L. monocytogenes depends
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on their dissociated/undissociated form. In particular, chlorogenic acid and gallic acid
reduced extracellular pH, caffeic acid, p-hydroxybenzoic acid, protocatechuic acid, and
vanillic acid were active in their undissociated form, and p-coumaric acid and ferulic
acid showed antibacterial action in both dissociated and undissociated form [92]. In
Sal. enteritidis, chlorogenic acid treatment damaged intracellular and outer membranes
and inactivated key enzymes of the tricarboxylic acid cycle (TCA) [93]. Phenolic acid
esters showed multiple mechanisms of antibacterial action, such as the damage of bacterial
membranes, changes in the conformation of protein membranes, formation of complexes
with bacterial DNA, and oxidative damage [35,36]. As regards the antifungal mechanism of
phenolic acids, it is well known that these compounds produce oxidative stress and disorga-
nization of the wall or membrane of the hyphae [94], but, as in the case of B. cinerea, they can
also affect the ATP synthesis and cellular metabolism acting as an uncoupler of oxidative
phosphorylation [95]. Resveratrol inhibits ATP synthesis, hydrolysis, and cell division in
E. coli [40]. Pterostilbene treatment induces incomplete sporangia, membrane rupture, and
downregulation of the biosynthetic genes of the OTA production in A. carbonarius [41]. The
disruption of cell membranes and functions is the primary mode of antibacterial action of
tannins. However, the inhibition of microbial enzymes, the deprivation of the nutrients
required for the microbial growth, and the inhibition of oxidative phosphorylation were
also suggested [42]. In P. digitatum, tannins disrupted the cell wall and caused the leakage
of intracellular content [96]. The antibacterial modes of action of lignin are the damage of
the cell membrane through its phenolic compounds, the decrease in intracellular pH, and
the increase in osmotic pressure [97]. Flavonoids have multiple modes of antimicrobial
action. Quercetin inhibited DNA gyrase, increased membrane permeability, and prevented
ATP synthesis in E. coli [29], whereas in S. aureus, it inhibited key enzymes necessary for the
protein synthesis [31]. Flavonols such as quercetin, rutin, morin, rhamnetin, and flavones
such as acacetin and apigenin have membrane-disrupting activity. Conversely, flavanones
naringenin and sophoraflavanone G reduce the fluidity in regions of both inner and outer
cellular membranes [18]. Catechins such as epigallocatechin gallate, at high concentration,
generated reactive oxygen species (ROS), causing membrane damage [18]. As regards the
antifungal mechanism of flavonoids, a recent study showed that quercetin downregulated
genes involved in the conidial and mycelial development, while reducing the production
of aflatoxin probably by lowering levels of ROS [51]. Flavonoids from the medicinal–edible
plant Sedum aizoon L. damaged the cell membrane and the cell wall, and interfered with
the mitochondrial respiratory metabolism, the protein biosynthesis, and the amino acid
metabolism in P. italicum [98].

As regards the antibacterial mechanism of action of terpenoids and essential oils,
these compounds can disrupt cell walls and cytoplasmic membranes, increasing their
permeability. Essential oils can also solidify the cytoplasm, damage lipids and proteins
in the cell, and inhibit bacterial enzymes [29]. Specifically, terpenoids such as carvacrol
disrupted the cell membranes and inhibited the respiratory activity in L. monocytogenes [99],
while it increased the cell permeability and reduced the ATP levels in E. coli [100]. In
Sal. enteritidis, the antibacterial action of oregano essential oil was mainly attributed
to thymol rather than its isomer carvacrol, with changes in the protein regulation and
the DNA synthesis [101]. The antibacterial action of terpenes such as limonene was
associated with increased cell permeability, inhibition of the ATP synthesis, dysfunction of
the respiratory chain complex, and inhibition of the transcription of nucleic acids [102–104].
Phenylpropenes such as eugenol altered the membrane permeability in E. coli [105], whereas
they increased reactive oxygen species, depolarized the membrane potential, and decreased
the ATP content in Shigella flexneri [106].

The antifungal mechanisms of action of essential oil compounds such as thymol and
carvacrol are related to changes in the morphology of hyphae, the increase in membrane
permeability, and the reduction in total lipids and ergosterol content [107,108]. As regards
p-cymene, the antibacterial mode of action is related to the expansion of the cytoplasmic
membrane and a moderate generation of ROS [63]. Other essential oil compounds, such as
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citral and geraniol, showed distinctively antifungal mechanisms of action. In particular,
citral downregulated the sporulation- and growth-related genes in A. flavus and A. ochraceus,
whereas geraniol determined intracellular ROS accumulation in A. flavus and increased
cell membrane permeability in A. ochraceus [70]. Oxidative stress was partially responsible
for the antifungal action of cinnamaldehyde against A. niger, causing cell damage and
increasing membrane permeability [73]. Citral, limonene, and eugenol damaged the
cell membranes and destroyed the yeast proteins in Zygosaccharomyces rouxii [109]. In
A. carbonarius, eugenol determined the leakage of cytoplasmic contents, increased the lipid
peroxidation, decreased the ergosterol content, increased the membrane permeability, and
induced oxidative stress [110].

Luciano and Holley [111] demonstrated that allyl isothiocyanate inhibited thioredoxin
reductase and acetate kinase in E. coli O157:H7. The bacteriostatic/fungistatic effects of ben-
zyl isothiocyanate against E. coli, B. subtilis, Sal. enterica, S. aureus, A. niger, and P. citrinum
were associated with interferences with the ATP production, enzymes and coenzymes of
the energy metabolism [112]. Conversely, in B. cinerea, benzyl isothiocyanate disrupted the
plasma membrane integrity and induced ROS accumulation in the spores, inhibiting their
germination [113]. Other glucosinolate derivatives, such as sulforaphane and phenethyl
isothiocyanate, are effective against different pathogenic bacteria by inhibiting the synthesis
of nucleic acids or disrupting the membrane integrity depending on bacterial species [83].

The alkaloid berberine binds to the FtsZ protein, causing the inhibition of bacterial cell
division [114]. In Sal. typhimurium, it reduces the number of type I fimbriae and prevents
biofilm formation [115]. In fungi, berberine damages the plasma membrane integrity and
reduces the contents of soluble proteins and reducing sugars. In addition, a high H2O2
content was found in berberine-treated P. italicum mycelia [88]. Thiols such as allicin display
antimicrobial action due to the rapid reaction of thiosulfinates with thiol groups of key
enzymes [89].

3. Plant Antimicrobials for Food Quality and Safety

In the past, the use of plant material during traditional food processing was defined
empirically to improve the sensory characteristics of the food and the food safety and
quality levels. It should be considered that several spices, obtained from different plant
species, often include antimicrobial molecules and are usually supplemented to foods as
flavouring agents. For this reason, the use of plant compounds as food preservatives is
close to traditional recipes and, therefore, highly accepted by consumers. This section
presents the direct application of plant antimicrobials in different foods, highlighting the
antimicrobial action against spoilage and pathogenic microorganisms.

3.1. Plant Antimicrobials as Food Preservatives

Plant antimicrobials were exploited as preservatives in several foods to control the
microbial growth of food spoilage microorganisms or foodborne pathogens [116]. This
section summarizes recent published results, focusing on the direct application of plant
extracts or their bioactive compounds as preservatives in food products (Table 1).

3.1.1. Applications in Plant Foods

This section presents the applications of whole plant extracts or their antimicrobial
compounds against spoilage microorganisms of fresh fruit and vegetables, ready-to-eat
vegetables, and fruit juices.

With regard to the application of plant antimicrobials on fresh fruits and vegetables,
pomegranate (Punica granatum L.) peel extract (PPE), rich in polyphenols such as puni-
calagin and ellagic acid, reduced the growth of post-harvest fungi belonging to the genera
Penicillium, Botrytis, Monilinia, and Colletotrichum on various fruits including lemon, straw-
berry, grape, apple, grapefruit, orange, and capsicum. In addition, the PPE ethanolic or
aqueous extracts can preserve foods by dipping treatments or using edible coatings [117]. In
this context, the use of ethanolic pomegranate peel extract (PPE) was found to significantly
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(p ≤ 0.05) reduce the lesion diameter and infection rate in mandarins contaminated with
P. italicum and P. digitatum [118]. In addition, other plant-based extracts were also found
to be effective in controlling spoilage microorganisms. A mango kernel extract, rich in
mangiferin, chlorogenic acid, and myricetin, inhibited anthracnose development caused by
Colletotrichum brevisporum on mangoes [119]. A sweet orange (Citrus sinensis L.) peel extract,
rich in ferulic acid, showed antifungal activity against M. fructicola and Alt. alternata in a
peach-based medium [120].

Other plant antimicrobial extracts with antimicrobial activity against spoilage mi-
croorganisms on fresh fruit and vegetables are the essential oils or their main compounds.
Mint (Mentha × piperita L.), basil (Ocimum basilicum L.), lavender (Lavandula angustifolia
Mill.), and thyme EOs in the vapour phase were used for the post-harvest preservation
of strawberry, peach, orange, and lemon [121–124]. In particular, as recently reported by
Pinto et al. [123], the in-package application of red thyme oil vapours reduced the per-
centage of infected wounds, the mycelium development, and the production of spores
by Penicillium strains on oranges during 12 days of cold storage. Dipping in cinnamon
essential oil microemulsion at 0.3% v/v eradicated P. fluorescens from iceberg lettuce during
28 days of cold storage [124]. As regards other plant antimicrobials, methyl, allyl, and ethyl
isothiocyanate (8–12 µL L−1) completely inhibited citrus sour-rot caused by Geotrichum
citriaurantii [125], whereas berberine at 3 mg mL−1 reduced the development of P. italicum
and natural decay on citrus fruit [88].

