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Plant Chitinases and Their Roles in Resistance to 
Fungal Diseases 1 

ZAMIR K. PUNJA AND YE-YAN ZHANG 2 

Abstract: Chitinases are enzymes that hydrolyze the N-acetylglucosamine polymer chitin, and they 
occur in diverse plant tissues over a broad range of crop and noncrop species. The enzymes may be 
expressed constitutively at low levels but are dramatically enhanced by numerous abiotic agents 
(ethylene, salicylic acid, salt solutions, ozone, UV light) and by biotic factors (fungi, bacteria, viruses, 
viroids, fungal cell wall components, and oligosaccharides). Different classes of plant chitinases are 

distinguishable by molecular, biochemical, and physicochemical criteria. Thus, plant chitinases may 
differ in substrate-binding characteristics, localization within the cell, and specific activities. Because 

chitin is a structural component of the cell wall of many phytopathogenic fungi, extensive research 
has been conducted to determine whether plant chitinases have a role in defense against fungal 
diseases. Plant chitinases have different degrees of  andfungal activity to several fungi in vitro. In 
vivo, although rapid accumulation and high levels of chitinases (together with numerous other 
pathogenesis-related proteins) occur in resistant tissues expressing a hypersensitive reaction, high 

levels also can occur in susceptible tissues. Expression of cloned chitinase genes in transgenic plants 
has provided further evidence for their role in plant defense. The  level of protection observed in 
these plants is variable and may be influenced by the specific activity of the enzyme, its localization 

and concentration within the cell, the characteristics of the fungal pathogen, and the nature of the 
host-pathogen interaction. The expression of chitinase in combination with one or several different 

antifungal proteins should have a greater effect on reducing disease development, given the com- 
plexities of fungal-plant cell interactions and resistance responses in plants. The effects of  plant 

chitinases on nematode development in vitro and in vivo are worthy of investigation. 

Key words: antifungal protein, biotechnology, chitinase, disease resistance, enzyme, fungus, genetic 

engineering, hydrolase, nematode. 

Chi t in ,  a [3-1,4-1inked p o l y m e r  o f  

N-acetylglucosamine, is a structural com- 

ponent in a diverse array of  organisms, in- 

cluding fungi, insects, various crustaceans, 

and nematode eggs (32,47,53,149,157). In 

nature, chitin forms a complex with vari- 

ous other substances, such as polysaccha- 

rides and proteins (149). Chitin can also be 

found in agricultural and noncuhivated 

soils. It has not, however, been reported as 

a constituent of  higher plant cell walls. The 

enzyme chitinase (poly [1,4-(N-acetyl-[3-D- 

g l u c o s a m i n i d e ]  g l y c a n h y d r o l a s e ,  EG 

3.2.1.14) hydrolyzes the chitin polymer to 

release N-acetyl glucosamine oligomers, 

following either endo or exo cleavages of 

the 13-1,4 bond. Other  enzymes such as chi- 

tosanases act on the related substrate chi- 

Received for publication 20 May 1993. 
1 Symposium paper presented at the 31st Annual Meeting 

of the Society of Nematologists, 2-6 August 1992, Vancou- 
ver, British Col_umbia, Canada. This research was supported 
by the Natural Sciences and Engineering Research Council of 
Canada. 

Associate Professor and Research Associate, Department 
of Biological Sciences, Centre for Pest Management, Simon 
Fraser University, Burnaby, British Columbia, V5A 1S6, 
Canada. 

526 

tosan (a polymer of 13-1,4-D-glucosamine) 

(55,137). 
Various techniques for  assaying for  

chitinases have been described (15,47,138, 

197). Higher plants produce endochiti- 

nases, either constitutively or following in- 

duction, and the possible functions of  

these enzymes within the plant have gen- 

era ted much interest  and speculation. 

Chitinases are also secreted by a number  of  

different microorganisms, including acti- 

nomycetes, soil bacteria, and various fungi 

(30,67,101,136), and in many cases appear 

to be involved in the biological control of  

fungal  pathogens (30,67,101,136,166). 

