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The cell wall is a dynamic structure that often determines the outcome of the interactions

between plants and pathogens. It is a barrier that pathogens need to breach to colonize

the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell

wall through the combined action of degrading enzymes, biotrophic fungi require a more

localized and controlled degradation of the cell wall in order to keep the host cells alive and

utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell

wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants

have developed a system for sensing pathogens and monitoring the cell wall integrity,

upon which they activate defense responses that lead to a dynamic cell wall remodeling

required to prevent the disease. Pathogens, on the other hand, may exploit the host cell

wall metabolism to support the infection. We review here the strategies utilized by both

plants and pathogens to prevail in the cell wall battleground.
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INTRODUCTION

Phytopathogenic fungi, bacteria, and nematodes infect, grow and

reproduce themselves on the plant tissues and, at least at the

early stages of infection, require breaking the integrity of the

host cell wall. Beyond the cuticle layer, the interaction with the

plant cell wall and the extent of the wall degradation are deter-

mined by the lifestyle of the pathogen. Plants perceive a diverse

set of microbial molecules referred to as microbial/pathogen asso-

ciated molecular patterns (MAMPs/PAMPs; Boller and He, 2009)

through high-affinity cell surface pattern recognition receptors

(PRRs) leading to intracellular signaling, transcriptional repro-

gramming, and biosynthesis of defense metabolites that limit

the microbial infection (Dangl et al., 2013). Emerging evidences

indicate that plant cells also exploit sophisticated mechanisms of

sensing the alteration of cell wall integrity (CWI) during biotic

stress (Hamann, 2012; Pogorelko et al., 2013a). For instance,

they perceive endogenous molecules produced in damaged tissues

(the so-called damage-associated molecular patterns, or DAMPs)

through membrane receptors (Ferrari et al., 2013). The loss of

CWI induced by pathogens activates a variety of defense responses

including a cell wall remodeling required to prevent the disease.

To escape recognition, pathogens produce effector proteins that

counteract the plant defenses (Giraldo and Valent, 2013) and,

sometimes, exploit the host cell wall metabolism to favor the

infection process (Cantu et al., 2008b).

CELL WALL DYNAMICS DURING INFECTION BY MICROBIAL

PATHOGENS

Infection by fungal necrotrophs is a complex process that includes

conidial attachment, germination, host penetration, lesion forma-

tion and expansion, and tissue maceration followed by sporulation

(Prins et al., 2000). Penetration may be achieved by degrading the

external cuticle through the action of cutinases and lipases (Laluk

and Mengiste, 2010). The role of the cuticle in plant defense is

discussed elsewhere (Chassot and Metraux, 2005; Chassot et al.,

2007). Once penetrated the cuticle, necrotrophs have a spatial and

temporal strategy of attacking the plant cell wall by producing sev-

eral cell wall degrading enzymes (CWDEs) belonging to multiple

families (Figure 1A). The diversity of these enzymes mirrors the

structural complexity and the dynamics of the cell wall as well

as the lifestyle and host adaptation of the pathogen (King et al.,

2011). The extensive degradation of cell wall polysaccharides by

necrotrophs is sensed by plants. The leucine-rich repeat receptor-

like kinase (LRR-RLK) ERECTA (ER) and the heterotrimeric

G-protein are involved in cell wall remodeling during Arabidopsis

defense response against Plectosphaerella cucumerina and probably

control CWI (Llorente et al., 2005; Sanchez-Rodriguez et al., 2009).

The impairment of cellulose synthases involved in secondary cell

wall deposition is also a mechanism of sensing CWI and enhances

disease resistance of Arabidopsis to P. cucumerina and Ralstonia

solanacearum (Hernandez-Blanco et al., 2007).

