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Abstract

Water is vital for plant growth and development. Water-deficit stress, permanent or temporary, limits the growth and the dis-
tribution of natural vegetation and the performance of cultivated plants more than any other environmental factors do. Although
research and practices aimed at improving water-stress resistance and water-use efficiency have been carried out for many years,
the mechanism involved is still not clear. Further understanding and manipulating plant–water relations and water-stress toler-
ance at the scale of physiology and molecular biology can significantly improve plant productivity and environmental quality.
Currently, post-genomics and metabolomics are very important to explore anti-drought gene resource in different life forms, but
modern agricultural sustainable development must be combined with plant physiological measures in the field, on the basis of
which post-genomics and metabolomics will have further a practical prospect. In this review, we discussed the anatomical changes
and drought-tolerance strategies under drought condition in higher plants. To cite this article: H.-B. Shao et al., C. R. Biologies
331 (2008).
© 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The term stress is most often used subjectively and
with various meanings. The physiological definition
and appropriate term for stress are referenced as re-
sponses to different situations. The flexibility of nor-
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mal metabolism allows the development of responses
to environmental changes, which fluctuate regularly and
predictably over daily and seasonal cycles. Thus, every
deviation of a factor form and its optimum does not
necessarily result in stress. Stress with a constraint or
with highly unpredictable fluctuations imposed on regu-
lar metabolic patterns causes injury, disease, or aberrant
physiology. Stress is the altered physiological condition
caused by factors that tend to alter equilibrium. Strain
is any physical and chemical change produced by a
stress [1–4].
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Fig. 1. Physiological and molecular basis of drought stress tolerance (see [7,18]).
Environmental stresses trigger a wide variety of plant
responses, ranging from altered gene expression and
cellular metabolism to changes in growth rate and plant
productivity. Plant reactions exist to circumvent the po-
tentially harmful effects caused by a wide range of
both abiotic and biotic stresses, including light, drought,
salinity, and high temperatures. Among the environ-
mental stresses, drought stress is one of the most ad-
verse factors to plant growth and productivity. Knowl-
edge of the biochemical and molecular responses to
drought is essential for a holistic perception of plant-
resistance mechanisms to water-limited conditions in
higher plants [5–11].

Water stress is the major problem in agriculture and
the ability to withstand such stress is of immense eco-
nomic importance. Water-stress tolerance involves sub-
tle changes in cellular biochemistry. It appears to be the
result of the accumulation of compatible solutes and of
specific proteins that can be rapidly induced by osmotic
stress [12,13]. The numerous physiological responses of
plants to water deficits generally vary with the sever-
ity as well as with the duration of water stress [14–23].
Related responses induced by water deficits were sum-
marized in Fig. 1.
Water-deficit stress can be defined as a situation
in which plant water potential and turgor are reduced
enough to interface with normal functions [2–6,24–27].
Water stress is considered to be a moderate loss of
water, which leads to stomatal closure and limitation
of gas exchange. Desiccation is a much more exten-
sive loss of water that can potentially lead to gross
disruption of metabolism and cell structure and even-
tually to the cessation of enzyme catalyzing reactions
(Smirnoff, 1993). Water stress is characterized by re-
duction of water content, turgor, total water potential,
wilting, closure of stomata, and decrease in cell en-
largement and growth. Severe water stress may result
in arrest of photosynthesis, disturbance of metabolism,
and finally death [28–32].

Water stress influences plant growth at various lev-
els, from cell to community [33,34]. The quantity and
quality of plant growth depend on cell-division enlarge-
ment, and differentiation, and all of these events are af-
fected by water stress [35,36]. Hsiao (1973) concluded
that water stress inhibits cell enlargement more than cell
division. It reduces plant-growth inhibition of various
physiological and biochemical processes, such as pho-
tosynthesis, respiration translocation, ion uptake, carbo-
hydrates, nutrient metabolism, and hormones [37–39].
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Drought stress has adverse influence on water re-
lations in Arachis hypogeae [40], photosynthesis in
peanuts [41] and mineral nutrition, metabolism, growth
and yield of groundnut [42,43]. In addition, drought
conditions influence the growth of weeds, agronomic
management, and nature and intensity of insects, pests,
and diseases in Arachis hypogeae [44–47].

