
Abstract
!

The therapeutic value of synergistic interactions
has been known since antiquity, and many differ-
ent cultural healing systems still rely on this prin-
ciple in the belief that combination therapy may
enhance efficacy. This paper intends to provide
an overview, from an antimicrobial perspective,
on the research undertaken and interactive prin-
ciples involved in pharmacognosy studies. Meth-
ods used to determine antimicrobial interactions
include basic combination studies, the sum of the
fractional inhibitory concentration index (ΣFIC),
isobole interpretations, and death kinetic (time-
kill) assays. The various interactions are discussed
with reference to molecules, different plant parts
or fractions, different plant species, and combina-
tions with nonbotanical antimicrobial agents. It
is recommended for future development in the
field of phytosynergy that consideration should
be given to the selection criteria for the two inhib-
itors. A more conservative approach should be
adoptedwhen classifying synergy.When examin-
ing interactions in plant-based studies, antagonis-

tic interactions should not be ignored. Combina-
tions involving more than two test samples
should be examined where applicable, and very
importantly, the mechanism of action of synergis-
tic interactions should be given precedence. It is
encouraging to observe the upsurge in papers ex-
ploring the complex interactions of medicinal
plants, and undoubtedly this will become increas-
ingly important in our continued quest to under-
stand the mechanism of action of phytotherapy.
The scientific validation of efficacious antimicro-
bial combinations could lead to patentable enti-
ties making research in the field of phytosynergy
not only academically rewarding but also com-
mercially relevant.

Abbreviations
!

CFU: colony forming units
FIC: fractional inhibitory concentration
GC‑MS: gas chromatography coupled to mass

spectrometry
MIC: minimum inhibitory concentration
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Introduction
!

The therapeutic value of synergistic interactions
has been known since antiquity, and many differ-
ent cultural healing systems have relied on this
principle in the belief that combination therapy
may enhance efficacy. The ancient texts pertain-
ing to Ayurveda and traditional Chinese herbal
medicine describe formulas consisting of complex
herbal mixtures which may contain several plant-
based ingredients [1]. African traditional healers
rarely rely on a single plant for therapeutic regi-
mens but often combine various plant parts and
different species in order to achieve optimal re-
sults. The fundamental principle of aromatherapy
is the combination of highly complex different es-
ntimicrobial Studies… Planta Med 2011; 77: 1168–1182
sential oils to achieve a therapeutic effect. The
historical use and application of polyherbals has
been carried down through the centuries, and to-
day allopathic medicine commonly uses the very
same principles to combine various molecules in
single or separate dosage forms which are admin-
istered concomitantly. Recently, the application of
combination therapy has gained a wider accept-
ance, especially in the treatment of infectious dis-
eases. The World Health Organization, for exam-
ple, has urged pharmaceutical companies to stop
promoting the use of artemisinin derivatives in
monotherapy. Instead, artemisinin combination
therapy should be encouraged not only because
it has a cure rate of 95% against the malaria para-
site (Plasmodium falciparum) but may also con-
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tribute to curb resistance. Multidrug therapy has become of para-
mount importance in the fight against multidrug resistant micro-
bial strains. Without the current multidrug approach used to
treat tuberculosis (isoniazid, rifampicin, pyrazinamide, and
ethambutol), themortality of infected patients could reach global
epidemic proportions. Another renowned antimicrobial agent
having a significant synergistic effect in combination is amoxicil-
lin (a β-lactam antibiotic) and clavulanic acid. Clavulanic acid
binds to β-lactamase producing microorganisms, which protects
amoxicillin from β-lactamase attack, which in turn results in an
extended spectrum of activity for amoxicillin.
The concept of antimicrobial synergy is based on the principle
that, in combination, the formulation may enhance efficacy, re-
duce toxicity, decrease adverse side effects, increase bioavailabil-
ity, lower the dose and reduce the advance of antimicrobial resis-
tance [2–4]. New antimicrobial combination drugs which include
natural product combinations have recently become a research
priority. This approach has financial implications as reformula-
tion of existing drugs or combinations may prove to be a more
viable option, rather than developing a new drug which will re-
quire extensive clinical trials for verification. Furthermore, the
ban imposed by the United States of America and European
Union on the use of allopathic antimicrobials in livestock farming
has led to the search for natural antimicrobial combinations that
may impact positively on agricultural and livestock farming [4].
Even though the concept of interactive antimicrobial therapy is
well practised in western medicine, and many anecdotal ac-
counts of plants used in combination for the treatment of mi-
crobe-related infections are evident, the validation of this phe-
nomenon in the field of pharmacognosy has been neglected. Me-
dicinal plants offer a vast resource of natural compounds, and the
exploration of the various levels of interaction that may exist in-
clude: constituents within a plant, interactions between different
parts of a plant, between different plant species, or the interac-
tion with non-plant-based antimicrobials. It is encouraging to
observe that there has been a recent increase in the number of
publications reporting on plant-based pharmacological interac-
tions. The concept of synergistic principles from a pharmacologi-
cal and/or phytotherapeutic perspective has been addressed in
various reviews [5–8], but these have not specifically focused on
the antimicrobial interactions. The literature on the proposed
methods appears fragmented and often confusing, and several
experimental designs have been proposed, which leaves the re-
sults inconclusive. This review intends to succinctly collate the
available literature which has focused on interactive plant-based
antimicrobial studies and to propose various methods and ap-
proaches which could be considered when embarking on re-
search in this field.
Experimental Approaches
!

The terminology defining the possible interactions that may oc-
cur are often subject to debate and interpretation [5,9–13], thus
for the sake of this review, the associated terminology should be
defined. The word “synergy” is derived from the Greek word
“syn-ergo” meaning working together, and the resulting effect
may be defined as a combination that is significantly greater than
the sum of its parts. Synonyms used include “polyvalent activity”
and “potentiation”. An “additive” or “summative” effect occurs
when substances added together will improve or increase effi-
cacy. A “noninteractive”, “indifferent” effect, or “zero interaction”
van Vuuren S, V
reflects an expected linear response when two agents are com-
bined and show neither an additive nor antagonistic effect. “An-
tagonism” is a phenomenonwhere two or more agents in combi-
nation have an overall effect which is less than the sum of their
individual effects [12,14,15]. For simplification, the terms “syn-
ergism, additive, indifferent, and antagonism”will be used to de-
scribe the types of interactions.
There are a number of different methodologies that have been
proposed to express antimicrobial interactions. Many of these
methods such as Etests, time-kill, and checkerboard methods
have been comparatively evaluated [16–19]. Congruency in re-
sults for the evaluation of antibiotic synergy against Acineto-
bacter baumannii obtained between the three methods (Etests,
time-kill, and checkerboard) varied between 51–72% [18]. Com-
parative results generated from the time-kill and checkerboard
method presented only a 51% value of congruency. Lewis et al.
[19] favoured the Etest where antimicrobials of fixed concentra-
tions are impregnated on commercially available filter strips. This
method, however, is not applicable for plant-based antimicrobial
studies in which the test antimicrobial is not a commercially
available sample at standard concentrations but an experimental
plant sample whose preparation is dependent on the undergoing
study. Various authors have expressed concern over the methods
used to interpret synergy [5,11–13,20–23]. In an editorial pub-
lished in the Journal of Antimicrobial Chemotherapy [10], the in-
terpretation of interactive methods was debated and a more con-
servative analysis of synergistic interpretations encouraged (see
section “The fractional inhibitory concentration index” for fur-
ther discussions on this). Mathematical models and statistical ap-
proaches to validate antimicrobial interactions have been devel-
oped to allow for a more reliable and quantitative assessment of
pharmacological interactions [24–27].
Considering plant-based antimicrobial studies, the use of differ-
ent methodologies range from the most basic disc diffusion as-
says found in earlier ethnobotanical studies [28,29], to more re-
cent studies incorporating the sum of the fractional inhibitory
concentration index (ΣFIC) [30–33], time-kill methods [34–38],
and isobologram studies [3,39–43].

