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Abstract 17 

Background Aridification is a worldwide serious threat directly affecting agriculture and crop production. In arid 18 

and desert areas, it has been found that microbial diversity is huge, built of microorganisms able to cope with the 19 

environmental harsh conditions by developing adaptation strategies. Plants growing in arid lands or regions facing 20 

prolonged abiotic stresses such as water limitation and salt accumulation have also developed specific physiological 21 

and molecular stress responses allowing them to thrive under normally unfavorable conditions.  22 

Scope Under such extreme selection pressures, special root-associated bacterial assemblages, endowed with 23 

capabilities of plant growth promotion (PGP) and extremophile traits, are selected by the plants. In this review, we 24 

provide a general overview on the microbial diversity in arid lands and deserts versus specific microbial 25 

assemblages associated with plants. The ecological drivers that shape this diversity, how plant-associated 26 

microbiomes are selected, and their biotechnological potential are discussed. 27 

Conclusions Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination 28 

of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of 29 

these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, 30 

salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR 31 

constitute the challenge to be raised.  32 

 33 
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 37 

Introduction 38 

Arid   areas   cover   nearly   47%   of   Earth’s   land   surface.   Such   extended   regions   are   characterized by various harsh 39 

environmental conditions mainly soil deficiency in water and nutrients, high salinity and acidity, low precipitation, 40 

high temperatures and UV irradiation (Whitford 2002). All the organisms thriving in these extreme environmental 41 

conditions, including plants and bacteria, adopt complex survival strategies to alleviate abiotic stresses. In desert 42 

environments, microorganisms are the first colonizers (Mapelli et al. 2012; Borin et al. 2010). They possess special 43 

adaptation mechanisms, partly related to their ability of expressing and regulating only those genes required to 44 

survive and respond appropriately to the physical and chemical composition of these particular habitats (Bohnert et 45 

al. 1995; Begley et al. 2002; Boor 2006; Colica et al. 2014). They are able to create stable associations with higher 46 

organisms like fungi, lichens and mosses to form the so-called biological soil crusts (BSC) which have a crucial 47 

performance in stabilizing soil against erosion and in the restoration of deserts soils (de-Bashan et al. 2010; Bashan 48 

et al. 2012; Xu et al. 2013). BSCs can also be favourable niches for the germination of plant seeds. 49 

Microorganism colonization and services in extreme environments are essential for the plant establishment. While 50 

microorganisms favour the availability of water and nutrients for the plant, in return plant root system supply carbon 51 

sources for growth, representing a stable survival niche (Neilands 1995; Graham and Vance 2000; Richardson et al. 52 

2009). In the plant root system, the rhizosphere, the first millimetres of soil surrounding plant root surface, is a thin 53 

dynamic layer of high activity and metabolism. Plant rhizosphere represents a suitable survival niche to 54 

microorganisms where nutrients are more available. In this compartment, bacteria are the most abundant 55 

microorganisms and since they are mostly providing useful services to support root and plant growth they are 56 

commonly defined as Plant Growth Promoting Rhizobacteria (PGPR). PGPR exert beneficial effects on the growth 57 

of the host plant via direct and indirect mechanisms. They directly promote the plant growth by increasing the 58 

availability of nutrients, for instance by fixing atmospheric nitrogen (Graham and Vance 2000; Richardson et al. 59 

2009), solubilizing inorganic phosphate and producing siderophores that increase the availability of mineral 60 

nutrients such as iron (Neilands 1995; Richardson 2001). PGPR contribute to the modulation of plant hormone 61 

balance thought the synthesis of hormone-like molecules, mainly auxins, cytokinins and gibberellins (Costacurta and 62 

Vanderleyden 1995; Spaepen et al. 2007). Indirect mechanisms include the prevention of attacks of plant pathogens 63 

through the synthesis of antibiotics or antifungal compounds and through competition for nutrients (Van Loon et al. 64 
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1997; McCully 2005; Couillerot et al. 2009; Saharan and Nehra 2011). On their side, plants noticeably contribute to 65 

the selection of PGPR by releasing root exudates, which generate a positive selection pressure and increase 66 

competitiveness among bacteria in root colonization (Shukla et al. 2013). A fraction of PGPR can also enter in root 67 

interior   tissues,   the   so   called   endosphere,   establishing   the   endophytic   populations’   community   (Hallmann et al. 68 

1997; Zinniel et al. 2002; Compant et al. 2005; Cankar et al. 2005; Danhorn and Fuqua 2007; Dias et al. 2009; 69 

Rhoden et al. 2015). Plants harbor endophytic bacteria that colonize a variety of internal plant tissues namely shoot, 70 

seeds and root tissues (Rosenblueth and Martínez-Romero 2006). In this context, Ulrich et al. (2008) identified 71 

Paenibacillus, Methylobacterium and Stenotrophomonas endophytes in the shoot tips and zygotic embryos of 72 

Norway pruce (Picea abies). In other studies, the endophytic bacteria Methylobacterium extorquens, Pseudomonas 73 

synxantha, mycobacterium sp. and Rhodotorula minuta were isolated from shoot tips of callus cultures of Scots 74 

pines (Pinus sylvestris L.) (Laukkanen et al. 2000, Pirttila et al. 2000). Beside, different bacterial genera have been 75 

identified within the endophytic community of potato (Solanum tuberosum) root tissues, for instance Rheinheimera, 76 

