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Plants are subjected to a plethora of environmental cues that cause extreme losses

to crop productivity. Due to fluctuating environmental conditions, plants encounter

difficulties in attaining full genetic potential for growth and reproduction. One such

environmental condition is the recurrent attack on plants by herbivores and microbial

pathogens. To surmount such attacks, plants have developed a complex array of

defense mechanisms. The defense mechanism can be either preformed, where toxic

secondary metabolites are stored; or can be inducible, where defense is activated upon

detection of an attack. Plants sense biotic stress conditions, activate the regulatory

or transcriptional machinery, and eventually generate an appropriate response. Plant

defense against pathogen attack is well understood, but the interplay and impact

of different signals to generate defense responses against biotic stress still remain

elusive. The impact of light and dark signals on biotic stress response is one such

area to comprehend. Light and dark alterations not only regulate defense mechanisms

impacting plant development and biochemistry but also bestow resistance against

invading pathogens. The interaction between plant defense and dark/light environment

activates a signaling cascade. This signaling cascade acts as a connecting link

between perception of biotic stress, dark/light environment, and generation of an

appropriate physiological or biochemical response. The present review highlights

molecular responses arising from dark/light fluctuations vis-à-vis elicitation of defense

mechanisms in plants.

Keywords: biotic stress, dark, defense response, light, plant protection, transcription factor

INTRODUCTION

Plants are prone to a number of biotic stress conditions. The suite of molecular and cellular
processes is triggered once the plant senses stress (Rejeb et al., 2014; Lamers et al., 2020),
which in turn activates a cross-wired mesh of morphological, physiological, and biochemical
mechanisms (Nejat andMantri, 2017; Saijo and Loo, 2020). Plants have developed complex sensory
mechanisms to identify biotic invasion and overcome the detriment of growth, yield, and survival
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(Rizhsky et al., 2004; Lamers et al., 2020). Consequently, plants
have evolved a surfeit of responses to defend themselves against
attacks by a broad spectrum of pests and pathogens, including
viruses, nematodes, bacteria, fungi, and herbivorous insects
(Hammond-Kosack and Jones, 2000). Thus, plants tend to strike
a balance between their response and biotic stress to combat
the deleterious effect on their survival (Peck and Mittler, 2020).
The molecular mechanisms contributing toward plant defense
responses had been elucidated to a great depth (Cheng et al.,
2012; Wang Z. et al., 2019). But how and why different signaling
pathways converge to biotic stress responses still remain obscure.
The light signaling pathway is one such area of interest amongst
the research community.

Dark and light alterations are fundamental to plant survival.
It affects all aspects of plant growth and development. The
light signals are perceived by photoreceptors, which are capable
of discriminating various wavelengths of light (Franklin et al.,
2004). Photoreceptors, namely, phytochromes (sense red and far-
red light), phototropins, and cryptochromes (sense blue light
and UV light), develop cues from qualitative and quantitative
light alterations (Christie, 2007; Yu et al., 2010; Tilbrook
et al., 2013). This sensing activates several signal transduction
pathways, which in turn regulate plant growth, physiology,
morphology, and immunity (Kami et al., 2010; Moreno and
Ballaré, 2014; Mawphlang and Kharshiing, 2017; Tripathi et al.,
2019). In addition, photosynthetic reactions themselves regulate
biochemical machinery in plant tissues (Lu and Yao, 2018). This is
evident by the point that a number of genes are transcriptionally
induced by the circadian clock in Arabidopsis thaliana and other
plants (Harmer et al., 2000; Creux and Harmer, 2019). Circadian
clock has been reported to meticulously regulate the defense
machinery in plants (Sharma and Bhatt, 2015).

There are two developmental fates of seedling upon
germination that are primarily dependent upon the presence
or absence of light. In the presence of light, seedlings develop
a shorter hypocotyl and open green cotyledons. This default
pathway of plant development is termed photomorphogenesis
(Bae and Choi, 2008; Pham et al., 2018). On the contrary,
plants grown in dark conditions undergoes skotomorphogenesis
(plant development under dark conditions), allocating the
resources toward hypocotyl elongation rather than on cotyledon
or root development (Josse and Halliday, 2008). Elongated
hypocotyls, closed cotyledons, and an apical hook at the
shoot meristem are characteristic to skotomorphogenetic plant
development (Pham et al., 2018). Skotomorphogenesis is
accomplished by repressing genes implicated in de-etiolation
and photomorphogenic development (Josse and Halliday, 2008).
Additionally, the effect of dark/light alteration is not only limited
to plant growth and development, but it also impacts other
responses to the environment such as defense against pests and
pathogens (Ballaré, 2014). Extensive research exists to vindicate
the effect of dark/light alterations on plant defense responses,
extending from biological to ecological scales (Huner et al., 1998;
Roberts and Paul, 2006; Kazan and Manners, 2011; Ballare et al.,
2012; Kangasjärvi et al., 2012; Hua, 2013; Garcia-Guzman and
Heil, 2014; Saijo and Loo, 2020). But the in-depth mechanistic
details with regard to the complex regulatory networks are yet

to be explored. The basic research in this direction can assist
the idea of sustainable agriculture to ensure food security for
the ever-growing world population (Sánchez-Muros et al., 2014;
González deMolina et al., 2017; Iqbal et al., 2020a; Saiz-Rubio and
Rovira-Más, 2020). The present review recapitulates biochemical,
physiological, and molecular aspects of biotic stress and plant
defense responses operating in light/dark scenarios.

BIOTIC STRESS AND PLANT DEFENSE
RESPONSES

A number of pests, parasites, and pathogens are responsible for
infecting plants and inciting biotic stress. Fungal parasites can be
either necrotrophic (kill host cell by toxin secretion) or biotrophic
(feed on living host cell). They are capable of inducing vascular
wilts, leaf spots, and cankers in plants (Laluk and Mengiste, 2010;
Doughari, 2015; Sobiczewski et al., 2017). Nematodes feed on
plant parts and primarily cause soil-borne diseases leading to
nutrient deficiency, stunted growth, and wilting (Lambert and
Bekal, 2002; Bernard et al., 2017; Osman et al., 2020). Similarly,
viruses are also capable of local and systemic damage resulting in
chlorosis and stunting (Pallas and García, 2011). On the contrary,
mites and insects impair plants by either feeding (piercing and
sucking) on them or laying eggs. The insects might also act as
carriers of other viruses and bacteria (Schumann and D’Arcy,
2006). Plants have developed an elaborate immune system to
combat such stresses (Taiz and Zeiger, 2006; Saijo and Loo, 2020).
Plants have a passive first line of defense, which includes physical
barriers such as cuticles, wax, and trichomes to avert pathogens
and insects. Plants are also capable of producing chemical
compounds to defend themselves from infecting pathogens (Taiz
and Zeiger, 2006) (discussed in section “Effect of Dark/Light
on Plant–Pathogen Interaction and Associated Mechanisms”).
Additionally, plants trigger defense against biotic agents by two
levels of pathogen recognition (Dangl and McDowell, 2006).