“Basic” combination studies
The simplest form of determining synergy is by means of diffu-
sion assays. Each independent test sample (A or B) is placed in a
well or on a disc. The combination (A + B) is placed on a separate
disc and the inhibition zone of the combination comparatively
examined with the independent test samples. Should the inhibi-
tion zone be larger in A + B than either A or B then synergistic in-
teractions are noted. Should the inhibition zone be smaller in
A + B than A or B independently, then antagonistic interactions
are noted. Although simple, these assays are subject to many var-
iables which may influence the results and should at the most be
used as a qualitative guide only [40,44,45].
Basic minimum inhibitory concentration (MIC) assays may also
be used to determine interactions. The microdilution method is
undertaken, and combinations are comparatively assessed by in-
corporating the inhibitors at selected concentrations and combi-
nations [46,47]. This arrangement of combinations formed by
multiple dilutions is referred to as the checkerboard method.
Some combination studies have incorporated impedimetric
methods extrapolating synergy by comparing growth as deter-
mined by optical density readings of single entities and compar-
ing these growth rates with that foundwhen exposed to test sub-
stances in combination [48,49]. One drawback in using such a
iljoen A. Plant-Based Antimicrobial Studies… Planta Med 2011; 77: 1168–1182



Table 1 Classification of the ΣFIC in accordance with corresponding authors.

Interaction References

Synergy Additive Indifference Antagonism

≤ 0.7 * * ≥ 1.3 [133]

< 1.0 1.0 * > 1.0 [50,134]

≤ 0.5 > 0.5 – 4.0 > 4.0 [135]

≤ 0.5 1.0 * ≥ 2.0 [4]

≤ 0.5 > 0.5 – 1.0 > 1.0 – < 2.0 ≥ 2.0 [14]

≤ 0.5 * > 0.5 – ≤ 4.0 > 4.0 [23]

≤ 0.5 0.5 – < 1.0 ≥ 1.0 – < 4.0 ≥ 4.0 [19]

≤ 0.5 * > 0.5 – 4.0 > 4.0 [136]

≤ 0.5 * > 0.5 – 4.0 > 4.0 [10]

< 0.5 0.5 – 1.0 ≥ 1.0 – 4.0 > 4.0 [53]

< 0.5 0.5 – ≤ 1.0 > 1.1 – ≤ 4.0 > 4.0 [106]

≤ 0.5 * > 0.5 – < 4.0 ≥ 4.0 [137]

≤ 0.5 > 0.5 – 0.75 0.76 – 2.0 ≥ 2.0 [138]

≤ 0.5 > 0.5 – 1.0 > 1.0 – ≤ 4.0 > 4.0 [42], van Vuuren
and Viljoen (recom-
mended herein)

* Not given by author

Fig. 1 Isobologram
which, if ratio points for
two combined inhibi-
tors fall in quadrants
A depicts synergy;
B an additive effect;
C a non-interactive ef-
fect; and D an antago-
nistic interaction.
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method is that the assessment of viability is not always accurate
when relying on turbidometric readings.

The sum of the fractional inhibitory concentration
index (ΣFIC)
An algebraic equation to determine synergy by means of the ΣFIC
is a widely accepted means of measuring interaction. The ΣFIC is
expressed as the interaction of two agents where the concentra-
tion of each test agent in combination is expressed as a fraction of
the concentration that would produce the same effect when used
independently [50]. The ΣFIC is then calculated for each test sam-
ple independently as specified in the following equations:

FIC ð�iÞ ¼ MIC ðaÞ in combination with ðbÞ
MIC ðaÞ independently

FIC ð�iiÞ ¼ MIC ðbÞ in combination with ðaÞ
MIC ðbÞ independently

The sum of the FIC or FIC index is thus calculated as:
ΣFICI = FIC (*i) + FIC (*ii).
This basic equation has remained constant since inception. How-
ever, the interpretation has evolved and varies from author to au-
thor. The interpretation of the ΣFIC index as a numerical value is
arbitrary, and the thresholds presented have stemmed from the
need to critically assess interactions that are clinically significant
[13]. The earlier interpretations by Berenbaum [50] were very
broad taking into account synergistic interactions having ΣFIC
values below one, antagonistic interactions above one, and addi-
tive interactions narrowly focused on one. These interpretations
make it easy to analyse isobolograms and have been used in
many papers describing interactions. A more conservative ap-
proach in describing interactions was recommended by Odds
[10], with interpretations described as synergistic (ΣFIC ≤ 0.5),
antagonistic (ΣFIC > 4.0), and noninteractive (ΣFIC > 0.5–4.0). The
conservative approach takes into account inherent variations
when performing MIC doubling dilution assays. Unfortunately,
the “no interaction” range is a very broad one and makes no al-
lowance for additive interpretations. A number of recent reputa-
ble studies, mainly reported in ISI antimicrobial journals, have
incorporated an “additive” range into the interpretation for bet-
ter clarification of the data set [4,5,13,19,42,51–55]. In the crit-
ical review by Bell [13], the need to include a broader range to
interpret pharmacological interactions was emphasised. Taking
this into account, an additive range should be included, and it is
suggested that the interpretation of either synergistic
(ΣFIC ≤ 0.5), additive (ΣFIC> 0.5–1.0), noninteractive ΣFIC
(>1.0–≤ 4.0), or antagonistic (ΣFIC > 4.0) should be used when
describing in vitro antimicrobial interactions. A summary of the
interpretative values given for the ΣFIC in accordance with the
corresponding authors is given in l" Table 1. Irrespective of the
variations in interpretation, most authors are in agreement that
synergistic interactions should be considered only for ΣFIC values
0.5 and lower.
Although using ΣFIC calculations to determine interaction ap-
pears to be the simplest method, one needs to consider the limi-
tations. The FIC method is based on the assumption that half the
concentration will provide half the effect. However, this is not al-
ways the case, as two inhibitors may not always have identical
dose responses [11]. The use of isobolograms which take into ac-
count combinations at various concentrations provide a more
realistic means of measurement.
van Vuuren S, Viljoen A. Plant-Based Antimicrobial Studies… Planta Med 2011; 77:
The isobole method
The isobole method of determining interaction is possibly one of
the oldest methods used to express interactions, dating back to
publications from 1870. Although well established, negative con-
notations have been associated with this method proving it un-
favourable, until more recently when mathematical equations
have been proposed to validate the results [25,26]. It is presently
the favoured method for interactive assessment [13,15]. The
principle is based on the fact that interactions may vary depend-
ing on the ratio in which the two inhibitors are combined.
Although complicated, this method gives a more accurate assess-
ment of each agent when studied in various combinations. The
procedure involves the combination of two samples at various ra-
tios. The MIC value for each sample is determined independently
and comparatively assessed against the MIC value obtained in the
ratio combination. This is expressed as a dose ratio response on
an isobole graph. The adjoining line of the two axes indicates
the individual doses and the isobologram can be interpreted by
examining the data points of the ratios. The classical interpreta-
tion of the isobole is where the data points fall below the 1:1
line; synergy is expressed [50]. Antagonism is noted for data
points falling above the 1:1 line, and an additive response is giv-
enwhen ratio points fall in the vicinity closest to or on the line. To
standardise interactive values with the more conservative ap-
proach recommended by Odds [10], two additional lines are pro-
posed, at the 0.5 :0.5 and 4.0 :4.0 axes (l" Fig. 1). These proposed
1168–1182



Fig. 2 Time-kill method of interpreting inter-
actions when two samples are combined.
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additions will allow cross comparison between ΣFICmethods and
isobole interpretations.