One of the strategies used by plants to limit the degrada-

tion of the cell wall polysaccharides by microbial CWDEs is the

production of proteinaceous inhibitors (Figures 1A,B). Polygalac-

turonases (PGs) are pathogenicity factors produced at the earlier

stages of a microbial infection that depolymerize the homogalac-

turonan (HG), i.e., the main component of pectin in dicots

but also present in monocots (Caprari et al., 1993; D’Ovidio

et al., 2004). Against microbial and insect PGs, plants produce

cell wall-associated polygalacturonase-inhibiting proteins (PGIPs;

Spadoni et al., 2006). The over expression of PGIPs improves the

resistance to fungal and bacterial necrotrophs in different plants

(Aguero et al., 2005; Ferrari et al., 2012). The PG-PGIP interaction

results in the accumulation of elicitor-active oligogalacturonides
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FIGURE 1 | Cell wall dynamics during necrotrophs invasion.

(A) Necrotrophic fungi secrete a large arsenal of cell wall degrading

enzymes (CWDEs) like PGs, hemicellulases and cellulases, assisted by

PMEs and AEs in the apoplastic space to degrade cell wall polymers and

facilitate the availability of nutrients. PGs and EIXs have been proposed to

function as PAMPs recognized by the membrane receptors RBPG1 and

Eix1 or 2, respectively. (B) As first line of defense, plants produce a

variety of CWDE inhibitors to hinder degradation by microbial CWDEs. For

instance, the inhibition of PG degrading activity by PGIPs induces the

accumulation of elicitor-active pectin fragments (OGs) perceived by WAK1

receptors. It cannot be excluded the presence of other not yet identified

receptors sensing damage of other cell wall components. The perception

of cell wall damage triggers specific signaling pathways activating defense

responces aimed to reinforce cell wall structure. The more evident defense

strategies are callose and lignin deposition, induction of

peroxidases/ROS-mediated crosslinks between cell wall structural proteins

and polysaccharides. (C) Necrotrophs force plants to cooperate in disease

exploiting plant cellulases, expansins, PGs and PMEs as susceptibility

factors. PM, plasma membrane; CW, cell wall; Cyt, cytoplasm; OGs,

oligogalacturonides; WAK1, wall associated kinase 1; AEs, acetyl

esterases; PGs, polygalacturonases; EIXs, ethylen induced xylanases; PME,

pectin methylesterases; PMEI, pectin methylesterase inhibitor; FA, ferulic

acid; Eix1-2, receptors of ethylene induced xylanases; RBPG1,

Responsiveness to Botrytis PolyGalacturonase 1; Ca2+, calcium ions; XI,

xylanase inhibitor; PRR, pattern recognition receptor; POX, peroxidase;

ROS, reactive oxygen species.

(OGs) that are perceived in Arabidopsis by the receptor Wall

Associated Kinase 1 (WAK1; Brutus et al., 2010) to activate the

plant immune responses (Ferrari et al., 2013). Accumulation and

sensing of OGs in response to pathogens is critical for moni-

toring the pectin integrity and, in general, a tissue injury (De

Lorenzo et al., 2011). Alteration of pectin integrity caused by the

expression of PGII from Aspergillus niger in tobacco and Arabidop-

sis causes a constitutive activation of defense genes and resistance

against Botrytis cinerea (Ferrari et al., 2008). Recently, B. cinerea

and A. niger PGs have been proposed to function themselves

as PAMPs recognized by the Arabidopsis Receptor-Like Respon-

siveness to Botrytis PolyGalacturonase 1 (RBPG1) belonging to

Frontiers in Plant Science | Plant-Microbe Interaction May 2014 | Volume 5 | Article 228 | 2

http://www.frontiersin.org/Plant-Microbe_Interaction/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Bellincampi et al. Cell wall dynamics during pathogenesis

a super clade of LRR receptor-like proteins (RLPs; Zhang et al.,

2014).