Dyadobacter, Devosia, Pedobacter and Pseudoxanthomonas (Manter et al. 2010). In Mammilaria fraileana seeds, 77 

endophytic bacteria distributed underneath the membrane covering the embryo and in the vascular tissue have been 78 

detected in addition to a large population of endophytic bacteria that have been isolated from stems and roots (Lopez 79 

et al. 2011). For instance, Bacillus megaterium, Pseudomonas putida and Enterobacter sakazakii have been isolated 80 

from the vascular cylinder, while Azotobacter vinelandii has been isolated from the root cortex.  81 

This symbiotic association can be established without harming the plant (Lopez et al. 2011). Hence, several 82 

endophytes are of great importance given the beneficial effects that they offer to their host plants. Some endophytes 83 

are endowed with promoting growth potential (Dias et al. 2009; Bae et al. 2009; Lopez et al. 2011; Etesami et al. 84 

2014) and biocontrol activities against phytopathogens (Melnick et al. 2013; Falcäo et al. 2014). These particular 85 

characteristics lead them to be employed in several biotechnological applications. Thanks to their secondary 86 

metabolites, endophytes are employed as medicinal remedies (Strobel 2007; Qin et al. 2011) and as a tool for 87 

phytoremediation of organic contaminants giving their ability to degrade xenobiotics (Lodewyckx et al. 2002; 88 

Kuiper et al. 2004; Germaine et al. 2006; Doty 2008). They also play an important role in soil fertility and 89 

improvement of sustainable production of non-food crops for biomass and biofuel production (Ryan et al. 2008).  90 

In stressful conditions mimicking arid and desert environments, it has been shown that biotic resistance of Quercus 91 

pubescens to insect pest infestation is not affected by warming and drought stresses. Leaf palatability is rather 92 
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influenced by the variability of trichome density implicated in such induced adaptation (Backhaus et al. 2014). 93 

Similarly, in salt stressed plants, adaptation implies a complex regulation machinery involving Ethylene Responsive 94 

Factor (ERF) (Klay et al. 2014). There is an increasing body of literature showing that arid soils may favour the 95 

selection of bacteria capable of providing suitable services to alleviate plant drought stress (Marasco et al. 2012; 96 

Marasco et al. 2013a; Shelef et al. 2013) suggesting that this adaptation may be manifesting in the bacterial 97 

assemblages.   98 

Another important factor affecting the functioning of the root systems in arid soils is the multiple symbiotic 99 

interactions such as those that may occur between different life domains. An interesting case is the mutualistic 100 

tripartite symbiotic interaction established between the desert plant Salsola inermis with the beetle Conorhynchus 101 

pistor and its symbiotic bacterium Klebsiella pneumonia (Shelef et al. 2013). The bacterial symbiont inhabiting the 102 

gut of the plant-hosted beetle larvae, provide nitrogen to the beetle and the plant hosts. On its side, the host plant 103 

protects the beetle from predators and parasites with its roots and provides organic matter to the animal and to its 104 

symbiont. This example shows that symbiotic cooperation is capable to improve the growth sustainability of the 105 

partners under the harsh conditions of the desert. In addition, plant genotype was shown to have a direct effect in 106 

shaping the rhizosphere associated microbial communities (Haney et al. 2015). 107 

Plants surviving in arid ecosystems can sustain specific root associated PGPR communities that are selected by the 108 

environmental factors peculiar of the different locations (Marasco et al. 2013a; Ferjani et al. 2015; Mapelli et al. 109 

2013). Plant and cultivar type as well as nutriments richness of the soil, are pivotal factors for PGPR recruitment 110 

(Zhang et al. 2014; Latour et al. 1996). This selection gives rise to diverse PGPR communities with common 111 

capabilities for improving plant functionalities under the harsh conditions determined by drought and saline stresses 112 

in arid environments.  113 

Within this context, several studies have explored this unique root-soil interface and assessed its biodiversity in arid 114 

lands, with particular interest for i) understanding PGPR activities involved in plant growth promotion and 115 

protection, ii) assessing the importance of the PGPR ecological-niche and diversity, and iii) exploiting PGPR to 116 

improve agricultural sustainability. In the following sections we discuss these aspects in the light of the recent 117 

literature. 118 

 119 

Microbial diversity associated to plants growing in arid lands and deserts 120 
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Arid regions are characterized by low rainfall and substantial unvegetated areas, which offer a typical ecosystem 121 

with patchwork-shaped microbial assemblages (Pointing and Belnap 2012; Nagy et al. 2005). In the recent years, 122 

several surveys have been focused on the complexity of the microbial diversity associated to soils in these extreme 123 

ecosystems. Despite the different geographic location of arid lands and deserts across the world, the bacterial 124 

communities of lithic substrates were dominated by Cyanobacteria (DiRuggiero et al. 2013). In addition, 125 