The first level of pathogen recognition encompasses pattern
recognition receptors (PRRs), which identify pathogen-
associated molecular patterns (PAMPs). Such plant immunity
is categorized as PAMP-triggered immunity (PTI) (Monaghan
and Zipfel, 2012). Phytophagous pests respond by identification
of herbivore-associated elicitors (HAEs), herbivore-associated
molecular patterns (HAMPs), or PRR herbivore effectors
(Santamaria et al., 2013). The second level of pathogen
recognition encircles plant resistance (R) proteins, which identify
specific receptors from a pathogen (Avr proteins) (Dangl and
McDowell, 2006; Gouveia et al., 2017; Abdul Malik et al., 2020).
It is considered an effective mechanism of plant resistance to
pests and involves effector-triggered immunity (ETI) (Kaloshian,
2004; Mur et al., 2008; Spoel and Dong, 2012). ETI stimulates
hypersensitive responses (HRs) and triggers programmed cell
death (PCD) in infected and surrounding cells (Mur et al., 2008).
The proteins encoded by a majority of R genes have a specific
domain with conserved nucleotide-binding site (NBS). The
second next important domain is leucine-rich repeat (LRR).
Pathogen effectors are recognized directly (physical association)
or indirectly (association of an accessory protein) by NB-LRR
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FIGURE 1 | Schematic representation of biotic stress perception and Ca2+ signaling for the regulation of plant immune responses. The cytosolic Ca2+ levels increase

(>200 nM) upon perceiving biotic stress: calcium (Ca2+), Ca2+–dependent protein kinases (CDPKs), calmodulin (CaM), calmodulin-like protein (CML), autoinhibited

Ca2+-ATPases (ACAs), ER-type Ca2+-ATPases (ECAs), mitochondrial Ca2+ uniporter (MCU), P1-ATPases (e.g., HMA1), Ca2+ exchangers (CAX), two-pore channel

(TPC), cyclic nucleotide-gated channels (CNGCs), glutamate receptor-like channels (GLRs), stretch-activated Ca2+ channels (OSCAs), MID1-complementing activity

(MCA), phosphate (P), adenosine triphosphate (ATP), adenosine diphosphate (ADP), 1,4,5-trisphosphate receptor-like channel (InsP3R), 1,4,5-trisphosphate (IP3),

cyclic ADP-ribose (cADPR)-activator ryanodine receptor-like channel (RyR), slow-activating vacuolar channel (SV), and sodium-calcium exchanger (NCX).

receptors (Dodds and Rathjen, 2010). Sometimes, R gene-
mediated plant response toward invading pathogen provokes a
higher degree of defense, termed as systemic acquired resistance
(SAR). SAR generates whole-plant systemic resistance against a
broad spectrum of pathogens. In SAR, a local encounter results
in the stimulation of resistance to the other plant organs through
intraplant communication (Fu and Dong, 2013). Generally, both
categories of plant immune responses induce the same reaction,
but ETI is considered more rigorous to pathogen infection
(Tao et al., 2003).

Perturbations in cytosolic calcium (Ca2+) concentrations are
the earliest signaling events occurring upon the exposure of
plants to biotic stress. Ca2+ signals are the center to plant
immune signaling pathways (Seybold et al., 2014; Aldon et al.,
2018). Rapid and transient perturbations in Ca2+ concentrations
are crucial to gene reprogramming required to generate an
adequate response (Reddy et al., 2011). The plant immune
responses differ in their Ca2+ signatures. For example, Ca2+

transients upon PTI activation returns to basic levels within
a few minutes (Lecourieux et al., 2005), while ETI involves a
prolonged increase in cytosolic Ca2+ levels lasting for several

hours (Grant et al., 2000). Lanthanum, a known Ca2+ channel
blocker, is reported to hinder the immune responses associated
with both PTI and ETI (Grant et al., 2000; Boudsocq et al.,
2010). Precisely, in response to the biotic invasion, PTI and
ETI activate the Ca2+ ion channels, resulting in an increase
of cytoplasmic Ca2+ concentrations (Figure 1). In A. thaliana,
cyclic nucleotide-gated channels (CNGCs), glutamate receptor-
like channels (GLRs), stretch-activated Ca2+ channels (OSCAs),
and the MID1-complementing activity (MCA) families are the
four main plasma membrane Ca2+-permeable channels (Dodd
et al., 2010; Yuan et al., 2014; Liu et al., 2018). Twenty
distinct members of the CNGC family of plasma membrane
Ca2+-permeable channels have been identified in A. thaliana
(Meena and Vadassery, 2015; DeFalco et al., 2016). CNGCs
are extensively linked to plant development and biotic stress
responses (Meena and Vadassery, 2015; DeFalco et al., 2016;
Breeze, 2019). In response to fungal and bacterial pathogens,
the Ca2+-permeable channels CNGC2, CNGC4, CNGC11, and
CNGC12 are reported to play critical roles in the entry of Ca2+

ions inside the plant cell (Yoshioka et al., 2001; Ahn, 2007).
The role of CNGC2, CNGC4 (Ma et al., 2012; Chin et al., 2013),

Frontiers in Plant Science | www.frontiersin.org 3 March 2021 | Volume 12 | Article 631810

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Iqbal et al. Plant Responses to Dark/Light

CNGC11, and CNGC12 (Yoshioka et al., 2006; Moeder et al.,
2011) has been well established in plant immune responses.
Very recently, the function of CNGC19 Ca2+ channel was
also extended to herbivory-induced Ca2+ flux, plant defense
responses against pathogen Spodoptera litura (Meena et al.,
2019), and basal defense signaling to regulate colonization of
Piriformospora indica on A. thaliana roots (Jogawat et al.,
2020). The first CNGC from plants was identified nearly two
decades ago in barley as a calmodulin (CaM)-binding protein
(Schuurink et al., 1998). CNGCs from plants and animals are
reported to possess one or more CaM-binding domains at
their cytosolic N- and C-termini, but the gating of CNGCs
from plants is not well deduced (DeFalco et al., 2016; Fischer
et al., 2017; James and Zagotta, 2018). The progress of plant
CNGC research has been relatively low due to the difficulties
in electrophysiological studies encircling CNGCs. However,
the recent technological advances and reliability on reverse
genetics using cngc mutants have resulted in few successful
studies (Gao et al., 2016; Chiasson et al., 2017; Wang et al.,
2017; Zhang et al., 2017). CNGC7, CNGC8, and CNGC18
have been specifically reported to act together with CaM2
as a molecular switch that operates in response to cellular
Ca2+ concentrations (Pan et al., 2019). Additionally, CNGC18
is co-expressed with CPK32, indicating the regulation of its
activity by phosphorylation (Zhou et al., 2014). Similarly,
GLRs, which are systematically classified into three clades—
clade I (GLRs 1.1–1.4), clade II (GLRs 2.1–2.9), and clade
III (GLRs 3.1–3.7) (Lacombe et al., 2001)—are linked to
plant defense against Botrytis cinerea (Sun et al., 2019) and
Hyaloperonospora arabidopsidis (Manzoor et al., 2013). As
such, the role of AtGLR3.3 and AtGLR3.6 in aphid-elicited
cytosolic Ca2+ elevation is also well established (Vincent
et al., 2017). In-vitro kinase assay confirmed that AtGLR3.7 is
phosphorylated by CDPK3, CDPK16, and CDPK34 at serine-
860 site (Wang P.-H. et al., 2019). CDPKs have been extensively
associated with plant stress management and development
(Singh et al., 2017). The other plasma membrane localized
Ca2+-permeable channels, namely, OSCAs (phosphorylation
of OSCA1.3 by BIK1) and MCAs (MCA1 and MCA2), are
reported to regulate plant stomatal immunity (Thor et al.,
2020) and manage hypergravity in A. thaliana hypocotyls under
dark conditions, respectively (Hattori et al., 2020). Apart from
the Ca2+ channels localized in the plasma membrane, several
other Ca2+ channels are known to exist in the endoplasmic
reticulum, mitochondria, golgi body, and plant vacuole (Singh
et al., 2014; Xu et al., 2015a; Costa et al., 2018; Pandey and
Sanyal, 2021). For example, autoinhibited Ca2+-ATPases (ACAs),
ER-type Ca2+-ATPases (ECAs), mitochondrial Ca2+ uniporter
(MCU), P1-ATPases (e.g., HMA1), Ca2+ exchangers (CAX), two-
pore channel (TPC), 1,4,5-trisphosphate receptor-like channel
(InsP3R), 1,4,5-trisphosphate (IP3), cyclic ADP-ribose (cADPR)-
activator ryanodine receptor-like channel (RyR), slow-activating
vacuolar channel (SV), and sodium-calcium exchanger (NCX)
represents the organellar Ca2+ machinery (Figure 1). Many
of these channels are reported to play pivotal roles in plant
immunity (Bose et al., 2011; Pittman, 2011; Spalding and Harper,
2011; Kiep et al., 2015; Costa et al., 2017; Teardo et al., 2017;

Yang et al., 2017; Demidchik et al., 2018; Taneja and Upadhyay,
2018; Pandey and Sanyal, 2021).