Xylan is the major hemicellulose polymer in cereals. To coun-

teract xylan degradation by microbial endoxylanases, gramina-

ceous monocots produce the Triticum aestivum xylanase inhibitor

(TAXI), the xylanase inhibitor protein (XIP) and the thaumatin-

like xylanase inhibitor (TL-XI; Bellincampi et al., 2004; Juge,2006).

The constitutive expression of TAXI-III in wheat reduces sus-

ceptibility to Fusarium graminearum (Moscetti et al., 2013). On

the other hand, fungal xylanases function as PAMPs by elicit-

ing defense responses and promoting necrosis (Noda et al., 2010;

Sella et al., 2013). Ethylene inducing xylanases (EIXs) produced

by Trichoderma species are perceived in tomato, by two specific

LRR-RLPs receptors, LeEix1 and LeEix2 (Ron and Avni, 2004).

Both receptors bind Eixs, while only LeEix2 mediates defense

responses. LeEix1 heterodimerizes with LeEix2 upon application

of the Eixs and attenuates Eix-induced internalization and sig-

naling of the LeEix2 receptor (Bar et al., 2010). Xyloglucan, i.e.,

the main hemicellulosic polysaccharide in the primary walls of

dicots and non-graminaceous monocots, is degraded by micro-

bial xyloglucan-specific endoglucanases (XEGs). Fungal XEGs

are inhibited by xyloglucan endoglucanase inhibiting proteins

(XEGIPs), which so far have been characterized in tomato, carrot

and tobacco (Juge, 2006).

Reinforcement of the cell wall is initiated at the pathogen

penetration sites in response to cell wall damage (Figure 1B).

Deposition of callose by the callose synthase PMR4 occurs upon

infection of Arabidopsis with P. cucumerina and Alternaria bras-

sicicola (Ton and Mauch-Mani, 2004; Flors et al., 2008). Callose

deposition is triggered by PAMPs and DAMPs, is affected by envi-

ronmental conditions and requires the apoplastic accumulation

of the hydrolysis products of glucosinolates or benzoxazinoid

metabolites (Galletti et al., 2008; Ahmad et al., 2011; Luna et al.,

2011).

Deposition of lignin has been associated to resistance of

cotton to Verticillium dahliae and of Camelina sativa to Scle-

rotinia sclerotiorum (Xu et al., 2011; Eynck et al., 2012). Lignin

makes the cell wall more resistant to CWDEs and also pre-

vents the diffusion of pathogen-produced toxins (Sattler and

Funnell-Harris, 2013). The cell wall may also be reinforced

by cross-links and insolubilization of structural proteins like

the hydroxyproline-rich glycoproteins (HRGPs) by peroxidase-

mediated isodityrosine linkages formed in response to pathogen

attach (Deepak et al., 2010). Plant peroxidases catalyze cross-

links between phenolic compounds in the secondary walls and

between polysaccharides and ferulic acid (FA) upon attack by

necrotrophs (Passardi et al., 2004). Crosslinks between FA and

polysaccharides enhance the recalcitrance of the cell wall to

digestion by microbial CWDEs and the overall resistance to

fungi (Bily et al., 2003). On the other hand, fungal FA esterases

may shear FA from the cell wall polysaccharides (Udatha et al.,

2012).