Proteobacteria, Firmicutes, Actinobacteria and Bacteriodetes are the main phyla generally detected in these soils. In 126 

the Taklamakan desert, the largest mobile desert in Asia (China), fifteen phyla were obtained but the most abundant 127 

were Proteobacteria (25.10%), Firmicutes (24.8%), Bacteriodetes (22.7%) and Actinobacteria (8.9%), respectively 128 

(An et al. 2013). In another Asian desert, the Gobi desert, 13 phyla were observed confirming the dominance of 129 

Firmicutes (69.9 %), Proteobacteria (12.2%) and Bacteroidetes (8.2%) (An et al. 2013).  130 

The Sonoran and Mohave deserts in North America present BSCs bacterial communities dominated by 131 

Cyanobacteria and a few proportion of bacteria related to Acidobacteria, Actinobacteria, Bacteroidetes, 132 

Proteobacteria, Chloroflexi and Deinococcus phyla. The bacterial communities in the Atacama Desert, the oldest 133 

and driest desert located in South America, showed the dominance of Actinobacteria and Chloroflexi with a low 134 

abundance of Acidobacteria and Proteobacteria (Neilson et al. 2012). These data have been confirmed also by the 135 

characterization of the bacterial community in the Tataouine Desert, a part of the world largest Sahara Desert in 136 

South Tunisia (Chanal et al. 2006). The common diversity traits observed in the bacterial communities of different 137 

deserts may be attributed to the largely common harsh environmental conditions of all these deserts, which are 138 

however affected by microbial cell inputs determined by the circulation of the airborne dust associated to sand 139 

storms (Nagy et al. 2005).  140 

Despite the presence of similar bacterial community in arid lands and deserts, plants are able to shape and select 141 

specific root-associated bacterial communities that include bacteria capable to cope with the abiotic stress of these 142 

ecosystems (Table 1, Figure 1). 143 

Several studies confirmed that the so called rhizosphere effect holds as well in desert ecosystems. 16S rRNA gene 144 

sequences produced by PCR-DGGE analysis of the bacterial community associated with the roots of Larrea 145 

tridentate located in the Mohave Desert of southern California, revealed a predominance of Proteobacteria 146 

(Bradyrhizobiaceae, Rhodospirillaceae, Pseudomonadaceae, Aurantimonadaceae, Enterobacteriaceae, 147 

Xanthomonadaceae, and Alcaligenaceae), Bacteriodetes (Chitinophagaceae and Flexibacteraceae), Firmicutes 148 
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(Bacillaceae), and Actinobacteria (Micrococcaceae) (Jorquera et al. 2012). In arid, yet cultivated soils in Egypt, the 149 

bacterial communities associated to the rhizosphere of pepper and medical plants plants were prevalently colonized 150 

by Firmicutes and Proteobacteria, while the bulk soil was characterized by the abundance of Actinobacteria and 151 

Firmicutes (Marasco et al. 2012; Koberl et al. 2011). In the same case study, Marasco et al. (2012) found different 152 

distribution of cultivable bacterial genera in different fractions of root system. Bacillus spp. (68% of the isolates) 153 

were mainly isolated from the endosphere, while Klebsiella spp. were dominating the isolate collections from the 154 

rhizosphere and the root surrounding soil, representing 61% and 44% of the isolates, respectively (Marasco et al. 155 

2012). Ferjani et al. (2015) observed in date palms from South Tunisian oases a rhizosphere community completely 156 

different from that in the root surrounding soil, supporting the consideration that date palm root exudates are 157 

strongly shaping the bacterial community. A rhizosphere effect was also observed in the halophyte Salicornia sp. 158 

sampled from the Chotts and Sebkha saline systems in the South of Tunisia (Mapelli et al. 2013).  159 

All these studies proved that arid environments select very diverse bacterial communities that are shaped by the 160 

resources made available by the plant roots (Figure 1). 161 

 162 

Ecological drivers selecting the plant-associated microbiome 163 

Over the past decade, many research works have been focused on the plant associated microbiome selection. 164 

Progress in molecular tools has increased our understanding of the composition, the function and the ecological 165 

drivers of plant associated microbial assemblages. Despite the various microenvironments of the plant, including the 166 

phyllosphere, carposphere and endosphere, the rhizosphere has been the most investigated. A particular attention has 167 

been addressed to explore the PGPR diversity in this compartment in relation to different ecological drivers. The 168 

rhizosphere is defined as the soil fraction adhering to root plant strongly influenced by root exudates. It is well 169 

documented that the composition of root exudates depends on plant type, growth stage and environmental conditions 170 

(Duineveld et al. 1998; Gabriele et al. 2001; Appuhn and Joergensen 2006; Van Overbeek and Van Elsas 2008; 171 

Cavaglieri and Etcheverry 2009). Further studies showed how the composition of root exudates determines the 172 

recruitment of plant-associated bacteria. It has been shown that root exudates have a significant role in shaping the 173 

abundance of rhizosphere bacterial communities in herbaceous and arboreal plants (Zhang et al. 2014). Besides, it 174 

has been recently demonstrated that plant genotypic variations can also influence the rhizosphere associated 175 

microbiome (Haney et al. 2015). Interestingly, it has been shown in the same work that accessions of Arabidopsis 176 
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thaliana inhibited specifically some Pseudomonadacea species, namely P. brassicacearum, P. fluorescens and P. 177 

syringae, without affecting most of the microbiome. Hence, plant genotype is a crucial factor in determining plant 178 

associated bacteria that influence the plant health and physiology according to specific biotic and abiotic stresses. 179 