Plant antimicrobials were extensively used to control the spoilage microorganisms on
ready-to-eat fruits and vegetables [126]. Dipping of fresh-cut pineapple in Centella asiatica
extract, rich in quercetin and kaempferol, reduced the A. niger load during cold storage [127].
In-package application of trans-anethole in ready-to-eat organic lettuce reduced total
coliforms during cold storage [128], whereas the addition of β-caryophyllene-rich pepper
EOs in salad dressing decreased P. fluorescens development and spoilage activity on fresh-cut
lettuce [129]. Pomegranate arils coated with savoury essential oil-loaded chitosan showed
a reduction in total mesophilic bacteria and total yeasts and moulds of 1 log CFU g−1 after
18 days of storage [130]. Peppermint and tea tree (Melaleuca alternifolia Cheel) oils controlled
the growth of total aerobic bacteria, yeasts, and moulds on fresh-cut green bean pods stored
for 9 days at 5 ◦C [131].

Other applications of plant antimicrobials in plant-based foods concern fruit juices
and smoothies [132]. In this context, essential oils and their compounds are the most used
antimicrobials. Indeed, Mentha piperita L. EO inclusion (7.50 µL mL−1) in cashew and
guava juice caused >5 log reductions in counts of the spoilage yeast Pichia anomala [133].
Thymol in concentrated apple juice showed higher antimicrobial activity than carvacrol and
trans-cinnamaldehyde against Z. rouxii [134]. Lee et al. [135] found a synergism between
oregano and thyme EOs, at 0.156 µL mL−1, in inhibiting Leuconostoc citreum in tomato
juice. As regards the applications of plant antimicrobials in smoothies, the addition of beet
(Beta vulgaris L.) leaf extract (30% w/v) in a vegetable smoothie reduced significantly
(p ≤ 0.05) total mesophilic bacteria, enterobacteria, and total yeasts and moulds throughout
21 days of cold storage [136].

The use of plant antimicrobials in plant-based food products, specifically fruit juices
and fresh and ready-to-eat vegetables, effectively reduces spoilage and increases the shelf
life of these products. Essential oils and their bioactive compounds, such as Mentha piperita
L. EO, thymol, carvacrol, trans-cinnamaldehyde, oregano and thyme EOs, demonstrated
antimicrobial activity against different spoilage microorganisms. These findings suggest
that plant antimicrobials have the potential to play a crucial role in preserving the quality
of plant-based foods.

3.1.2. Applications in Animal-Based Foods

This section presents some applications of whole plant extracts or their antimicrobial
compounds against spoilage microorganisms contaminating animal-based foods (e.g., meat,
seafood, and dairy products). In this context, the addition of 200 mg kg−1 of tannic acid
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or catechin in camel meat decreased total mesophilic and psychrophilic bacterial counts
by one order of magnitude after 9 days of refrigeration [137], as well as Nowak et al. [138]
demonstrated that sour cherry (Prunus cerasus Scop.) leaf extract, rich in coumaric acid,
and blackcurrant (Ribes nigrum L.) leaf extract, rich in gallic acid and quercetin derivatives,
delayed the growth of Pseudomonas spp. in pork sausages, but not that of Brochothrix spp.
and Enterobacteriaceae. On the contrary, Casaburi et al. [139] reduced the growth of
Brochotrix spp. and Enterobacteriaceae, but not that of Pseudomonas spp., of grounded beef
meat during cold storage, adding 5% of a freeze-dried myrtle (Myrtus communis L.) extract,
rich in phenolic compounds. These results highlight that the effectiveness of pheno-
lics can vary depending on the specific bacterial species, the concentration of phenolics,
and other factors such as the food matrix, the presence of other preservatives, and the
storage conditions.

The addition of the ethanolic extract of cranberry (Vaccinium oxycoccos L.) pomace,
characterized by great amounts of anthocyanins, chlorogenic acid, and myricetin and
quercetin derivatives, inhibited the growth of Brochothrix thermospacta and P. putida on pork
burgers during the first days of cold storage [140]. As regards the application of essen-
tial oils or their compounds on meat products, ethanolic extracts of rosemary and clove
(1% v/w) reduced Pseudomonas spp. counts in raw chicken meat during cold storage [141].
The use of Ziziphora clinopodioides essential oil (0.2% v/w), rich in carvacrol and thymol,
reduced the Enterobacteriaceae and psychrotrophic bacteria loads of raw beef patties dur-
ing cold storage by 2–3 log cfu g−1 [142]. Thymol or carvacrol at 0.4% w/w in mari-
nated beef significantly reduced the mesophilic total viable count, lactic acid bacteria,
Broch. thermosphacta, Pseudomonas spp., and total coliforms, extending the microbiological
shelf life by three days [143]. In this context, only some terpene compounds showed a broad
spectrum of activity against various bacterial species, making them effective preservatives
for meat products, independently of the source of plant origin, and able to extend the shelf
life of some meat products.

Likewise, the reduction in fish spoilage bacteria can be achieved using plant antimi-
crobials, specifically polyphenolic extracts and essential oils [11]. The use of ethanolic Noni
(Morinda citrifolia L.) leaf extract, rich in rutin and kaempferol derivatives, was shown to
extend the shelf life of striped catfish slices and maintain the acceptable levels of total
viable bacteria and psychrophilic bacteria during storage, with loads remaining below
6 log cfu g−1 [144]. Similarly, the growth of Pseudomonas spp. in Pacific white shrimps was
delayed by adding ethanolic guava (Psidium gujava L.) leaf extracts, rich in phenolic com-
pounds such as piceatannol 4′-galloylglucoside, epicatechin, epigallocatechin, procyanidin
B2, ellagic acid, quercetin 3′-o-glucuronide, and quercetin 3-galactoside [145]. Grape seed
extract, containing high levels of phenolic acids, catechins, and proanthocyanidins, de-
creased the presence of Aeromonas spp. in snakehead fillets during cold storage. This
reduction limited the release of soluble peptides and biogenic amines and increased the
shelf life of snakehead fillets by three days [146]. The application of essential oils, such as
cinnamon, oregano, and thyme, as marinades was evaluated in salmon and scampi by Van
Haute et al. [147]. The immersion of these products in cinnamon essential oil at 1% w/w
inhibited the growth of yeasts and moulds. Similarly, cinnamon essential oil at 0.1% w/v
effectively inhibited Aeromonas spp. in vacuum-packed carp and extended its shelf life by
two days [148]. However, the direct application of essential oils in fish products can cause
bitterness, off-flavours, and yellowing of the tissue [11]. The inclusion of essential oils in
active packaging or nano-emulsions is recommended to mitigate these effects.

Building on the findings of previous studies on the application of plant antimicrobials
in meat and fish products, the use of plant polyphenols, essential oils, and other plant-
based compounds in milk and dairy products to control spoilage microorganisms and
extend their shelf life is also of interest. For instance, the addition of olive mill wastewater
in the governing liquid of “Fior di Latte” cheese (500 µg mL−1 of phenols) resulted in a
four-day extension of shelf life due to the increase in the lag phase of P. fluorescens and
Enterobacteriaceae [149]. A recent study by Derbassi et al. [150] evaluated the preservative
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effect of Arbutus unedo L. leaf extracts on the microbiological characteristics of quark cheese
during storage. They found that incorporating the dry macerated leaf extract into the
cheese resulted in higher efficacy against aerobic mesophiles and yeasts than the use of
potassium sorbate after 8 days of storage. Milanović et al. [151] investigated the efficacy
of seven essential oils against 74 spoilage yeasts. In a yoghurt model, lemongrass and
cinnamon EOs demonstrated the highest antifungal activity in vitro. However, it should
be noted that cinnamon EO inhibited lactic acid bacteria, while lemongrass EO displayed
species-specific antifungal activity. These findings suggest that further research is needed
to fully understand the application of plant antimicrobials in the dairy sector to control
spoilage microorganisms.

The direct addition of natural plant antimicrobials in animal-based foods, such as
meat, fish, and dairy products, shows the potential to control spoilage microorganisms and
extend shelf life. Studies demonstrated the effectiveness of compounds such as phenolic
acids, catechins, proanthocyanidins, and EOs in inhibiting the growth of spoilage bacteria.
However, more research is necessary to fully understand the mode of action of these
natural compounds and optimize their application in animal-based foods. Additionally, it
is essential to consider the potential drawbacks, such as the development of off-flavours or
bitterness, and address them through alternative delivery methods, such as nano-emulsions
or active packaging.

Table 1. Applications of plant antimicrobials on plant-based and animal-based foods against spoilage
microorganisms.

Food Matrix Plant Antimicrobial Concentration/Conditions Antimicrobial Effect Data from Ref. *

Mandarins Pomegranate peel
extract

Dipping in 25 g L−1 extract
for 2 min

Reduction of lesion
diameter and infection
rate (80–90%) caused

by P. italicum and
P. digitatum

[118]

Fresh-cut lettuce Pepper EO 3–5 µL mL−1 addition in
salad dressing

Reduction of
P. fluorescens biomass

by 30–40%
[129]

Concentrated apple juice Thymol, carvacrol MIC of 0.1–0.16 mM,
treatment time 9 days

Reduction of
Z. rouxii load by 99% [134]

Pork burgers Ethanolic extract of
cranberry pomace

2% extract-16 days of
storage

Bacteriostatic effect on
B. thermospacta and

P. putida during cold
storage

[140]

Snakehead fillets Grape seed extract 0.52 mg GAE mL−1 for
20 min

Decrease of
Aeromonas spp.

abundance by 37% and
reduction of

1 log cfu g−1 of total
viable counts during

cold storage

[146]

Quark cheese Arbutus unedo L.
leaf extracts

0.1 g 100 g−1 cheese, 8 days
of cold storage

Reduction of total
aerobic mesophilic

bacteria and yeasts by
2–3 log cfu g−1

[150]

* as cited in the text.

