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Introduction
�

Almost ten years have passed since our first re-
view “Plant-Derived Leading Compounds for
Chemotherapy of Human Immunodefiency Virus
(HIV) Infection” [1]. Much research effort has fo-
cused on the prevention and therapy of this in-
fection resulting in AIDS, and despite considera-
ble progress being made, still no vaccine that pre-
vents infection or therapy that cures the disease
and eliminates all infectious particles is yet avail-
able. Nevertheless, research efforts have been
tremendous and a keyword search on “HIV” in
the ISI Web of KnowledgeSM yielded at this time
almost 90,000 published papers in the time
frame 1998 – 2007. In addition to biotechnologi-
cal techniques, molecular modelling, etc., exploi-
tation of natural resources to find new lead com-
pounds against HIV is still a valuable approach. In
Planta Medica alone, more than 40 papers on HIV
have been published since 1998, including a re-
view paper on HIV reverse transcriptase inhibi-
tors of natural origin [2]. The high number of ci-
tations of the previous review on anti-HIV com-
pounds from plants published in 1998 in Planta
Medica indicates the importance of natural prod-
ucts research in the battle against HIV. Therefore,
we decided to write an update of our previous re-
view paper, this time covering the time span
1998 – 2007. Part of this material was also includ-
ed in our review paper published in 2003 on

plant substances as antiviral agents, focusing on
HIV as well as other viruses, covering the period
1997– 2001 [3], and in our review published in
2004 focusing on mechanisms of action of plant
substances as anti-HIV agents [4].
HIV, the causative agent of AIDS, is a member of
the lentivirus subfamily of retroviruses. From
the two known HIV-types, HIV-1 is the most
pathogenic. Antiretroviral drugs have trans-
formed it from a rapid lethal infection into a
chronic condition that can be controlled for
many years through combination therapies with
different classes of antiviral drugs, also known as
highly active antiretroviral therapy (HAART) [5].
Anti-HIV drugs are classified into different
groups according to their activity on the replica-
tive cycle of HIV, which can be roughly divided
into ten different steps [6]. These are virus-cell
adsorption, virus-cell fusion, uncoating, reverse
transcription, integration, DNA replication, tran-
scription, translation, budding (assembly/re-
lease), and maturation. There are currently 24
compounds approved for the treatment of HIV:
a) seven nucleoside reverse transcriptase inhibi-
tors or NRTIs (zidovudine or AZT, didanosine or
ddI, zalcitabine or ddC, stavudine or d4T, lamivu-
dine or 3TC, abacavir or ABC, and emtricitabine);
b) one nucleotide reverse transcriptase inhibitor
(tenofovir disoproxil fumarate); c) four non-nu-
cleoside reverse transcriptase inhibitors or
NNRTIs (nevirapine, delavirdine, efavirenz, and
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etravirine); d) ten HIV protease inhibitors or PIs (saquinavir, rito-
navir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fo-
samprenavir, tipranavir and darunavir); e) a fusion inhibitor (en-
fuvirtide); f) an entry inhibitor – CCR5 co-receptor antagonist
(maraviroc); and g) an HIV integrase strand transfer inhibitor
(raltegravir) [7]. NRTIs and NNRTIs inhibit both reverse tran-
scriptases, but they are targeted at the substrate (dNTP) and al-
losteric non-substrate binding sites, respectively. PIs bind to the
active site of the viral protease enzyme, preventing the process-
ing of viral proteins into functional forms. Viral particles are still
produced when the protease is inhibited, but these particles are
not infectious. Integrase inhibitors block the action of integrase,
i. e., an enzyme that catalyzes the integration of viral DNA into
host DNA. Besides viral enzymes, the viral entry is an attractive
therapeutic target for HIV. A fusion inhibitor is a synthetic pep-
tide that blocks viral/cellular membrane fusion triggered by
gp41 and thus suppresses viral proliferation, while the entry in-
hibitor maraviroc blocks the chemokine receptor CCR5 which
HIV uses as a coreceptor to bind and enter a human helper T cell.
Due to the rapid emergence of drug-resistant strains, new anti-
viral therapeutics which act by other mechanisms are highly de-
sirable for the treatment of HIV infections. Taking into account
the enormous number and the amazing structural diversity of
the currently available plant constituents, the plant kingdom
should be further explored as a source of new and diverse antivi-
ral agents. In this review, only those compounds that have been
structurally characterised and possess a significant antiviral ac-
tivity will be discussed. The latter means IC50 values lower than
25 μM or μg/mL [8]. An intrinsic component of the antiviral testing
is the determination of a selectivity index (SI) towards the sup-
porting host cell. The SI refers to the ratio of the maximum drug
concentration causing either 50% or 90% inhibition of growth of
normal cells (CC50, CC90) and the minimum drug concentration at
which 50% or 90% of the virus is inhibited (IC50, IC90). Reports of
antiviral activity of extracts/compounds even at very low concen-
trations but without SI data are of limited value [8].