Furthermore, it has been proved that Olea europaea L. genotype has a more relevant impact on endophytic 180 

communities in olive leaves compared to the soil type, the environmental conditions and the geographic location 181 

(Müller et al. 2015). This study has been performed on 10 Olea europaea L. cultivars leaves sampled from olive 182 

trees growing at a single agricultural site in Spain and from nine wild olive trees developing in natural habitats in 183 

Greece, Cyprus and on Madeira Island. A strong correlation between bacteria endophytic composition and plant 184 

genotypes has been highlighted.  185 

In addition to the selection operated by plants, abiotic stresses are the selective forces contributing to shape the 186 

bacterial community associated to roots (Figure 2). A complex interaction between environmental and abiotic 187 

factors was shown to play an important role in shaping bacterial diversity, as well as to affect the properties of soils. 188 

It has been demonstrated that the biological state of agricultural soils and land use history play an important role in 189 

shaping the bacterial communities (Paula et al. 1992; Latour et al. 1996; Lazarovits and Nowak 1997; Garbeva et al. 190 

2008). In fact, plant growth potential of PGPR is more stimulated in nutrient-deficient soil than in a nutrient-rich 191 

ones (Egamberdiyeva 2007). In a comparative study, Yanxia et al. (2009) showed that bacterial communities in the 192 

soybean rhizosphere were more stable in clayey soil comparing to the sandy soil (Yanxia et al. 2009). Both soil 193 

types and land use history parameters were shown to affect bacterial community to a greater extent than plant 194 

species. Different plant types (maize, oat, barley and grass) were cultivated under greenhouse conditions in soils 195 

with different land use histories. The previous land use was the main significant factor affecting the composition of 196 

the Burkholderia community (Salles et al. 2004). Also the soil type showed an effect on Pseudomonas diversity, but 197 

the soil factor exerted a preeminent influence on the bacterial communities’   composition. Besides, Latour et al. 198 

(1996) evaluated the bacterial diversity of roots associated bacteria of two different plant species. They 199 

demonstrated that both soil type and host plant affect the bacterial diversity, though, the soil is the dominant factor 200 

(Latour et al. 1996). In another research study, microbial diversity has been assessed near Reaumuria negevensis 201 

plant growing in the Negev Desert (Saul-Tcherkas and Steinberger 2011). It has been demonstrated that bacterial 202 

communities’  abundance  is closely related to seasonal variations. In fact, Actinobacteria was the dominant phylum 203 

in all seasons except in winter. However, in winter season, Acidobacteria phylum reaches its highest density 204 
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(56.3%) and substitute Actinobacteria phylum, which decreases to 4.2%. Beside, Proteobacteria phylum increases 205 

in the winter season. In the other hand, Bacteroidetes and Chloroflexi phyla were higher in the summer season and 206 

lower in winter and autumn, though, Gemmatimonadetes phylum increased in autumn. 207 

Therefore, multiple ecological players shape the plant recruited microbiome. This peculiar plant associated bacterial 208 

assemblages are presumably involved in an adaptation strategy that allows the plants to overcome harsh conditions 209 

in arid lands. 210 

 211 

Functional services of plant-associated microbiomes in arid areas 212 

Considering the importance and the potential use of plant growth promoting rhizobacteria for agronomic and 213 

environmental applications, several studies focused not only on the bacterial diversity but also on the PGPR 214 

‘ecological  role’.  In  this  context,  the  interest in exploring PGPR bacteria naturally adapted to harsh arid ecosystems 215 

is widely increased especially for those associated to plants exposed to water shortage and salinity (Marasco et al. 216 

2013b; Daffonchio et al. 2015). 217 

In this context, a research work has been carried out to assess the microbial diversity and promoting growth potential 218 

of grapevine (Vitis vinifera) rhizobacteria sampled from three distinct Mediterranean sites: Tunisia, Egypt and Italy 219 

(Marasco et al. 2013a). Basing on cultivation dependent and independent approaches, the bacterial community 220 

associated to grapevine root system (root tissues, rhizosphere, and root-surrounding soil) has been assessed. A 221 

phylogenetic study showed the affiliation of the different root associated bacteria to five phyla: Acidobacteria, 222 

Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes. Alphaproteobacteria was dominant in all 223 

rhizospheric soils sampled from the different countries. According to DGGE analysis, soil endophyte fractions 224 

presented a limited diversity compared to the other root system samples. It has been explained that this low 225 

microbial diversity can be the result of a strong bacterial selection in the root system that imposes specific 226 

physiological requirements within the endosphere. However, a considerable endosphere and rhizosphere bacterial 227 

diversity has been reported in the different latitudinal sites examined. Despite this diversity, it has been 228 

demonstrated that bacterial PGP potential remained unchanged in the different rhizobacterial collections even 229 

though bio-pedo-climatic conditions were completely different in the studied sites (different cultivars, soil type and 230 

climate) (Figure 2). This functional redundancy in grapevine root associated bacteria proves the strong functional 231 

equilibrium of promoting growth bacteria despite the environmental variation. Such a property may protect 232 
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grapevine from harsh conditions and ensure its survival regardless environmental constraints, mainly in arid systems 233 

