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Abstract: Bionanotechnology is a branch of science that has revolutionized modern science and
technology. Nanomaterials, especially noble metals, have attracted researchers due to their size
and application in different branches of sciences that benefit humanity. Metal nanoparticles can be
synthesized using green methods, which are good for the environment, economically viable, and
facilitate synthesis. Due to their size and form, gold nanoparticles have become significant. Plant
materials are of particular interest in the synthesis and manufacture of theranostic gold nanoparticles
(NPs), which have been generated using various materials. On the other hand, chemically produced
nanoparticles have several drawbacks in terms of cost, toxicity, and effectiveness. A plant-mediated
integration of metallic nanoparticles has been developed in the field of nanotechnology to overcome
the drawbacks of traditional synthesis, such as physical and synthetic strategies. Nanomaterials′

tunable features make them sophisticated tools in the biomedical platform, especially for developing
new diagnostics and therapeutics for malignancy, neurodegenerative, and other chronic disorders.
Therefore, this review outlines the theranostic approach, the different plant materials utilized in
theranostic applications, and future directions based on current breakthroughs in these fields.
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1. Introduction

Gold nanoparticles (AuNPs), due to their unique qualities and various surface charac-
teristics, have been widely exploited in bionanotechnology. The ease with which AuNPs
can be functionalized makes them a flexible platform for nano biological assemblies con-
taining oligonucleotides [1], antibodies [2], and proteins [3]. AuNPs bioconjugates have
also emerged as attractive options for developing novel biomaterials for biomedical re-
search. The versatility of AuNPs has made them useful in various biomedical applications.
The binding of the sample to the AuNPs can change the rheological feature of AuNPs,
such as surface plasmon resonance, conductivity, and redox behavior, resulting in notable
signals [4–7] in diagnostics. With their enormous surface area, AuNPs can also be used as
a platform for therapeutic agents. Nanotechnology has been in existence for thousands
of years. Ancient people used to stain their drinking glasses with nanoparticles [8]. The
divergence of nanotechnology within other fields of science and further innovations have
made a significant impact on biotechnology, medicine, pharmaceutics, physics, chemistry,
and optics, etc. There is evidence that metals are present in living systems in different
forms, playing a significant role in various biochemical processes, growth metabolism, and
healing [9]. Blood contains the Hema protein, Zn, Mn, Cu, and other vital trace metals in
the biological system.

This review aims to summarize the data on gold nanoparticles synthesized by extracts
of medicinal plants, their parts, and their usefulness in biological and theranostic properties.

1.1. Nanoparticle Synthesis

Nanoparticle synthesis from metals has gained enormous interest among researchers
because of nanoparticles’ diverse application in many fields such as cancer therapy, drug
delivery, food safety, fabrics, chemistry, water treatment, and photocatalysis, as well as
because of their antioxidant, antibacterial, and cytotoxic properties [10–20]. The uses
of nanoparticles in various fields are possible because of several factors, including the
nanoparticles′ shape, size, distribution, and surface plasmon [21–23].

Nanoparticles have been used for thousands of years without knowledge concerning
the exact phenomenon and synthesis [8]. Drinking glasses in ancient times were coated
with Au nanoparticles and were synthesized following three primary methods: physical,
chemical, and biological methods.

1.2. Physical Method

The advantages of the physical synthesis method are the absence of a solvent, which
is hazardous to the environment, and the uniformity of the nanoparticles produced by the
physical methods. The tube furnace method of synthesis occupies an ample space, and
an enormous quantity of heat is required to raise the temperature of the furnace. Several
minutes are necessary to preheat the furnace [24]. A small ceramic heater with a local
heating chamber could be used to synthesize Ag nanoparticles [25]. As a result, the formed
nanoparticles were reported to have a mean geometric diameter that was spherical without
agglomeration [26]. The advantage of the laser ablation method, in comparison to other
techniques, is that it is free from chemical reagents. The purity of the nanoparticles was
assured in this method [27]. The nanoparticles produced by the discharge method used to
fabricate Ag nanoparticles [28,29] had 99.99% purity. The purity and size distribution were
uniform when compared to other forms of synthesis.