Death kinetic (time-kill) assays
Time-kill studies provide descriptive information on the relation-
ship between bactericidal activity and the concentration of test
substance [27]. Even though the methodology is labour intensive
and requires a number of steps where variables may be intro-
duced, valuable information is given of the death kinetics over
time. The time-kill method has been praised as one of the best
methodologies to study synergy [48], even though earlier
shunned by Berenbaum [56]. Further validation of the death ki-
netic method to assess synergy was given [57], and the method
was commended from a clinical perspective. In an overview of
the various methods to test antimicrobial synergy with conven-
tional antibiotics, the time-kill method was found to be one of
the most frequently employed, showed better sensitivities and
greater reproducibility [19]. Briefly, the principle involves expos-
ing the inhibitor to a selected pathogen and, at selected time in-
tervals, aliquots are sampled and serially diluted. The dilutions
are plated out, incubated at optimum conditions for the test or-
ganism, and the colony forming units (CFU) are counted and plot-
ted logarithmically against time. Depending on the curve of the
dose response, either an additive, synergistic, or antagonistic ef-
fect is noted (l" Fig. 2). Antagonism in time-kill methods may be
defined as at least a100-fold increase in colony counts whereas
synergism, a 100-fold decrease in colony counts [48].
In spite of the positive recommendation of this method to de-
scribe antimicrobial interactions, the method is not frequently
used in plant-based studies. This is possibly due to the labourious
nature of repetitive dilution sampling. The positive aspect of this
method lies in the possibility to present a direct relationship in
exposure of plant test material to a pathogen. A cidal effect is
monitored over time which is not possible with the frequently
used MIC assays.
The Various Levels at Which Antimicrobial
Interactions May Be Explored
!

Interaction between molecules
When examining the published literature and searching for sci-
entific articles documenting the interactions between molecules,
findings were predominantly focused on essential oil constitu-
van Vuuren S, V
ents. A quick review of some of our own studies demonstrates
varied essential oil compositions ranging anywhere from 25 to
over 173 compounds in any given plant [40]. It is thus not sur-
prising that any of these compounds may interact to either en-
hance or reduce pharmacological effects. With the sophisticated
gas chromatography coupled to mass spectrometry (GC‑MS) and
the multidimensional gas chromatography techniques available
today, detection of any number of compounds in a given plant
may be undertaken. Investigation of these interactions has thus
become a more viable option than isolating compounds from ex-
tracts and investigating interactions. Another limitation of isolat-
ing compounds and investigating their interactive properties is
that yields are usually insufficient. With many essential oil stud-
ies, the identified compounds are done using commercially avail-
able databases and retention indices.
In a reviewon synergism by Harris [58], the author documents on
a number of earlier antimicrobial studies (between 1974–1996)
on volatile constituents that demonstrate synergistic interactions
between constituents, synthetic substances, and even ingre-
dients within a formulation. Pattnaik et al. [59] noted that MICs
from essential oils were in many cases lower than the major con-
stituents independently, suggesting that synergy between con-
stituents may be contributing to the enhanced activity. In anoth-
er study, linalool was combined with methyl charvicol at v/v ra-
tios of 1 :0; 0.8 :0.2; 0.6 :0.4; 0.4 :0.6; 0.2 :0.8, and 0:1 [60]. It
was observed that when these two monoterpene alcohols are
combined, a higher efficacy is achieved, compared to when they
are assayed independently. In another study, the interaction of
the major essential oil constituents of four Thymus species was
examined by the MIC checkerboardmethod [61]. Various interac-
tions ranging from indifferent to synergistic were observedwhen
combining carvacrol, thymol, 1,8-cineole, and p-cymene. No an-
tagonism was noted, and the greatest synergistic interaction was
observed with the thymol :1,8-cineole and thymol :p-cymene
combination, having ΣFIC values of 0.125. In view of the interna-
tional concern on the use of antibiotic growth promoters in ani-
mal feeds, it was interesting to note the application of combined
essential oil constituents in controlling the antimicrobial popula-
tions in the pig gut. The combination of carvacrol and thymol
demonstrated synergism, and recommendations for appropriate
ratio studies to determine optimum synergistic effects were rec-
ommended [62].
In-depth isobologram interpretations have been undertaken on
essential oil constituent interactions. Varied interactions were
iljoen A. Plant-Based Antimicrobial Studies… Planta Med 2011; 77: 1168–1182
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noted in a study where the pharmacological interactions of a
number of essential oil constituents were investigated [63]. Syn-
ergismwas observed between (+)-β-pinene and carvacrol as well
as between γ-terpinene and geranyl acetate when tested against
Staphylococcus aureus. (+)-β-Pinene and (−)-menthone showed
antagonism (ΣFIC value of 9.8), but interactions of (+)-β-pinene
with 1,8-cineole demonstrated synergy (ΣFIC value of 0.4), when
tested together against Candida albicans. The combination of
trans-geraniol and E- and Z-(±)-nerolidol demonstrated an addi-
tive interaction against Bacillus cereus. For eugenol and E- and Z-
(±)-nerolidol, an indifferent interaction against Escherichia coli
was noted. These results demonstrate varied interactions and
not only synergism. All of these studies have one thing in com-
mon; they have focused on random essential oil constituent com-
binations.
Although there have been a number of papers that have focused
on structure activity related antimicrobial studies of compounds
within a plant [64–67], very little research has been conducted
on how the co-occurrence of combined compounds contribute
to efficacy. It has been questioned that independent activity re-
lated to one or two specific constituents is questionable and that
synergistic functions between molecules are more probable [68].
In a study by Radulović [69], the major compound (68.6% salicyl-
aldehyde) from Filipendula vulgaris was isolated and found to be
less active than the whole essential oil. When combined in a
60:40 ratio with linalool (1.8% composition in F. vulgaris oil),
strong synergistic activity was noted. Interestingly, when salicy-
laldehyde was combined with another essential oil component,
methyl salicylate (2.4%) in a 60:40 ratio, antagonism was ob-
served. We too have noted that synergistic interactions between
molecules within a plant are evident. The two major essential oil
components from Osmitopsis asteriscoides identified by GC‑MS
were (−)-camphor (12%) and 1,8-cineole (60%) representing
72% accumulatively. Time-kill studies were performed on the
pathogen C. albicans, where (−)-camphor demonstrated negli-
gible antimicrobial activity and 1,8-cineole indicated a cidal ef-
fect after 240min. When these two major compounds were
tested in combination, a synergistic effect was noted having a
cidal effect at 15min [35]. Prediction that synergistic interactions
occur only between major constituents may not always be accu-
rate. Earlier studies demonstrated that less abundant compo-
nents may interact synergistically [70]. This has been noted in
other studies where the β-triketone complex of manuka oil was
found to have poor bactericidal properties [34]. Similarly, we
found this to be evident when investigating the antimicrobial ac-
tivity of the major constituents of Artemisia afra. The four major
compounds (artemisia ketone, 1,8-cineole, α and β-thujone,
which accounts for 51.9% of the total composition) were investi-
gated independently and in various permutations. Results
showed minimal antimicrobial activity against Klebsiella pneu-
moniae. It was thus postulated that the minor compounds either
independently or in combination contribute to the antimicrobial
activity [37]. As noted in these interactions, when examining
whole essential oils, predictions are complex and not only should
major or minor compounds be considered, but one also needs to
consider the stereochemistry of compounds. While it is known
that biological activity is influenced by the enantiomeric config-
uration, the overall antimicrobial activity of different enantio-
mers may be additionally affected by interactionwith other com-
pounds. To demonstrate this, a study was undertaken on the dif-
ferent enantiomers of limonene in combination with 1,8-cineole.
Isobologram plots for S. aureus demonstrated similar antagonis-
van Vuuren S, Viljoen A. Plant-Based Antimicrobial Studies… Planta Med 2011; 77:
tic activity when exposed to the combinations of 1,8-cineolewith
(+) and (±)-limonene. However, with (−)-limonene, synergism
was evident at selected ratios. Differences in activity were
clearly noted with the other two pathogens studied (Pseudomo-
nas aeruginosa and Cryptococcus neoformans), thus highlighting
the significance of stereochemistry in antimicrobial combination
studies.
Compound interaction studies on nonessential oil components
include the combined effects of cinnamaldehyde with catechin,
quercetin, or eugenol, tested against wood decay fungi with the
aim to provide a rational in natural wood preservation. Varied in-
teractions were noted ranging from synergistic to antagonistic
when tested against the two fungal test organisms Lenzites betu-
lina and Laetiporus sulphureus [71]. Another example where
poorer antimicrobial activity is noted for the isolated compound
rather than the combined compounds was reported in a study of
linoleic and oleic acid, isolated from Helichrysum pedunculum,
which were found to have higher activity against S. aureus and
Micrococcus kristinae in combination (MIC value 0.05) than inde-
pendently (MIC values 1.00) [72]. More recently [73], it was dem-
onstrated that the biological effects observed for the major com-
pounds of Ocimum gratissimum were not responsible for the
overall effect of the essential oil. These types of studies reinforce
the concept of a multi-targeted approach in therapeutic strat-
egies and prove the hypothesis formulated by Tyler [74], that
searching for potent antimicrobial compounds is becoming more
and more improbable and that research should be moving to-
wards the investigation of a combination of substances to achieve
efficacy.