Anti-HIV Plant-Derived Agents
�

Alkaloids
In our first review the naphthylisoquinoline alkaloid dimers, mi-
chellamines A (1), B (2) and C (3), from the tropical liana
Ancistrocladus korupensis were discussed. They act in a complex
manner by at least two antiviral mechanisms, inhibition of re-
verse transcriptase and inhibition of HIV-induced cellular fu-
sion. In addition, the michellamines were found to inhibit rat
brain protein kinase C with IC50 values in the 15 – 35 μM range
[9]. From the same plant michellamines D – F were obtained, ex-
hibiting in vitro HIV inhibitory activity comparable to michella-
mine B [10]. Michellamine B has undergone extensive preclinical
evaluation as a potential anti-AIDS drug, but has been consid-
ered too toxic for advancement to clinical trials. Therefore, syn-
thetic efforts have been made in order to prepare less toxic and
more potent derivatives. Jozimine C (4) was the synthetically
prepared dimer of dioncophylline C, showing a close structural
similarity with the michellamines (●� Fig. 1). Its anti-HIV activi-
ty (HIV-1) was nearly as good as michellamine B, but it also
showed a distinct cytotoxicity, limiting its therapeutic range
[11]. Octadehydromichellamine (5), a fully dehydrogenated
structural analogue, was the first synthetic michellamine with-
out centrochirality. It showed some anti-HIV activity (HIV-1)

(IC50 = 29 μM) comparable to michellamine B, but with cytotox-
icity at CC50 = 104 μM [12].
Some nitrogen-containing sugar analogues reported in our first
review, such as castanospermine and 1-deoxynojirimycin, were
capable of inhibiting N-linked oligosaccharide processing, and
inhibited HIV replication [13], [14]. The anti-HIV potency was
found to be correlated with the α-glucosidase I inhibitory activ-
ity, leading to the hypothesis that the anti-HIV activity was relat-
ed to the inhibition of α-glucosidase I [15]. However, a series of
natural epimers of α-homonojirimycin and N-alkylated deriva-
tives were isolated or synthesised, and it was observed that α-
homonojirimycin (6) and N-methyl-α-homonojirimycin (7)
were more potent inhibitors of α-glucosidase I than 1-deoxynoj-
irimycin or castanospermine. Nevertheless, only the two latter
compounds showed a significant anti-HIV-1 activity [16], sug-
gesting that the HIV-inhibitory activity may be due to other fac-
tors than inhibition of α-glucosidase I.
Cepharantine (8) is a biscoclaurine alkaloid, isolated from
Stephania cepharantha. It has been shown to possess anti-in-
flammatory, antiallergic, and immunomodulatory activities in
vivo [17], [18]. Its effects on mammalian cells, and the implica-
tions for cancer, shock, and inflammatory diseases have recently
been reviewed [19]. It is known that several inflammatory cyto-
kines affect the progression and pathogenesis of HIV-1 infection
[20]. Therefore, the inhibitory effects of cepharanthine on TNF-α
and phorbol 12-myristate-13-acetate (PMA)-induced HIV-1 repli-
cation in chronically infected monocytic and T lymphocytic cell
lines were evaluated. Cepharanthine was a highly potent inhibitor
of HIV-1 in the monocytic cell line, but not in the T lymphocytic
cell line [21]. It also suppressed HIV-1 long terminal repeat (LTR)-
driven gene expression through inhibition of NF-κB activation.
The related bisbenzylisoquinoline alkaloid cycleanine (9) was
evaluated against HIV-1 and HIV-2. It showed activity against
HIV-2 with an IC50 of 1.83 μg/mL but was at least 10-fold less ac-
tive against HIV-1. The selectivity index of cycleanine against
HIV-2 was 9, with a CC50 of 15.68 μg/mL [22].
Two new sesquiterpene pyridine alkaloids, triptonines A (10)
and B (11), were isolated from the methanolic extract of the
root bark of Tripterygium hypoglaucum [23]. Their IC50 values
against HIV replication were 2.54 and < 0.10 μg/mL, respectively,
with a selectivity index (SI) of > 39.4 and > 1000.
The β-carboline skeleton was found to be present in various anti-
HIV alkaloids. The well-known β-carboline alkaloid harman (12)
isolated from Symplocos setchuensis, indigenous in southern Chi-
na, was found to inhibit HIV replication (IC50 = 10.7 μM, SI = 10.4)
[24]. Substitution of the indole nitrogen with 1-methyl, 7-me-
thoxy, or an alkyl group increased its activity. The most active
derivative was N-butylharmine (13) (IC50 = 0.037 μM, SI = 210).
The new carbazole alkaloid siamenol (14) was isolated from an
extract of Murraya siamensis. It inhibited HIV with an IC50 value
of 2.6 μg/mL, reaching 50 –60 % maximum protection in the XTT-
tetrazolium assay, and it was more active than the related β-car-
boline alkaloid mahanimbilol isolated from the same source
[25]. Anti-HIV carbazoles were also obtained from Clausena
excavata, used in Thai folk medicine. O-Methylmukonal (15), 3-
formyl-2,7-dimethoxycarbazole (16) and clauszoline J (17) dis-
played anti-HIV-1 activity in a syncytal assay with IC50 values of
12, 29.1 and 34.2 μM, respectively, and with a selectivity index of
56.7, 8.0 and 1.6, respectively [26]. The β-carboline derivative 5-
methoxycanthinone (18), isolated from Leitneria floridana, a rare
tree or shrub restricted to scattered wet sites in the southern At-
lantic and Gulf coastal plains of the United States, was a potent
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anti-HIV agent (IC50 0.26 μg/mL; SI > 391) [27]. Also the canthin-
4-one drymaritin (19), obtained from Drymaria diandra from
Taiwan, showed anti-HIV activity (IC50 0.69 μg/mL; SI 20.6), indi-
cating the potential of canthinones as anti-HIV leads [28].
The Iboga alkaloid congener 18-methoxycoronaridine (20), for
which in vitro leishmanicidal and in vivo anti-addiction proper-
ties had already been described, also inhibited HIV-1 replication
in human peripheral blood mononuclear cells and in monocyte-
derived macrophages [29]. According to the test system, IC50 val-
ues in the range of 9.5 to 23 μM were obtained, with an SI of 14.5
to 34.5. In this concentration range, 18-methoxycoronaridine
moderately reduced the polymerase activity of recombinant
HIV-1 reverse transcriptase (IC50 = 69.4 μM). The antileishmanial
activity may be useful for treating HIV-1 infected patients coin-
fected with Leishmania.
The antiviral properties of Amaryllidaceae alkaloids such as ly-
corine (21) had already been reported many years ago [30].
More recently, anti-HIV activity was observed for lycorine, ho-
molycorine, trisphaeridine and haemanthamine. IC50 values in
the range of 0.4 – 7.3 μg/mL were obtained, but the cytotoxicities
were similar, leading to a low SI for all alkaloids (1.3 – 1.9) [31].
Remarkably, also a very simple compound such as indole-3-car-
boxylic acid showed anti-HIV activity, with an IC50 of 2.41 μg/mL
and an SI of 6.79 [32].