1.3. Chemical Synthesis of Gold Nanoparticles

In recent years, a solution-based strategy for controlling the size, shape, and surface
functionality has been created [30–32]. In 1951, a new method for synthesizing AuNPs was
devised by boiling hydrogen tetrachloroaurate (HAuCl4) with citric acid [33]. Citrate has
a lowering and stabilizing effect [34]. To adjust particle size, Frens developed the process by
modifying the gold-to-citrate ratio [33]. This approach has been commonly used to make
dilute solutions of relatively stable spherical AuNPs with diameters of 10 to 20 nm; however,
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bigger AuNPs (e.g., 100 nm) have also been made. These citrate-stabilized AuNPs may
undergo irreversible aggregation during the functionalization process with thiolate ligands.
Several solutions have been devised to tackle this difficulty, including using a biosurfactant,
Tween 20. Similarly, a two-step method for functionalizing gold nanoparticles was made
by reducing tetrachloroauric acid in water with trisodium citrate. The physisorbed chloride
and citrate on gold nanoparticles are first displaced by thioctic acid, which is then replaced
by thiols with the desired functionality in the second step [35,36]. The demand for high
dilution, on the other hand, makes large-scale manufacture difficult.

AuNPs synthesis [37] was conducted in 1994 to produce organic soluble alkanethiol-
stabilized AuNPs by adopting a biphasic reduction, with the use of tetraoctylammonium
bromide as a phase transfer reagent and sodium borohydride (NaBH4) as a reducing
agent [37]. By changing response variables such as the gold-to-thiol ratio, the reduction
rate, and the reaction temperature, this technique yields low-dispersity AuNPs ranging
from 1.5 to 5 nm [38]. The synergic impact of thiol-gold generated strong connections and
Van der Waals attractions between the adjacent ligands, giving these alkanethiol-protected
AuNPs better stability than most other AuNPs [39].

2. Biological Method of Synthesis

Although the chemical synthesis of metallic nanoparticles is a standard procedure,
the cost and hazardous effects of reducing reagents and stabilizing agents restrict their
use. Furthermore, in biomedical applications, these nanoparticles could be toxic [40,41].
As a result, ecologically friendly and cost-effective nanoparticle synthesis techniques that
do not rely on harmful chemicals are needed. In recent years, biological nanoparticle
production has gained popularity as a green and environmentally friendly process [42].
Plants or plant extracts and microorganisms and enzymes were employed to synthesize
nanoparticles using a natural method [43,44]. The proposed synthetic mechanism for plant-
mediated synthesis of gold nanoparticles is depicted in Figure 1A.

Plants are increasingly being used to synthesize nanoparticles because of their widespread
availability, low cost, environmental friendliness, and non-toxic nature. Plants such as Azadirachta
indica have recently been used to study the production of AuNPs. Medicago sativa, Aloe vera,
Cinnamomum camphora, Pelargonium graveolens, Coriandrum sativum, Coriandrum sativum, Lemon-
grass, Terminalia catappa, and Terminalia catappa have all been reported [41,45–51].

Many scientists are experimenting with the production of AuNPs from plant extracts
as biomedicines against drug-resistant bacteria. Arunachalam et al., 2013, proposed using
Memecylon umbellatum nanoparticles as chemical sensors [52]. Kalishwaralal et al., 2010,
showed how a bacterium, Brevibacterium casei, can synthesize and stabilize spherical-shaped
Au and Ag nanoparticles in an unprecedented green process. The biological activities of
the produced particles were confirmed based on their durable anti-coagulant actions.
Similarly, Citrus limon, Citrus reticulata, and Citrus sinensis, all citrus fruits, as well as Piper
pedicellatum, have been synthesized as polymorphic gold nanoparticles with promising
biological uses. These chemical constituents can operate as a reducing, stabilizing, and
capping agent [52–57]. Chebula Terminalia, Memecylon edule, and Nyctanthes arbor-tristis
flower extract have potential medicinal and industrial applications. Murraya koenigii and
Musa paradisiaca show antibacterial activity; Mangifera indica, Cochlospermum gossypium, and
Cinnamomum zeylanicum photoluminescent particles are used for the production of noble
metal nanoparticles, which enable much faster synthesis and colloidal stability comparable
to those of chemical reduction [58–67].
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Figure 1. (A) Proposed synthetic mechanism for plant-mediated synthesis of gold nanoparticles.
(B) The advantages of green synthesis over conventional methods.