Interactions between different plant parts or fractions
Although it is evident that the many constituents within plants
interact, it should also be noted that other interactions may occur
between groups of molecules or fractions of the plant. For many
species there is a strong distinction in the chemistry between the
subterranean and above ground plant organs. If, for example,
roots and leaves are combined, then the number of “active” com-
pounds may be increased, and possibly an increased chance of
synergistic interactionsmay occur. Thismay bewhy there are nu-
merous anecdotal reports of plants used in combination therapy,
i.e., when plant parts such as roots and leaves are combined and
used in therapeutic regimens [75–79]. Even though the ethnobo-
tanical use of many plants incorporates mixes of the different
plant parts, there has been very little scientific evidence to sup-
port such interactive efficacies. There have been numerous
screening studies that have investigated the antimicrobial activ-
ity of different plant parts such as fruit, leaf, root, barks, seeds,
etc.; however, these have been investigated separately and not
in combination [80–85]. Our studies on the various plant parts
of Croton gratissimuswas undertaken on the ethnopharmacolog-
ical basis that these various parts are often used in combination.
The root, leaf, and bark extracts were investigated singularly and
combined in various ratios to establish possible interaction. The
MIC value (0.4mg/mL), ΣFIC (0.4), and isobologram results (all ra-
tios depicting synergy) for C. neoformans validate the traditional
use of a root: leaf combination [41]. Up until recently, no other
studies, other than our ownwork, could be foundwhere different
parts of the same plant are combined and investigated for antimi-
crobial efficacy [41,86,87]. It is encouraging to see such studies
now being published, inwhich the individual and combined phe-
nolics within the Olea europaea plant extract have been studied
[88]. The results indicated that the combined phenolics had sig-
1168–1182
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nificantly higher antimicrobial activity than the individual phe-
nolics investigated within the plant. Only one earlier study could
be found that partially addresses the interactions that may occur
between plant fractions. Garlic oil and allyl alcohol, both derived
from Allium sativum, were combined and their interaction eval-
uated against Candida utilis. Isobolograms were used to interpret
synergistic ΣFIC values of between 0.37–0.42 [89].
Aromatic plants have an additional component of chemical com-
plexity— the volatile constituents. In healing rituals, the volatiles
may be administered selectively (inhalation) or the volatiles and
nonvolatiles may by applied collectively, e.g., a poultice placed di-
rectly onto a wound or the alcoholic extraction (tincture) of
crude plant material. It has beenwell recorded that extracts of ar-
omatic plants have superior activity over the essential oils [41,
90,91]. In our own studies, we explored the possible interaction
between the volatile and nonvolatile fractions to yield greater
antimicrobial activity. To test this hypothesis, a number of plants
were investigated, i.e., three Pelargonium species (P. graveolens, P.
quercifolium, P. tomentosum) [92], Plectranthus grandidentatus
[40], three Salvia species (S. africana-caerulea, S. africana-lutea,
and S. lanceolata) [86], and Tarchonanthus camphoratus [87].
These studies examined the need for coexistence of volatile and
nonvolatile constituents to enhance antimicrobial efficacy. It is
widely accepted that the administration of an infused oil may
act as a penetrative enhancer [1], and possibly the synergistic in-
teractions noted may be a result of improved solubility and bio-
activity of the active principles.