Once the Ca2+ ion enters the cell, it is sensed by an array of
Ca2+-binding proteins. The Ca2+-binding proteins work as Ca2+

sensors decoding complex Ca2+ signatures (Kudla et al., 2018).
Ca2+ sensors are highly conserved proteins and are classified into
(a) CaM and CaM-like proteins (CMLs), (b) calcineurin-B-like
proteins (CBLs), and (c) Ca2+-dependent protein kinases (CPKs)
and Ca2+ and Ca2+/CaM-dependent protein kinase (CCaMK)
(Cheng et al., 2002; Luan, 2009; Bender and Snedden, 2013; Ranty
et al., 2016). CaM, CMLs, CBLs, and CPKs are comprehensively
involved in the cross-talk of various biotic and abiotic stress
signals (Ranty et al., 2016; Aldon et al., 2018). Many Ca2+ and
Ca2+ sensor-associated transcription factors (TFs) are implicated
in stress signaling in plants (Carrion et al., 1999; Singh and
Virdi, 2013; Ranty et al., 2016; Chung et al., 2020; Shen et al.,
2020). The largest and best characterized family of Ca2+/CaM-
dependent TFs are CAMTAs (Iqbal et al., 2020b). CAMTA3 has
been reported enormously as a suppressor of plant biotic defense
responses (Benn et al., 2016; Jacob et al., 2018; Kim et al., 2020).
It works downstream to MAP kinase (Bjornson et al., 2014)
and is directly phosphorylated and degraded by flg22-responsive
mitogen-activated protein kinases (MAPKs) (Jiang et al., 2020).
Precisely, MPK3 and MPK6 activate CAMTA3 nuclear export
and destabilization (Jiang et al., 2020). Similarly, NAC TF, upon
interaction with Ca2+/CaM, positively regulates various biotic
stress responses in Solanum lycopersicum (Wang G. et al., 2016).
NAC is also responsive to Colletotrichum gloeosporioides and
Ralstonia solanacearum infection in woodland strawberry (Zhang
et al., 2018). WRKY is another Ca2+/CaM-dependent TF (Park
et al., 2005; Yan et al., 2018) implicated in pathogen incursion
(Park et al., 2005; Bai et al., 2018). WRKY7, WRKY45, WRKY43,
WRKY53, andWRKY50 in a Ca2+-drivenmanner bind to various
isoforms of CaM (Park et al., 2005; Popescu et al., 2007). MYB
TF is also well characterized as a Ca2+-dependent TF. MYB
functions upstream in a vast majority of defense-responsive and
abiotic stress-receptive genes (Stracke et al., 2001; Chezem et al.,
2017; Li et al., 2019). Similarly taking CMLs into consideration,
AtCML9 works as positive regulator of plant immune response.
It was found to be induced by Pseudomonas syringae and
phytohormones including abscisic acid (ABA) and salicylic acid
(SA) (Magnan et al., 2008; Leba et al., 2012). Further, AtCML9
interacts withWRKY53 and TGA3 TFs, both of which are known
to mediate biotic stress responses (Popescu et al., 2007). In
concurrence,AtCML37 andAtCML42 are associated with defense
against herbivorous insects (Spodoptera littoralis) (Vadassery
et al., 2012; Scholz et al., 2014). Very recently, 17 AcoCPK genes
from Ananas comosus (pineapple) were analyzed for their effect
under biotic stress. AcoCPK1, AcoCPK3, and AcoCPK6 were
shown to render susceptible disease resistance in A. thaliana
against Sclerotinia sclerotiorum (Zhang et al., 2020). Another
class of Ca2+ sensors, CBLs, are known to specifically interact
with a family of plant-specific CBL-interacting protein kinases
(CIPKs). CBL interacts with Ca2+ and binds with CIPK, resulting
in kinase activation. The CBL–CIPK complex actively regulates
downstream target proteins by phosphorylation (reviewed by Ma
et al., 2020; Tang et al., 2020).
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The other initial responses of pathogen attack on plants
include the generation of reactive oxygen species (ROS) and
activation of mitogen-activated protein kinases (MAPKs)
(Muthamilarasan and Prasad, 2013). ROS and MAPKs overlap
with other signaling pathways, including light pathways
(Goldsmith and Bell-Pedersen, 2013; Foyer, 2018). Furthermore,
pest attack on plants activates local or systemic defense responses
involving oligogalacturonoids (OGAs), jasmonic acid (JA), and
hydrogen peroxide (H2O2) signaling pathways (Fürstenberg-
Hägg et al., 2013). Plants are also capable of producing volatile
compounds that repel attacking pests (discussed in section “Effect
of Dark/Light on Plant–Pathogen Interaction and Associated
Mechanisms”). These compounds are part of lipoxygenase (LOX)
and terpenoid signaling pathways (Pichersky and Gershenzon,
2002; Dudareva et al., 2006). Another pivotal downstream
defense mechanism by plants include the generation of defensive
proteins and universal stress proteins. These proteins comprise
protein inhibitors, lectins, chitinases, α-amylase inhibitors, and
polyphenol oxidases (Fürstenberg-Hägg et al., 2013; Lee et al.,
2019). Additionally, the role of pathogenesis-related (PR) genes
in plant defense responses has been considerably explored (Ali
et al., 2018). PR genes translate into proteins that are induced in
plants only upon pathological or similar conditions (conditions
of non-pathogenic origin) (Jain and Khurana, 2018). They are
considered as an important component of plant innate immune
response and are implicated in HR and SAR responses (Jain
and Khurana, 2018). PR proteins are grouped into 17 families,
depending upon their biochemical and molecular properties
(van Loon et al., 2006). In A. thaliana, five PR genes (PR-1,
PR-2, PR-3, PR-4, and PR-5) are routinely explored for their
involvement in plant biotic interactions (Hamamouch et al.,
2011). PR-1, PR-2, and PR-5 are implicated in SA-dependent SAR
response, while PR-3 and PR-4 are involved in JA-dependent
SAR response (Thomma et al., 1998; Hamamouch et al., 2011).
An important aspect associated with PR proteins is their
simultaneous indulgence in biotic and abiotic stress (Ali et al.,
2018). To substantiate this, the 1,000-bp upstream region of all
five PR genes from A. thaliana were analyzed bioinformatically
to determine the presence of different motifs associated with a
variety of environmental stresses. Intriguingly, all the PR genes
contained multiple light-responsive motifs (AE-box, GAP-box,
GT-1 motif, G-box, GATA-motif, box-4, and chs-CMA2a). The
presence of light-responsive motifs in the promoter region of PR
genes probably implies the binding of light-dependent genes to
these conserved sequences (Figure 2). This notion itself supports
the idea of intense cross-talks between biotic stress responses and
light signaling pathways.