2.1. Green Synthesis of Gold Nanoparticles

Many metal nanoparticles synthesized via the green process possess several advan-
tages, as shown in Figure 1B. Their unique physicochemical properties, high surface-to-
volume ratio, low cost of synthesis, and surface functionalization were reported by Ankit
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Kumar Singh. Additionally, this review found that several studies have reported in detail
a variety of plants and plant parts used in metal nanoparticle generation: the bark of
Mimusops elengi was used to synthesize Au nanoparticles; bimetallic nanoparticles were
synthesized using Azadictira Indica leaf extract; Au nanoparticles were synthesized from
natural rubber; and Aelovera plant extract and lemongrass extract have applications on
infrared-absorbing coating [68–73]. The antioxidant, anti-inflammatory, antidiabetic, and
antibacterial activities of Holopetelea integrifolia leaf extract were studied, and synthesized
Au nanoparticles from Halymenia dilatata were studied regarding their antioxidant, anti-
cancer, and antibacterial activities; synthesized conjugated Au nanoparticles from Nerium
oleander were studied regarding their anticancer activity against MCR-7 cell lines [74–76].
The anticancer activity of Au nanoparticles synthesized using Lonicera japonica was also
studied. Ag and Au nanoparticles synthesized from Pleuropterus multiflorus roots were
investigated regarding their anticancer activity against the A549 lung cancer cell line [77,78].
Au nanoparticles synthesized using the Mucuna pruriens plant extract were studied regard-
ing an antiparkinsonian drug, and it was reported that poly-shaped Au nanoparticles
were synthesized using Saraca indica bark extract and were studied regarding catalytic
reduction. The anticancer activity of Ag and Au nanoparticles synthesized using Den-
dropanax morbifera leaf extract was studied, as well as the antimicrobial characteristics of
Au and Ag nanoparticles using Trianthema decandra extract. The antioxidant and anticancer
properties of Au nanoparticles synthesized using Antigonon leptopus leaf extract were stud-
ied, and the anticancer activities of noble metal nanoparticles using Psidium guajava leaf
extract and Syzygium aromaticum bud extract were studied. The antibacterial properties
of Au nanoparticles synthesized from Nepenthes khasiana leaf extract were investigated, as
well as Au nanoparticles synthesized from Schisandra Chinensis fruit extract. Ag and Au
nanoparticles synthesized using Dalbergia sissoo leaf extract were studied, and Ag nanopar-
ticles synthesized from Cassia italica leaf extract were also studied. The kinetics of the Au
nanoparticles synthesized using Camellia chinesis leaves and leaf buds were studied, as well
as the apoptotic effects of Au nanoparticles synthesized using Curcuma wenyujin [79–87].

2.2. Medicinal Plants

Nature’s contribution to the health of human beings is unimaginable. A wide variety
of plants are used in curing diseases and for a healthy lifestyle. India has a rich source
of medicinal plants used for various purposes. More than 17,000 species are used as
medicinal plants in India. The constituents/drugs present in medicinal plants are called
phytochemicals. These phytochemicals act on the biochemical processes in animals, human
beings, and microbes. The properties of phytochemicals are used due to their antioxidant,
antimicrobial, and anti-inflammatory properties [88–90].

The World Health Organization (WHO) indicated that traditional remedies are used
by 80% of the world’s population. For a long time, plants have been used as medicine in
India’s alternative medical systems, such as Unani, Ayurveda, Siddha, Yoga, and home-
opathy. Plant-derived medicines are alternatives to synthetic drugs, gaining importance in
modern medicine. In the developing world, primary health care services have benefited
from medicinal plants. In the Ayurvedic medical system, many plants and plant-based
materials are employed to treat ailments. A treatise on Ayurvedic medicine called “Charaka
Samhitha” mentions over 700 herbs [91–97]. Several therapeutic plants are mentioned in
the Vedas, such as the Rig Veda and the Atharva Veda.

AuNPs are well-known nanomaterials with a wide range of biomedical applications.
AuNPs can be synthesized using a variety of microbes and plants, mainly through the
use of fruit extracts. Fruit extracts are used because they naturally concentrate chemicals
with medicinal effects. Studies have shown that UV–visible spectroscopy, transmission or
scanning electron microscopy, dynamic light scattering, and Fourier transformation infrared
spectroscopy techniques are the methods most often used to characterize AuNPs and
capping biomaterial. Figure 2 shows some of the important outcomes in gold nanoparticles
obtained from plant components.
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Figure 2. Plant parts extract can be used for the biosynthesis of gold nanoparticles.

3. Characterization
3.1. UV–Visible Spectroscopic Analysis

In an aqueous solution, gold nanoparticles synthesized from various plant parts were
measured using a UV photometer and a Lab India UV3000 spectrophotometer, which read
at 450 nm and 650 nm for the Au nanoparticles. Readings were taken every 30 min for
6 h. The absorbance and transmittance of the Au nanoparticles were measured at 450 nm
to 650 nm using 3 mL of each sample in a cuvette, and they were subjected to spectral
analysis. At 520–560 nm, a single, narrow absorbance band was found, which is typical
of the production of tiny gold nanoparticles [98–103], and this was validated by the TEM
results as shown in Figure 3.