Interactions between different plant species
Currently available on the market are phytomedicines which are
sold as whole extract combinations, for example, Gingko biloba
with Echinacea. It is believed that synergistic interactions are re-
sponsible for their therapeutic efficacy [15]. Many traditional
healing practises prescribe plant combinations from different
species to treat diseases. A comprehensive study has been under-
taken on the ethnobotanical use of plant mixtures, in which 170
plant species from Cuba were examined for their combined me-
dicinal use. Sixty-one combinations were attributed to anti-infec-
tive applications [93]. In African traditional medicine it is well
known that traditional healers often combine various plant spe-
cies in order to enhance efficacy. A number of instances where
plants have been combined for the treatment of microbe related
infections have been found in the ethnobotanical literature. Some
documented accounts include the combination of Portulaca
quadrifida with Monadenium lugardiae to treat stomach com-
plaints, Trichilia emetica with Cyathula natalensis for leprosy,
and Momoridica foetida with Pittosporum viridiflorum for boils.
Various combinations of C. gratissimus have been used. Accounts
of the administrationwith other species have been noted, e.g., for
the treatment of swellings, the bark of C. gratissimus is combined
with the root of Amaryllidaceae species and rubbed into inci-
sions. Also noted is the use of the bark of C. gratissimus and Oco-
tea bullata in combination, which are powdered and blown into
the womb to treat uterine disorders [76].
Given the fact that it is common traditional practice to combine
medicinal plants, it was surprising to find so little published on
plant to plant interactions. Previous studies include a study on
the combination of Thymus vulgaris with Pimpinella anisum, two
plants combined in Iraqi folk medicine. Both essential oils and
methanol extracts were studied against nine test organisms, and
predominantly additive interactions were noted [94]. Tea tree
(Melaleuca alternifolia) and lavender (Lavandula angustifolia) es-
van Vuuren S, V
sential oils were combined and tested against the dermatophytes
Trichophytum rubrum and Trichophytum mentagrophytes var. in-
terdigitale. Various combinations were prepared, and results pre-
sented in isobolograms, demonstrating an antimycotic effect
[95].
Artemisia afra is one of the oldest and most widely used plants in
African traditional medicine [96,97]. It is commonly used to treat
respiratory infections such as coughs, colds, lung inflammation
and often combined with plants such as Lippia javanica, Agathos-
ma betulina, Osmitopsis asteriscoides, Eucalyptus globulus, Zan-
thoxylum capense, Leonotis microphylla, Tetradenia riparia, and
Allium sativum [75,76,98]. In spite of these numerous reports in
the ethnobotanical literature, very little research has been dedi-
cated to validate these combinations. In our own combination
studies on anti-infective African traditional medicines, A. afra
was combinedwith L. javanica. The objective was to scientifically
validate the concomitant use of these two coveted ethnomedici-
nals to treat respiratory infections. A time-kill assay was under-
taken against the respiratory pathogen K. pneumoniae. Essential
oil obtained from L. javanica (0.25%) and A. afra (0.25%) were
run independently and in combination (L. javanica and A. afra to-
gether totalling 0.25%). Artemisia afra when studied indepen-
dently showed initial microbial destruction within one hour, but
regrowth after 24 h. For the L. javanica oil at 0.25%, death kinetics
was observed within 40min, but regrowth after four hours.
When the two plants were combined, a bactericidal effect was
maintained for the full 48 hours of testing. This synergistic effect
scientifically validates the combined use of L. javanica and A. afra
for the treatment of respiratory infections associated with K.
pneumoniae and corroborates the traditional use of these two
plants when administered in combination [40]. More recent re-
sults of the combination of the essential oils of A. afrawith three
medicinal aromatic plants, Agathosma betulina, Eucalyptus globu-
lus, and O. asteriscoides, displayed predominantly additive inter-
actions [99]. In an earlier combination study, we investigated the
ethnobotanical use of Salvia chamelaeagnea in combination with
Leonotis leonurus to treat respiratory infections. Individual ex-
tracts and a combination of the aerial parts of S. chamelaeagnea
and L. leonuruswere evaluated for the in vitro antibacterial activ-
ity (ΣFIC index presented as data points in isobolograms). When
the two extracts were combined, synergistic actions were ob-
served for the Gram-positive bacteria while antagonism, syner-
gism, and/or additive actions were observed for the various ratios
tested on studies with the Gram-negative bacteria [39].
Plant combinations with the potential to increase preservative ef-
ficacy in foods have recently been given more attention. The
trend toward a more natural and greener approach to consumer-
ism together with the economic benefit that may concur make
this area of research attractive. Thus, a number of studies have
been undertaken on food systems in the hope to achieve better
antimicrobial effects in combination. A disc diffusion study was
undertaken where Cinnamomum cassia was combined with Al-
lium tuberosum and the fruit of Cornus officinalis in a triple com-
bination at varying ratios i.e., 1 :1 :1, 8 :1 :1, 6 :6:1, 1 :6 :6,
1 :8:1, and 3:1 :2. The combination 8:1:1 (C. officinalis: C. cas-
sia: A. tuberosum) was found to possess antimicrobial efficacy
against awide range of test organisms. When applied to food sys-
tems, the combination retained antimicrobial activity [100]. An-
other interactive studywith effective food preservation as an out-
come was undertaken using isobolograms to interpret interac-
tions. Fractions of Eucalyptus dives and Coriandrum sativumwere
combined and investigated against 12 test organisms. Of all the
iljoen A. Plant-Based Antimicrobial Studies… Planta Med 2011; 77: 1168–1182
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test organisms, Yersinia enterocoliticawas themost susceptible to
synergism. Other interactions varied between additive to antag-
onistic [101]. More recently, Origanum vulgare and Thymus vul-
gariswere combined and found to have an additive effect against
food spoilage bacteria [102]. In another study, the interactive
combination of cranberry, blueberry juice, and grape seed extract
was antimicrobially tested against Helicobacter pylori. This study
was undertaken on the assumption that a diet rich in phytocom-
pounds may act prophylactically to ward off infection. Of the five
different combinations formulated, the permutation having cran-
berry juice extract (75%) with blueberry juice extract (10%) and
grape seed extract (15%) demonstrated the highest synergy
[103]. Multiple combination studies are challenging due to the
endless number of permutations which exist to produce complex
formulation. The development of predictive software using facto-
rial designs to optimize experimental design may offer a solution
to simplify the complexity.
A study on the combined effect of Origanum vulgare and Vacci-
niummacrocarponwas undertaken using the disc diffusion assay.
Antimicrobial activity against Vibrio parahaemolyticus was best
noted in a 1:1 combination [36]. Rosemary and clove essential
oils have been combined and the antimicrobial efficacy reported
using both MIC methods and time-kill studies. This comprehen-
sive study was undertaken on a number of different pathogens
and various MIC ratios depicted mostly additive effects against
the test bacteria; Staphylococcus epidermidis, S. aureus, Bacillus
subtilis, E. coli, Proteus vulgaris, and P. aeruginosa. The fungal test
organisms, however, demonstrated either synergy (C. albicans)
or antagonism (A. niger). The time-kill studies reported that com-
binations in lower concentrations were not sufficient to produce
a cidal effect. Only concentrations twice that of the MIC value had
a lethal effect [104]. Using synergistic principles, some plants
were evaluated for the prevention of Cassava root rot during stor-
age. Garlic, Landolphia owerrience, and Garcinia kola were inves-
tigated independently and in various 1:1 combinations. The
combination of garlic with G. kola demonstrated the highest inhi-
bition preventing rot during 14 days of storage [105]. Essential oil
combinations of oregano (Origanum vulgare) with basil (Ocimum
basilicum), lemon balm (Melissa officinalis), marjoram (Origanum
majorana), rosemary (Rosmarinus officinalis), sage (Salvia trilo-
ba), and thyme (T. vulgaris) have been investigated against Bacil-
lus cereus, Escherichia coli, Listeria monocytogenes, and Pseudo-
monas aeruginosa. All interactions either demonstrated an addi-
tive or indifferent effect in the MIC checkerboard method [106].
Using time-kill methods, a study was undertaken on Melaleuca
alternifolia oil which was blended with a polar fraction of manu-
ka (Leptospermum scoparium). Death kinetics demonstrated syn-
ergistic interactions [34]. Interactions between the isolated com-
pound polygodial and plant species such as Perilla frutescens and
Licaria puchuri-major have yielded varied results depending on
the pathogen studied [107,108]. Another study focusing on se-
lected unrelated compounds and the combination thereof was
undertaken whereby the antimicrobial action of Staphylococcus
aureus produced a synergistic effect when berberine, a common
alkaloid found in a variety of plant species, was combined with
5′-methoxyhydnocarpin [109].
After reviewing the literature and examining the scientific inter-
active antimicrobial studies presented, it is clear that reports on
antagonistic interactions seem to be largely ignored or possibly
rejected by phytotherapy journals. It is thus encouraging to see
that a study that focused on the antagonistic effects of two herbal
extracts (Rhizoma Coptidis and Fructus Evodiae) in a traditional
van Vuuren S, Viljoen A. Plant-Based Antimicrobial Studies… Planta Med 2011; 77:
Chinese medicine formula have recently been published. Find-
ings suggest that the two samples have opposing effects [110].