3.2. Use of Plant Antimicrobials for Food Safety

The use of natural compounds derived from plants has numerous benefits, including
the potential to provide safer, more sustainable and practical solutions for preserving
food safety [152]. These plant-derived compounds showed high antimicrobial activity,
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making them ideal candidates as natural food preservatives. In particular, the correct
use of these natural antimicrobials can fight emerging problems such as the spread of
multidrug-resistant pathogens, biofilm-producing strains, and microbial toxins through the
food chain.

3.2.1. Effect on Viability of Foodborne Pathogens

Foodborne bacteria are a significant public health concern since they can cause gas-
trointestinal illness, food poisoning, chronic diseases, economic losses, and the spread of
antibiotic-resistant bacteria. Multiple foodborne illnesses were caused by various pathogens
such as Sal. enteritidis, L. monocytogenes, E. coli toxigenic strains, Cam. jejuni, Cronobacter
sakazakii, and S. aureus. Foodborne outbreaks underline the need for more efficient methods
to control foodborne pathogens. Symptoms of foodborne illness can range from mild to
severe, including nausea, vomiting, diarrhoea, abdominal cramps, and fever [153]. The
outbreak of foodborne illnesses can have significant economic consequences, including
loss of income for food producers, increased healthcare costs, and decreased consumer
confidence in the food industry. Addressing the issue of foodborne bacteria is crucial to
ensure the safety and quality of the food supply, protect public health, and minimize the
economic impact of foodborne illnesses.

Several phytochemicals showed antibacterial activity against various foodborne pathogens.
For example, studies demonstrated that plant compounds such as carvacrol and thymol,
found in essential oils extracted from herbs and spices, have high antibacterial activity
against Sal. enteritidis, E. coli, and L. monocytogenes [154]. Similarly, compounds such as
cinnamaldehyde and eugenol, present in cinnamon EO and clove EO, respectively, inhibited
the growth of foodborne pathogens such as L. monocytogenes and S. aureus [155,156]. These
findings provide evidence of the potential of plant-based antimicrobials in controlling
foodborne pathogens and improving food safety.

Specific applications of EOs or their compounds were described in plant and animal-
based foods to ensure food safety. As regards animal-based foods, cinnamaldehyde inacti-
vated L. monocytogenes at 4 ◦C in ground pork, reducing its viability by 4 log cfu g−1 in 5
days [155]. Similarly, thymol reduced, by 3 log cfu g−1, the load of S. aureus, E. coli, and C.
perfringens on a sausage product during 4 weeks of storage [157]. In dairy products, myrtle
EO (31.25 µL mL−1) reduced, by 1–2 log cfu g−1, the load of L. monocytogenes ATCC 679
on sheep cheese during ripening [158], whereas ginger (Zingiber officinale R.) and thyme
EOs totally inactivated S. aureus (6 log cfu g−1) on a fresh soft cheese after two weeks
of storage [159]. In plant foods, EOs or their compounds were proposed as sanitizers
of fresh-cut vegetables and natural preservatives of fruit juices. Rossi et al. [160] treated
fresh-cut lettuce contaminated with a cocktail of Salmonella spp. strains, with 5 µL mL−1

of cinnamon EO, reducing the attached cells by 0.6–0.8 log cfu cm−2. Cinnamon EO was
also successfully used to control Sal. typhimurium and L. monocytogenes on celery, with a
reduction of 2–4 orders of magnitude after 7 days at 4 ◦C depending on the initial con-
tamination level [161]. As regards the application of EOs in fruit juices, Litsea cubeba Pers.
EO reduced 3–4 log cfu mL−1 of the load of E. coli O157:H7 in four vegetable juices after
4 days of storage, and inhibited the respiratory metabolism, the topoisomerase activity,
the transcription of virulence genes, and the nucleic acid replication [162]. In watermelon
juice, Melissa officinalis L. EO reduced the viability of L. monocytogenes from 2 to 7 days of
storage [163]. In some cases, plant antimicrobials can induce tolerance to environmental
stresses in bacteria, and cross-resistance to common antibiotics. The use of Melissa officinalis
L. EO at subinhibitory levels (0.125 µL mL−1) did not induce high tolerance to stresses
(such as high temperature, low pH, osmotic stress, and desiccation) or cross-resistance with
antibiotics in L. monocytogenes [163].

Plant phenolic compounds are naturally occurring compounds found in plants used
as food preservatives due to their high antimicrobial activity against foodborne pathogenic
bacteria [92]. Some of the most commonly used plant phenolic compounds in food in-
clude quercetin, and derivatives of cinnamic acid and gallic acid. Grape skin pomace
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extracts from different cultivars, rich in phenolic acids and flavonoids, showed higher
antibacterial activity against Gram-positive strains than Gram-negative ones [164]. The
addition of cranberry pomace extracts, rich in quinic and chlorogenic acids, procyanidin
B3, myricetin and quercetin derivatives, delayed the growth of L. monocytogenes in cooked
ham during cold storage [144]. Yersinia enterocolitica load was reduced by two logarithmic
cycles in pork meat containing 5 mg g−1 of gallic acid [165]. Phuong et al. [166] evalu-
ated the antibacterial activity of rambutan (Nephelium lappaceum L.) peel extracts, rich in
geraniin, ellagic acid, rutin, quercetin, and corilagin as main phenolic compounds. The
phenolic extract inhibited the growth of Sal. Enteritidis in raw chicken and that of Vibrio
parahaemolyticus in fish during cold storage. The application of polyphenolic extracts or
single polyphenols reduced the growth of foodborne pathogens in fresh-cut fruits, as
demonstrated by using pomegranate peel extract or ferulic acid against L. monocytogenes on
fresh-cut pear, apple, and melon [167,168]. The dipping of fresh-cut potatoes and fresh-cut
lettuce in Centella asiatica L. extract significantly reduced the load of B. cereus and E. coli
O157:H7 [131]. The glabridin, a prenylated isoflavonoid, reduced, by at least 1 log cfu g−1,
the load of L. monocytogenes on fresh-cut cantaloupe during 4 days of cold storage [169].

As regards the application of the glucosinolate derivatives against food pathogens,
the (4-[(4′-O-acetyl-α-L-rhamnosyloxy)benzyl] isothiocyanate) from Moringa oleifera seeds
reduced the viable load of Cro. sakazakii and B. cereus in goat milk by three orders of
magnitude [170].

In addition to the effect on cell viability, plant antimicrobials improved the thermal
sensitivity of foodborne pathogens in the food matrix. In particular, the use of oregano EO
in combination with citric acid enhanced the thermal inactivation of L. monocytogenes in
sous-vide salmon cooked at 60 ◦C [171], whereas vanillin and emulsified citral improved
the heat-sensitization of E. coli at 58 ◦C in a blended carrot-orange juice [172]. However,
in certain conditions, plant antimicrobials can induce a viable but not culturable (VBNC)
state in foodborne pathogens, as demonstrated for the application of citral and trans-
cinnamaldehyde in a meat-based broth against S. aureus [173].

In contrast with many of the above-reported papers, the methanolic extract of spices
mixtures employed to confer typical pungency and a hot taste to ‘Nduja, a traditional
Calabrian sausage produced with about 20% of different spices, showed a limited inhibitory
spectrum against ten common foodborne bacteria. Authors concluded that these spice
mixtures, rich in hundreds of potentially antimicrobial compounds, can not exert an
antimicrobial effect under normal processing conditions, due to the limited release of the
bioactive compounds from the plant tissue [174]. In conclusion, the inclusion of plant
antimicrobials in real food model systems can control the growth of foodborne pathogens,
representing a valuable option to replace synthetic preservatives, even though their efficacy
needs to be carefully evaluated under real production conditions.

3.2.2. Effect on Biofilm-Producing Strains

Bacterial biofilms are communities of microorganisms encased in a self-produced
extracellular matrix and attached to a surface [22]. Biofilms are prevalent in many natural
and artificial environments, including food processing facilities and equipment. Bacterial
biofilms can cause serious problems in the food industry by contaminating food prod-
ucts, leading to foodborne illness and decreasing the product’s quality [115]. Biofilms
can harbour pathogenic bacteria and provide a protective environment for these microor-
ganisms, making them resistant to cleaning and disinfection procedures. This can result
in a persistent contamination and the spread of foodborne illnesses. In addition, biofilm
growing on the equipment surfaces can cause clogging, formation of corrosion, and degra-
dation of the equipment surfaces, leading to increased maintenance costs and decreased
productivity [175]. Bacterial biofilms are a significant concern in the food industry due
to their impact on food safety and quality and the performance and efficiency of food
processing equipment. The food industry needs to implement effective strategies to pre-
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vent and control the formation of bacterial biofilms to maintain a safe and efficient food
processing environment.