Figure 3. UV-spectral analysis for gold nanoparticles.
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3.2. Fourier Transform Infrared Spectroscopic Analysis (FTIR)

A total of 5 gm of each synthesized freeze-dried Au nanoparticle from different plants
parts was taken and pressed with 0.2 gm of KBr pellets to measure the infrared radiation
spectrum (IR) examined under an FTIR spectrophotometer (JASCO) over wavelengths in
the range of 4000 cm−1–400 cm−1. The FTIR spectrum of the green synthesized AuNPs is
shown in Figure 4. The strong bands at 3389 cm−1 (O-H stretching alcohol), 2919 cm−1

(C-H stretching alkane) and 2844 cm−1 (C-H stretching aldehyde) were due to the reduction
of Au3+ to Au0. A band at 1458 cm−1 corresponds to an NH bend, and the very broad
band of NH+3 stretch was observed in the 3000–3500 cm−1 range. The peaks at 1700 cm−1

(C-C stretching alkane), 1374 cm−1 (O-H bending phenol), and 1162 cm−1 (CO-O- CO
stretching anhydride) confirm the capping biomaterials of phytochemicals from plant
extracts such as polyphenols, flavonoids, and terpenoid compounds. Similar reports of
FTIR peaks for phenols and flavonoids from gold nanoparticles biosynthesized from Cissus
quadrangular extract confirm the capping biomaterial of the synthesized nanoparticles. The
bands at 1261 cm−1 and 1034 cm−1 are typically assigned to the vibration of ribose (C-C
sugar), which correspond to an epoxy bond, semi-acetal, and primary alcohol, respectively.
Further, the bands at 2920 and 1374 cm−1 correspond to methylene stretching and methyl
deformation vibrations, respectively.

Figure 4. FTIR for gold nanoparticles.

For example, the gold nanoparticles produced using plant extracts had bands at 617 cm−1,
1125 cm−1, 1376 cm−1, 1658 cm−1, and 3278 cm−1 in their FTIR pattern [104–109]. The
aromatic hydroxyl and benzene rings were assigned bands at 3402 cm−1, 1606 cm−1, and
1518 cm−1, indicating that the extract contains phenols. The bands at 2931 cm−1 and 1402 cm−1

correspond to methylene stretching and methyl deformation vibrations, respectively, whereas
the sugar content is shown by bands at 1260 cm−1, 1113 cm−1, and 1076 cm−1, which
correspond to an epoxy bond, semi-acetal, and primary alcohol, respectively.

3.3. Transmission Electron Microscope (TEM)

The synthesized Au nanoparticles were loaded separately into the FEI. A Tecnai G2
F20 STFE-TEM microscope was used. The sample was dried by pressing with blotting
paper to remove excess water and loaded onto the carbon-coated copper grid. The TEM was
operated at 200 Kv, with a resolution of 0.24 nm, and Cs of 1.2 nm; the shape and size were
determined as shown in Figure 5. The high-resolution TEM images show agglomerated
polycrystalline particles, and the SAED confirmed the face-centered cubic (FCC) structure
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incorporation of the poly-dispersed XRD pattern. The EDX analysis proved the presence of
only Au metal, and no other elements were present.

Figure 5. TEM analysis for gold nanoparticles.

SEM, TEM, and AFM are the most commonly utilized microscopic techniques for
morphological analyses of nanoparticles. The application of these microscopic methods
in nanoparticle morphology research has already been mentioned. TEM has a higher
magnification and resolution than the SEM. The electron diffraction pattern for a specified
region (SAED) is also utilized in TEM to distinguish crystalline structures from amorphous
structures [105,110]. The shape of the gold nanoparticles is studied using AFM [109–111].