One of the roles attributed to chitinases in 

h igher  plants is a defense  mechanism 
against attack by pathogens,  especially 

fungi, because the expression of  chitinases 

is significantly enhanced following infec- 

tion. Furthermore,  chitinases have anti- 

fungal activity and cause hyphal tips to lyse 

in vitro (113,165,166). Some chitinases also 

have lysozymal activity and can hydrolyze 

the peptidoglycans in bacterial cell walls 

(10,35,74,106,110,150,183), whereas oth- 

ers have exohydrolytic activity (110,112, 
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154). The expression of chitinases could 
therefore be speculated to have a defen- 
sive role during both the early and the late 

stages of the infection process, depending 
on the levels of constitutive enzyme and 

the rapidity of induction. 
Much of the evidence for the suggested 

roles of  chitinases in plant defense has 

been based on dramatic and rapid en- 
hancement of enzyme levels in hypersen- 

sitive reactions, during induced host resis- 

tance (i.e., in association with several other 
pathogenesis-related [PR] proteins), and in 

tissues following infection by a pathogen. 
These observations, however, are not con- 

clusive for the roles of these enzymes in 
resistance, because a cause-and-effect rela- 
tionship cannot be discerned. The avail- 

ability of techniques in molecular biology 
now permits the isolation of specific genes 

and their reintroduction into plants, pro- 

viding a powerful tool to elucidate the 

roles of specific enzymes in plants. The ob- 
jectives of this paper are to review the oc- 

currence of chitinases in plants and factors 
enhancing chitinase expression, to summa- 
rize the evidence for the possible roles of 

chitinases in plants, and to review the ap- 
plication of genetic engineering to study 
the role of chitinases in plant defense 

against pathogens. This area of research 
has gained much attention, which is appar- 

ent from the vast recent published litera- 

ture (for reviews, see also 34,47); therefore, 
only relevant articles published during 

1987-93 are reviewed here. 

OCCURRENCE AND INDUCTION OF 

PLANT CHITINASES 

Chitinases have been repor ted from 

over 41 monocotyledonous and dicotyle- 
donous plant species and occur in widely 
d i f f e r en t  t issues, i nc lud ing  embryos  
(23,106), seeds (66,72,83,94,95,106,130, 
179,200), cotyledons (33,106,202), leaves 

and stems (16,69,71,82,114,115,147,183, 

186), roots (106,120,129,162,180), flowers 
(98,102,129,183), leaf abscission zones 
(52), tissue-cultured calli (167,196), cell 
suspens ion  cu l tu res  (10,44,50,61,62,  

80,83,85-88,111,135,162,191,192,196), 
and protoplasts (56,152). Among culti- 
vated crop species, chitinases occur in ad- 

zuki bean (69,70), barley (71,72,82,83,94, 
9 5 , 1 7 8 ) ,  b e a n  ( 4 , 2 5 , 3 7 , 6 1 , 7 3 ,  

105,108,109,114,115,179,193), cabbage 
(29), cacao (170), carrot (39,85-88,201), 

celery (84), chickpea (191,192), corn (63, 
66,128,130,188), cucumber  (16,68,106, 

122,123,201,202), garlic (186), leek (171), 

melon  (153-155),  oat (45,46), on ion  

(40,196), pea (40,79,112,113,185), peanut 
(5,62), potato (51,81,89,142,164), pump- 
kin (44), rapeseed (58,71,144,145), rice 

(65,111,135,169,204), rye (200), soybean 

(174), sugarbeet (48,124,156), sunflower 
(77), tobacco (12,22,23,28,43,50,56,64,78, 
93,96,116,120,139,141,163,167,168,183, 
184,190,194,199), tomato (20,76), turnip 

(35), wheat (23,147), and yam (1,2). In ad- 

dition, there are reports of chitinases in 

noncrop  species, including Arabidopsis 
(159,187), bentgrass (80), chestnut (33), 

Job's Tears  (3), pe tunia  (98), pop la r  

(38,140), rubber (74,110), spruce (162), 
stinging nettle (97), tall fescue (148), thor- 
napple (23), and Virginia creeper (10). 