The use of plant-derived antimicrobial compounds in food preservation gained at-
tention due to their efficacy against foodborne biofilm-producing strains of bacteria [176].
These compounds act through various mechanisms, such as interference with metabolic
processes, oxidative stress, and membrane disruption, and can also exert positive effects in
inhibiting the growth and replication of biofilm-producing bacteria. The first anti-biofilm
mechanism of action is the inhibition of the bacteria’s attachment to the surfaces. Phenolic
compounds, such as phenolic acids, catechins, and quercetin, were found to reduce the
adhesion of bacteria affecting flagellum, fimbria, and adhesins, delaying the formation of
biofilms [12]. Red Globe and Carignan grape stem extracts, rich in caffeic, ferulic and gallic
acids, catechin and rutin, inhibited the adhesion of L. monocytogenes to stainless steel and
polypropylene surfaces by inhibiting motility and reducing the adhesion potential [177],
as well as quercetin inhibited the early attachment of L. monocytogenes on stainless steel
surface by increasing the cell permeability and reducing the superficial cell charge [178,179].
Quercetin also reduced the swimming and swarming motility of Sal. enterica at sub-MIC
levels [180].

EOs or their compounds inhibit biofilm formation by different mechanisms. Cinnamon
EO inhibited the adhesion of L. monocytogenes on polystyrene, but its efficacy was low
on pre-formed biofilm [22]. Additionally, some terpenes, such as eugenol, carvacrol,
and thymol, were demonstrated to suppress the production of exopolysaccharides in
Salmonella spp., which are key components of bacterial biofilms [175], whereas citral and
geraniol decreased the glucan production in E. coli O157:H7 [181]. Eugenol showed similar
effectiveness against sessile and planktonic cells of S. aureus, showing a lower resistance
coefficient, the ratio of concentrations required to achieve the same log reductions in
both populations (Cbiofilm/Cplanktonic), as compared to conventional disinfectants [182].
Carvacrol and oregano EO effectively inhibited biofilm formation by S. aureus on stainless
steel surfaces, but the long-term exposure to a sub-MIC concentration of the oregano
EO showed an inductive biofilm formation effect [183]. Another mode of action of plant
antimicrobials against foodborne biofilm-producing bacteria is destabilizing the biofilm
matrix. Compounds such as sulphides, including allicin and diallyl sulfide, and sulfites
were shown to penetrate the biofilm and disrupt its stability, causing the release of bacteria
from the biofilm [184], as demonstrated in uropathogenic E. coli [185].

On the other hand, plant-derived antimicrobial agents were shown to possess anti-
biofilm activity by disrupting the quorum sensing process [186]. Quorum sensing is a
communication mechanism that bacteria utilize to coordinate the expression of certain
genes, including those involved in biofilm formation. Phytochemicals such as flavonoids
(quercetin and kaempferol) and terpenoids (carvacrol and thymol) were demonstrated
to interfere with the quorum-sensing by inhibiting the production and the activity of au-
toinducers (e.g., acyl-homoserine lactone), which play a key role in the quorum-sensing
process [187,188]. Lippia origanoides K. EO (thymol-carvacrol chemotype) inhibited the
expression of the sdiA, luxS, and luxR genes, which were implicated in the quorum-sensing
of Sal. enteritidis. This effect could be related to the inhibition of the biosynthesis of
autoinducers or the interference with the reception of acyl-homoserine lactone [189]. Aque-
ous pomegranate extract showed anti-quorum sensing activity, reducing the violacein
production, the quorum-sensing system’s product, in Chromobacterium violaceum [186].
Curcuma longa L. extract, with curcumin and curcumin derivatives as main compounds,
showed anti-quorum sensing activity inhibiting the violacein production in C. violaceum,
probably disrupting the signal reception or the absorption of the acyl-homoserine lactone.
However, this extract showed lower anti-biofilm activity against food pathogens than
Camellia sinensis L. extract, rich in epigallocatechin and epicatechin [190].

The use of plant antimicrobials as a strategy to control the biofilm formation in food-
borne pathogens gained increasing attention in recent years. Phytochemicals such as
phenolic acids, tannins, sulphur compounds, and terpenoids (Figure 2) showed anti-biofilm
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activity by interfering with the quorum-sensing process of bacteria [191]. Despite these
promising results, further research is needed to fully understand how these compounds ex-
hibit antibacterial and anti-biofilm activity and to develop effective strategies for controlling
biofilm formation during food processing.
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3.2.3. Effect on Microbial Toxins

Microbial toxins (e.g., bacterial toxins and mycotoxins) harm human health. Plant
antimicrobials were evaluated to reduce toxin production by foodborne bacteria and
mycotoxins by filamentous fungi.

Bacterial exotoxins are proteins that damage host cells and are important for the
pathogenesis of many bacterial pathogens, such as Clostridium spp., E. coli, L. monocytogenes,
and S. aureus [192]. The use of plant antimicrobials can attenuate the virulence of these
foodborne pathogens. In particular, different flavonoids suppressed the toxin produc-
tion in different foodborne pathogens. Genistein inhibited the exotoxin produced by
S. aureus, kaempferol, kaempferol-3-O-rutinoside, quercetin glycoside inhibited the neu-
rotoxin production from Cl. botulinum, and green tea catechins inhibited the release of
verotoxin from enterohemorrhagic E. coli [16]. Recent findings showed that the water-
soluble fraction of the Eucalyptus camaldulensis Dehnh. leaf extract significantly reduced
the listeriolysin O-induced haemolysis in L. monocytogenes at sub-inhibitory concentra-
tions [193]. A witch-hazel extract, with hamamelitannin as the main phenolic compound,
inhibited the production of the staphylococcal enterotoxin A in S. aureus at non-inhibitory
concentrations for microbial cells [194]. As regards the EO and their compounds, sub-
inhibitory concentrations of tea tree EO downregulated the transcription of genes encoding
α-hemolysin, staphylococcal enterotoxin A, and staphylococcal enterotoxin B in S. aureus,
inhibited their production, and the hemolytic activity [195]. Zhang et al. demonstrated that
citronellal significantly reduced the production of enterotoxins in S. aureus-contaminated
pork meat without reducing the viable cell load [196]. Other EO compounds, such as
carvacrol and trans-cinnamaldehyde, reduced the production of TcdA and TcdB toxins
produced by Cl. difficile in in vitro conditions [197]. Organic sulphur compounds such
as the diallyl disulphide, at sub-inhibitory concentrations, reduced the production of the
B. cereus enterotoxins Nhe and Hbl [91].



Foods 2023, 12, 2315 16 of 39

Plant antimicrobials also showed the ability to control the mycotoxin production
by filamentous fungi. The mechanisms of action are the inhibition of the fungal growth
and the induction of xenobiotic detoxification and/or the activation of biotransformation
pathways [19]. In the first case, turmeric, rosemary and clove EOs demonstrated great
efficacy in controlling the growth of mycotoxigenic A. flavus through the inhibition of
ergosterol biosynthesis, the disruption of the fungal cell membrane, and the production
of reactive oxygen species (ROS). In some cases, essential oils showed anti-aflatoxigenic
activity at concentrations inhibiting or completely suppressing fungal growth. In contrast,
in other cases, the anti-aflatoxigenic activity was detected at non-inhibiting concentrations.
However, in a few cases, plant antimicrobials stimulated the production of secondary
metabolites, including mycotoxins, in Aspergillus species [19]. Natural flavonoids such
as baicalein, flavone, hispidulin, kaempferol, and liquiritigenin reduced the aflatoxin
production in maize kernels contaminated with A. flavus by 50–67% [198], whereas a ternary
mixture of naringin, neohesperidin, and quercetin reduced the aflatoxin accumulation in
maize contaminated with A. parasiticus by more than 85% [199]. In sausages, the combined
application of Salvia farinacea Benth. and Azadirachta indica A.Juss. extract at 2 mg mL−1

suppressed the production of ochratoxin A and aflatoxin B1 produced by A. ochraceous
and A. parasiticus, respectively [200]. The degradation of aflatoxin B1 treated with the leaf
extract from rosemary reached 60% after 48 h of incubation. Araçá (Psidium cattleianum S.)
and oregano extracts produce less degradation than rosemary extract. Substances such as
alkaloids and enzymes occurring in the plant extract might be involved in the structural
modification of aflatoxin B1 [201]. Although the effect of plant antimicrobials on mycotoxin
accumulation in food products is promising, more in-depth information regarding the
toxicity of the resulting compounds from the degradation activity is required.

In conclusion, plant antimicrobials can reduce or suppress the production of bacterial
and fungal toxins by reducing microbial growth or downregulating toxin gene expression.
Further research is necessary to understand the modes of action of different plant extracts
and their bioactive compounds on toxin production to exploit their potential to improve
food safety under real contamination conditions.

4. Stabilization Techniques

Plant antimicrobials can have limited stability under processing or storage conditions
of foods. The efficacy of plant antimicrobials is affected by several factors such as pH, the
temperature, and the concentration. Caffeic, chlorogenic, and gallic acids are not stable
at high pH values, whereas chlorogenic acid is stable at low pH values and heat [202].
Some phenolic compounds and EOs, and their compounds, are thermolabile. Achillea sp.,
rosemary, sage (Salvia officinalis L.), and thyme EOs were more effective at low pH and
low temperature against pathogenic bacteria [203], whereas carvacrol and cymene showed
higher antibacterial activity in carrot juice at 25 ◦C than at 4 ◦C and 15 ◦C [204]. Several
plant antimicrobials show a dose-dependent effect against spoilage and pathogenic mi-
croorganisms. The stabilization techniques described in this section can help to protect
plant antimicrobials and, in some cases, reduce the concentration necessary to exert their
antimicrobial activity. The direct addition of plant extracts or their bioactive compounds
in foods is the most common method of food preservation. However, the direct addition
of plant extracts is often responsible for changes in sensory properties such as flavour
and texture. In addition, the bioavailability of these compounds and their effectiveness
in improving food safety can be affected by the interaction with the macronutrients and
ingredients. For these reasons, several stabilization techniques were proposed to enhance
stability, drive the release of bioactive compounds during storage, and reduce the negative
effects of plant extracts on the sensory characteristics of foods.