3.4. X-ray Diffraction (XRD)

The Analytical Expert MRD, the model instrument, is generally utilized to investigate
the characteristics of synthetic Au nanoparticles for samples. The fine powder of nanoparti-
cles is loaded onto the XRD sample holder separately, and readings are recorded. The size of
the Au nanoparticles is calculated using Debye-Scherer’s equation: D = 0.9λ/βcos θ, where
D is the average crystallite size. X is the XRD wavelength (1.54 nm); B is the (FWHM), and
θ is the Bragg angle. The plant-mediated synthesized XRD characterized the Au nanopar-
ticles. The diffraction peak 2θ values assigned at 38.2º, 44.4º, and 64.6º were denoted as
the (111), (200), and (220) planes, respectively. The planes agree well with the JCPDS card:
04-0784 data. The XRD pattern determined the intensity of the peak, the peak position, the
width, and the full width at half-maximum (FWHM) as shown in Figure 6. The XRD data
revealed that the nanoparticles are crystalline and face-cantered cubic (fcc). The particle
mean size was determined using Debye-Scherer’s formula to determine the average size
of the Au particles. The high-energy X-rays can penetrate the materials deeply and reveal
important details about the bulk structure. The Debye-Scherrer equation computes the
crystallite sizes using the XRD technique. The usage of XRD patterns/peaks during gold
nanoparticle production has been reported [98,104,110–114].
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Figure 6. XRD analysis for gold nanoparticles.

4. Theranostic Applications

Nanoparticles are associated with a small stature and shape. The surface-to-volume ratio
of nanoparticles is very high, which leads to enhanced electrical, optical, magnetic, antifungal,
antioxidant, antibacterial, anti-inflammatory, and anticancer properties [115,116]. The surface-
to-volume ratio offers many perspectives for the food sector. Nanoparticles’ are critical and
significant in applications in biomedicine, especially in treating cancer, the diagnosis of HIV,
and the proliferation of cancer cells. In 1918, scientists made drastic progress in finding the
function of various metal nanoparticles in biological systems [117–119]. Metal nanoparticles,
mainly gold, are used in medicine for diagnosis, targeting, and therapeutics (Figure 7).

Figure 7. Theranostic applications of AuNPs in medical sciences and applied fields.

4.1. Principle of MTT Assay

Tetrazolium salt reduction is now universally acknowledged as a reliable method of ex-
amining cell growth. MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide)
is a yellow tetrazolium reduced by metabolically active cells, in part via dehydrogenase
enzymes, to generate reducing equivalents such as NADH and NADPH. The intracellular
purple formazan that results can be solubilized and measured using spectrophotometric
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methods (Figure 8). The assay evaluates the cell proliferation rate and, conversely, cell
viability reduction induced by metabolic processes such as apoptosis or necrosis [120].

Figure 8. Principle of MTT assay.

4.2. Biological and Theranostic Applications

As shown in Table 1, many researchers have demonstrated that AuNPs can suc-
cessfully attack cancer cells. AuNPs derived from Gymnema Sylvestre, often known as
cowplant, were cytotoxic to Hep2 cells. After treatment with AuNPs, Hep2 cells showed
morphological alterations. Increases in reactive oxygen species levels and alterations in the
nucleus were discovered, implying that apoptosis was responsible for the demise of Hep2
cells [121]. Another cervical cancer cell type, the HeLa cell line, also reacted to AuNPs.
Rounding, shrinkage, and granulation were identified as morphological alterations. The
AuNPs’ activity was attributable to the NPs’ ability to penetrate the cell membrane effi-
ciently. AuNPs have caused responses from other tumor cells, including Ehrlich’s ascites
carcinoma, breast cancer cells, and MCF-7 cells. Green tea polyphenols were used in the
production of AuNPs. AuNPs synthesized from green tea and AuNPs synthesized from
epigallocatechin-3-gallate were compared. Both AuNPs were able to trigger apoptosis in
tumor cells while preventing tumor cell damage in normal hepatocytes. Green-generated
AuNPs, on the other hand, demonstrated improved tumoricidal and hepatoprotective ef-
fects. When AuNPs generated by Actinidia deliciosa were examined on HCT-116 cells using
an MTT assay, they showed 71 percent activity at their highest concentration (350 g/mL).
The cytotoxic effect of the AuNPs was shown to be concentration dependent [122].

Table 1. Biological and theranostic applications of gold nanoparticles.

S. No Name of the Plant Activity Cell Line Used Shape Size (nm) Ref.

1 Nanoparticles with antibacterial activity

1.1 Areca catechu Antibacterial - Spherical 13 [123]

1.2 Acorus calamus Antibacterial - Spherical 100 [124]

1.3 Ananas comosus Antibacterial - Spherical 16 [125]

1.4 Benincasa hispida Antibacterial - Spherical 23 [126]

1.5 Brazilian red propolis Antibacterial - Rods, triangular,
pentagonal, hexagonal 8–15 [127]

1.6 Clitoria ternatea (Asian
pigeonwings) Antibacterial - Spherical, triangular,

hexagonal 10 [128]

1.7 Citrus maxima Antibacterial - Spherical 27–30 [104]

1.8 Coreopsis lanceolate Detections of
aflatoxins - Sphere 23–30 [129]

1.9 Caesalpinia pulcherrima Antibacterial - Spherical 10–50 [130]
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Table 1. Cont.