Antimicrobial plant interactions with nonbotanical
antimicrobial agents
Of all the interactions studied, research into phytoconstituents in
combination with nonbotanical chemical entities has been the
most widely studied. Studies range from plant interactions with
preservatives to interactions with conventional antimicrobials.
l" Tables 2 and 3 record these studies including a summary with
the salient outcomes achieved. Interactive interpretation is given
according to the respective authors. For many of the plants
whose allopathic combination studies were reviewed, either an
additive or synergistic effect is presented. Very few reports have
documented antagonism despite the fact that it is not unusual to
encounter adverse drug reactions with herbal medicines [15]. In
our own studies we assessed the interaction between a selection
of popular commercial oils (Melaleuca alternifolia, Thymus vulga-
ris, Mentha piperita, and Rosmarinus officinalis) and conventional
antimicrobials (ciprofloxacin and amphotericin B). The initial ob-
jective was to determine if a synergistic pattern predominates as
noted in other similar studies reported in literature. Whilst some
synergistic and additive interactions were evident between es-
sential oils and antimicrobials, antagonistic interactions were al-
so highlighted. It was interesting to note that whenMelaleuca al-
ternifolia (tea tree) oil which is often recommended for treat-
ment of skin ailments, was combined with ciprofloxacin and
tested against Staphylococcus aureus, antagonism was noted for
all ratios in the isobologram [111]. This study highlights that cau-
tion should be adhered towhen combining natural products with
allopathic antimicrobials and addresses the proposal by Cuzzolin
et al. [112], that there is a need for more systematic interactive
studies to be undertaken to identify unfavourable combinations.
Many of the methods employed to depict synergy between
plants and nonbotanical components other than conventional
antibiotics (l" Tables 2 and 3) are based on the experimental
methods described herein. However, some studies have used al-
ternate approaches to prove synergistic interactions. Such stud-
ies include the investigation of synergistic effects between cate-
chin, an extract of green tea which was combined with ciproflox-
acin using in vivo studies on a rat model. It was confirmed that
the combination resulted in a statistically significant decrease in
bacterial growth [113]. Kurita and Koike [114] examined the
combination of ethanol, sodium chloride, or acetic acid with 19
essential oil components. Using an agar dilutionmethod incorpo-
rating various combinations, the interactions were analysed over
a 20-day period. Studies were undertakenwith seven fungal spe-
cies. Generally, a synergistic effect was noted when the variables
were combined in pairs, threes, or altogether. In another study,
synergistic interactions were also determined over a 21-day peri-
od against Penicillium notatum, however, with the incorporation
of volatile compounds in an atmospheric jar. Synergistic interac-
tions were noted for six combinations (ethanol: carvacrol; sul-
phur dioxide: carvacrol; sulphur dioxide: isothiocyanate; sulphur
dioxide: cinnamaldehyde; isothiocyanate: cinnamaldehyde; cin-
namaldehyde: carvacrol) [115]. A recent study demonstrated
synergistic interactions with carvacrol. These combinations com-
prised of carvacrol with ciprofloxacin and carvacrol with ampho-
tericin B against Bacillus cereus and C. albicans, respectively. Ad-
ditionally, eugenol with ciprofloxacin or amphotericin Bwas syn-
ergistic when tested against E. coli and C. albicans, respectively
[63].
1168–1182



Table 2 The combination of plants with conventional antibiotics.

Plant derived test substance Non-plant derived

test substance

Test organism Interaction Refer-

ences

Santolina chamaecyparissus clotrimazole Candida albicans synergistic when comparingMIC data [139]

Agastache rugosa andmajor compound
estragole

ketoconazole Blastoschizomyces capitatus isobologram depicting synergy [140]

Bidwillon isolated from Erythrina variegata mupirocin Staphylococcus aureus FIC values range between 0.5–1 [30]

Pomegranate extract chloramphenicol Staphylococcus aureus FIC values range between 0.03–1 [31]

gentamicin FIC values range between 0.13–4

ampicillin FIC values range between 0.03–1

tetracycline FIC values range between 0.03–1

oxacillin FIC values range between 0.03–1

Mentha piperita essential oil
andmenthol

ampicillin Escherichia coli FIC values range between 1–2 [53]

erythromycin FIC values range between 1–2

gentamicin FIC values range between 1–1.25

oxytetracycline FIC values of 0.5

Kola nitida ciprofloxacin Escherichia coli potentiation for all antibiotics tested [141]

pefloxacin

levofloxacin

Cassia fistula fruit solution amoxycillin Salmonella enterica (48 isolates) FICmethod indicated synergism for 80%
strains tested; no antagonism noted

[142]

Essential oils from Cedrus atlantica,
Styrax tonkinensis, Juniperus communis,
Lavandula angustifolia, Melaleuca alternifolia,
Pelargonium graveolens, Pogestemon
patchouli, and Rosmarinus officinalis

ketoconazole Aspergillus niger FIC indices ranging from 0.52–1 [143]

amphotericin B Aspergillus flavus

Pelargonium graveolens andmain
constituents citronellol, geraniol,
triacetin

norfloxacin Bacillus subtilis FIC indice 0.5 [144]

Bacillus cereus FIC indices 0.5; synergy in isobole
method for plant oil and norfloxacin

Staphylococcus aureus (2 strains) FIC indices ranging from 0.37–0.5;
synergy in isobole method for plant oil
and norfloxacin

Escherichia coli FIC indice 0.57

Allium species (essential oils) ketoconazole Trichophytum spp. FIC indices ranging from 0.09–0.75 [145]

α-Mangostin isolated from
Garcinia mangostana

ampicillin Enterococcus faecalis (8 strains) FIC values range between 0.5–1 [146]

gentamicin Staphylococcus aureus (9 strains)

Catha edulis tetracycline Streptococcus oralis 4-fold potentiation [147]

tetracycline Streptococcus sanguis 2-fold potentiation

penicillin G Fusobacterium nucleatum 4-fold potentiation

Eight Chinesemedicinal plants penicillin G resistant and standard strains of
Staphylococcus aureus

% inhibition of combination varies between
< 1 (synergistic) to 75.4

[148]

gentamicin % inhibition of combination varies between
< 1 (synergistic) to 104.5

ciprofloxacin % inhibition of combination varies between
< 1 (synergistic) to 107.3

ceftriaxone % inhibition of combination varies between
< 1 (synergistic) to 71.5

Sophoraflavanone G isolated
from Sophora flavescens

gentamicin 11 strains of oral bacteria FIC values range between 0.28–0.75 [149]

15 traditional Indian plants tetracycline
ciprofloxacin

Staphylococcus aureus
and Escherichia coli

synergism or “neutralism”when
investigating inhibition zones

[150]

Melaleuca alternifolia, Origanum vulgare,
and Pelargonium graveolens

amphotericin B 5 different Candida strains isobolograms demonstrating
P. graveolens oil with amphotericin B
as themost synergistic combination

[151]

Galangin isolated from Alpinia officinarum gentamycin Staphylococcus aureus FIC values range between 0.18–0.255 [32]

Thymus eigii vancomycin
and erytromycin

13 test organisms antagonism determined by zone inhibition [152]