(Marasco et al. 2013a). 234 

A recent work on the date palm rhizosphere in the oasis ecosystems of Southern Tunisia, reported that the shape of 235 

rhizobacterial communities is correlated with geo-climatic features along a north-south aridity transect (Ferjani et al. 236 

2015). Such bacterial community segregation between the different oases was associated with the harsher conditions 237 

in the southern oases close to the Grand Erg Oriental desert, respect to the mountain oases. The cultivable bacteria 238 

associated to the date palm rhizosphere belonged to Proteobacteria, Actinobacteria and Firmicutes, with 239 

Gammaproteobacteria dominating followed by Actinobacteria. The majority (85%) of isolates affiliated to the 240 

different phyla showed multiple plant growth promotion activities (Table 1). Identifying environmental factors 241 

contributing to microbial community variation at a large spatial scale can help in assessing microbial communities 242 

usable for desert farming. Date palm root system showed a complex diversity that exhibited a reservoir of PGPR 243 

adapted to thrive in the harsh conditions of the desert oases (Ferjani et al. 2015).  244 

The rhizosphere of the halophyte Salicornia sp. obtained from the Sebkha and Chott hypersaline ecosystems in 245 

Southern Tunisia showed a high bacterial diversity and a large collection (475 isolates) of halophilic and 246 

halotolerant bacteria has been established. Twenty Halomonas isolates showed resistance to a wide set of abiotic 247 

stresses and performed different PGP activities in vitro mainly phosphate solubilisation, ammonia and indole-3-248 

acetic acid production and potential nitrogen fixation. These results demonstrate the relevant potential of these 249 

bacteria to promote plant growth under the harsh salinity and drought conditions (Mapelli et al. 2013). 250 

In another study, the rhizosphere of cactus plants growing on barren mineral substrates in North American deserts 251 

has been shown to contain dense layers of bacteria and fungi. The dominant bacterial groups were represented by 252 

Pseudomonads, Bacilli and Actinomycetes that have been shown to be able to dissolve several rock types and 253 

minerals, releasing significant amounts of useful minerals for plants (Bashan and de-Bashan 2010). Several PGPR 254 

strains may enhance root hair size and number, facilitating the mineral uptake capacity of the plant (de Freitas and 255 

Germida 1992). 256 

An assessment of the bacterial diversity associated to pepper (Capsicum annuum L.) cultivated in a traditional farm 257 

subjected to desert farming practices in Egypt showed the presence of a dense and diverse bacterial population in the 258 

rhizosphere and the root surrounding soil. Conversely, the bacterial community associated to the endosphere was 259 

much less abundant presumably due to the selection exerted by the plant root tissues that select specific bacterial 260 
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colonizers. Most of the isolates (95%) presented in vitro multiple plant growth promoting (PGP) activities and stress 261 

resistance capabilities. It has been also demonstrated that under desert farming, PGP bacteria are able of enhancing 262 

plant photosynthetic activity and biomass synthesis (up to 40%) under drought stress (Marasco et al. 2012). 263 

To evaluate long-term agriculture impact on arid soil in organic desert farming in Sekem (Egypt), Koberl et al. 264 

(2011) analysed microbial communities of the desert soil as well as those associated with cultivated medicinal plants 265 

Matricaria chamomilla, Calendula, officinalis and Solanum distichum. The desert soil was dominated by two 266 

phylotypes affiliated to Ochrobactrum sp. and Rhodococcus sp. which were also found in all samples from the 267 

rhizosphere and endorhiza of all the three medicinal plants. However, the rhizosphere and the endosphere of the 268 

medicinal plants presented a clear plant-specific effect since they shared only 20% of the bacterial community with 269 

the bulk desert soil. It has been demonstrated that indigenous desert microorganisms promote plant health in desert 270 

agro-ecosystems via an antagonist potential towards phytopathogens (Koberl et al. 2011). 271 

All these studies indicate that arid land conditions select efficient PGPR capable of resisting harsh conditions and to 272 

sustain crop production under the desert farming practices (Figure 1 and 2). 273 

 274 

Biotechnological potential of PGP microbes and feasibility of their application 275 

Many studies have shown the important role of associated root bacteria in increasing crop yield and soil fertility 276 

(Desai et al. 2012; Deivanai et al. 2014; Nadeem et al. 2014; Kumar et al. 2014) not only in the normal conditions 277 

but also under biotic and abiotic stresses. This potential is currently applied for desert farming (Koberl et al. 2011) 278 

and for restoration and reforestation of eroded desert lands (Chanway 1997; Bashan et al. 2012). It has been proved 279 

that one of the consistent strategies for enhancing in vivo effect of PGP microbes on plants is multiple inoculations 280 

and stress protecting bioformulations (Adesemoye et al. 2008; Wang et al. 2012).  281 

Beside, PGPR contribute to protect plant health against fungal, bacterial, nematode and even viral diseases in arid 282 

environments which are propitious to phyto-pathogens attacks (Rodríguez-‐Díaz et al. 2008; Almaghrabi et al. 2013). 283 