S. No Name of the Plant Activity Cell Line Used Shape Size (nm) Ref.

1.10 Carthamus tinctorius L Antibacterial - Triangular, spherical 40–200 [131]

1.11 Catharanthus roseus Antibacterial - Spherical, triangular 3–9 [132]

1.12 Carica papaya Antibacterial - Spherical, triangular 2–20 [133]

1.13 Coleus forskohlii Bactericidal activity - Triangular 25–40 [134]

1.14 Ceiba pentandra (L) Antibacterial - Spherical 20–48 [135]

1.15 Diospyros ferrea Antibacterial - Diverse 70–90 [136]

1.16 Dioscorea batatas Antibacterial - Diverse 19–56 [137]

1.17 Dimocarpus longan Antibacterial - Diverse 25 [138]

1.18 Dracocephalum kotschyi Antibacterial - Spherical 11 [139]

1.19 Euphorbia hirta Antibacterial - Spherical 6–7 [140]

1.20 Gloriosa superba Antibacterial - Spherical 25 [141]

1.21 Galaxaura elongate Antibacterial - Rod, triangular,
hexagonal 3–77 [142]

1.22 Bay cedar Antibacterial - Spherical 20–25 [143]

1.23 Hibiscus cannabinus Antibacterial - Spherical 13 [144]

1.24 Hoveniadulcis Antibacterial - Spherical 20 [145]

1.25 Helianthus annuus Antibacterial - Polydispersed 35 [146]

1.26 Hevea brasiliensis Cytotoxicity
and genotoxicity CHO-K1 cells Spherical, triangular 50 [147]

1.27 Justica wynaadensis Antibacterial - Spherical 30–50 [148]

1.28 Jasminum auriculatum Antibacterial - Spherical 8–37 [149]

1.29 Lobila nicotianifolia Antibacterial - Spherical 80 [150]

1.30 Mammea suriga Antibacterial - Square 50 [151]

1.31 Mentha piperita Antibacterial - Hexagonal 78 [152]

1.32 Maytenus royleanus Antibacterial,
Leshmenia - Hexagonal 30 [153]

1.33 Musa paradisiaca (Banana) Antibacterial - Diverse 300 [154]

1.34 Nepenthes khasiana Antibacterial - Spherical 50–80 [155]

1.35 Nigella arvensis Antibacterial - Spherical 3–37 [156]

1.36 Punica granatum Antibacterial - Spherical 5.20 [157]

1.37 Pistacia integerrima Antibacterial - Granular 20–200 [158]

1.38 Plumeria alba Antibacterial - Spherical 16–28 [159]

1.39 Platycodon grandiflorum Antimicrobial - Spherical 15 [160]

1.40 Rivea hypocrateriformis Antibacterial - Spherical 10–50 [161]

1.41 Solanum nigrum Antibacterial - Spherical 50 [162]

1.42 Salicornia brachiate Antibacterial - Polydispersed 22–35 [163]

1.43 Solanum lycopersicums Antibacterial - Diverse 14 [164]

1.44 Trichoderma sp Antibacterial - Pseudospheric 1–24 [165]

1.45 Trianthema decandra L Antibacterial - Spherical, hexagonal,
cuboidal 38–80 [166]
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Table 1. Cont.

S. No Name of the Plant Activity Cell Line Used Shape Size (nm) Ref.

1.46 Zingiber officinale (Ginger) Antibacterial - Spherical 5–15 [167]

1.47 Zizyphus mauritiana Antibacterial - Spherical 20–40 [168]

2 Nanoparticles with Anticancer activity

2.1 Areca catechu Anticancer, catalyst HeLa Spherical 13 [123]

2.2 Artocarpus hirsutus (Wild
jack) Anticancer HeLa, RKO

and A549 Spherical 5–40 [169]

2.3 Achyranthes Aspera Linn
Seed Anticancer HeLa (Cervical) Spherical, hexagonal,

triangular 9 [170]

2.4 Benincasa hispida Anticancer HeLa (Cervical) Spherical 23 [126]

2.5 Brazilian red propolis Anticancer Bladder (T24) and
prostate (PC-3)

Rods, triangular,
pentagonal, hexagonal 8–15 [127]