Many plant chitinases are expressed 
constitutively, generally at a low level. 
Some evidence exists for the developmen- 

tal regulation of chitinase expression in 
specific tissues and at specific stages dur- 

ing  p l an t  d e v e l o p m e n t  (95 ,98 ,102 ,  

106,112,120,129,142,159,160,167,183,199, 

203). The biological significance of these 
chitinases have yet to be elucidated, and 

they may have as yet undetermined func- 
tions in plant development. In carrot, for 
example, chitinase was shown to enhance 

somatic embryo development (39). 

In general, chitinases are induced by nu- 
merous unrelated factors: infection by vi- 
ruses  (4 ,12 ,16 ,19 ,64 ,93 ,96 ,122 ,123 ,  
128,139,141,183,190,194), viroids (20), 
p a t h o g e n i c  fung i  (5 ,28,37,46,61,76,  

81,82,105,112,116,123,124,139,144,145, 

153,154,156,164,169,180,194,185), myc- 
orrhizal fungi (40,162,171), endophytic 

fungi (148), and bacteria (22,35,73,116, 
123,193); application of ethylene (13,14, 
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19,20,25,28,52,69,70,78,112,114,115,120, 

135,146,152,186), chitosan (79,84,111, 

202), salicylic acid (69,111,142,194,186, 

196), acetylsalicylic acid (77), salt solutions 

(68,146), heavy metals (4,71,128), fungal 

cell wall components and oligosaccharides 

(22,61,62,79,86-88,152,155,203), and pec- 

tic polysaccharides (22); exposure to UV 

light (19,62) and ozone (43,163); insect 

(27) or nematode (18,148) feeding; and 

mechanical wounding (61,69,140,186,202, 

203). There  are reports of  a reduction in 

chitinase expression by various plant hor- 

mones (167), heat shock (21,186), and my- 

corrhizal development in roots (92). Chiti- 

nase induction in plants is therefore gen- 

erally nonspecific and enhanced by both 

biotic and abiotic stresses, and is only one 

component of  the plant response to vari- 

ous pathogens and stresses (12,17,99). 

Following induction, chitinases may ac- 

cumulate locally at the sites of challenge or 

systemically in other  tissues (16,68,123, 

139,140,155,184,194). In addition, chiti- 

nases may be extracellular or vacuolar (16, 

100,118). In some plants, several closely 

related isoforms of chitinase can be in- 

duced (62,82,112,186). Thus, chitinases 

are encoded by members of a small gene 

f a m i l y  ( 2 8 , 3 8 , 6 1 , 6 2 , 6 4 , 8 1 , 9 3 , 9 5 ,  

96,128,135,140,144,186,204). 

CHARACTERISTICS OF PLANT CHITINASES 

Many chitinases, like many other patho- 

genesis-related (PR) proteins (17,99,117) 

are acid extractable, have low molecular 

weights, are resistant to proteases, and are 

secreted extracellularly (12,99). Plant chiti- 

nases generally range in molecular weight 

from 25 to 36 kD and may be either acidic 

or basic. Based on amino acid sequences, 

chitinases can be grouped into at least four 

classes, may of  which can occur in the same 

plant species. Class I includes the majority 

of chitinases described to date, e.g., in Ar- 
abidopsis (159), bean (25,109,151), barley 

(178), chickpea (192), pea (185), poplar 

(38,140), potato (51,89), rice (65,135,204), 

sugarbeet  (124), and tobacco (100,168, 

175). Class I chitinases have an N-terminal 

cysteine-rich lectin or "hevein" (chitin- 

binding) domain and a highly conserved 

catalytic domain  (70-88% homology) .  