Finally, the involvement of phytohormones in regulating
plant biotic defense responses cannot be ruled out. ETI and
PTI induces specific downstream signaling pathways, in which
three phytohormones are crucial, namely, SA, JA, and ethylene
(ET). SA regulatory pathways are responsive to biotrophic
and hemi-biotrophic pathogenic agents. Similarly, JA and ET
pathways are responsive to necrotrophic agents and chewing
pests (Bari and Jones, 2009; De Vleesschauwer et al., 2014).
SA stimulates the SAR pathway promoting the expression of
PR genes, which in-turn renders tolerance against a wide range

of pathogens (Grant and Lamb, 2006; Fu and Dong, 2013;
Ádám et al., 2018). SA, JA, and ET regulatory pathways for
plant defense exhibit significant divergence, but they overlap to
render defense against pathogenic agents (Glazebrook, 2005; Ku
et al., 2018). Additionally, ABA, auxin, brassinosteroids (BRs),
cytokinin (CK), gibberellic acid (GA), and peptide hormones also
have vital significance in regulating the immune responses of
the plants (Bari and Jones, 2009; Ku et al., 2018; Islam et al.,
2019; Chen et al., 2020). Amongst all the phytohormones, JA is
critical in triggering the plant defense system and cross-talks with
other phytohormonal pathways to stimulate the plant immune
responses (Yang et al., 2019).

LIGHT AS AN ENVIRONMENTAL CUE

Plants are exposed to variable light intensities that encompass
light perception and signaling pathways responsible for growth,
development, and immune responses (Hua, 2013; Ballaré, 2014).
Nevertheless, plants often confront light intensities that exceed
their photosynthetic capacity, inducing light stress (Mishra et al.,
2012). Mechanisms encompassing light/dark alteration under
stress conditions have been comprehensively studied (Mittler,
2002; Cerdán and Chory, 2003; Jiao et al., 2007; Koussevitzky
et al., 2007; Mühlenbock et al., 2008; Alabadí and Blázquez, 2009;
Chory, 2010; Kami et al., 2010; Lau and Deng, 2010; Trotta
et al., 2014; Kaiserli et al., 2015; Saijo and Loo, 2020). Given
the extreme importance of light for survival, immunity, growth,
and development, plants have evolved the capability to sense and
respond to different spectra of light (visible, infrared, ultraviolet,
etc.) through photoreceptors. InA. thaliana, five distinctive genes
(PHYA–PHYE) encode phytochrome protein (Clack et al., 1994;
Li et al., 2011). They potentially act as receptors for red and
far-red lights (Takano et al., 2009). Similarly, in A. thaliana,
cryptochromes encoded by CRY1 and CRY2 dedicatedly sense
blue (∼400 nm) and green (500–600 nm) lights and UV-A (Folta
and Maruhnich, 2007; Jiao et al., 2007; Bae and Choi, 2008;
Jenkins, 2009).

As previously discussed, plants undergo skotomorphogenesis
in the absence of light while photomorphogenesis in the
presence of light (see section “Introduction”). Repressor proteins
such as constitutive photomorphogenic/de-etiolated1/fusca
(COP/DET/FUS) inhibit photomorphogenesis under dark
conditions (Hardtke and Deng, 2000; Dong et al., 2014). Mutants
with defects in any of these repressor proteins display constitutive
photomorphogenic (COP) phenotypes under dark conditions
(Lau and Deng, 2012). The repressor proteins are characterized
into four categories with overlapping functions and have been
studied extensively (Deepika et al., 2020; Pham et al., 2020).
The first one is COP1, which is a RING-finger-type ubiquitin
E3 ligase (Deng et al., 1992). Under dark conditions, it acts as
a repressor of light signaling and accumulates in the nucleus
(Xu D. et al., 2014). On the contrary, COP1 is exported out
of the nucleus, facilitating photomorphogenesis under light
conditions (von Arnim et al., 1997; Hardtke et al., 2000; Seo
et al., 2003; Duek et al., 2004; Xu et al., 2016a; Podolec and
Ulm, 2018). COP1 acts as a central repressor and facilitates
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FIGURE 2 | Intersection of plant defense and light signaling. The 1,000-bp upstream sequence of PR-1, PR-2, PR-3, PR-4, and PR-5 were fetched from TAIR10

(https://www.arabidopsis.org/). The motif analysis was done by PLACE database (https://www.dna.affrc.go.jp/PLACE/?action=newplace) and PlantCARE

database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). The motif structures were drawn using Illustrator for Biological sequences software

(http://ibs.biocuckoo.org/).
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ubiquitination and degradation of various positive regulators
of light, namely, long hypocotyl in far-red 1 (HFR1), long
hypocotyl 5 (HY5), and long after far-red light 1 (LAF1)
(Hardtke et al., 2000; Osterlund et al., 2000; Jang et al., 2005;
Yang et al., 2005). The degradation of positive regulators of
light by COP1 is constrained under light by prohibiting COP1
protein from the nucleus. This triggers the initiation event of
photomorphogenesis. The function of COP1 has been extensively
linked to light signaling (Figure 2). However, it is also implicated
in the regulation of flowering time, circadian rhythm, and
temperature signaling (Ma et al., 2002; Yu et al., 2008; Jeong
et al., 2010; Catalá et al., 2011; Menon et al., 2016; Wang W.-X.
et al., 2016; Xu et al., 2016b; Hoecker, 2017). COP1 is also known
to interact with the suppressor of PHYA 1–4 (SPA 1–4). This
interaction results in tetrameric complexes comprising two
COP1 and two SPA proteins (COP1/SPA complex) (Zhu et al.,
2008). SPA proteins are reported to positively enhance COP1
function (Ordoñez-Herrera et al., 2015). Skotomorphogenesis is
accomplished by suppressing the expression of genes involved
in photomorphogenic development in the dark (Josse and
Halliday, 2008). This is tightly regulated by the COP1–SPA1E3
ligase complex (Osterlund et al., 2000; Josse and Halliday, 2008;
Ordoñez-Herrera et al., 2015; Holtkotte et al., 2016; Paik et al.,
2019). COP1–SPA1E3 ligase targets HY5 TF for degradation by
the proteasome (Osterlund et al., 2000). COP1–SPA complex
interacts with CULLIN4 (CUL4) to form CUL4–COP1–SPA
complex. CUL4–COP1–SPA complex acts as CULLIN ring E3
ligase (CRL) and degrades positively acting TFs under dark
conditions to suppress photomorphogenesis (Chen et al., 2010).
Interestingly, CUL4–COP1–SPA complex has a dual function
in dark/light-induced photomorphogenesis (Zhu et al., 2015;
Paik et al., 2019). CUL4–COP1–SPA complex activates early
ubiquitin-mediated degradation of phytochrome interacting
factor 1 (PIF1) to trigger light-induced seed germination (Zhu
et al., 2015; Paik et al., 2019). The second group of repressor
protein is COP9 signalosome (CSN). It is highly conserved and
comprises eight subunits (Serino and Deng, 2003). CSN had
been reported to be implicated in deneddylation/derubylation of
CRLs (Schwechheimer et al., 2001). The third group of repressor
protein is de-etiolated1 (DET1), COP10, DNA damage-binding
protein 1 (DDB1), and CUL4. DET1 is known to bind histone
H2B (Benvenuto et al., 2002). It also regulates PIFs and HFRs
to suppress seed germination and photomorphogenesis under
dark conditions (Dong et al., 2014; Shi et al., 2015). Finally,
the fourth group of repressor protein is PIFs (PIF1–PIF8) that
belong to basic helix-loop-helix (bHLH) family of TFs and
suppresses photomorphogenesis under dark conditions (Leivar
et al., 2008; Shin et al., 2009; Leivar and Quail, 2011; Pham
et al., 2018). They bind to the G-box consensus sequence in
the 1,000-bp upstream region of light-responsive genes. Under
dark conditions, phytochromes physically interact with PIFs
to repress light response. The activation of photoreceptors
suppresses COP1/SPA E3 ubiquitin ligase complexes and PIFs
(Martínez et al., 2018b). This eventually activates HY5 to
modulate the expression of light-inducible genes and disrupts
PIF function (Chen et al., 2013; Toledo-Ortiz et al., 2014;
Gangappa and Kumar, 2017). Upon plant exposure to dark

conditions, photoreceptor inactivation enables COP1/SPA- and
PIF-mediated disruption of light signaling (Xu X. et al., 2014;
Xu et al., 2015b, 2017). This signaling cascade promotes plant
growth by involving phyto-hormones (such as BR, auxins, and
GA) at the cost of plant immunity (Lozano-Durán and Zipfel,
2015; Martínez et al., 2018b).