Fungal biocontrol has been mostly explored given its wide extension and devastating effect on crop yield (Ait Kaki 284 

et al. 2013; Siddiqui 2006; Recep et al. 2009; Muñoz et al. 2009). A research study on rhizobacteria associated with 285 

some desert plants in Saudi Arabia has been carried out to identify and to select effective isolates against 286 

phytopathogenic fungi. This investigation allowed the identification of successful isolates to Bacillus spp., 287 
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Enterobacter spp. and Pseudomonas spp. Based on plant growth promotion properties, resilience to harsh conditions 288 

and antagonistic potentials, the strains have been proposed as biofertilizer candidates (El-Sayed et al. 2014). 289 

Nevertheless, the application of such inoculum in agrobiology, cannot cover the broad-spectrum disease control 290 

given the variability of cultivar varieties, environmental conditions and soil types. It can be only applied in niche 291 

applications especially with weakly domesticated crop in growth substrates lacking antagonists (Cassells and 292 

Rafferty-McArdle 2012). However, despite significant biocontrol activities against plant pathogens has been proved 293 

for PGPR in laboratory and in the greenhouse, field results are still uncertain since autochthonous community 294 

outcompete the added allochthonous formulation. 295 

The biotechnological potential enclosed in the extreme arid and saline environments is not limited to the agriculture 296 

application. Raddadi et al. 2013 reported the production of halo-alkalitolerant endoglucanase by Paenibacillus 297 

tarimensis isolated from the inland saline system Chott El Fjej in South Tunisia. These cellulases were functional in 298 

a broad pH range, at high temperature and salt concentration up to 5M NaCl and 4.6M KCl. Consequently, they are 299 

promising candidate for industrial applications (Raddadi et al. 2013). Strains and enzymes isolated from arid 300 

extreme environments could be applied in bioremediation of polluted soils (Mapelli et al. 2012), especially under 301 

phytoremediation approaches for those strains capable to thrive in the root ecosystem. Indeed, phytoremediation 302 

processes have been proposed for enhancing plant adaptation and growth in soil and water contaminated with 303 

organic pollutants (Afzal et al. 2014) (Figure 2). 304 

Furthermore, arid environment present deficiency in nitrogen compound, which implies symbiotic association 305 

between nitrogen fixing organisms and plants to increase the level of nitrogen and the plant growth in arid lands. 306 

Rhizobia are widely described as the most efficient nitrogen fixing bacteria especially rhizobium-legume symbiosis 307 

system (Zahran et al. 1999). Moreover, Requena et al. reported a combination between PGPR, arbuscular 308 

mycorrhizal fungi and Rhizobium spp. isolated from semi-arid environment for legume plant inoculation to establish 309 

Mediterranean semi-arid ecosystems revegetation (Requena et al. 1997). 310 

 311 

 312 

Conclusion 313 

Drought stress is an environmental threat affecting plant yield and productivity. As discussed in this review, arid 314 

ecosystems harbour diverse microbial communities. In such ecosystems, PGPR associated to plant roots can be very 315 
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active in supporting plant improvement, health and resistance to drought stress. Major efforts have still to be 316 

implemented for the understanding of the factors that regulate the plant microbe interactions in the root system and 317 

the mechanisms that are behind the drought resistance conferred to the plants by the root-associated bacteria. As 318 

well, despite a huge body of literature is available about PGPR, the ecological factors determining their recruitment 319 

by the plant and the assemblage of effective bacterial communities in the rhizosphere and the endosphere remain 320 

elusive. It is evident that the assemblage of these bacterial communities is driven by different ecological factors, 321 

including soil type, land history, cultivar variety, abiotic stresses, geo-climatic factors and by the type of plant and 322 

its growing conditions. However, we are still far from understanding the relative weight of these factors in the 323 

establishment of the root meta-organism. The clarifications of these factors regulating the recruitment and the 324 

assemblage of drought resistance-inducing PGPR communities by the plant roots will allow to move PGPR from a 325 

prominent biotechnological tools yet to be exploited for agricultural, environmental and industrial purposes to a 326 

huge implementable biotechnological resource for agriculture. 327 
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Table 1: Diversity of plant associated bacterial assemblages in desert and arid land systems 601 

Figure 1: Location in world map and distribution of the arid lands and desert ecosystems sites where studies were 602 

conducted on the diversity of plant-associated microbial assemblages as reported in Table 1. Microbial 603 

communities’   diversity   is   shaped  by   the   abiotic   factors   (arid   conditions)   and  by   the  plant-related factors (Fig. 2). 604 

Microorganisms were detected by culture-dependent (green dots and letters), and–independent approaches (red dots 605 

and letters) or both (black dot). Gammaproteobacteria (Gp) are the most encountered class in almost all the 606 

prospected sites. Alphaproteobacteria (Ap) and Firmicutes (F) showed also high occurrence. Independently from 607 

each bacterial community components, PGP functional redundancy is noticed leading to functional services. These 608 

PGPR from arid lands hold the potential to sustain crop production under the desert farming practices. Detected 609 