Class I chitinases are generally basic and 

vacuolar. A C-terminal extension of seven 

amino acids is involved in targeting of  the 

protein to the vacuole (6,118,126,133), 

and a model for intracellular transport has 

been recently described (175,176). 

Class II chitinases, e.g., in tobacco (141), 

petunia (100), and barley (95), are similar 

in sequence to Class I (60-64% homology) 

but lack the cysteine-rich domain. Class II 

chitinases are generally acidic and targeted 

to the apoplast. Class III chitinases have a 

different amino acid sequence in the cata- 

lytic domain from Classes I and II and lack 

a cysteine-rich domain. Class III chitinases 

include the acidic extracellular chitinases 

f r o m  Arabidopsis (159), adzuki  bean  

(69,70), chickpea (192), cucumber (122), 

sugarbeet (48,134), and tobacco (93), and 

the basic chitinases of  Parthenocissus (10), 

rubber (74,110), and tobacco (93). 

Other described chitinases do not be- 

long to the above three classes and may 

represent new classes. Acidic extracellular 

chitinases with a cysteine-rich domain oc- 

cur in bean (109), poplar (38), and yam 

(1,2) and may be a subclass of Class I. A 

basic chitinase from rapeseed (140) and 

sugarbeet (124) was found to have little ho- 

mology with any of  the other classes and 

could constitute class IV (124,144,145). 

Because of  the homology in amino acid se- 

quences within the above classes, many 

(but not all) of  the chitinases show serolog- 

ical relatedness, and several have strikingly 

similar biochemical and physicochemical 

characteristics (20,23,96). The  chitinases 

from monocots appear to have diverged 

f rom those in d i co ty l edonous  plants  

(63,66). For several plant chitinases, com- 

p lementa ry  DNA clones and genomic 

clones have been isolated, and the amino 

acid sequences have been deduced, as in 

Arabidopsis (159), adzuki bean (69), barley 

(95), bean (61,108,109), corn (66), cucum- 
ber (122), garlic (186), peanut (62), potato 

(51), rapeseed (58,144), rice (65,135,204), 

sugarbeet (124), and tobacco (28,50,64,93, 
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100,141,167,168). The  promoter  regions 

of  the chitinase genes in bean and Arabi- 
dopsis have been characterized (25,160). 

Chitinases show inhibitory activity to 

fungal  spore germinat ion and mycelial 

growth in disc plate diffusion or microtiter 

plate assays with partially purified or puri- 

fied proteins. This finding has led to the 

long standing hypothesis that they must 

have a defense role against pathogen inva- 

sion in plants. The most frequently used 

test organisms have been species of Tricho- 
derma (23,33,66,95,113,150,179,184) ,  

Fusarium (66,95,113,165,179), and Alterna- 
r/a (66). However, because the proportions 

of polysaccharides such as chitins and glu- 

cans, and other components such as lipids 

and proteins, can vary considerably in fun- 

gal cell walls (157), their susceptibility to 

lysis by chitinase alone would be expected 

to differ, as has been observed for several 

fungi (23,66). In Oomycete fungi, chitin is 

almost absent and is replaced by cellulose 

(157), making plant  pathogens in this 

group a less likely target for chitinases. 

The  different  isoforms of  plant chiti- 

nases may also differ in substrate-binding 

characteristics and specific activities (66, 

70,96,106,192), important factors that can 

be overlooked when measuring total tissue 

chitinase activity in antifungal activity tests. 

Different chitinases from a given host spe- 

cies can also differ in specific and antifun- 

gal activity (66,96,106,165,192). For exam- 

ple, acidic (class II or III) chitinase from 

tobacco or chickpea (119,165,192) dis- 

played less antifungal activity when tested 

in vitro than basic (class I) chitinase (119, 

165,192). Therefore,  all chitinases do not 

have equal antifungal activity, a fact that 

could impact the outcome of genetic engi- 

neering with chitinase-encoding genes. 