Photoreceptors are also responsible to determine the quality
of light (R:FR ratios). Upon excitation by R light, phytochromes
are transformed into FR light-absorbing state (biologically active
“Pfr”). Since red light is absorbed by chlorophyll and carotenoids,
its quantity is significantly decreased when penetrating through a
dense canopy (Slattery et al., 2017; Walker et al., 2018). Shade-
intolerant plants (such as A. thaliana) perceive and respond to
such conditions by elongating stems and promoting flowering
(Fiorucci and Fankhauser, 2017). This is an evolutionary
phenomenon developed in plants and is termed shade-avoidance
syndrome (SAS). Plants exhibit SAS, which is represented by the
elongation of plant parts such as hypocotyls, stems, and petioles
(Casal, 2013). Both PHYA and PHYB proteins contribute towards
SAS. PHYB restrains SAS under R-enriched light (R:FR > 1),
while PHYA restrains SAS under FR-enriched light (R:FR < 1)
(Franklin, 2008; Lorrain et al., 2008; Franklin and Quail, 2010;
Jaillais and Chory, 2010; Martinez-Garcia et al., 2010; Stamm
and Kumar, 2010). This also result in the inactivation of PIF to
promote BR and auxin production (Martínez et al., 2018a).

The amalgamation of photochemical and non-photochemical
processes (NPQ) dissipates excess excitation energy (EEE)
of plants as heat. Photochemical- and NPQ-dissipated EEE
maintenance is facilitated by the acidification of the chloroplast
lumen, involving PSII-associated proteins (Niyogi, 2000; Müller
et al., 2001; Li et al., 2004; Niyogi et al., 2005; Ciszak et al.,
2015). EEE eventually results in the formation of ROS, H2O2,
superoxide (O.−

2 ), and singlet oxygen (1O2), which overlaps
with biotic stress signaling. Light/dark alterations induce plant
resistance to pathogen infection and oxidative damage in
systemic tissues. This indicates a cross-wired signaling between
dark/light conditions and biotic stress (Rossel et al., 2007;
Mühlenbock et al., 2008; Szechyńska-Hebda et al., 2010; Zhao
et al., 2014). EEE induces SAR and basal response to pathogenic
biotrophic bacteria. This response alters ROS and redox signals
and thus induces SA, ET, and glutathione (Mühlenbock et al.,
2008; Szechyńska-Hebda et al., 2010).

EFFECT OF DARK/LIGHT ON
PLANT–PATHOGEN INTERACTION AND
ASSOCIATED MECHANISMS

Accumulating evidences indicate that plant response to biotic
stress cannot be fully deciphered by studying discrete stress
response (Suzuki et al., 2014; Dworak et al., 2016). Such
notions support comprehensive study in connection with plant
responses to simultaneously appearing stresses. Both qualitative
and quantitative changes occur in the intensity of light during
dark/light alterations. The majority of invertebrate herbivores
with few exceptions (Kreuger and Potter, 2001; VanLaerhoven
et al., 2003) are more active at night in comparison with day
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because of parasitism or predation constraints during the day
(Hassell and Southwood, 1978). The emission of volatiles also
affects herbivory with respect to diurnal variation. There are
even qualitative and quantitative disparities during day/night in
wound-induced volatiles (De Moraes et al., 2001; Gouinguené
and Turlings, 2002; Martin et al., 2003). Taking into account the
effect of dark/light on pathogen attack upon plants, the number
of airborne fungal spores is significantly high at night (dark)
in comparison with day (Schmale and Bergstrom, 2004; Gilbert
and Reynolds, 2005; Zhang et al., 2005). On the contrary, few
fungal spores peak at day (light) time (Gadoury et al., 1998;
Su et al., 2000). Along with dark/light alterations, the plant–
pathogen interaction is also influenced by an array of factors such
as temperature fluctuations, humidity changes, and leaf surface
water content resulting from dew conditions at night (Meijer
and Leuchtmann, 2000; Koh et al., 2003). The presence of light
also reduces germ tube growth and spore germination in plant
pathogenic fungi (Mueller and Buck, 2003; Beyer et al., 2004).
A number of studies have revealed that pathogen infection is
influenced by light/dark conditions before inoculation happens.
Tolerance to aphid infestation was also confirmed by high-
light pre-exposures in wild-type plants and mutants impaired in
protein phosphatase 2A (PP2A) (Rasool et al., 2014). Similarly,
inoculation of Puccinia striiformis in wheat (Triticum aestivum)
seedlings was more at low light intensity than dark-grown
seedlings (De Vallavieille-Pope et al., 2002). In a few other
instances, inoculation irradiances have been found to be inversely
proportional to infection (Shafia et al., 2001), indicating a direct
impact of dark/light on host tolerance. Recently, nucleotide-
binding NLR Rpi-vnt1.1 proteins have been shown to require
light for imparting disease resistance against races of the Irish
potato famine pathogen Phytophthora infestans, which discharge
the effector protein AVRvnt1 (Gao et al., 2020). Glycerate 3-
kinase (GLYK), which is a nuclear-encoded chloroplast protein, is
necessary for the activation of Rpi-vnt1.1. Under light conditions,
AVRvnt1 binds to the full-length chloroplast targeted GLYK
isoform triggering of Rpi-vnt1.1. However, under the dark
scenario, plants generate a shorter truncated GLYK that is devoid
of the intact chloroplast transit peptide, thus compromising
Rpi-vnt1.1-mediated resistance. The conversion between full-
length and short-length GLYK transcripts is governed by light-
dependent promoter selection mechanism. In plants that are
devoid of Rpi-vnt1.1, the occurrence of AVRvnt1 decreases GLYK
accumulation in chloroplasts, hence reducing GLYK contribution
to basal immunity. The findings are thus clearly depictive of
the fact that the pathogen-driven functional alteration of the
chloroplast results in a light-dependent immune response (Gao
et al., 2020). Plausibly, plants are more prone to pathogen attack
in the dark than during the day. However, it cannot be held true
for all pathogens attacking the plant systems.

There occur two mechanisms that contribute to the regulation
of plant defense responses during dark/light fluctuations: first,
the energetic significance of light-dependent chemical reactions
(depends on the capacity of photosynthetic electron transport
to produce ATP and reducing power); and second, perception
of light (shade and R:FR exposure conditions) and regulation
of downstream light-dependent signaling pathways (Roberts

and Paul, 2006). The following subsections highlight both the
mechanisms with respect to photosynthesis, ROS accumulation,
and light signaling.