4.1. Nano-Emulsions

The encapsulation of plant antimicrobials into edible colloidal delivery systems is
a promising method to enhance the efficacy of these substances and reduce the nega-
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tive effects due to the interaction with food ingredients. In particular, encapsulation in
small particles increases water dispersibility and resistance to environmental conditions
enhancing plant antimicrobials’ efficacy [6]. Oil-in-water nano-emulsions containing lipid
nanoparticles dispersed in water are currently the most common delivery system for plant
antimicrobials. These nano-emulsions can be manufactured from food-grade ingredi-
ents, such as plant-based emulsifiers and different stabilizers, using common processing
methods, such as mixing (low-energy emulsification), sonication, and homogenization
(high-energy emulsification) [6].

Different studies investigated the efficacy of nano-emulsions against foodborne pathogens.
The plant antimicrobials most used to prepare nano-emulsions are the EOs and their
compounds. Lemongrass, clove, thyme, or palmarosa (Cymbopogon martini Will. Watson)-
loaded EOs nano-emulsions, prepared after micro fluidization of the primary emulsion,
inactivated E. coli by 3–4 log cfu mL−1. The use of alginate in the aqueous phase is useful
for applying these nano-emulsions in the coating material of fruits and vegetables [205].
Anise (Pimpinella anisum L.) oil nano-emulsions showed the same MIC (1% v/v) of the bulk
EO and coarse emulsion against L. monocytogenes and E. coli O157:H7. However, the anise
oil nano-emulsion displayed the highest physical stability and antibacterial efficacy [206].
More recently, other plant antimicrobials were used to prepare nano-emulsions to control
the growth of bacterial pathogens. Anise seed extract, with anethole, naringenin, and
taxifolin as main compounds, was used to develop an antibacterial nano-emulsion using
the ultrasound emulsification method. The nano-emulsion was active against E. coli and
Sal. thyphimurium, whose growth was not affected by the bulk extract [207]. Ghazy et al. [208]
evaluated the antimicrobial action of henna (Lawsonia inermis L.) extract as a nano-emulsion
against seven pathogenic bacteria. The nano-emulsion, rich in catechin, methyl gallate,
ellagic acid, and coumaric acid, displayed higher antimicrobial activity against E. coli, and
B. cereus, than the course emulsion. Regarding the application of nano-emulsions, including
plant essential oils, to control pathogens in plant foods, oregano oil nano-emulsion at 0.1%
reduced the load of L. monocytogenes, Sal. typhimurium, and E. coli O157:H7 on lettuce
by 3 log cfu g−1 [209]. Cinnamon oil nano-emulsion at 0.5% determined more than five
log reductions in L. monocytogenes and Salmonella spp. on melon [210]. Lemongrass and
mandarin (Citrus reticulata Blanco) EO nano-emulsions inactivated E. coli in apple juice, but
when the nano-emulsions were prepared directly in the apple medium as a continuous
phase, the antibacterial efficacy was reduced in comparison to the use of water [211]. Citral
nano-emulsions at 0.15 µL mL−1 inactivated L. monocytogenes (5 log cfu g−1 reduction) on
fresh-cut melon and papaya during cold storage [212].

Regarding the efficacy of nano-emulsions including plant antimicrobials against
spoilage microorganisms, thyme EO nano-emulsion showed lower efficacy than bulk EO
against fish spoilage bacteria, except for Serratia liquefascens [213]. For this spoilage bacteria,
laurel (Laurus nobilis L.) and grapefruit (Citrus paradisi Macfad.) EO nano-emulsions showed
lower MIC values than the corresponding EOs [214,215]. Ginger EO nano-emulsion, pre-
pared with zein and sodium caseinate as co-emulsifiers, showed higher bactericidal activity
against total viable counts of chicken breasts than the bulk EO, extending the shelf life
of the product by 6 days [216]. As regards the antifungal activity of plant antimicrobial
nano-emulsions, cinnamaldehyde, eugenol, and carvacrol nano-emulsion showed a dose-
dependent effect against the spore germination and mycelial growth of P. digitatum, with
a MIC value of 0.125 mg mL−1 [217]. Gundewadi et al. [218] found that basil EO nano-
emulsion displayed lower lethal concentration values (LC50) than course emulsion against
P. chrysogenum and A. flavus during 8 days of incubation. Oregano and clove EOs nano-
emulsions, at 1.95 mg g−1, showed fungicidal activity against Z. bailii in a salad dressing
after 4 days of storage [219]. EOs nano-emulsions also showed anti-mycotoxigenic activity.
Indeed, lemongrass EO nano-emulsion reduced by 99.5% the deoxynivalenol content in rice
contaminated with F. graminearum. The lemongrass EO nano-emulsion showed better anti-
mycotoxigenic activity than the bulk EO, but the efficacy was strain-specific [220]. Oregano
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EO encapsulated into chitosan nano-emulsion suppressed the production of aflatoxin B1
by A. flavus in maize [221].

Given these results, the antimicrobial action of plant antimicrobial nano-emulsions
depends on the chemical composition of the plant extract, the emulsion droplet size, and
the target microbial species. In addition, many studies demonstrated higher efficacy of
nano-emulsion than course emulsion and bulk plant extract.

4.2. Spray-Drying and Encapsulation

Spray-drying and encapsulation are techniques commonly used to improve the stabil-
ity and functionality of plant antimicrobials in food products. Spray-drying is a process in
which a liquid solution or suspension is atomized into a hot air stream, causing the rapid
evaporation of droplets, resulting in a dry powder. This process can produce dry powders
of plant antimicrobials that are more stable and easier to handle than the liquid form. Spray-
drying can also encapsulate the plant antimicrobials in a protective matrix, improving their
stability and functionality. Encapsulation is a process in which a natural antimicrobial is
surrounded by a protective matrix, such as a polymer or lipid, to improve its stability and
functionality. Encapsulation can enhance the natural antimicrobials’ shelf life and protect
them from degradation induced by light, heat, or moisture. Additionally, encapsulation
can improve the solubility and dispersibility of natural antimicrobials, making them easier
to incorporate into foods. These techniques can help to preserve the antimicrobial activity
of the natural antimicrobials and improve their effectiveness in controlling the growth of
spoilage and pathogenic microorganisms.

4.2.1. Spray-Drying Process

Spray-drying and encapsulation techniques provides numerous benefits in handling,
storage, and transportation of plant antimicrobials. Powdered antimicrobials are more
suitable for various applications within the food industry [222]. Powdered antimicrobials
minimize the risk of spillage and waste during handling and processing, as they can be
easily measured and transferred without causing mess or loss of material. This ensures a
more efficient use of resources and reduced operational costs. In some cases, the spray-
drying process conditions can have pros and cons related to the stability and functionality
of plant extracts, as briefly pointed out in Table 2.

Table 2. Advantages and disadvantages of the spray-drying process for producing stable and
functional plant antimicrobial powders.

Plant
Antimicrobial

Spray Drying Inlet
Temperature (◦C)

Protective
Matrix

Microbial
Targets Advantages Disadvantages Data from

Ref.

Eugenol and
thymol 105 Zein/casein

E. coli O157:H7,
L. monocytogenes

Scott A

Good dispersion
in water and
good stability
during storage

not reported [223]

Eugenol 180
Whey protein/
maltodextrin/

chitosan
E. coli, L. innocua

High
encapsulation
efficiency and

thermal stability

Chitosan inclusion
negatively affects
thermal stability,

releasing and
antimicrobial
properties of
the powder

[224]

Carvacrol 100–190 Pectin/sodium
alginate E. coli K12 Better thermal

stability

High inlet
temperature

affects dissolution
time and

hygroscopicity

[225]
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Table 2. Cont.

Plant
Antimicrobial

Spray Drying Inlet
Temperature (◦C)

Protective
Matrix

Microbial
Targets Advantages Disadvantages Data from

Ref.

Oregano EO 100 Whey protein/
maltodextrin E. coli, S. aureus

Low residence
time, high yield,

low inlet
temperature

Low throughput,
extended

processing hours,
high production

cost

[226]

Green tea
extract 150 Maltodextrin -

High thermal
stability and

reduced weight
loss

not reported [227]

In the study of Chen et al. [223], eugenol and thymol were co-encapsulated into zein-
casein nano-capsules through spray-drying. The resulting powders showed good water
hydration, stability during storage, controlled release during 24 h, and bactericidal and
bacteriostatic effects against E. coli O157:H7 and L. monocytogenes in milk whey, respec-
tively. Thyme EO encapsulated by spray-drying, with casein and maltodextrin as wall
materials, showed antibacterial action against thermotolerant coliforms and E. coli in meat
burgers [228]. The wall material employed to protect plant antimicrobials can affect their
antibacterial action. Indeed, the inclusion of chitosan in a whey protein/maltodextrin
blend reduced the antibacterial action of eugenol against E. coli and L. innocua. A low
inlet temperature used in the spray-drying of pectin/sodium alginate capsules including
carvacrol, increased the antibacterial activity against E. coli K12 (Table 2). The use of nano
spray-drying, a novel process to produce plant antimicrobial powders, was evaluated to
obtain whey protein/maltodextrin capsules, including oregano EO. The capsules showed
enhanced antibacterial action against E. coli and S. aureus compared to pure EO. How-
ever, this process has drawbacks such as high production costs, high processing time, and
reduced spraying effectiveness of viscous solutions [226]. These examples illustrate the po-
tential benefits and drawbacks of the spray-drying technique to produce plant antimicrobial
powders. The specific advantages and disadvantages observed depend on the antimicrobial
compound, the spray-drying conditions, and the choice of the protective matrix.