The activities of pectin methyl esterases (PMEs) from both

plants and pathogens and the degree and pattern of pectin methyl

esterification are critical for the outcome of plant–pathogen infec-

tions (Lionetti et al., 2012). The cell walls containing highly

methylesterified pectin are somewhat protected against the action

of microbial PGs and pectate lyases (PLs; Arancibia and Motsen-

bocker, 2006). PMEs, which remove methyl esters from pectin,

are controlled by PME inhibitor proteins (PMEIs) either dur-

ing growth and development (Raiola et al., 2004; Rocchi et al.,

2011; Reca et al., 2012) and during plant–pathogen interactions

(Lionetti et al., 2012). The biochemical and structural bases of the

enzyme/inhibitor interaction have been elucidated (Mattei et al.,

2002; Di Matteo et al., 2005). Arabidopsis over expressing PMEIs

have a lower level of PME activity, a higher degree of pectin ester-

ification and a concomitant reduced susceptibility to B. cinerea

and Pectobacterium carotovorum (Lionetti et al., 2007; Raiola et al.,

2011). The ectopic expression in wheat of a PME inhibitor from

kiwi reduces the susceptibility to F. graminearum and Bipolaris

sorokiniana (Volpi et al., 2011). The transcription factor MYB46

which affect the secondary cell wall biosynthesis (Zhong et al.,

2007), regulates the expression of genes encoding several cell wall

proteins including PMEI and mediates disease susceptibility of

Arabidopsis to B. cinerea (Ramirez et al., 2011). Recently, jasmonic

acid has been proposed to modulate the degree of methylesteri-

fication in potato to protect pectin degradation by PLs produced

by Dickeya dadantii (Taurino et al., 2014). Acetylation of the cell

wall polysaccharides is also a determinant of plant–pathogen inter-

action. An Arabidopsis mutant with reduced acetylation displays

increased tolerance to B. cinerea (Manabe et al., 2011). Arabidop-

sis and Brachypodium distachyon plants expressing xylan or pectin

acetylesterases from A. nidulans activate specific defense responses

and are more resistant to B. cinerea and B. sorokiniana (Pogorelko

et al., 2013b).

Biotrophic and hemi-biotrophic fungi acquire nutrients from

the host cells without causing their death. They often attack

the plant surface and penetrate the external barriers by develop-

ing appressoria and exploiting the mechanical pressure (Wilson

and Talbot, 2009). In order to breach the host cuticle they also

secrete oxidases, esterases, cutinases, and lipases (Feng et al., 2011).

Small amounts of CWDEs associated with local softening and

loosening of plant cell walls are produced by biotrophic microor-

ganisms (Zhao et al., 2013) (Figure 2A). Plants contrast invasion

of biotrophs by the apposition of “papillae,” cell wall thickening

early produced at the site of pathogen penetration (Figure 2B).

Papillae contain callose, as most abundant constituent, cellulose,

hemicelluloses, pectins, lignin, and structural proteins such as ara-

binogalactan proteins and HRGPs (Aist, 1976; Celio et al., 2004;

Voigt, 2014). Transgenic Arabidopsis plants overexpressing the cal-

lose synthase PMR4 show an early and elevated deposition of

callose at the sites of penetration which prevents the haustoria for-

mation and further penetration by Golovinomyces cichoracearum

and Blumeria graminis (Ellinger et al., 2013). Papillae are also the

sites where antimicrobial peptides, toxic secondary metabolites

and reactive oxygen species (ROS) accumulate and contribute to

plant resistance (Bednarek et al., 2009; Daudi et al., 2012). Ligni-

fication and cross-links of proteins in the papillar cell wall may

entrap the penetration peg of biotrophic fungi and render the cell

wall more resistant to the mechanical pressure exerted by fungal

appressoria (Bechinger et al., 1999; O’Brien et al., 2012). Lignin

downregulation may also activate defense responses and increases

the resistance to the hemibiotroph Colletotrichum trifolii in alfalfa

(Medicago sativa L.) (Gallego-Giraldo et al., 2011).
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FIGURE 2 | Cell wall dynamics in plant-biotrophic fungi interaction.

(A) Biotrophic fungi use appressorial mechanical pressure and secrete cell

wall degrading enzymes to penetrate plant cell wall. (B) Plants perceive

fungal biotrophs penetration with not yet identified receptors and respond

with “papillae” apposition between cell wall and plasma membrane. Papillae,

in addition to new cell wall material are also sites of accumulation of ROS

possibly involved in cell wall reinforcement. (C) At a later stage of infection,

fungus forms the haustorium feeding organ invaginated into the host

membranes and plant cell wall. Biotrophs locally affect cell wall metabolism

by induction of susceptibility factors (callose synthase PMR4,

O-acetyltransferase PMR5 and pectate lyase PMR6) to modify the

extrahaustorial matrix to improve the accessibility of nutrients or to ensure

the mechanical stability of the haustorium. PM, plasma membrane; CW, cell

wall; Cyt, cytoplasm; PG, polygalacturonase; PME, pectin methylesterase;

PRR, pattern recognition receptor; POX, peroxidase; ROS, reactive oxygen

species.