Photosynthetic Processes and Reactive
Oxygen Species Accumulation in Biotic
Stress
Photosynthesis captures light energy via electron transport
chain (ETC) for assimilation of carbon dioxide as well as
repair and growth of plant body. The vital metabolites so
produced from photosynthesis are utilized in carbon fixation,
fatty acid biosynthesis, assimilation of nitrogen into amino
acids, etc. (Nunes-Nesi et al., 2010). These light-driven pathways
occurring in chloroplast can impact short term-induced plant
defense responses (Delprato et al., 2015). Intriguingly, some
part of the biosynthetic pathways of ABA, JA, and SA (plant
defense hormones) also occur in the plastids (Bobik and Burch-
Smith, 2015). This might impact plant defense in the dark
due to the hormonal cross-talk in plant–microbe interaction.
Moreover, chloroplast acts as a site for ROS generation upon
stress perception. Leaves get acclimatized to light fluctuations
during growth and development, as calvin cycle enzymes and
light-harvesting complexes are adjusted to efficiently manage
the available light. However, photosynthetic electron transport
produces more electrons when carbon fixation is halted or light
fluctuations occur. This helps in the generation of more electrons
for the electron acceptor NADP+. Under such circumstances,
free electrons from ETC are transferred to oxygen leading
to ROS generation. Additionally, the light-dependent events
and pathways occurring in the chloroplast impact short and
long-term-induced plant defense responses via photorespiration
resulting in the generation of H2O2 in the peroxisomes (Lu and
Yao, 2018). Under acute light stress conditions, impairment in
chlorophyll synthesis and disruption of chloroplast can also lead
to the accumulation of ROS. This might surpass the potential
of the antioxidant system in the chloroplast (Apel and Hirt,
2004). Nevertheless, ROS has also been very well implicated in
plant defense against pathogens (Torres, 2010; Nath et al., 2017;
Huang et al., 2019), and any deviation of the redox balance
in the chloroplast can impact ROS regulated plant defense
(Figure 3). For instance, lipid peroxidation occurs when ROS
accumulates upon biotic stress perception (De Dios Alché, 2019).
The repercussions of the requisite of light/dark fluctuations
for chloroplast-derived ROS goes far beyond direct signaling
functions of ROS.

As for post pathogen attack, some of the products of lipid
peroxidation are reactive electrophiles with a carbonyl group
(Vollenweider et al., 2000). These electrophiles are a consequence
of ROS impact on membrane lipids or are products arising from
lipoxygenase enzyme activity. Many amongst these electrophiles
are imperative signaling molecules implicated in the regulation
of cell death and defense gene expression (Vollenweider et al.,
2000; Alméras et al., 2003; Thoma et al., 2003; Cacas et al., 2005).
Hence, light/dark fluctuations impact the production of ROS-
derived electrophiles. Such cases are reported in interactions
amongst plants and pathogens or their elicitors. Taking into

Frontiers in Plant Science | www.frontiersin.org 8 March 2021 | Volume 12 | Article 631810

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Iqbal et al. Plant Responses to Dark/Light

FIGURE 3 | ROS modulation of biotic stress responses. FLS2 receptor kinase triggers the Ca2+ flux, followed with mitogen-activated protein kinase (MAPK) and

Ca2+–dependent protein kinase (CDPK) cascades. These initial signals contribute to pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI).

Effector molecules are synthesized by host-adapted microbes, which suppress PTI. Plant system under such circumstances specifically identifies effector molecules

to activate effector-triggered immunity (ETI). This eventually initiates the hypersensitive response (HR).

consideration the response of cryptogein (a known elicitor), cell
death was mediated by ROS accumulation in light conditions
(Montillet et al., 2005). On the contrary, when plants are
subjected to dark conditions, cell death is independent of ROS
accumulation and correlates with specific lipoxygenase activity
(Montillet et al., 2005).

The primary source of ROS during biotic stress response is
not the chloroplast. It is rather NADPH oxidase (respiratory
burst oxidase) that is localized in the plasma membrane (Apel
and Hirt, 2004; Figure 3). This implies that chloroplast-derived
ROS in the presence of light may not help with pathogen
defense. Nonetheless, this may or may not hold true, since
NADPH oxidase does not impede the production of chloroplast-
derived ROS. More so, lesion mimic mutants with random
necrotic lesions are characterized to comprehend the underlying
mechanisms involved in signaling of biotic stress tolerance
(Lorrain et al., 2003). These necrotic lesions on the leaves are

comparable with those generated in response to HR. Lesion
mimic mutants have higher expression of PR genes and enhanced
resistance against pathogen attack. These mutants highlight the
common nexus between biotic stress response and chloroplast
ROS based on two observations (Karpinski et al., 2003; Bechtold
et al., 2005). First, the formation of lesions in lesion mimic
mutants are light-dependent (Brodersen et al., 2002). Second,
the functional characterization of these mutants highlights genes
implicated in chlorophyll biosynthesis or degradation (Ishikawa
et al., 2001; Mach et al., 2001; Pružinská et al., 2003; Wang F.
et al., 2016; Lv et al., 2019). Additionally, the change in expression
profiles of genes implicated in chlorophyll biosynthesis also leads
to light-dependent lesion mimic phenotypes, eventually resulting
in enhanced disease tolerance (Molina et al., 1999; Lv et al.,
2019). This may be due to the formation of ROS generated
by the effect of light on chlorophyll intermediates acting as
photosensitizers. The electrons are excited by the absorption of
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FIGURE 4 | SA/JA mediated cross-talk in light signaling and defense responses against different pathogenic agents: various biotic agents activate different

mechanisms. Reactive oxygen species (ROS), salicylic acid (SA), and jasmonic acid (JA).

light energy by photosensitizers. The ROS thus produced acts
as signals for pathogen resistance responses. Hence, it is evident
that light-derived ROS from either free photosensitive pigments
or photosynthetic light-harvesting complexes can influence plant
defense signaling.

Plants have decentralized well-defined mechanisms for light-
derived ROS in tissues subjected to biotic stress. For instance,
the A. thaliana chlorophyllase 1 (AtCHL1) gene is implicated
in chlorophyll degradation and removal of photosensitive
porphyrin ring intermediates. AtCHL1 functions to preclude
ROS accumulation due to damaged chloroplast (Kariola et al.,
2005). This particular gene has been established to be
triggered upon necrotrophic infections (Kariola et al., 2005).
Plants with impaired AtCHL1 gene display enhanced tolerance
to Erwinia carotovora (necrotrophic bacterial pathogen) but
reduced tolerance to Alternaria brassicicola (a fungal necrotroph)
(Kariola et al., 2005). SA-dependent pathway is involved in
E. carotovora resistance, while JA-dependent pathway is involved
in A. brassicicola resistance. SA- and JA-mediated plant defense
responses are antagonistic in nature (Figure 4). As such, AtCHL1
mediates the equilibrium between SA- and JA-dependent plant–
pathogen resistance pathways by adjusting ROS accumulation
from chlorophyll metabolites. Similarly, the A. thaliana ACD2
gene decreases the accumulation of photosensitizers. This results
in an increased resistance to P. syringae (Mach et al., 2001). It
is also noteworthy that several plants generate photosensitizers,
which directly play a prominent role in imparting biotic
stress tolerance. Phototoxins produce ROS in the presence
of white or UV light that directly prevents herbivore or
pathogen infection (Downum, 1992; Flors and Nonell, 2006).
On the contrary, few fungal pathogens themselves generate
photosensitive toxins (namely, cercosporin) leading to plant
cell necrosis (Daub and Ehrenshaft, 2000). An entire range of
various levels of interaction amongst light, dark, and biotic

stress constitutes induced defenses in plants. These levels of
interaction include ROS generation, phytochrome signaling,
and activation of biotic stress-related genes. Taken together,
different biotic agents deploy overlapping signaling pathways
with ROS as the key modulator molecule (Figure 4). Thus,
comprehending the significance and pathways involved in these
overlapping responses may be useful in deciphering the overall
involvement of light/dark alterations on biotic stress tolerance
and resistance mechanisms.