ROLES OF CHITINASES IN 

DISEASE RESISTANCE 

Because chitinases are induced by agents 

that simultaneously enhance other defense 

reactions and pathogenesis-related pro- 

teins in the same plant tissues (12,17,99), 

elucidation of  the specific roles of these en- 

zymes in resistance is difficult. Important  

considerations are the rapidity of chitinase 

induction, the concentrations in tissues, 

and localization in cells relative to growth 

of  the incoming pathogen.  Numerous  

studies have compared chitinase induction 

in tissues that are resistant (incompatible) 

or susceptible (compatible) to a fungal 

pathogen with regard to rate of induction 

and final concentrations in tissues. The re- 

sults from these studies are not clear. In 

some plant species, resistant tissues accu- 

mulated chitinases more rapidly and in 

some instances to higher final concentra- 

tions than susceptible tissues (9,37,61,68, 

76,144,145,185,191,199). Because in many 

of these cases, the resistant response ini- 

tially was a hypersensitive reaction, with 

very rapid localized cell death (12,57,61, 

164,190,193), the injury and stress re- 

sponse of the cells could have rapidly in- 

duced chitinase production in adjoining 

cells or tissues. 

In other plant species, however, there 

was no difference between chitinase accu- 

mulation in susceptible and resistant tis- 

sues, or paradoxically the susceptible tis- 

sues accumulated higher levels of  the en- 

zymes (5,82,164,192). The latter response 

can be explained by greater fungal bio- 

mass accumulation in the diseased tissues 

than in healthy tissues, and greater stress 

on the diseased plant, two factors that can 

induce greater levels of  chitinases. Thus, 

in the latter host-pathogen interactions, 

chitinases may have either no role or a sec- 

ondary role in retarding pathogen devel- 

opment  following infection. Chitinases 

may also indirectly trigger defense reac- 

tions within the plant, because fungal cell 

wall fragments released by enzymatic di- 

gestion can act as elicitors of  the biosyn- 

thetic pathways that lead to the accumula- 

tion of phenolic compounds and lignins in 

the cell (13,49,87,147). 

The rapidity of  chitinase induction in 

plant tissues varies considerably depend- 
ing on the specific host-pathogen interac- 

tion. The use of cell suspension cultures 

has greatly facilitated experimental  ap- 
proaches to study the effects of  elicitors on 
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transcription and subsequent protein accu- 

mulation. These cultures permit synchro- 

nous induction and provide high quanti- 

ties of  mRNA. However, the results from 

suspension cultures should be extrapo- 

lated carefully to intact differentiated tis- 

sues. In bean, chitinase mRNA was detect- 

able within 5-20 minutes after elicitation, 

with a maximum at 2 hours (61); in other 

species, mRNA or protein levels were max- 

imal between 4 and 16 hours after elicita- 

tion (43,62,68,69,73,155,163). These find- 
ings point to transcriptional activation of 

gene expression, which in some plant spe- 

cies resulted in a differential pattern of 

gene expression depending on the type of 

stimulus. For example, specific mRNAs or 

isoforms of  the chitinases were induced 

only by certain pathogens or specific stim- 

uli (28,35,62,108,139,144). Although the 

signal transduction pathway is unknown, 
potential receptors for chitinase gene in- 

duction could be general and modulated 

by ethylene response (14,69) or salicylic 

acid (107,194) or be elicited by specific 

cues (90,91). 
In a majority of the plant species exam- 

ined, chitinase activity was enhanced after 

1 to 28 days following induction by abiotic 

and biotic factors (16,20,46,81,82,93,96, 

105,116,123,139,142,145,153,154,156, 

184,185,190). This time frame indicates 

that the gradual accumulation of chitinases 

in diseased tissues may be involved only in 

slowing down pathogen growth and per- 

haps reducing growth and sporulation at 

later stages of  disease development;  in 

these cases, chitinases are not specifically 

involved in the early events of  hos t -  

pathogen interactions. The delayed accu- 

mulation of chitinases in potato did not ac- 

count for the race-cultivar specificity of 

Phytophthora infestans following the hyper- 

sensitive reaction (164). 