Phyla: P, Proteobacteria (Gp, Gammaproteobacteria; Ps, Pseudomonas; Az, Azotobacter; En, Enterobacter; Ch, 610 

Chryseomonas; Hm, Halomonas; Ku, Kushneria; Cr, Chromohalobacter); (Ap, Alphaproteobacteria; Or, 611 

Ochrabactrum; Ag, Agrobacterium); (Bp, Betaproteobacteria; Ac, Achromobacter); F, Firmicutes (Bc, Bacillus; 612 

Ly, Lysinibacillus; Br, Brevibacillus; Pn, Paenibacillus; Vg, Virgibacillus; Mr, Marinococcus); A, Actinobacteria 613 

(Rh, Rhodococcus; Ns, Nesterenkonia) and B, Bacteroidetes; (Sp, Sphingobacteria).  614 

 615 

 Figure 2: Plant associated bacterial assemblages: Ecological drivers, functions and applications.   616 

In arid environments, plants recruit diverse bacterial communities to undertake the harsh environmental conditions. 617 

Within the phyllosphere and the rhizosphere plant compartments, bacteria colonizing the rhizosphere and the 618 

endosphere are the most investigated. They are shaped by several ecological drivers. Plant related factors determine 619 

the plant associated microbiome depending on the plant type, its growth stage and the composition of its root 620 

exudates. Beside, plant genotype is also a crucial factor in determining plant associated bacteria depending on the 621 

cultivar or the ecotype. Abiotic stresses contribute to this bacterial   communities’   recruitment.  Abiotic   factors   are  622 

related to the typical climate of the arid lands and deserts characterized by seasonal variations, high UV radiations 623 

and temperature and low precipitations. The biological state of agricultural soils and the land use history that affect 624 

the soil nutrients richness, structure, moisture and salinity, are also key ecological drivers. Despite the microbial 625 

diversity of PGP bacteria, functional redundancy has been shown. It proves a strong functional equilibrium although 626 
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the environmental variations. This distinctive characteristic can preserve plants from harsh conditions and ensure 627 

their survival regardless arid systems environmental constraints. These functions consist on plant growth promotion 628 

under harsh salinity and drought conditions, phytohormones production, facilitation of mineral and nutrient 629 

availability and uptake capacity as well as the promotion of plant health via antagonistic potential towards 630 

phytopathogens. PGP bacteria are endowed with diverse biotechnological potentials. They can be evolved in 631 

agricultural applications as biofertilizers and agents for phytopathogens biocontrol. They may be further used in 632 

phytoremediation for xenobiotic polluted soils. PGP bacteria can also be employed in industrial application, such as 633 

detergents, textiles and paper industries, thanks to their high resistance to salinity and high temperature in addition to 634 

their thermostability and tolerance of harsh chemical compounds.  635 

 636 

 637 



Sites and Characteristics Host plant/Plant part Dominant Phyla / Isolated Strains (PGPR traits) References 

CULTURE-INDEPENDENT APPROACH  

Mohave desert 

(Southwest North America) 

Dry/Arid (1)a 

Larrea tridentat (Rhizosphere) Proteobacteria Jorquera et al. 2012 

 Bacteroidetes 

  Firmicutes  

"Le Frecce" farm 

(North Itlay) 

Humid (6) 

Vitis vinifera (Roots endosphere) Actinobacteria  

Vitis vinifera (Rhizosphere) Alphaproteobacteria Marasco et al. 2013a 

  Gammaproteobacteria   

Farm in Cairo periphery  

(Cairo -North West Egypt)  

Arid (10) 

Vitis vinifera (Roots endosphere, 

Rhizosphere) 

Sphingobacteria Marasco et al. 2013a 

  Alphaproteobacteria 

Sekem farms  

(Egypt) 

Arid (11) 

Matricaria chamomilla L. (Rhizosphere, 

Roots endosphere) 

Ochrobactrum sp.  

Calendula officinalis L.(Rhizosphere , 

Roots endosphere) 

Rhodococcus sp.  Korbel et al. 2011 

Solanum distichum (Rhizosphere , 

Roots endosphere) 

    

Mornag Vineyards   

(North Tunisia)  

Vitis vinifera (Roots endosphere) Actinobacteria Marasco et al. 2013a 

Alphaproteobacteria 

table
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Semi-arid (7) 

  

Betaproteobacteria 

Vitis vinifera (Rhizosphere) Sphingobacteria 

Alphaproteobacteria 

Betaproteobacteria 

Sebkha and Chott  

(Southern Tunisia) 

Hypersaline soils (8) 

 Betaproteobacteria Mapelli et al. 2013 

Salicornia (Rhizosphere) Alphaproteobacteria 

  Firmicutes  

CULTURE-DEPENDENT APPROACH 

Arid land 

India  

Arid (13) 

Pennisetum glaucum L (Rhizosphere) 

Pennisetum glaucum L (Rhizosphere) 

Zea mays L (Rhizosphere) 

 

Pseudomonas (PS, PH, Si, Am) b Sandhya et al. 2010 

Southern Sonoran Desert 

 (North America) 

Subtropical, hot, dry (3) 

  

Mammillaria fraileana (Endosphere, Roots 

cortex) 