Rhus coriaria, Psidium guajava, Lawsonia
inermis, Sacrpoterium spinosum

oxytetracyclin Staphylococcus aureus synergy determined by zone inhibition [153]

gentamicin synergy/antagonism determined by zone
inhibition

enrofloxacin antagonism determined by zone inhibition

sulphadimethoxin synergy determined by zone inhibition

Melaleuca alternifolia, Thymus vulgaris,
Mentha piperita, and Rosmarinus officinalis
essential oils

ciprofloxacin and
amphotericin

Staphylococcus aureus,
Klebsiella pneumoniae,
and Candida albicans

antagonismmainly noted with
amphotericin B: essential oil combination

[111]

continued next page
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Table 2 The combination of plants with conventional antibiotics. (continued)

Plant derived test substance Non-plant derived

test substance

Test organism Interaction Refer-

ences

Croton zehntneri gentamicin and
tetracycline

Staphylococcus aureus and
Pseudomonas aeruginosa

activity increased by 42.8% against
P. aeruginosa in combination

[154]

Thespesia populnea oxytetracycline 12 bacterial strains highest synergy noted for Shigella boydii
using the disc diffusionmethod

[155]

Origanum vulgare,
Pelargonium graveolens, and
Melaleuca alternifolia

nystatin 5 different Candida strains O. vulgare essential oil and nystatin
indicate most prominent synergy with
FIC indices between 0.11 and 0.17

[156]

Rhus coriaria, Sacropoterium spinosum,
Rosa damascene

oxytetracycline,
penicillin G, cephalexin,
sulfadimethoxine and
enrofloxacine

Pseudomonas aeruginosa
(3 clinical strains)

synergy [157]

Ocimum sanctum essential oil fluconazole and
ketoconazole

16 fluconazole-resistant
Candida isolates

FIC values ranging frommostly synergistic
(0.25–0.50) to indifferent (0.52–0.93)

[158]

Melaleuca alternifolia oil tobramycin Escherichia coli and
Staphylococcus aureus

synergy demonstrated with time-kill
methods

[159]

Punicalagin isolated from
Punica granatum

fluconazole Candida albicans synergy demonstrated with disc
diffusion, MIC, and time-kill methods

[160]

Eugenol, thymol, carvacrol,
cinnamaldehyde, allyl, and
isothiocyanate

tetracycline, ampicillin,
penicillin G, erythromycin,
bacitracin, and novobiocin

Salmonella typhimurium,
Escherichia coli, Streptococcus
pyogenes and Staphylococcus aureus

FIC indicesmostly indicating synergy
with strongest synergy noted (FIC 0.11)
with carvacrol: penicillin G combination
against S. aureus

[161]

Myrtus communis essential oil amphotericin B Candida albicans and
Aspergillus niger

FIC indices and isobologram indicate
synergy

[162]

Thymusmaroccanus and
Thymus broussonetii

amphotericin B and
fluconazol

Candida albicans synergistic FIC indices ranging between
0.27–0.49

[163]
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An area that has been sorely neglected is the incorporation of bo-
tanicals within formulations to achieve an enhanced naturally
subsidised pharmaceutical product. Nostro et al. [116] examined
the synergistic interactions of Calamintha officinaliswith EDTA in
cream formulations. More recently, Artemisia afra, Eucalyptus
globulus, and Melaleuca alternifolia were encapsulated into dia-
stearoyl phosphatidylcholine and diastearoyl phosphatidyletha-
nolamine liposomes. The ΣFICs were calculated in order to deter-
mine if the incorporation of essential oils would enhance the
antimicrobial activity of the formulation. Synergistic to additive
interactions were noted for encapsulated E. globulus (ΣFIC values
0.25–0.45) and M. alternifolia (ΣFIC values 0.26–0.52) formula-
tions [33].
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Future Considerations
!

The reductionist approach in studying natural products
For decades, phytochemists have been isolating natural products
in the hope to find an antimicrobially active molecule compara-
ble in activity to the allopathic antimicrobials available today.
Yet, no single plant-derived antibacterial has been commercial-
ised [117]. Perhaps this reductionist approach which limits com-
plexity and variability is somewhat short-sighted when we con-
sider the convolution of plants and the many compounds (major
and minor) that may contribute to the overall activity of the
plant. Allopathic medicine has realised the importance of study-
ing the interaction between molecules for several years. Typical
titles would include papers such as “In vitro synergy studies
based on tazobactam/piperacillin against clinical isolates of me-
tallo-β-lactamase-producing Pseudomonas aeruginosa” [118]
and “Synergic activity, for anaerobes, of trovafloxacin with clin-
damycin or metronidazole: chequerboard and time-kill meth-
van Vuuren S, Viljoen A. Plant-Based Antimicrobial Studies… Planta Med 2011; 77:
ods” [119]. l" Fig. 3 shows the number of papers reporting on
pharmacological interactions for three journals (two plant based
and one antimicrobial) over a ten-year period. The Journal of
Antimicrobial Chemotherapy has consistently published a num-
ber of papers on this subject over the ten-year period (a total of
161). Ironically, the Journal of Ethnopharmacology and Planta
Medica only carried 61 and six papers, respectively, over the
same period. This is ironic for several reasons. The very nature
of ethnopharmacology is based on traditional healing practices
where crude extracts are administered, not molecules, and hence
one cannot ignore the possible interactions between the various
constituents and different species. Furthermore, researchers
working in the field of ethnopharmacology often justify their
projects based on traditional practices, but often the methodol-
ogy followed is divorced from the real-life application in a tradi-
tional setting. Although it remains a rewarding and challenging
exercise to search for the active principles in complex crude mix-
tures, it is not surprising that so many papers following this re-
ductionist approach conclude that “the crude extract was more
active than the isolated molecules”.

Natural products and antimicrobial mode of action
Themode of action of conventional antimicrobials, both indepen-
dently and in combination therapy, have been extensively
studied. The mechanisms by which agents act on the cell wall in-
terfere with biological pathways, and other more complex inter-
actions have also been explored [57]. With respect to natural
product combinations, the mechanism of synergy may be attrib-
uted to complex multi-target effects, pharmacokinetic or physio-
chemical properties, neutralization principles, or even therapeu-
tic approaches [121]. Gilbert and Alves [120] have hypothesised
on the efficacy of whole plant extracts rather than isolated mole-
cules. Furthermore, an extensive review on possible modes of ac-
1168–1182



Table 3 The combination of plants with nonbotanical agents other than conventional antibiotics.