The tissues in which chitinases accumu- 

late can also influence their potential role 

in the defense  response. Extracellular 

chitinases would intuitively be expected to 

have an initial role in limiting pathogen 

growth upon  entry of  hyphae into the 

host, with vacuolar chitinases having a sec- 

ondary or delayed effect following cell lysis 

(115). In bean and tobacco leaves treated 

with e thy lene ,  chi t inase accumula t ed  

within specific cell types (78,114). The  

pathogen behavior and host-pathogen in- 

teraction at the cellular level may also in- 

f luence the effectiveness of  chitinases. 

Fungal pathogens may be obligate bio- 

trophs or necrotrophs and can grow inter- 

cellularly or through cells. Obligate biotro- 

phs or intercellular pathogens may never 

encounter the vacuolar forms of chitinase, 

whereas necrotrophs or intracellular hy- 

phae would encounter both extracellular 

and intracellular forms of  chitinase. As al- 

ready discussed, various isoforms may dif- 

fer in localization and in antifungal ac- 

tivity. Direct injection of chitinase into 

epidermal cells was shown to inhibit devel- 

opment of  intracellular fungal haustoria 

(182). The accessibility of chitin in the fun- 

gal cell walls to chitinase action is another 

important consideration, given that chitin 

and [3-1,3-glucans are generally found in 

the innermost layers of  the cell wall and 

thus may be protected, except at the hy- 

phal tips (8,13,195). Removal of fungal cell 

wall proteins and soluble carbohydrates by 

heat treatment increased binding of chiti- 

nase to the wall (171). Further cytochemi- 

cal and immunocytochemical studies (6,7, 

9,30,114,115,171,198) are needed to eluci- 

da t e  the  c h i t i n a s e - f u n g a l  cell wall 

interactions at the cellular level in planta. 

GENETIC ENGINEERING OF PLANTS WITH 

CHITINASE GENES 

The currently available techniques in 

transformation of many plant species have 

permitted experiments to answer the fol- 

lowing intr iguing question: would the 

overexpression of a cloned chitinase gene, 

behind a constitutive or inducible pro- 
moter, lead to enhanced resistance or tol- 

erance against fungal  infection in the 

transgenic tissues? Another approach that 

could be utilized to elucidate the roles of  

constitutive chitinases in plants is through 

antisense or sense t ransformat ion ~ (60, 

132). There  are several recent examples 



of  the successful introduction of heterolo- 

gous chitinase genes into plants. The first 

such success was the introduction of an 

exochitinase gene from Serratia marcescens 
into tobacco (41,42,75,103,104,125,181). 

Subsequent ly ,  genes  or p r o m o t e r  se- 

quences of  plant origin encoding endoch- 

itinases have been introduced into various 

plant species. In transgenic tobacco, the 

promoter  regions of  a bean and rice chiti- 

nase gene were shown to be regulated by 

ethylene (25) and fungal elicitors (203), re- 

spectively. In transgenic Arabidopsis and to- 

mato, the promoter  region of  an Arabidop- 
s/s chitinase gene was regulated develop- 

m e n t a l l y  in va r i ous  t i ssues  a n d  by 

pathogen infection (160). In both trans- 

genic hosts, expression of a reporter gene 

under  control of  the chitinase gene pro- 

moter was enhanced around necrotic le- 

sions caused by fungal infection (160). 

Similar results were also obtained with a 

bean chitinase promoter  in transgenic to- 

bacco following infection by various patho- 

gens (151). These studies show that chiti- 

nase gene promoter  activity can be in- 

duced by pathogen attack, ethylene, and 

elicitors (25,151,160). 