Azotobacter vinelandii (NF) Lopez et al. 2011 

Mammillaria fraileana (Endosphere, Roots 

cylinder) 

Pseudomonas Putida (PS) 

 Enterobacter sakazakii (PS) 

  Bacillus megaterium(PS) 

El Bebedero saline   Prosopis strombulifera (Roots endosphere) Lysinibacillus fusiformis (NF, PH) Sgroy et al. 2009 



(San Luis, Argentina) 

Saline system (5) 

  

Bacillus subtilis (NF, ACC, PH) 

Brevibacterium halotolerans (NF, ACC, AF, PH) 

Bacillus licheniformis (NF, ACC, PH) 

Bacillus pumilus (NF, ACC, AF, PH) 

Achromobacter xylosoxidans (NF, ACC, PH) 

Pseudomonas putida (Si, NF, ACC, PH) 

Tae-An sand dunes  

(Chungnam- South Korea)  

Desert (14) 

  

Calystegia soldanella (Rhizosphere) Gammaproteobacteria   

Bacteroidetes, Actinobacteria  

Park et al. 2005  

Calystegia soldanella (Roots) Gammaproteobacteria  

Alphaproteobacteria, Actinobacteria  

Elymus mollis (Rhizosphere) Gammaproteobacteria, 

Bacteroidetes, Actinobacteria  

Elymus mollis (Roots) Gammaproteobacteria  

Sinai desert  

(Egypt) 

Arid to desert (12) 

  

Panicum turgidum (Rhizosheath) Paenibacillus macerans (NF) Othman et al. 2004 

 Bacillus circulans (NF) 

 Agrobacterium radiobacter (NF) 

 Chryseomonas luteola (NF) 

 Bacillus circulans (NF) 

Panicum turgidum (Intact root) Bacillus circulans (NF) 



  Enterobacter agglomerans (NF) 

Oases  

 (Southern Tunisia)  

Arid (9) 

Phoenix dactylifera L.(Rhizosphere) Gammaproteobacteria  

Actinobacteria 

Ferjani et al. 2014 

  

Western Kentucky coal fields  

(USA) 

Moderate climate (2) 

Panicum virgatum L. (Shoot, root and 

seeds) 

Firmicutes  Xia et al. 2013 

 Proteobacteria  

  Actinobacteria  

Cordóba   

(Argentina) Cultivation under 

drought conditions (4) 

 

Helianthus annuus (Roots) 

Achromobacter xiloxidans (NF, AF, PH)   

 

Forchetti et al. 2007 

Bacillus sp. (NF, AF, PH)  

Sebkha and Chott 

(Southern Tunisia) 

 

Hypersaline soils (8) 

 Halomonas taeheungii (ACC, PA, Am) 

Halomonas xinjiangensis (ACC, PA, Am) 

 

 

 

Mapelli et al. 2013 

Salicornia (Rhizosphere) Halomonas elongate (NF, PA, Am), H. eurihalina 

(NF, PA, Am), H. indalina (NF, PA, Am), Kushneria 

marisflavi (NF, PA, Am), Chromohalobacter 

canadensis (NF, PA, Am)  

  Marinococcus (PA, Am), Nesterenkonia (PA, Am), 

Virgibacillus (PA, Am) 



(a), Site number in Figure 1; (b), Plant Growth Promoting activities: Nitrogen Fixation (NF), Phosphate Solubilization (PS), Phytohormones production (PH), 

Siderephore production (Si), Ammonia production (Am), 1 aminocyclo-propane-1-carboxylate deaminase production (ACC), antifungal activity (AF), Protease 

Activity (PA).  
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1 (P, B, F)

2 (A, F, P)

3 (Az, Ps, En, Bc)

4 (Ac, Bc)

5 (Ly, Bc, 

Br, Ac, Ps)

6 (A, Ap, Gp)

7 (A, Ap, Bp, Sp)

8 (Ap, Bp, F)

8 (Hm, Mr, Ns, 

Vg, Ku, Cr)

9 (A, Gp)

10 (Ap, Sp)

11 (Or, Rh)

12 (Pn, Bc, Ag, Ch, En)

13 (Ps) 

14 (A, B, Gp, Ap) 

Phyla: P, Proteobacteria; F, Firmicutes; A, Actinobacteria; B, Bacteroidetes 

Classes: Ap, Alphaproteobacteria (P); Bp, Betaproteobacteria (P); Gp, Gammaproteobacteria (P); Sp, Sphingobacteria (Bacteroidetes)

Genera: Ps, Pseudomonas (Gp, P); Az, Azotobacter (Gp, P); En, Enterobacter (Gp, P); Ch, Chryseomonas (Gp, P); Hm, Halomonas (Gp, P); Ku, Kushneria (Gp, 

P); Cr, Chromohalobacter (Gp, P); Or, Ochrabactrum (Ap, P); Ag, Agrobacterium (Ap, P); Ac, Achromobacter (Bp, P); Bc, Bacillus (F); Ly, Lysinibacillus; Br, 

Brevibacillus (F); Pn, Paenibacillus (F); Mr, Marinococcus (F); Vg, Virgibacillus (F); Rh, Rhodococcus (A); Ns, Nesterenkonia (A).
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