WUE (water-use efficiency) is traditionally defined
as the ratio of dry-matter accumulation to water con-
sumption over a season. Increasing WUE could the-
oretically affect plant growth. When water is limited,
the productivity of plants that use a finite water sup-
ply more efficiently would be positively affected, as
in peanut [48]. WUE measurements may be made at
three levels: (i) in single leaf using gas-exchange tech-
niques, (ii) in whole plants grown in containers, and
(iii) at the canopy level based on evapotranspiration in
the field [49,50].

Variation in WUE within species can be assessed
gravimetrically. However, reliable estimates of WUE
under field conditions may be difficult, owing to the
lack of technologies to assess the belowground biomass.
However, gravimetric technique can be adequately
adopted to estimate genotypic variation in pot-culture
experiments. Recent studies have shown that carbon
isotope discrimination occurring during carbon assim-
ilation by leaves is closely related to WUE in various
crops [52–59], suggesting that carbon isotope discrim-
ination technology can be used to screen genotypes for
WUE.

Plant growth and productivity is adversely affected
by nature wrath in the form of various abiotic and biotic
stress factors. Plants are frequently exposed to many
stress conditions, such as low temperature, salt, drought,
flooding, heat, oxidative stress, and heavy-metal toxi-
city. Various anthropogenic activities have accentuated
the existing stress factor [60,61]. Water stress may arise
from two conditions, either due to excess of water or
water deficit. The more common water stress encoun-
tered is water-deficit stress, known as drought stress.
Water deficit stress has a profound impact on ecologi-
cal and agricultural systems [62]. The reactions of the
plant to water stress differ significantly at various orga-
nizational levels, depending upon the intensity and the
duration of stress as well as on the plant’s species and
its stage of development [61–63]. Understanding the
plants’ responses to drought is of great importance and
is also a fundamental part for making the crops stress
tolerant [7,8,63].

In sunflower, a number of responses to water deficits
have been identified, which were associated with bet-
ter performances under drought conditions [64]. One
trait, which is potentially very important because of the
interactions between temperature and water supply on
plant growth, is that of enhanced early vigour [65,66].
Sunflowers’ basal temperatures are higher than those of
winter cereals [67]. There are reports on osmotic ad-
justment under drought stress in sunflower. Osmotic ad-
justment can contribute to yield maintenance under pre-
anthesis drought conditions in the sunflower [68–70].

2. Effect of water deficit on morphological
parameters

Growth is one of the most drought-sensitive physio-
logical processes due to the reduction of turgor pressure.
Cell expansion can only occur when turgor pressure is
greater than the cell wall yield threshold. Water stress
greatly suppresses cell expansion and cell growth due
to the low turgor pressure [71,72].

Mostly plants acclimated to drought by osmotic ad-
justment. The loss of metabolic activity occurred only
at severe stress conditions. The increased stomatal re-
sistance under stress levels indicates the efficiency of
the species to conserve water in Albizzia [73,74]. Wa-
ter deficit reduced the plant growth in pearl millet under
drought stress by Kusaka et al. (2005) and in okra [75].

Water is being used economically for growth process-
es. WUE maintains the better metabolic status of the
plant, thus better growth potential in multipurpose agro-
forestry tree species is achieved [76,77]. Various inter-
nal and external factors influence growth besides its
genetical make-up. Growth is an important tool for
assessing crop productivity in various crops [78,79].
Drought at any phenophase can affect almost every as-
pect of growth of the above- and below-ground parts in
multipurpose agroforestry tree species [77,78]. Osmotic
regulation can enable the maintenance of cell turgor for
survival or assist plant growth under severe drought con-
ditions in pearl millet [80].

Crops are exposed to a variety of environmental
stresses, viz., drought, salinity or low temperature con-
stitute some of the most serious limitations to crop
growth in Helianthus annuus [81,82]. The reduction in
plant height is associated with the decline in the cell
enlargement and more leaf senescence in the plant Abel-
moschus esculentus under water stress [83].

2.1. Root length

Root characteristics, especially root length, root
length density, and the number of thick roots, are impor-
tant for a plant to have comparatively well-established
aboveground parts by exploiting the available water, as
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in rice [84]. Drought avoidance due to a profound root
system that enhances the ability of a plant to capture wa-
ter is a fundamental adaptation mechanism to drought
[85–91].

A prolific root system can confer the advantage to
support accelerated plant growth during the early crop
growth stage and extract water from shallow soil layers
that is otherwise easily lost by evaporation [92]. More
severe drought stress suggests that the dynamics of root
growth under drought conditions might be a key fac-
tor to the understanding of the contribution of roots to
drought avoidance [93].