Genes expressing chitinases under  con- 

trol o f  the cauliflower mosaic virus 35S 

promoter  have been introduced into sev- 

eral plant species. Results from inoculation 

studies of these transgenic plants with var- 

ious filamentous fungal pathogens have 

differed. In tobacco transformed with the 

exochitinase gene from Serratia (41) or the 

vacuolar chitinase from bean (26), the dis- 

ease severity and rate of development of  

Rhizoctonia solani (a necrotrophic patho- 

gen) were reduced (26,41). Different levels 

of  chitinase activity occurred in leaves, 

stems, and roots of transgenic plants (26, 

60,131). Rapeseed plants t r ans fo rmed  

with a bean chitinase gene also had re- 

duced disease development due to R. solani 
(26). In contrast, transgenic tobacco plants 

with enhanced constitutive levels of vacu- 

olar chitinase were not more tolerant to 
infection by Cercospora nicotianae than the 

untransformed plants (131). Perhaps the 

intracellular localization of  the chitinase in 
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these transgenic plants precluded early in- 

volvement in defense against this patho- 

gen, which initially grows intercellularly. 

Recent reports of  the reaction of trans- 

fo rmed  tobacco (134) and tomato (63) 

plants containing acidic chitinase genes 

from sugarbeet and corn, respectively, to 

inoculation with various fungi indicated 

that there was no increase in resistance to 

infection. The greater antifungal activity 

of basic chitinases compared to acidic chiti- 

nases discussed previously could in part 

explain this lack of resistance. Manipula- 

tion of  the carboxy-terminal region in- 

volved in vacuolar targeting can result in 

secretion of these basic chitinases into the 

extracellar space (118,165). These plants 

would be worthy of further  study to deter- 

mine if inhibition of pathogen growth was 

subsequently enhanced. The events that 

take place at the cellular level in these 

transgenic plants following inoculation 

should also be studied using ultrastruc- 

tural  and  i m m u n o c y t o c h e m i c a l  tech-  
niques. 

Considerable evidence exists for the co- 

ordinated regulation and expression of  

other pathogenesis-related proteins in tis- 

sues that also express chitinases (12,14,54, 

99,189,194). In particular, accumulation 

of [3-1,3-glucanases closely parallels accu- 

mulation of chitinases in diseased tissues 

or abiotically stressed tissues (9,13,14,112, 

189). Furthermore,  [3-1,3-glucanases and 

chitinases act synergistically to inhibit fun- 

gal growth in vitro (36,113,165). Other po- 

tential synergisms occur with lectins (24). 

Therefore,  the engineering of  chitinase- 

encoding genes into plants in conjunction 

with other genes encoding antifungal pro- 

teins should provide enhanced protection 

against fungal pathogens (31,36,59,91). 

Indeed, when a basic chitinase and a glu- 

canase were simultaneously in t roduced 

into tomato, the level of  protection was sig- 

nificantly higher than in plants expressing 

ei ther  one alone (119). This approach  

could lead to control of  a broad range of  

fungal pathogens. Yet another  strategy 

would be to introduce specific inhibitors of  

chitin synthesis into plants, such as polyox- 



532 Journal of Nematology, Volume 25, No. 4, December 1993 

ins, to reduce development of pathogens 

that contain chitin (32,147,173). 

CURRENT RESEARCH IN OUR LABORATORY 

We are currently characterizing chiti- 

nase isozyme banding patterns in both cu- 

cumber and carrot following induction by 

biotic and abiotic factors. We have ob- 

served the appearance of  new chitinase 

isoforms in cucumber cotyledons following 

wounding, pathogen inoculation, and ap- 

plication of  salicylic acid; these isoforms 

differ  from the constitutively produced 

isoforms (201,202). The induction of  these 

isoforms in other plant tissues, in different 

cultivars, by different pathogens, and in 

tissue-cultured cells of  cucumber and car- 

rot are being studied (201,202). In addi- 

tional research, we are introducing chiti- 

nase-encoding genes into both crops via 

Agrobacterium-mediated t ransformat ion  

(143,161) and evaluating the response of  

these transgenic plants to inoculation with 

various leaf- and root-infecting fungi. The 

results from this work should provide ad- 

ditional insights into the roles of  chitinases 

in plant defense in these two important 

horticultural crops. 