A reduced cellulose content by mutation of cellulose synthase

CESA3, involved in primary cell wall formation, leads to produc-

tion of lignin, and makes Arabidopsis more resistant to different

powdery mildew pathogens (Ellis and Turner, 2001; Ellis et al.,

2002; Cano-Delgado et al., 2003). RLKs belonging to the Catha-

ranthus roseus (CrRLK)-like protein family are implicated in CWI

mechanisms. Among these, THESEUS1 (THE1) is required for

lignification in response to inhibition of cellulose biosynthesis

(Hematy et al., 2007).

Alteration of pectin integrity can trigger plant immunity

also against hemibiotrophs (Ferrari et al., 2008; Bethke et al.,

2013). Arabidopsis PMEs, triggered by a Jasmonic acid depen-

dent pathway, contribute to plant immunity against Pseudomonas

syringae(Bethke et al., 2013).

MICROBIAL PATHOGENS EXPLOIT THE HOST CELL WALL

METABOLISM TO FACILITATE PATHOGENESIS

Necrotrophs can force plants to cooperate in disease by altering

the host cell wall and favoring the cell wall accessibility to CWDEs

(Hok et al., 2010; Figure 1C). The Arabidopsis AtPME3 is induced

upon infection with B. cinerea and P. carotovorum and functions as

susceptibility factor required for the initial colonization of the host

tissue (Raiola et al., 2011). A PG (LePG) and expansin (LeExp1)

cooperatively contribute to cell wall loosening during tomato

ripening; their expression is induced by necrotrophic pathogens

to successfully infect fruits (Cantu et al., 2009). Transgenic tomato

fruits with suppressed expression of LePG and LeExp1 exhibit a

reduced susceptibility to B. cinerea (Cantu et al., 2008a). Silenc-

ing of two putative endo β-1,4-endoglucanases, involved in the
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hydrolysis of cellulose or hemicellulose during ripening, cause a

reduced susceptibility of tomato fruits to B. cinerea (Flors et al.,

2007).

Biotrophic fungi, at a later stage of infection, produce a

limited and localized degradation of the cell wall in the epi-

dermal or mesophyll cells (Herbert et al., 2004). On the other

hand, they form intracellular structures, like the “haustoria,” i.e.,

feeding organs invaginated into the host membranes to acquire

nutrients. Biotrophs need to avoid the host defense responses

and carefully regulate the cell-wall degradation at the border

of their feeding structures to allow fungal accommodation and

haustorium function (Figure 2C). A screening for Arabidopsis

powdery mildew-resistant mutants allowed isolating two pectin-

related genes, PMR5 and PMR6 which are pathogen-induced

and required for susceptibility to G. cichoracearum and G. orontii

(Vogel et al., 2002, 2004). PMR5 encodes a protein with unknown

function that shares sequence similarity with genes encoding

polysaccharide O-acetyltransferase (Gille and Pauly, 2012). There-

fore, acetylation may be a host susceptibility mechanism that is

reprogrammed by biotrophs during infection. PMR6 encodes a

putative PL that is, possibly, recruited by the fungi as a sus-

ceptible factor to reduce Ca++-pectate domains at the level

of haustoria-plasma membrane and facilitate cell wall porosity

and accessibility of host nutrients (Vogel et al., 2002). Callose

deposition may also work in favor of the pathogen by con-

tributing to the stability and function of the haustoria and

acting as a barrier that renders haustoria less susceptible to

toxic metabolites that are produced by the host and accumu-

late in the site of infection (Jacobs et al., 2003). On the other

hand, callose may limit the diffusion of pathogen-derived elicitors,

thus reducing the activation of defense responses (Underwood,

2012).