Drought stress decreased the root length in Al-
bizzia seedlings [94]. Similar results were observed
in Erythrina seedlings [95], Eucalyptus microtheca
seedlings [96], and Populus species [97]. Water stress
reduces the biomass of fibrous roots in Avocado culti-
vars [98] and in pearl millet [84,86].

The root-to-shoot ratio increases under water-stress
conditions to facilitate water absorption [98]. The
growth rate of wheat and maize roots was found de-
creasing under moderate and high water-deficit stress
[99]. However, the development of the root system in-
creases water uptake and maintains the right osmotic
pressure through higher proline levels [100–104]. An
increased growth was reported by [72] in mango un-
der water stress. The root dry weight decreased under
mild and severe water stress in sugar beet [105]. A sig-
nificant decrease in root length was reported in water-
stressed Populus species by [106]. The importance of
root systems in acquiring water has long been recog-
nized. A prolific root system can confer the advantage
to support accelerated plant growth during the early
crop-growth stage and extract water from shallow soil
layers that is otherwise easily lost by evaporation [107].
Past studies report that the root-to-shoot ratio increases
under water-stress conditions to facilitate water absorp-
tion [108] and that it is related to the ABA content of
roots and shoots [109]. The root growth was not signif-
icantly reduced under water deficits in maize and wheat
[110].

2.2. Stem length

Stem length was decreased in Albizzia seedlings un-
der drought stress [111]. Similar results were observed
in Erythrina [112], Eucalyptus microtheca seedlings
[96], and Populus species [98]. Continuous water deficit
results in fewer and smaller leaves, which have smaller
and more compact cells and greater specific leaf weight
in peanut [113].
Water stress was a very important limiting factor
at the initial phase of plant growth and establishment.
There was a significant reduction in shoot height in Pop-
ulus cathayana under deficit stress [97]. In soybean, the
stem length decreased under water-deficit stress, but this
decrease was not significant when compared to well-
watered control plants. The plant height reduced up
to 25% in water-stressed Citrus seedlings [114]. Stem
length was significantly affected under water stress in
potato [115].

2.3. Leaf area

During water stress, the total leaf area per plant
decreased significantly in Eragrostis curvula, Oryza
sativa, Abelmoschus esculentum, and in Asteriscus mar-
itimus [116–120]. Leaf-area plasticity is important to
maintain the control of water use in crops. In Sorghum,
leaf area reduced significantly under water stress. This
reduction occurred before stomatal conductance de-
creased in the remaining viable leaf area [26,35,89].

Leaf area was affected adversely in both main shoot
and tillers of all the varieties. Reduction in leaf area
by water stress is an important cause of reduced crop
yield through reduction in photosynthesis [116]. The re-
duction in plant height and leaf area under water stress
may be associated with the decline in the cell enlarge-
ment and more leaf senescence in Abelmoschus escu-
lentum.

Leaf water potential, osmotic potential, and rela-
tive water content decreased in stressed plants at all
the growth stages in sorghum. The decrease in osmotic
potential in response to water deficit was more com-
pared to the leaf water potential at all the growth stages,
indicating the ability of the leaves to maintain turgor
through osmotic adjustment in sorghum [117–129].

Water deficits reduce the number of leaves per plant
and individual leaf size, leaf longevity and leaf reduced
by decreasing the soil’s water potential. Leaf area ex-
pansion depends on leaf turgor, temperature, and as-
similating supply for growth, which are all affected by
drought in Arachis hypogeae [7–11].

Water-deficit stress mostly reduced leaf growth and
in turn the leaf area in many species of plants, like
Populus, Ziziphus, etc. [128–131]. Significant interspe-
cific differences between two sympatric Populus species
were found in the total number of leaves, total leaf area,
and total leaf biomass under drought stress. The leaf
growth was more sensitive to water stress in wheat, but
it was not so in the case of maize [132].
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2.4. Fresh and dry weight

Prolonged water stress reduced the biomass of fi-
brous roots in Avocado cultivars [133]. The performance
and biomass production potential of trees depend on
the maintenance of a higher physiological status and
economical utilization of resources in agroforestry tree
species. A decrease in total dry matter may be due to
the considerable decrease in plant growth, photosynthe-
sis and canopy structure, as indicated by leaf senescence
during water stress in Abelmoschus esculentum. Chang-
ing resource pools (e.g., water or nutrient availability)
may also affect the distribution of biomass [134–137].
Drought stress decreases mean plant biomass, whereas
it increases both the relative variation in plant biomass
and the concentration of mass within a small fraction of
the population. This is supported by earlier studies [138,
139] conducted at single field sites or in pots.