The increased stability of powdered antimicrobials extends their shelf life, as demon-
strated for the encapsulated peanut (Arachis hypogaea L.) skin extracts [229]. It maintains
the efficacy of plant antimicrobials throughout storage, reducing the need for frequent
replacements and ensuring consistent antimicrobial action.

Powdered antimicrobials generally have lower storage requirements than their liquid
counterparts, as they do not require refrigeration or specific storage conditions to maintain
their stability. This reduces energy consumption and storage costs for food manufacturers.
Additionally, the nature, weight, and form of powdered antimicrobials facilitates more
efficient transportation and shipping, as they occupy less space and require less protective
packaging than liquid antimicrobials [222]. Powdered antimicrobials can be more easily
integrated into various food matrices, as their fine and uniform particles allow a more
homogeneous distribution throughout the product. This ensures consistent antimicrobial
protection across the whole food matrix, enhancing food safety and quality.

4.2.2. Other Encapsulation Techniques of Plant Antimicrobials

Encapsulation of plant antimicrobials, a method of entrapment of a core material
within another solid or liquid immiscible substance, allows the production of capsules
or spheres in micrometre to millimetre in size [230]. Encapsulation can involve various
types of protective matrices that impact the stability and functionality of the antimicrobial
agents. Some common matrices for encapsulation include polysaccharides, lipids, and
proteins. Polysaccharides such as alginate, chitosan, and maltodextrin are widely used as
encapsulating agents due to their biocompatibility, non-toxicity, and excellent film-forming
properties. A study by de Araújo et al. [231] demonstrated that using maltodextrin/gelatine
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mixtures as a protective matrix for encapsulating the sweet orange EO positively affected
the thermo-oxidative stability of bioactive compounds and maintained its antibacterial
properties. The encapsulation of plant antimicrobials can be obtained through the formation
of inclusion complexes using the β-cyclodextrins, cyclic oligosaccharides with amphipathic
properties. These complexes can stabilize the guest molecule against the degradation,
mask off-flavours, and control the release of the encapsulated compounds [232]. Thyme
EO microcapsules exerted a bacteriostatic effect over Enterobacteriaceae, mesophilic bac-
teria, and psychrotrophic bacteria on lettuce [232], whereas inclusion complexes with
rosemary EO showed better antimicrobial activity against Saccharomyces pastorianus than
free EO in pasteurised tomato juice [233]. Coriander (Coriandrum sativum L.) EO encapsu-
lated in β-cyclodextrin nano-sponge showed bactericidal activity against L. monocytogenes,
Y. enterocolitica, and Cam. jejuni in aqueous media [234]. Black pepper (Piper nigrum L.)
oleoresin was stabilized in β-cyclodextrins using the kneading method, a method in
which the β-cyclodextrins and the guest compound are mixed with small amounts of
ethanol or water using a kneader for a specific time, showing antimicrobial activity against
L. monocytogenes and improved thermal stability [235].

Lipid-based encapsulation systems, such as solid lipid nanoparticles, the use of nanos-
tructured lipid carriers, and liposomes, are also employed for encapsulating plant-derived
antimicrobials. These systems can improve the stability of the encapsulated compounds,
their bioavailability, and ensure a controlled release. The study by Lin et al. [236] reported
that encapsulating chrysanthemum (Chrysanthemum flosculosum L.) EO in triple-layer lipo-
somes led to long-term antimicrobial activity against Cam. jejuni in chicken.

Protein-based matrices, such as gelatine, soy protein, and whey protein, can also
encapsulate plant-derived antimicrobials. These matrices offer advantages in biodegrad-
ability, biocompatibility, and the ability to form stable complexes with antimicrobial agents.
Recently, the microencapsulation of cinnamon EO using chitosan and whey protein isolate
showed enhanced thermal stability and long-term antimicrobial effect against S. aureus,
E. coli, P. fragi, and Shewanella putrefaciens [237]. The selection of the most suitable matrix
depends on the specific antimicrobial compound, the target application, and the desired
release characteristics.

4.2.3. Challenges Associated with Spray-Drying and Encapsulation Techniques

Although spray-drying and encapsulation techniques offer various advantages for the
stabilization and incorporation of plant-derived antimicrobials into food systems, there
are challenges associated with these processes that require further research. One of the
issues associated with spray-drying is the potential degradation or loss of activity of heat-
sensitive plant compounds during the drying process, as high temperatures are often
involved [222]. This can lead to reduced antimicrobial efficacy or the modification of
sensory properties. Additional and specific research studies need to be carried out to
explore alternative drying techniques, such as freeze-drying or nano spray-drying, that
might better preserve heat-sensitive compounds. Another challenge is the selection of
the most appropriate encapsulation matrix to ensure optimal protection, release, and
stability of the encapsulated antimicrobial compound. The choice of the encapsulation
material can greatly affect the effectiveness and shelf life of the antimicrobial agent for
food applications [238]. Further research is needed to understand the interactions between
various wall materials and plant-derived antimicrobials, and to optimize the encapsulation
processes for specific food systems. Additionally, scaling up from lab-scale to industrial-
scale production of encapsulated plant-derived antimicrobials poses challenges related to
the encapsulation efficiency, the product stability, and the process economics [239]. More
research is also required to develop cost-effective and efficient methods for large-scale
production, maintaining the quality and functionality of the encapsulated antimicrobials.
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4.3. Active Packaging

Active packaging involves the deliberate inclusion of subsidiary constituents in or
on either the packaging material or the package headspace to enhance the performance
of the package system. Active packaging can preserve the food quality and can extend
the product’s shelf life through the direct interaction between the food and bioactive
substances intentionally incorporated into the package [240]. Antimicrobial packaging is
one type of active packaging, in which the antimicrobial activity strongly depends on the
migration rate of the biologically active molecule incorporated into the polymer matrix [240].
Recently, the market was oriented to replace packaging produced with fossil fuels with
more sustainable materials such as biopolymers. In this context, the use of biopolymers,
including plant antimicrobials, is very attractive to develop active films or coatings, to
overcome the thermal/oxidative instability of these compounds during the manufacturing
of the polymers or storage of the final product, and to mask undesirable sensorial aspects
of some plant extracts. In addition, biopolymers have a lower environmental impact
compared to standard food packaging polymers such as polyethylene or polypropylene.
Plant antimicrobials can be added directly into the biopolymer or loaded into clays or
nanocarriers, as demonstrated for EO compounds [241,242] and polyphenols [243,244]. This
strategy ensures, in most cases, their controlled release and, in some cases, an improvement
in the mechanical and physical properties of the film.

The most used biopolymers for including plant antimicrobials are chitosan, starch,
carrageenan, cellulose, and alginate. However, other polymers used for this purpose are
polyvinyl alcohol (PVA), poly lactic acid (PLA), poly butylene-succinate-co-adipate (PBSA),
poly butylene-adipate-co-terephthalate (PBAT), poly(hydroxybutyrate)s (PHBs), and poly
(ε-caprolactone) (PCL).

Regarding active chitosan films, the inclusion of apple peel polyphenols (1%) into chi-
tosan film enhanced the antibacterial activity against B. cereus, E. coli, Sal. typhimurium, and
S. aureus [245]. A composite film based on grapefruit seed extract-loaded poly(ε-caprolactone)/
chitosan reduced the E. coli population on salmon by more than 2 log cfu g−1 after 6 days
at 4 ◦C compared to the packaging into polyethylene or poly(ε-caprolactone)/chitosan
films, and suppressed mould development on bread stored for 7 days at 24 ◦C [246].
Surendhiran et al. [247] developed active nanofibers based on chitosan/Poly (ethylene ox-
ide) loaded with pomegranate peel extract. The nanofibers reduced by 3 log cfu g−1 the
E. coli O157:H7 population in raw beef stored at 4 ◦C for 10 days. The coating of fresh
cucumber with chitosan loaded with oregano EO reduced the viability of total mesophilic
bacteria and total yeasts and moulds during storage at 10 ◦C for 15 days [248]. Starch
films were also enriched with plant antimicrobials as demonstrated by Saberi et al. [249]
that developed pea starch-guar gum films including epigallocatechin-3-gallate and blue-
berry ash fruit (Elaeocarpus reticulatus Sm.) and macadamia (Macadamia tetraphylla) skin
extracts. Active films showed antimicrobial activity against spoilage bacteria and fungi, and
pathogenic bacteria, with a reduction in microbial load in the range of 40–80% for the films
loaded with epigallocatechin-3-gallate and blueberry ash fruit skin extracts at the MIC level
(ranging from 93 to 1500 µg mL−1). A bio-composite film made with cassava starch and
whey protein loaded with rambutan peel extract and clove oil slightly inhibited B. cereus,
E. coli, and S. aureus in in vitro conditions, and reduced total viable count of salami stored for
10 days [250]. A sweet potato starch-based film activated with montmorillonite nano-clay
and thyme EO reduced the load of E. coli and S. thypimurium on fresh spinach leaves during
8 days of cold storage [251]. Other biopolymers used to manufacture active films/coatings
with plant antimicrobials are alginate and carrageenan. A sodium alginate film loaded
with the gallnut extract (Quercus infectoria Oliv.), rich in gallotannins, ellagic acid, and
gallic acid, showed antibacterial activity against S. aureus and E. coli [252], whereas the
coating of apples and pears with alginate loaded with cinnamon EO at 0.9% v/v inhibited
the A. carbonarius growth and the OTA production [253]. Compared with the control film,
a carrageenan film containing 3% rosemary extract displayed >99% inhibition against
B. cereus, E. coli, P. aeruginosa, and S. aureus, reducing by 2–4 orders of magnitude the mi-
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crobial load [254]. He and Wang [255] recently demonstrated that a K-carrageenan coating
enriched with cinnamon EO delayed the growth of total viable count, lactic acid bacteria,
and H2S-producing bacteria in pork meat. Active films incorporating plant antimicrobials
can be also produced using proteins. Indeed, zein nanofibers loaded with 1,8-cineol rich
extracts reduced the load of L. monocytogenes and S. aureus on cheese slices by two orders of
magnitude during 28 days of cold storage [256].