Perception of Light With Respect to
Shade and R:FR Exposures; and
Regulation of Downstream
Light-Dependent Signaling Pathways
The second key mechanism by which light/dark alterations
regulate biotic stress responses engages direct light-responsive
signaling pathways. The Genoud et al. (1998) has elegantly
unraveled this mechanism in A. thaliana. The group has
identified psi2 light signaling defective mutant that develops
light-dependent random necrotic lesions and has an increased
expression of PR1 gene (Genoud et al., 1998). Further
characterization of psi2 mutant reveals that the biotic stress
responses are governed by light at various levels. For example,
PSI2 regulates the responses associated with phytochrome.
Moreover, PHYA and PHYB are essential for PR gene expression
and light-dependent HR lesion formation (Genoud et al.,
1998, 2002). Hence, the phytochrome mutants have decreased
resistance to P. syringae, while the psi2 mutants have enhanced
resistance to P. syringae. This is a clear evidence where light
signals play a pivotal role in the regulation of induced biotic
resistance. However, why and how phytochrome signaling
modulate biotic stress responses still remain obscure. On the
contrary, the dark conditions or high light stress also operates

Frontiers in Plant Science | www.frontiersin.org 10 March 2021 | Volume 12 | Article 631810

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Iqbal et al. Plant Responses to Dark/Light

molecular pathways that are common with pathogen responses
(Mackerness et al., 1999; Rossel et al., 2002; Izaguirre et al.,
2003; Kimura et al., 2003; Stratmann, 2003; Zhao et al., 2014).
Enormous literature exists on the physiological basis of light
dependency in relation to biotic defense, but the in-depth basis
of dark/light effect on induced resistance remains elusive. A vital
question, therefore, is to ascertain the mechanistic details for
such observations. Undoubtedly, light is indispensable for plant
growth and development, meaning that there is no unambiguous
explanation to connect various observations across distinctive
scales of organization. However, there are two modules that can
be taken into account: first, resistance, which decreases the rigor
of pathogen attack by restricting the activity of pathogen; and
second, tolerance, which decreases the adverse effects of pathogen
attack on the host plant. The demarcation between resistance and
tolerance is critical for comprehension of interactionmechanisms
between dark/light and plant defense.

In the field, the shade affects the cumulative radiation balance
with plausible influence on biotic environment of the host.
The temperature of the surrounding air and organisms is
usually lower in shade, influencing a wide range of biological
processes including biotic stress. For instance, tree canopies
influence the species richness of insectivorous birds that affects
herbivory (Strong et al., 2000; Van Bael and Brawn, 2005; Nell
et al., 2018). Similarly, canopy shade has varying effects on
photosynthetically active radiation (PAR) and UV wavelength
(Grant and Heisler, 2001; Heisler et al., 2003; Grant et al.,
2005). Additionally, the shade also results in either infestation
by many pathogens or protection from the others. Pathogenic
infestation is more stern in shade, for example, anthracnose
(C. gloeosporioides) of Euonymus fortunei (Ningen et al., 2005),
powdery mildew (Microsphaera alphitoides) on oak (Quercus
petraea) (Kelly, 2002), and coffee rust (Hemileia vastatrix) (Soto-
Pinto et al., 2002). Nonetheless, very often, plants develop a
symbiotic relationship with beneficial microbes to enhance their
defense responses and obtain nutrients under deficit conditions.
The intense interplay between light signaling and defense
mechanisms against beneficial and harmful microorganisms
might be imperative for plant growth on high planting densities.
Taking into account the beneficial interactions, the best-studied
example is the nitrogen-fixing rhizobium bacteria and the
leguminous plants (Ferguson et al., 2010). Rhizobium colonizes
plant roots to form nodules that fix atmospheric nitrogen into
mineral nitrogen for efficient usage by the leguminous plants.
In return, the bacteria get carbon sources from the plant, which
is essential for their survival (Ferguson et al., 2010). The Lotus
japonicus PhyB mutant displays a shade-avoidance phenotype
(similar to Arabidopsis mutant) with lesser number of root
nodules in contrast to control plants (Suzuki et al., 2011; Sessa
et al., 2018). Experimental validation reveals that the nodulation
is decreased in grafted plants with phyB shoots and control
roots. This is indicative of the fact that the mutations in the
shoot tissue decrease nodulation in the roots (Suzuki et al.,
2011; Shigeyama et al., 2012). The decreased nodulation in phyB
mutants can be linked to downregulation of JA-responsive gene
expression leading to lower JA levels in roots (Suzuki et al.,
2011; Shigeyama et al., 2012). Next, taking into account the

impact of R:FR exposures, the plant defense mechanisms against
herbivores and pathogens are downregulated under low R:FR
conditions (Ballaré, 2014; Ballaré and Austin, 2019; Figure 5).
This probably implies that the interplay between beneficial
interactions and light signaling is species-specific. In yet another
example, plants establish a symbiotic relationship with arbuscular
mycorrhizal fungi (AMF). These phosphate-acquiring fungi form
“arbuscules” to enable phosphate and nitrogen uptake in plants,
and in return, they derive carbon sources from plants (Keymer
et al., 2017). The exposure of low R:FR ratios to L. japonicus
roots decreases hyphal development of the AMF Rhizophagus
irregularis. This is tightly regulated by the downregulation of JA-
responsive genes resulting in decreased JA levels in root exudates
(Nagata et al., 2015, 2016). At high plant density area, symbiotic
relationship with rhizobium and AMF may be under scrutiny
during low R:FR light conditions. However, the relationship
between plant–microbe beneficial interactions and light signaling
is still unclear and requires further investigation to improve plant
growth and immunity.

Plants possess a continuous ever-evolving armor of defense
mechanisms to prevent the colonization of harmful pathogens
(Jones and Dangl, 2006; Nishad et al., 2020). Plants identify
the signatures from the impeding pathogens and microbes via
PAMPs, HAMPs, ETI, and PTI (Zipfel, 2014; Cui et al., 2015;
Peng et al., 2018) (see section “Biotic Stress and Plant Defense
Responses”). As already discussed, the antagonistic relationship
between JA and SA modulates defense responses against
biotrophic and necrotrophic pathogens (Glazebrook, 2005). JA
is the central regulatory phytohormone coordinating the defense
responses against pathogens and insects (Turner et al., 2002;
Santino et al., 2013; Yang et al., 2019). Initial studies indicated that
plants exposed to low R:FR or with impaired PHYB gene function
exhibit reduced resistance to herbivores that is associated with
declined sensitivity to JA (McGuire and Agrawal, 2005; Izaguirre
et al., 2006; Moreno et al., 2009). Upon herbivory attack, volatile
organic compound (VOC) emissions and methyl jasmonate
(MeJA)-associated gene expression decreases in A. thaliana
under low R:FR exposures (Kegge et al., 2013; Figure 5). A similar
observation has been reported in barley where low R:FR exposure
modifies constitutive VOC emissions to regulate the responses
associated with plant–plant interactions (Kegge et al., 2015). This
is further confirmed in Solanum (Cortés et al., 2016). In tomato,
a low R:FR ratio affects MeJA-mediated VOC composition. This
in turn influences the indirect defense response by enticing
the insects (Cortés et al., 2016). Additionally, an intricate
regulation of light signaling pathways maintains a balance of
the constructive or destructive effects of light on plant growth
and immunity. In contrast to the above observations, under low
R:FR conditions, Geranium robertianum (a shade adapted forest
understory plant) does not display downregulation of its JA-
related plant defenses (Gommers et al., 2017). It also exhibits
a slight increase in resistance against B. cinerea. Transcriptome
analysis of G. robertianum and Geranium pyrenaicum (a shade-
avoiding plant) reveals a number of genes with an opposite
mode of regulation upon encountering shade conditions. Under
low R:FR conditions, receptors like kinases FER and THE1
(responsible for shade induced elongation growth) are induced
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FIGURE 5 | Low R:FR modulation of plant immunity: low R:FR makes the plants more susceptible to pathogens and insects. Low R:FR exposure modulates VOC

compositions, exposing plants to herbivory attack. Also, the formation of nodules and arbuscules is impacted by R:FR ratios. Arbuscular mycorrhizal fungi (AMF),

volatile organic compounds (VOCs).