Drought stress decreased the plant biomass in Cya-
mopsis tetragonoloba [140] and spring wheat. Similar
results were observed in earlier studies in wheat, Aster-
iscus maritimus, and Albizzia seedling [140–142]. Leaf
biomass was less in water-stressed plants compared to
unstressed plants in the case of tree species. The reduc-
tion in total biomass was reported in groundnut cultivars
under water stress due to the reduction in the pod mass
rather than in the vegetative mass [143]. Morphologi-
cal parameters like fresh and dry weights have a pro-
found effect in water-limited conditions. There was a
one-third reduction in fresh and dry weights of the Zizi-
phus rotundifolia plant under drought conditions [144].
Progressive drought resulted in a significant reduction
in early allocation of dry matter and decreased fresh
and dry weight in all plant parts in Populus davidiana.
Under water-deficit stress, the biomass production was
decreased in Populus cathayana and drought severely
affected all growth parameters. Plant productivity un-
der drought stress is strongly related to the processes
of dry matter partitioning and temporal biomass dis-
tribution [145]. A moderate stress tolerance, as shown
by dry weight production in transgenic plants, was no-
ticed based on relative shoot growth studies under stress
conditions, like drought [146]. Defoliation originating
from water stress in maize plants resulted in reduced
biomass and thin biomass [147]. Regulated deficit irri-
gation and partial root drying caused a significant re-
duction in shoot biomass when compared to control in
common bean plants [148]. There was a significant re-
duction in root dry weight on induction of drought stress
in cotton by PEG [149]; there was a significant reduc-
tion in shoot dry weight due to water-stress treatments in
sugar beet genotypes [150], and mild stress affected the
dry weights of shoots, while shoot dry-weight loss was
greater than root dry-weight loss under severe stress.
Reduced biomass was met with water-stressed soybean
plants. The dry weight of Poncirus trifoliate seedlings
decreased to a considerable extent under water stress.

A common adverse effect of water stress on crop
plants is the reduction in fresh and dry biomass produc-
tion [151]. Reduced biomass production due to water
stress has been observed in almost all genotypes of sun-
flower [72,87,92]. However, some genotypes showed
better stress tolerance than others did. Tahir et al. (2002)
evaluated 25 inbred lines of sunflower for drought tol-
erance. They reported a decrease in plant height, leaf
area, head diameter, 100-achene weight, yield per plant,
and plant biomass due to water stress. They further sug-
gested that these traits could be used as a selection cri-
terion for higher yield per plant under water deficit. In
a field experiment, Prabhudeva et al. (1998) subjected
sunflower genotypes to water stress at bud initiation
and/or seed filling stage. They observed that seed and
biological yield were reduced most by the imposition of
water stress at the bud-initiation and seed-filling stages,
than at the seed-filling stage only.

2.5. Yield parameters

Sunflower yields were higher for winter season than
for spring plantings [151,152]. In early plantings of sun-
flower, the yield increase was associated with both an
increase in grain number and in individual grain weight.
There have been reports on increased yield under water-
limited conditions in various plants [56,62,79,83]. Sin-
clair and Muchow (2001) analyzed many physiological
and morphological traits that could contribute to an in-
crease in grain yield in drought situations. The portion-
ing of dry matter to the head is critical in the process of
yield determination in water-stressed sunflower [149].
The effect of water deficits on the harvest index of sun-
flower is complex due to the interactions between the
timing and intensity of the stress relative to the devel-
opmental processes that determine the components of
yield.

Experiments with sunflower where water deficits
were imposed at different growth stages generated a
two-fold difference in the harvest index [124,130], chal-
lenging the view that harvest index may be considered
constant over a range of water deficits. Drought during
the reproductive stage reduces the harvest index.

The yield components, like grain yield, grain num-
ber, grain size, and floret number, were found de-
creased under pre-anthesis drought stress treatment in
sunflower. Water stress greatly reduced the grain yield
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of maize plants, and this reduction in grain yield was
dependent upon the level of defoliation water stress
during early reproductive growth reduces yield in soy-
bean, usually as a result of fewer pods and seeds per
unit area [150,151]. Under non-compact soil condi-
tions, salinity, water logging, and saline-watered logged
treatments significantly reduced grain yield in wheat
genotypes. In water-stressed soybean, the seed yield
was far below when compared to well-watered control
plants [152–154].