Other active films, including plant antimicrobials, can be manufactured using PLA
and PHBs. A PLA/PBAT composite film including 7% w/w of grapefruit seed extract
showed bactericidal activity against L. monocytogenes and a bacteriostatic effect against
E. coli [257]. Additionally, a PLA/PBSA blend including 6% w/w thymol delayed the
mould development on bread compared to polypropylene or neat PLA [258]. PHBV films
loaded with eugenol and carvacrol showed antibacterial action against E. coli in cheese
and pumpkin but not in melon, where the highest release of the active compounds from
the films was observed [259]. This result highlights that the interaction of antimicrobial
compounds with the food components and their diffusion within the food matrix play an
important role in the antimicrobial activity of active films including plant antimicrobials.

Plant antimicrobials can be incorporated into active packaging using encapsulated
extracts or nano-emulsions. Pabast et al. [260] developed a chitosan film in which the
EO extracted from Satureja khuzestanica J. was encapsulated into nanoliposomes. The film
delayed the growth of total mesophilic bacteria, Pseudomonas spp., and lactic acid bacteria
of lamb meat stored for 20 days at 4 ◦C. Interestingly, the antimicrobial effect was higher
than that displayed by the film including free Satureja khuzestanica J. EO [260]. Chitosan
film loaded with microcapsules, including basil EO, slightly reduces total mesophilic
bacteria, enterobacteria, and lactic acid bacteria on cooked ham during storage [261].
A PVA loaded with cinnamon EO encapsulated in β-cyclodextrin showed a bacterio-
static effect against S. aureus and E. coli [262]. In addition, a PVA/starch film including
β-cyclodextrin inclusion complex embedding lemongrass EO showed antibacterial action
against She. putrefaciens [263]. Nano-emulsions of essential oils were used for the inclu-
sion in active packaging. Lee et al. [264] developed hydroxypropyl methylcellulose-based
films incorporating oregano EO nano-emulsions. The active film showed inhibition zones
against Sal. thyphimurium, E. coli, L. monocytogenes, B. cereus, and S. aureus. Chitosan-
Ferulago angulata essential oil nano-emulsion showed lower MIC and MBC values against
the fish-spoilage bacteria P. fluorescens and She. putrefaciens than the corresponding coating
emulsions. Moreover, the coatings, including the nano-emulsion, reduced the total viable
and psychrotrophic counts of rainbow trout fillets by 3 log cfu g−1 after 16 days of storage
at 4 ◦C [265]. The incorporation of Zataria multiflora Boiss. EO and cinnamaldehyde in
the form of nano-emulsions into starch coatings reduced the growth of L. monocytogenes,
psychrotrophic bacteria, and Enterobacteriaceae in chicken during cold storage [266].

5. Combining Effects and Hurdle Technologies

In this section, the more recent studies demonstrating the possible improvement in
food safety and shelf life by combination of bioactive compounds from different plant-
based extracts or by their combination with non-thermal or mild food technologies are
briefly reported.

5.1. Additive or Synergistic Effects

The use of combinations of antimicrobial plant extracts and their compounds showed
additive or synergistic effects against spoilage and pathogenic microorganisms. This
approach is cost-efficient for the food industry and adheres to the hurdle technology in
inhibiting the proliferation of undesirable microorganisms, improving the preservative
effects of plant antimicrobials and reducing the negative sensory effects of single plant
extracts [2].

Additive or synergistic effects are found in combinations of plant extracts and their
compounds, reducing the MIC of the plant antimicrobials. As regards the additive effects,
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cinnamon EO with clove EO showed an additive effect against L. monocytogenes [67],
whereas the combination of cinnamaldehyde with 2-hydroxycinnamic acid showed additive
effects against L. monocytogenes and Sal. enteritidis under in vitro conditions, but it was
not effective in contaminated cooked ham [267]. Regarding the synergism among plant
antimicrobials, thyme EO with cinnamon EO (0.312 g L−1), cinnamon EO (0.156 g L−1)
with rosemary EO (0.625 g L−1) and thyme EO (0.078 g L−1) showed synergistic effects
in inhibiting Alt. alternata and P. expansum on jujube fruit [268]. Cinnamon EO with
clove EO showed synergistic antibacterial activity against S. aureus, L. monocytogenes, and
Sal. typhimurium [269], and against L. monocytogenes when vanillin was combined with
both EOs [67]. Synergistic effects were found using combinations of EOs compounds or
isothiocyanates with phenolic acids against bacterial pathogens. The combination of thymol
with gallic acid determined a synergistic effect at sub-inhibitory concentrations against
E. coli O157:H7 and S. aureus on fresh-cut tomatoes [270]. Allyl isothiocyanate with o-
coumaric acid showed synergism, obtaining 2 log reduction in E. coli O157:H7 in a dry-
fermented sausage when the antimicrobial compounds were added at the concentration of
6.25 µL and 750 mg per 100 g fresh weight, respectively [271].

As regards the antifungal interactive effect of plant antimicrobials, a triple combina-
tion of thyme EO, cinnamon EO, and rosemary EO showed a synergistic antifungal effect
against B. cinerea and P. expansum, reducing their development on pear [272]. Pinto et al. [64]
demonstrated a synergistic effect in the vapour phase between thymol and γ-terpinene in
binary combinations and between p-cymene, γ-terpinene, and thymol in ternary combi-
nations against the strain P. digitatum ITEM 9569, which is resistant to single thyme EO
exposure. The use of combinations of plant antimicrobials to control the development of
spoilage and pathogenic microorganisms in foods is a research area showing rapid develop-
ment. The use of combinations of plant antimicrobials can reduce the concentration of plant
antimicrobials added in foods, minimizing the negative impact of these compounds on the
sensory properties of foods as previously demonstrated [269,270]. Studies related to this
topic are expected to increase in the future, paying attention to the effect of the combination
of plant antimicrobial compounds in real food matrices, and the elucidation of the modes
of action.

5.2. Hurdle Technologies

The “hurdle approach” in the food sector refers to the successive or simultaneous
application of two or more food preservation techniques for enhancing food safety and
quality using lower individual treatment intensities and for achieving multi-target, mild,
and reliable preservation effects [273]. This approach was followed to reduce the dose of
chemical preservatives used to control the development of spoilage microorganisms in
foods [274]. Recently, several studies investigated the application of mild or non-thermal
technologies in combination with the use of plant antimicrobials to control the growth of
spoilage and pathogenic bacteria in food and to extend the shelf life.

The combined application of high-pressure homogenization (HPH) and nano-emulsions
of hexanal and trans-2-hexanal inactivated S. cerevisiae in apple juice up to 22 days of storage,
with better performance as compared to individual treatments [275]. Citral (1% w/w)
combined with high-pressure processing reduced the viability of a cocktail of E. coli STEC
in ground beef by 4–7 log cfu g−1, depending on the pressure level applied [276]. The
treatment of ground chicken meat with 320 MPa for 23 min at 4 ◦C with allyl isothiocyanate
and acetic acid at ca. 0.2% w/w achieved a 5-log reduction in E. coli O157:H7, with a
better inactivation compared to single treatments [277]. As regards the application of cold
plasma technology with plant antimicrobials, González-González et al. [278] found that the
combined application of cold plasma and linalool nano-emulsion reduced by 3 log cfu g−1

the load of E. coli O157:H7 and Sal. enterica in chicken meat, while individual treatments
showed limited efficacy. The effect of plant antimicrobials combined with food technologies
against E. coli O157:H7 on chicken meat is depicted in Figure 3.
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Sea bass slices packed under modified atmosphere packaging and pre-treated with
cold plasma and a liposomal ethanolic coconut husk extract showed the lowest increase in
Pseudomonas spp. and Enterobacteriaceae during 18 days at 4 ◦C in comparison to cold plasma
treatment alone or the application of the liposomal ethanolic coconut husk extract [279].
On the contrary, the combined use of cinnamon EO and modified atmosphere packaging
showed limited efficacy against spoilage bacteria of lean pork meat or salmon during cold
storage [280]. The pulsed electric field pre-treatment of Pacific white shrimp, followed by
the soaking in 1% of Chamuang (Garcinia cowa Roxb.) leaf extract, showed a lower increase
in mesophilic, psychrophilic, Pseudomonas spp., Enterobacteriaceae, and H2S producing
bacterial counts in comparison to individual treatments and the application of sodium
metabisulfite during cold storage [281]. A synergistic effect in reducing the microbial
load of E. coli O157:H7 was found between thyme EO nano-emulsion treatment and the
sonoporation induced by ultrasounds [282]. Microwave heating at 915 MHz with carvacrol
showed a synergistic effect against E. coli O157:H7, Sal. typhimurium and L. monocytogenes
in buffered peptone water but not in hot chilli sauce [283].