2.6 Couroupita guianensis Anticancer HL-60 Cubic 27 [171,
172]

2.7 Curcuma wenyujin Anticancer A498
(renal carcinoma) Spherical 200 [173]

2.8 Ceiba pentandra (L) Anticancer HCT-116
(colon cancer) Spherical 20–48 [135]

2.9 Corchorus olitorius Antiproliferative
effect

(Breast) MCF-7,
(colon)

HCT-11, and
(hepatocellular)

HepG-2

Triangular, hexagonal 37–50 [174]

2.10 Diospyros ferrea Anticancer HeLa Diverse 70–90 [136]

2.11 Dioscorea batatas Cytotoxicity B16/F10
(melanoma) Diverse 19–56 [137]

2.12 Dracocephalum kotschyi Anticancer K562 and HeLa Spherical 11 [140]

2.13 Bay cedar Anticancer Cervical cancer
(HeLa) Spherical 20–25 [143]

2.14 Hevea brasiliensis Cytoxicity and
genotoxicity CHO-K1 cells Spherical, triangular 50 [147]

2.15 Justica wynaadensis Anticancer (Lung cancer)
A549 Spherical 30–50 [148]

2.16 Jasminum auriculatum Anticancer Cervical cancer
(HeLa) Spherical 8–37 [149]

2.17 Lobila nicotianifolia Anticancer (Lung cancer)
A459 Spherical 80 [150]

2.18 Musa paradisiaca (Banana) Anticancer (Lung cancer)
A459 Diverse 300 [154]

2.19 Marsdenia tenacissima Anticancer (Lung cancer)
A459 Spherical 50 [175]

2.20 Marsilea quadrifolia Anticancer
(Lung

adenocarcinoma)
(A549)

Spherical 10–40 [176]
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Table 1. Cont.

S. No Name of the Plant Activity Cell Line Used Shape Size (nm) Ref.

2.21 Mangifera indica (MI)
mango peel Cytotoxicity

African green
monkey kidney

normal cells
(CV-1) and fetal
lung fibroblast
cells (WI-38)

Round, triangular,
irregular 19–45 [177]

2.22 Nerium oleander Anticancer MCF-7 (breast
cancer) Spherical 2–10 [178]

2.23 Nepeta deflersiana Anticancer (Human cervical)
HeLA Cubic 33 [179]

2.24 Nigella arvensis Cytotoxicity and
catalytic activities

H1299 and
MCF-7 Spherical 3–37 [156]

2.25 Orchid Anticancer AMG-13 (breast
cancer) Spherical 14–50 [180]

2.26 Punica granatum Anticancer HeLa Spherical 5–20 [157]

2.27 Korean red ginseng Anticancer (cervical), HeLa,
Hep2 Spherical 3–40 [181]

2.28 Padina tetrastromatica Anticancer

Liver cancer
(HepG2) and
lung cancer

(A549)

Spherical 8–10 [182]

2.29 Scutellaria barbata Anticancer Pancreatic
(PANC-1) Spherical 154 [183]

2.30 saffron stigma (crocin) Anticancer
Human breast
cancer cell line

(MCF-7)
Spherical 4–10 [184]

2.31 Sargassum swartzii Anticancer Human cervical
carcinoma (HeLa) Spherical 35 [185]

2.32 Seaweed Anticancer MCF-7 (breast
cancer) Cubic, spherical 20–50 [186]

2.33 Taxus baccata Anticancer

Breast cells
(MCF-7), cervical
cells (HeLa) and

ovarian cells
(Caov-4)

Dispersed 20 [187]

2.34 Wedelia trilobata Anticancer HCT 15 (colon
cancer) Spherical, cubic 10–50 [188]

2.35 Piper betle Cytotoxicity HeLa and
HEK293

Prism, cubic,
octahedron,
tetrahedron,

dodecahedron,
triangular

15–55 [189]

3 Nanoparticles with Antifungal activity

3.1 Abelmoschus
esculentus (Okra) Antifungal Crystalline 62 [190]

3.2 Artemisia vulgaris
(Mugwort)

Larvicidal activity
against Aedes

larvae

Spherical, triangular,
hexagonal 50–100 [191]
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Table 1. Cont.