Many bacterial pathogens utilize a type III secretion system to

inject effector proteins directly into the host cytoplasm and manip-

ulate the host cellular activities to their own advantage (Buttner

and He, 2009). The effector AvrPto of P. syringae suppresses a set

of Arabidopsis genes that encode cell wall-related defense proteins

such as HRGPs (Hauck et al., 2003).

CELL WALL DYNAMICS IN PLANT INTERACTIONS WITH

NEMATODES AND VIRUSES

Changes in the cell wall metabolism occur during plant infection

by nematodes (Barcala et al., 2010; Bohlmann and Sobczak, 2014).

Like biotrophic pathogens, root-knot and cyst nematodes need

to establish feeding structures inside the plant tissue to allow the

uptake of nutrients (Davis et al., 2004; Williamson and Kumar,

2006). This process is assisted by the secretion of CWDEs such

as pectinases and cellulases produced by the nematodes, (Van-

holme et al., 2004; Davis et al., 2008) and by the local expression

of host proteins like expansins and cellulases (Wieczorek et al.,

2006, 2008). The sugar beet cyst nematode Heterodera schactii

infects Arabidopsis roots and exploits the host-encoded AtPME3.

Transgenic plants overexpressing AtPME3 exhibit an increased

susceptibility to the nematode. It has been proposed that AtPME3

locally reduces the pectin esterification and improves the cell

wall loosening of pre-syncytial cells during the early stages of

syncytium formation (Hewezi et al., 2008).

Callose deposition at the level of plasmodesmata (PD) limits the

cell-to-cell spreading of plant viruses. Due to the small diameter

of the PD pore, some viruses utilize the viral movement proteins

(MPs) to modify the PD size exclusion limit. Specific interactions

of viral MPs with PME are often required (Chen et al., 2000). In

addition to MP-PME interaction, the PME-dependent formation

of methanol has also been reported to be important for viral cell-

to-cell movement (Dorokhov et al., 2012; Komarova et al., 2014).

The overexpression of PME inhibitor proteins in tobacco and

Arabidopsis contrasts the cell-to-cell and systemic movement of

tobamoviruses (Lionetti et al., 2013).

CONCLUSION

The cell wall is the battleground where plants and pathogens

attempt to prevail by implementing contrasting wall-reinforcing

and wall-weakening strategies. When pathogens start degrading

the plant cell wall components, plants are capable of perceiving

the loss of wall integrity and subsequently activate the defense

signaling pathways. Pathogens try to escape the plant defenses

and sometimes take advantage of the host cell wall metabolism

to facilitate their entry into the tissue. These dynamic processes

vary according to the lifestyle of the pathogen and the type of

plant pathogen interaction. While necrotrophy involves a strong

and diffused molecular warfare that may provoke extended lesions

of the tissue, during biotrophy the battle involves a weaker

cell wall degradation mainly localized at the point of penetra-

tion and at the level of the feeding apparatus. Perception of

cell wall damage as well as the pathogen- and host-induced cell

wall remodeling occurs in both cases. The damage of specific

cell wall polysaccharides during infection may be perceived by

receptors as THE1, ER and WAK1. Plants may also rely on the

recognition of CWDEs by LRR-RLPs receptors, as RBPG1 and

LeEIX1-2. Cell wall fragments may be released during infec-

tion and sensed as damage signals. Analysis of cell wall mutants

has shed light on the relationship between cell wall remodeling

and plant response to pathogens. The expression of endogenous

and microbial CWDEs and their inhibitors is also a valuable

approach for studying the dynamics of the cell wall during plant–

pathogen interactions as well as a strategy to improve plant

protection.
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