APPLICATION OF CHITINASES TO 

NEMATODE CONTROL 

In some cases, the addition of  chitina- 

ceous amendments,  e.g., crab shell, to soil 

has reduced the severity of  diseases caused 

by plant-parasitic nematodes (53,172,177). 

This reduction was partly attributed to the 

enhancement of  populations of  soil micro- 

organisms with chitinolytic activity (e.g., 

va r ious  fung i ,  bac t e r i a ,  and  act ino-  

mycetes), which could have reduced nema- 

tode activity and survival (53,172,177). 

Chitin is a major structural component 

of  nematode egg shells. This chitin layer 

can vary in thickness and is located be- 

tween the outer vitelline layer and the in- 

ner lipid layer and may occur in associa- 

tion with proteins (11). As such, the chitin 

may not be readily exposed to the effects 

of  chitinases, similar to the case with fun- 

gal pathogens. Furthermore,  eggs that are 

laid within a gelatinous matrix may be pro- 

tected against enzymatic activity. Studies 

are needed to determine the effects of  par- 

tially or totally purified chitinases of  plant 

and microbial origin on nematode egg 

shell integrity and larval emergence and 

growth. In a recent study, chitinases in- 

creased hatch rates of  Meloidogyne eggs 

(121); however, premature hatching led to 

mortality of  juveniles and, in some cases, 

the eggs died. If  chitinases do indeed have 

this type of  activity against nematodes,  

then screening of  currently available trans- 

genic plants expressing chitinases for in- 

creased resistance to nematode develop- 

ment  may be worthy of  further investiga- 

tion. Intuitively, endoparasitic pathogens 

(e.g., Meloidogyne, Pratylenchus) would be 

excel lent .candidates  for  evaluation be- 

cause their eggs are laid on or in the host 

tissues, allowing maximum exposure to the 

chitinases. However, as with fungal patho- 

gens, the same concerns of  cellular local- 

ization, in vivo activity, and isoform of  

chitinase would have to be addressed in 

experiments with nematodes. As the re- 

sults with fungal pathogens seem to indi- 

cate, chitinases alone may not significantly 

affect nematode development within the 

transgenic tissues. Therefore,  the intro- 

duction of  genes that encode proteins with 

proven nematicidal properties should also 

be considered in genetic engineering of  

plants for resistance to nematodes. 

CONCLUSION 

The widespread occurrence of  chiti- 

nases in plants and their induction by a 

broad range of  biotic and abiotic factors 

suggests that these enzymes must serve 

some general function related to plant 

stress or defense, or have as yet undeter- 

mined roles in development or senescence. 

Because different isoforms of  the enzyme 

are known in plants, however, these iso- 

forms may have different specific activities 

and roles and may be elicited by different 

agents through as yet undetermined signal 

transduction pathways. The introduction 

of  genes encoding chitinases into trans- 
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gen ic  p l an t s  will p r o v i d e  o p p o r t u n i t i e s  to 

spec i f i ca l ly  e l u c i d a t e  ro les  o f  t he se  en -  

zymes  in  de fense .  Howeve r ,  the  o u t c o m e  

m a y  be  a f f ec t ed  by the  specif ic  activity, 

c o n c e n t r a t i o n ,  a n d  t a r g e t i n g  o f  the  en -  

zyme  wi th in  the  cell, a n d  the  charac ter i s -  

tics o f  the  f u n g a l - h o s t  cell i n t e rac t ion .  T h e  

effects o f  p l a n t  ch i t inases  o n  n e m a t o d e  de-  

v e l o p m e n t  in  v i t ro  a n d  in  vivo a re  wor thy  

o f  inves t iga t ion .  
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