S. No Name of the Plant Activity Cell Line Used Shape Size (nm) Ref.

3.3 Brazilian red propolis Antifungal Rods, triangular,
pentagonal, hexagonal 8–15 [127]

3.4 Coreopsis lanceolate Detections
of aflatoxins [129]

3.5 Carthamus tinctorius L Antifungal Triangular, spherical 40–200 [131]

3.6 Caesalpinia pulcherrima Antifungal Spherical 10–50 [130]

3.7 Bay cedar Antifungal Spherical 20–25 [143]

3.8 Helianthus annuus Antifungal Polydispersed 35 [146]

3.9 Nepenthes khasiana Antifungal Spherical 50–80 [155]

3.10 Punica granatum Antifungal Spherical 5–20 [157]

3.11 Pistacia integerrima Antifungal Granular 20–200 [158]

3.12 Rivea hypocrateriformis Antifungal Spherical 10–50 [161]

3.13 Trianthema decandra L Antifungal Spherical, hexagonal,
cuboidal 38–80 [166]

4 Nanoparticles with Antioxidant activity/antidiabetic activity

4.1 Areca catechu Catalyst,
antioxidant HeLa Spherical 13.7 [123]

4.2 Clitoria ternatea (Asian
pigeonwings) Antioxidant Spherical, triangular,

hexagonal 10 [128]

4.3 Couroupita guianensis Antioxidant HL-60 Cubic 27 [171,
172]

4.4 Hoveniadulcis Antioxidant Spherical 20 [145]

4.5 Justica wynaadensis Antidiabetic and
anti-inflammatory

(Lung cancer)
A549 Spherical 30–50 [148]

4.6 Nerium oleander Antioxidant MCF-7 (breast
cancer) Spherical 2–10 [178]

4.7 Nigella arvensis Antioxidant,
catalytic activities

H1299 and
MCF-7 Spherical 3–37 [156]

It is a known fact that using plants to make gold nanoparticles can result in nanoparti-
cles with distinct biological properties. In a recent study by Mobaraki et al., 2021, using
Achillea biebersteinii flower extract, spherical-shaped (8 nm) gold nanoparticles with anti-
cancer properties against human testicular embryonic carcinoma stem cells were synthe-
sized. The nanoparticles demonstrated dose-dependent cell viability against cancer cells by
inducing apoptosis, with half inhibitory concentration (IC50) values of 10 g/mL [192]. In
another study, Mousavi-Kouhi et al., 2022, synthesized gold nanoparticles from Verbascum
speciosum; the green synthesized AuNPs were about 118 ± 72 nm in size and very effective
against the hepatocellular carcinoma cell line (HepG2) and pathogenic bacteria [193].

Researchers are increasingly interested in the use of naturally occurring materials in
biomedicine, and gum tragacanth (GT) has recently shown great promise as a therapeutic
substance in tissue engineering and regenerative medicine. GT is a polysaccharide that
can be extracted easily from the stems and branches of various Astragalus species. This
anionic polymer is biodegradable, non-allergenic, non-toxic, and non-carcinogenic. GT′s
resistance to microbial, heat, and acid degradation has made it a popular material in
industrial (e.g., food packaging) and biomedical applications (e.g., drug delivery). GT has
been shown to be a useful reagent in the formation and stabilization of metal nanoparticles
over time [194,195].
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5. Future Prospective

When we use green synthesis to make AuNPs, the process is simple. The reaction
occurs in a controlled atmosphere with minimal temperature and pressure changes. Their
reduction property determines the answer. A plant-based bioactive molecule that functions
as a reducing agent usually produces the quickest reaction. Because of the benefits of
employing green synthesis, we need to determine which molecules are feasible and to scale-
up the commercialization of gold nanoparticles, as well as conduct the research needed
for theranostic applications and disease markers. In addition, research should focus on
in vivo investigations so that AuNPs can be used further as a medication or carrier for
biomedical applications.

6. Conclusions

Diverse medicinal plants and their parts are employed to synthesize AuNPs, which
have the unique virtue of having anticancer, antibacterial, and antifungal properties with
theranostic applications. Nanotheranostics is a rapidly growing research field with enor-
mous potential for improving disease diagnosis and treatment. Green nanoparticle synthe-
sis, with its low capital requirements and operating costs, reduced pollution, and improved
biocompatibility and stability, is a new and emerging field with advantages over chemical
and physical nanoparticle synthesis methods. The number of biomedical applications in
this sector is growing every day, with bioimaging, drug delivery, biosensors, and gene deliv-
ery among them. We hope that by focusing the readers’ attention on naturally synthesized
nanoparticles and their applications, this review will help form a new perspective.
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