Seed yield and yield components are severely af-
fected by water deficit. Water stress reduced the head
diameter, 100-achene weight and yield per plant in sun-
flower [18,26,33,41]. These scientists also observed sig-
nificant but negative correlation of head diameter with
fresh root and shoot weight under water stress. A pos-
itive and significant relation was recorded between dry
shoot weight and achene yield per plant. Reddy et al.
(1998) supported the view that water stress for more
than 12 days at the grain-filling and flowering stage of
sunflower (grown in sandy loam soil) was most damag-
ing and reduced the achene yield. Mozaffari and Zeinali
(1997) suggested that higher stalk diameter, greater
plant height, and seed yield are suitable as selection cri-
teria for drought-tolerant cultivars. Nandhagobal et al.
(1996) subjected sunflower to water stress by skipping
irrigation at germination, vegetative stage, button ini-
tiation, flowering, and at seed-filling stages. Skipping
irrigation at flowering stage caused much reduction in
yield during the summer season. Water stress at flower-
ing also gave the lowest seed oil content.

3. Conclusions and perspectives

Drought is a worldwide problem, constraining global
crop production and quality seriously, and recent global
climate change has made this situation more serious.
Drought is also a complex physical-chemical process,
in which many biological macromolecules and small
molecules are involved, such as nucleic acids, pro-
teins, carbohydrates, lipids, hormones, ions, free radi-
cals, mineral elements. In addition, drought is related
to salt stress, cold stress, high-temperature stress, acid
stress, alkaline stress, pathological reactions, senes-
cence, growth, development, cell circle, UV-B damage,
wounding, embryogenesis, flowering, signal transduc-
tion, and so on. Therefore, drought is connected with
almost all aspects of biology [8–12,16–23,39,50,51].
Currently, drought study has been one of the main di-
rections in global plant biology and biological breeding.
Anatomical changes induced by water deficits in higher
plants were better-observed indicators, which can be
directly applied to agriculture and handled. To aim at
exploring efficient anatomical indices, much informa-
tion has been documented, but more attention should be
paid to link them with physiological and molecular one.

In a word, the study of the physiological mechanisms
of wheat anti-drought has much work to do. Molecular
biology aspects of wheat cannot substitute for this im-
portant part, but strengthen the research and provide a
broad future and platform. It is easy to see that one cell
or molecule cannot be alive in natural fields and not pro-
vide any economic effect for human beings. The com-
bination of molecular biology, plant physiology, and of
other related disciplines is the key. Many achievements
in biotechnological and traditional breeding of wheat
are good examples. Although some progresses in terms
of exploration of the molecular nature of wheat anti-
drought have also taken place, many problems exist.
Currently, from the view of the globe, sustainable de-
velopment is the key point. The necessary way to solve
the issue of sustainable development is by biological
measures, in which plants will play greater roles and
crops will play the greatest functions with no doubt. To
aim at taking advantage of the full use of crop phys-
iological potential for high production and safe food
with better quality, the following problems remain to
be solved. What is the relationship between mineral el-
ements (in particular, K+ and Na+ in soils) with root
signal transduction (pathways)? Many former studies
showed that K+ was little connected with anti-drought
behaviour, but recent research and our results displayed
that it was linked with wheat’s drought-resistance. What
is the exact soil water-stress threshold of the individ-
ual wheat genotype? This is of much importance to
drought-resistant plant breeding, to saving-water agri-
culture, and to precise agriculture under global climate
change. What are the details that constitute the network
of the regulatory system of drought, cold, UV-B, freez-
ing, acidity, salinity, wounding, pathogenicity, senes-
cence, cell death? How is each one linked with other
parts? What is the (transient) connection among differ-
ent physiological adaptive regulatory pathways at dif-
ferent levels? What role do endogenous hormones play
in this course? What is the crosstalk among them when
abiotic or/and biotic stress happen(s)? The redox state in
plants is important, and how is it regulated by drought
signal? What is the best allocation of different crops and
grass-shrub-forest in worsening arid and semi-arid areas
for obtaining economic and ecological effects? A wide-
spread use of data resources for fine gene functions and
structure of different plants (species) being from model
plants, Arabidopsis thaliana and rice, how large is their
reliability? No doubt, expanded detecting of the plants’
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range is more urgent. Therefore, we think that there is
much work to do in physiological studies at different
scales with the increasing atmospheric change.
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