in G. pyrenaicum. FER and THE1 may be directly involved in
regulating plant immunity and growth under shade. Conversely,
in G. robertianum, exposure to low R:FR ratios leads to
suppression of JAZ genes, which confer immunity under shade
conditions. This establishes a classical example of the plasticity
of light signaling in modulating plant growth and defense
responses (Hématy et al., 2007; Kessler et al., 2010; Stegmann
et al., 2017). Phenotypic and transcriptomic studies unravel
a link between SAS- and SA-based defense components in
shade-unresponsive Arabidopsis mutants (Nozue et al., 2018).
JA, SA, and auxin-related signaling pathways are stimulated
under low R:FR conditions and contribute strongly toward
SAS (Nozue et al., 2018). Prolonged photoperiods positively
regulate SA production, SA-related defenses, systemic immunity,
and autoimmunity in lesion-mimic mutants (Griebel and Zeier,
2008; Gangappa and Kumar, 2017). Shade-avoidance mechanism
under low light conditions restrains defense via a number of
mechanisms (Cipollini, 2004). The swing in the distribution
of resources to growth under shade may compete with the
allocation of resources to plant defense. There might also be an
intersection between light signaling and defense signaling. Under
shade, stem elongation is regulated by auxin and gibberellins
(Vandenbussche and Van Der Straeten, 2004). Auxin is known

to interact with defense signaling pathways via a cross-wired
mesh involving indole acetic acid (IAA). IAA also decreases JA-
regulated generation of defense compounds (Baldwin et al., 1997;
Yang et al., 2019). Contrariwise, the expression and concentration
of auxins are altered upon wounding and herbivory (Cheong
et al., 2002; Schmelz et al., 2003; Machado et al., 2016). Even
the stiffening of the cell wall is an antagonistic mechanism
between plant defense and shade (Cipollini, 2004), where
gibberellin causes cell wall loosening resulting in cell expansion
in shade. This can be attributed as an imperative component
of plant defense.

Extensive research has been devoted to the mechanistic details
as to how phytochromes regulate JA responses in relation to
biotic defense responses (Hou et al., 2010; Ballaré, 2014; Leone
et al., 2014; Pieterse et al., 2014; Campos et al., 2016). The
described mechanism involves the interaction between DELLA
proteins (growth repressor) and JAZ proteins (negative defense
regulator) (Ballaré, 2014; Pieterse et al., 2014). MYC2 has been
very well implicated to activate downstream defense responses
(Hou et al., 2010; Verhage et al., 2012; Woldemariam et al., 2013;
Liu et al., 2019). The DELLA proteins are degraded to sequester
JAZ, resulting in inhibition of MYC2 TF (Hou et al., 2010). JAZ10
protein has been observed to be highly stable in A. thaliana
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phyB mutant. This could probably be due to the degradation
associated with DELLA proteins (Leone et al., 2014). Again,
the lower sensitivity of the jaz10 phyB double mutant than the
phyB mutant to B. cinerea highlights the importance of JAZ10
in relation to light signaling and biotic stress responses (Cerrudo
et al., 2017). Particularly, inactivation of PHYB suppresses JA-
related plant defense responses exclusive of shade-avoiding
morphological changes (Moreno et al., 2009). In contrast,
the JAZ absence reinforces JA-related plant defenses without
compromising plant growth in phyB (Campos et al., 2016).
Thus, plant defense activation or suppression is not dependent
upon growth promotion or inhibition. This is suggestive of
the fact that growth, light signaling, and defense trade-off are
effective adaptive responses. Both JA- and SA-dependent defense
responses are downregulated under low R:FR conditions. This
also overlaps with NPR1 phosphorylation inhibition leading to
reduced defense induction (de Wit et al., 2013). Also, for JA-
related defense responses, prolonged photoperiods require the
involvement of PHYA, cryptochromes, DELLAs, and the JA-
regulating TF MYC2 (Cagnola et al., 2018). Conversely, short
photoperiods result in PIF4-mediated growth elevation and
immunity suppression. This is in concert with the fact that
the elevated PIF4 accumulation and activation in the dark are
dependent upon COP1/DET1 (Gangappa et al., 2017; Gangappa
and Kumar, 2017). The COP1/DET1–PIF4 complex is also
essential for autoimmunity suppression at high temperatures in
snc1 and cpr5 mutants (Gangappa and Kumar, 2017). These
studies are indicative of crucial involvement of the COP1/DET1-
PIF module in prioritizing growth over plant immunity.

In addition, BR signaling apart from being involved in growth
responses also plays a vital role in biotic stress responses (Planas-
Riverola et al., 2019). BR signaling is linked with flagellin (a
well-known PAMP) recognition upon pathogen attack. This
is accomplished by the interaction between the BR receptor
kinase BRI1 and its coreceptor BAK1 (Chinchilla et al., 2007).
BR inhibits the defense machinery of plants by inducing
Brassinazole-resistant 1 (BZR1) gene (Lozano-Durán et al.,
2013; Lozano-Durán and Zipfel, 2015). BZR1 is an important
component of the BAP/D module, which is very well implicated
in plant growth and development (Bouré et al., 2019). Under
low R:FR conditions, BR responses may be involved in growth
via the BAP/D module that can supersede flagellin-mediated
plant defense response. It is also pertinent to mention that low
R:FR affects the primary metabolism of plants (Yang et al., 2016;
de Wit et al., 2018). Upon infecting plants, pathogens target
carbohydrates as the key source of carbon for their survival. The
enhanced susceptibility under low R:FR or in the phytochrome
mutants may be due to higher accessibility of carbohydrates by
the pathogens in plant tissues. Secondary metabolite production
and defense-related gene expression (viz. MAPK and PR
genes) are usually correlated with high concentrations of sugar
accumulation in plant tissues (Bolouri Moghaddam and Van
Den Ende, 2012). Reduced plant defense has been observed for
B. cinerea under low R:FR conditions (Cargnel et al., 2014). This
obstructed plant defense is a result of declined defense-related
gene expression and metabolite production (Cargnel et al., 2014).
Thus, low R:FR exposure declines defense-related pathways and

enriches soluble sugars in plants, eventually inducing lesion
formation in infected plant tissue (Figure 5). Taken together,
plant growth responses to shade conditions are intricately cross-
wired with the immune response generated by the plants upon
pathogen exposure.

CONCLUSION AND FUTURE
PROSPECTS

Exposure of plants to a combination of adverse environmental
cues such as biotic stresses and light fluctuations coerces the
efforts to meet enormous food demand. Despite the massive
usage of pesticides and insecticides in the last few decades, the
overall crop losses due to pathogen attack have not been reduced
significantly. Monitoring infection time, plant growth, and other
important parameters such as light/dark conditions can result
in a better understanding of plant defense toward pathogens,
particularly when extrapolated to field conditions. The present
review provides an elaborate information on how plants perceive
and respond to multiple dark/light alterations and biotic stresses.
Light and dark conditions together or independently modulate
a diverse range of signaling pathways to control pivotal plant
growth and defense regulators. The function of multi-faceted
dark/light signaling intermediates such as COP, CRY, PHY, and
PIF has been extensively covered to highlight the impact of
dark and light modulations on plant biotic defense responses.
Even though significant efforts have been made to deep dive
into the plant–microbe interactions and their association with
light signaling, the mechanistic details encircling this complex
intersection are obscure. Thus, the basic research to comprehend
the mechanisms involved in the integrated circuitry of plant
immunity and dark/light interactions, at both biological and
ecological scales, will pave the way to overcome the limitations
associated with crop losses globally.
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