Plant derived test substance Non-plant derived

test substance

Test organism Interaction Refer-

ence

Origanum vulgare and
Vacciniummacrocarpon

lactic acid Vibrio parahaemolyticus total time-kill inhibition throughout
10 h tested

[36]

Ocimum basilicum (anise variety) 5% NaCl Lactobacillus curvatus synergy using indirect impedancemethod [60]

Thymol potassium sorbate Escherichia coli FIC values range between 0.5–1.1 [52]

Listeria innocua FIC values range between 0.3–0.8

Salmonella typhimurium FIC values range between 0.5–1.0

Staphylococcus aureus FIC values range between 0.3–0.8

Carvacrol Escherichia coli FIC values range between 0.5–0.8

Listeria innocua FIC values range between 0.4–0.8

Salmonella typhimurium FIC values range between 0.4–0.6

Staphylococcus aureus FIC values range between 0.4–0.9

Rosmarinus officinalis butylated hydroxyanisole Escherichia coli and Staphylococ-
cus aureus

synergy formost points depicted on
the isobolograms

[43]

Oregano & oregano :cranberry extracts sodium lactate (1–2%) Listeria moncytogenes total time-kill inhibition between days
10–15

[38]

Carvacrol, thymol, and eugenol nisin Listeria moncytogenes optical density readings indicate reduction
in growth

[123]

diglycerol fatty acid esters varied interaction depending on
compound studied

Melaleuca alternifolia, Leptospermum
scoparium, and Leptospermummorrisonii

chlorhexidine digluconate Streptococcusmutans and Lacto-
bacillus plantarum

CFU reduction 4- to 10-fold depending
on the combination

[126]

Thymol, carvacrol, citral, eugenol, geraniol acetic, citric, lactic,
and pyropolyphos-
phoric acids

Salmonella typhimurium no synergistic effects noted [164]

Oils of fennel, anise, and basil benzoic acid and
methyl-paraben

Listeria monocytogenes and Sal-
monella enteriditis

synergy detected in five of the 16
combinations studied

[165]

Thymus vulgaris, Rosmarinus officinalis,
Origanum vulgare

lactic acid Listeria monocytogenes synergy at lower concentrations with
highest synergistic activity noted for
thyme: lactic acid and rosemary : lactic acid
combinations

[166]

Eucalyptus oil, tea tree oil, and thymol chlorhexidine digluconate Staphylococcus epidermidis thymol: chlorhexidine digluconate
combination demonstrated themost
synergistic interactions with FIC values
of 0.25

[127]

Nine different plant essential oils enterocin AS-48 Listeria monocytogenes reduction in CFU for combinations [167]

Origanum vulgare subsp. hirtum nisin Salmonella enteriditis combination of O. vulgare essential oil at
0.9% and nisin at 1000 IU/g demonstrated
the best synergistic activity over time

[168]

Fig. 3 Number of papers reporting on pharmaco-
logical interactions for three journals (Journal of
Antimicrobial Chemotherapy, Journal of Ethnophar-
macology, and Planta Medica) over a ten-year peri-
od.
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tion of natural products with allopathic antimicrobials has been
undertaken [122]. Targets include receptor site modification, en-
zymatic degradation, reduced accumulation of drug within the
bacterial cell, decreased membrane permeability, and efflux
pumps. Even though these possible modes of action have been
addressed, supporting studies to confirm these mechanisms are
sorely lacking, especially with respect to combination therapy.
When reviewing the literature on phytotherapeutic combina-
tions, the elucidation of mode of action for both inhibitors are
rarely reported in spite of the authorsʼ efforts to include this as
recommendations for further study [52,101,123,124]. In a study
on the synergistic interaction of Punica granatum (methanol ex-
tract) with a range of antibiotics, the authors allude to the mode
of action whereby the extract plays a role in efflux inhibition en-
hancing the uptake of a conventional drug [31]. In another study
on the combination of an isoflavanone from Erythrina variegate
with mupirocin, the mechanism of action is thought to involve
bacterial cell membranes; however, further studies are recom-
mended for confirmation [30]. One notable study that focused
on mode of action with respect to combined inhibitors was the
investigation of berberine with 5′-methoxyhydnocarpin where
themode of actionwas attributed to the effect of 5′-methoxyhyd-
nocarpin blocking the Nor A pump and thus potentiating the
antibiotic action of berberine [109]. This valuable insight into
specific modes of action should be encouraged in future endeav-
ours, keeping in mind that exploring this area of research may be
extremely complex. One needs to consider the variability of pos-
sible interactions that may occur within this phytochemical pool,
not only within a single extract but in various combinations. Fur-
thermore, predominant mechanisms of action may be potenti-
ated by other less effective modes of action [7] and vice versa.

Biofilm inhibition from combined phytomedicinals
Plant-based antimicrobial studies on planktonic microorganisms
have been given extensive priority. The inhibition of biofilms,
whether on independent or combined plant inhibitors, however,
has been largely neglected. Combination studies are sparse, and
the only interaction predominant in the literature is the combi-
nation of phytomedicinals with chlorhexidine digluconate, a skin
antiseptic commonly used in clinical settings. Studies include the
combined effect of Eucalyptus essential oil and the monoterpene
1,8-cineole with chlorhexidine digluconate, for which mainly
synergistic interactions were found against C. albicans, E. coli, P.
aeruginosa, S. aureus (including amethicillin resistant strain) bio-
films [125]. Previous studies have shown that a number of essen-
tial oils together with chlorhexidine digluconate are effective in
inhibiting biofilm cultures [126,127].
In another biofilm combination study, two diterpenoids, salvipi-
sone and aethiopinone, isolated from the roots of Salvia sclarea
and combined with beta-lactam antibiotics, demonstrated syn-
ergy. It was postulated that the mechanism of action may be due
to cell surface hydrophobicity or cell wall permeability [128].
Studies such as this provide not only valuable information on bio-
films but also offer explanations on possible modes of action.
Conclusions
!

There has been a recent increase in awareness towards the con-
cept of synergy within phytomedicine, as noted in a number of
review style articles [6,15,120,121]. In conjunction with earlier
publications on synergistic principles [9,56,122,123,129,130],
van Vuuren S, Viljoen A. Plant-Based Antimicrobial Studies… Planta Med 2011; 77:
the validation of multiple phytotherapy has provided a much
needed platform with which to expand future research in this
area. In particular, research into antimicrobial combinations
may yield new developments that may address the ever increas-
ing concern towards antimicrobial resistance. It has been shown
that resistance to crude extracts occurs less than resistance to
single actives [131]. Thus, the search for single targeted mole-
cules may not yield long-term solutions in combating antimicro-
bial resistance. For plants to rely on a single compound in their
biochemical warfarewith pathogens would be equivalent to rely-
ing on the “single golden bullet” approach, and thus, as research-
ers investigating the activity of single compounds, we would be
ignoring the evolutionary approach that plants may have devel-
oped various metabolic mechanisms for the production of struc-
turally and functionally diverse compounds to overcome emerg-
ing resistance. To ensure future success in natural product re-
search, we encourage interactive phytochemical studies with ex-
isting practices in the hope that developments may be used as a
foundation and driving force in the much needed discovery of
novel chemotherapeutic agents.
It is recommended that future development in the field of phyto-
synergy should consider:
" The selection criteria for the two inhibitors. This should be

clearly defined and justification should be given for the choice
of test substances to be examined in combination.

" Classification of synergistic interactions should be more con-
servatively evaluated taking into account inherent doubling di-
lution variations noted in MIC methodology.

" Even though it is popular to report synergistic interactions, an-
tagonism should be given the same priority.

" Combinations involving more than two plant entities should
be examined where applicable.

" Combination studies involving biofilm inhibition should be
considered.

" Articles addressing the mechanism of action of synergistic in-
teractions should be given precedence. It is encouraging to
note that some attention to this has been given [6,120]. The
criteria addressed include receptor or site modification, enzy-
matic degradation, accumulation of antibiotic within bacterial
cell, decreased outer membrane permeability, and efflux
pumps. This area of research has been greatly neglected as
many studies just report on the interactions that occur.

With such validations in place, the justification and development
of antimicrobial combinations could lead to patentable entities
making research in the field of phytosynergy commercially rele-
vant [132]. New techniques, such as metabolomics and the dual
applications of chemometric data analysis methods, are provid-
ing the researcher with new tools to explore this fascinating phe-
nomenon which will undoubtedly become increasingly impor-
tant in our continued quest to understand the mechanism of ac-
tion of complex herbal preparations.
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