Light technologies were also combined with the use of plant antimicrobials to control
the contamination by foodborne pathogens. In reconstituted powdered infant formula, the
load of Cro. sakazakii was reduced by 6.5 log cfu mL−1 following the combined 405 nm
light-emitting diode and 9 µL mL−1 citral treatment for 90 min compared with untreated
samples [284]. Silva-Espinosa et al. [285] found that the combined application of UV-
C light and clove EO on stainless steel surface achieved a complete bacterial reduction
(6.8 log cm−2) on biofilms of Sal. thyphimurium.
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The use of chemical compounds was associated with plant extracts and their com-
pounds. The nano-emulsion of thyme EO enhanced the antimicrobial effect of slightly
acidic electrolyzed water against foodborne pathogens, suggesting the formation of com-
plexes probably through hydrophobic interactions [286]. Based on total viable counts, a
shelf-life extension of 7 days was observed in fresh fish fillets treated with gaseous ozone
and coated with alginate, including different EOs and citrus extract, as compared to single
treatments [287].

The combination of mild or non-thermal technologies with plant antimicrobials is a
recent research trend. Many of these studies showed synergistic effects in reducing the
microbial load of spoilage and pathogenic microorganisms on foods. These effects can
be explained by the exposure of target microorganisms to multiple hurdles and stresses.
Even though more studies are necessary to understand the modes of action of these
combined approaches, the enhanced antimicrobial activity of plant extracts and their
compounds, when coupled with innovative technologies, allows to reduce their concen-
tration in different foods, mitigating some of their drawbacks such as the modification of
sensory characteristics.

6. Regulation and Safety Issues of Plant Extracts

Plant extracts can be contaminated by different dangerous compounds, such as heavy
metals, crop-protection residues, and mycotoxins. The concentration of these compounds
depends on the cultivation practices employed, the geographical location of the cultivation
site, the application of crop protection products, and the extraction method. In this section,
data related to the contamination levels of plant extracts employed for the production of
plant antimicrobials for food purposes are reported.

6.1. Heavy Metals and Crop-Protection Residues

Heavy metals can contaminate plant extracts. In plants that produce EOs, the uptake
of metals is associated with soil contamination, and their transfer to EOs depends on the
extraction technology. Moreover, the storage of EOs in metallic containers can promote
the transfer of metals into the oil. As, Cd, Pb, and Hg cause toxic effects at relatively low
levels. For Cd, Hg, and Pb, recommendations for safety limits in medicinal plants are
imposed by European Pharmacopoeia, FAO, and the World Health Organization (WHO).
Iordache et al. [25] evaluated the heavy metal content of EOs from different sites. High
levels of Hg, Cr, Pb, Cu contamination were found in Mentha × pipperita L. EO. However,
the authors concluded that the analyzed EOs could be safely consumed in the doses
recommended by the manufacturers, and the content of heavy metals does not pose a
significant risk to the consumer’s health. High levels of Cr, Cd, and Pb in thyme and
oregano plant samples were found by Reinholds et al. [288].

Regarding the contamination levels of crop-protection residues in EOs, they depended
on the agricultural practices. Conventional orange EOs contained 17 pesticides and a total
concentration of 5.1 mg L−1, whereas organic orange EOs contained only 4 pesticides
and a total concentration of 0.087 mg L−1 [27]. Organophosphorus and organochlorine
pesticide residues were found in citrus EOs, especially those produced by cold-pressing
and conventional agriculture practice, albeit with a concentration lower than 1 mg L−1.
Tebuconazole and propiconazole co-distillated in peppermint EO with a different degree
depending on the vapour pressure [289]. Cymoxanyl, dimethoate, and tebuconazole
residues exceeded the maximum residue level set by the European Union in thyme samples
from Poland [288]. In conventional grape skin extracts, Boscalid, Fludioxinil, Mycobutanil,
and Pyraclostrobin levels exceeded the maximum residue level. However, the concentration
of these crop-protection products was lower than the detection limit or the maximum
residue level in organic grape skin extracts [290].
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6.2. Mycotoxins

Mycotoxins can contaminate plant extracts. Different studies evaluated the mycotoxin
contamination of plants such as Mentha sp. and Zingiber officinale R., which are generally
used to produce EOs. Although the plant material showed levels of mycotoxins within
the EU regulation limits, in some cases, the aflatoxin concentration exceeded acceptable
standards [26]. In addition, the fungal contamination and mycotoxin accumulation in
Z. officinale R. decreased the bioactive compounds of ginger [291]. Dried thyme herbs
from Lebanon showed 75% of samples exceeding the limit of aflatoxin B1 for spices ac-
cording to the European regulation. Similarly, the OTA level exceeded the maximum
limits for Lebanese thyme and thyme mixes in 13% of the samples [292]. Zearalenone and
deoxynivalenol contamination (range 10–209 µg kg−1) was detected in thyme samples
from Poland [288]. Additional data are required to monitor the mycotoxin contamination
of plant extracts (e.g., essential oils, phenolic extracts) and to establish regulatory limits.

6.3. Regulation

Comprehensive toxicological studies are necessary to obtain the approval of plant
antimicrobials as food preservatives by the European Food Safety Authority (EFSA), the
Food and Drug Administration (FDA), and the China Food Additives Association (CFAA).
Many plant antimicrobials have the GRAS status for specific food applications, but their use
in other food applications is not expressly approved. Indeed, plant phenolics are actually
absent in the positive list of food preservatives. Regulatory authorities’ approval of plant
extracts as food additives is essential to ensure consumer safety and confidence. Such
authorization must be based on comprehensive safety assessments, including toxicological
studies, exposure assessments, and evaluations of factors such as purity, stability, and
potential allergenicity. Regulatory approval helps to guarantee that these plant extracts
are safe for human consumption and meet specific quality standards. However, there can
be challenges and barriers in the regulatory approval process. The complexity of plant
antimicrobial mixtures and the need for extensive safety data may lead to time-consuming
and costly approval processes. Global policy inequities significantly impact the approval of
plant extracts as food additives. Addressing these inequities requires international coopera-
tion, knowledge sharing, and capacity building to develop robust regulatory frameworks,
protect and promote traditional knowledge, enhance research capacity in developing
countries, and ensure fair and equitable access to the global market for plant-derived
products. In order to improve and expedite the approval of plant extracts as food additives
by authorities, several actions could be taken: encourage international collaboration and
communication to harmonize regulations, establishing consistent guidelines and standards,
increase investment in research and development to generate robust scientific data on
plant extracts’ safety, efficacy, and potential applications, strengthen developing countries’
research and regulatory capacities through training, resources, and technical assistance,
facilitate knowledge sharing and collaboration among various stakeholders, including
researchers, industry professionals, and regulatory authorities, and employ advanced tech-
nologies such as data science for data-driven decision-making in the approval process. In
turn, this will ensure consumer safety, promote the sustainable use of plant resources, and
contribute to the growth of the global market for plant-derived products.

7. Conclusions and Future Directions

Plant antimicrobials gained considerable attention as promising alternatives to syn-
thetic preservatives in the food industry, offering numerous benefits such as enhanced
safety, extended shelf life, and increased consumer acceptance. The observed additive or
synergistic effects between plant extracts, essential oils, and their compounds, and the
successful integration of hurdle technologies, contributed to the scouting of novel and
mild food preservation methods. Despite the significant progress made in the field, several
research areas warrant further investigation. A deeper understanding of modes of action
of plant antimicrobials and their combinations, including their effects at molecular and
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cellular levels on target microorganisms, is crucial for optimizing their application and
enhancing their efficacy. The development of optimized formulations and delivery systems,
such as nano-emulsions, encapsulation, or edible coatings, will improve stability, bioavail-
ability, and targeted delivery of plant antimicrobials and, as a consequence, will increase
their use in various food systems. A thorough examination of the impact of plant antimi-
crobials on the sensory properties of food is important to ensure consumer acceptance,
focusing on minimizing adverse effects on taste, aroma, and texture while maintaining
antimicrobial effectiveness.

Conducting comprehensive toxicological studies on plant antimicrobials, their deriva-
tives, and combinations is essential to establish safe consumption levels and guarantee
consumer safety. Additionally, addressing the challenges and barriers to regulatory ap-
proval for plant antimicrobials as food additives will accelerate their broader application in
the food industry. The development of sustainable and environmentally friendly methods
for extracting and producing plant antimicrobials aligns with the overall sustainability
goals of the food industry. Given the knowledge on the chemical composition of plant
extracts and the antimicrobial activity of plant compounds, plant antimicrobials could
be recovered from agri-food by-products or from food waste, creating new value chains.
Moreover, since non-edible wild plant species are often a good source of plant antimicrobial
compounds, these species could be cultivated in marginal areas, promoting new cultivation
practices in depressed rural territories, and also increasing the sustainable production of
plant additives for the food industry. Increasing consumer awareness of plant antimicro-
bials’ benefits and their role in food safety and preservation will enhance market acceptance
and drive demand for such products.

The description of the results allows us to decontextualize results reported in single
studies for a wider comprehension. The analysis of studies suggests that the application
of plant antimicrobials, also when combined with other technologies, still needs to over-
come some critical aspects. As with all reviews, this study reported a selection of case
studies among many others and some of the drawbacks highlighted herein are actually
under examination.

In conclusion, we believe that this review provided useful updated information pro-
moting a scientific evidence-based approach for researchers, aimed to understand if the use
of plant antimicrobials can be scaled up from laboratory trials towards industrial applica-
tions. Further research and development efforts in these areas will help to overcome the
current challenges and pave the way towards a widespread adoption of plant antimicrobials
in the food industry, contributing to safer, more sustainable, and consumer-friendly foods.
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