Carbohydrates
The HIV regulatory gene tat is essential for viral replication. The
tat protein is released from HIV-1 infected cells, enters new cells

in an active form, and stimulates the transcriptional activity of
HIV-LTR [33]. Inhibition of tat activity by pentosan polysulphate
(22) [34] and heparin (23) [35] leads to anti-HIV-1 activity; se-
lective 2-O-, 6-O-, or N-desulphation of heparin prevented the
interaction with tat (●� Fig. 2). Sulphated dextrin derivatives
were also able to inhibit HIV-1 tat, whereas unsulphated dextrin
did not [36].
Sulphated polysaccharides have already been known for a long
time as potent inhibitors of HIV-1 and -2 replication in vitro
[37], [38]. They are characterised by the following properties:
(a) broad activity against enveloped viruses, including HIV and
HSV; (2) low induction of viral resistance in cell cultures; (3) in-
hibition of virus adsorption to the cells; and (4) inhibition of syn-
cytium (giant cell) formation between HIV-infected and normal
CD4+ T cells. The latter point may be important for the depletion
of CD4+ T cells in AIDS patients. The anti-HIV activity of sulphated
polysaccharides is due to shielding off the positively charged ami-
no acid residues in the V3 loop of the viral envelope glycoprotein
gp120 [38]. In this way, viral attachment to cell surface heparan
sulphate is prevented. This is a primary binding site, followed by
a more specific binding to the CD4 receptor. Resistance of HIV-1
to dextran sulphate (24) seemed to be located in the env genome
of HIV, and specifically in the V3 loop domain [39].
More than 15 years ago, the in vivo activity of dextran sulphate
against HIV was found to be disappointing, both after oral or in-
travenous administration [40], [41]. This was due to its poor oral
bioavailability, its short plasma half-life, partial inactivation by
plasma components, and poor ability to penetrate infected cells

Fig. 1 Alkaloids.
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[37]. However, it was reported that dextran sulphate was absorb-
ed rapidly in humans after oral administration and could be found
in plasma, lymphocytes, and urine [42]. In an open phase I/II dose-
escalation study in which six AIDS patients were treated with in-
traperitoneally administered dextrin 2-sulphate, a significant de-
crease in viral load was observed [43]. The question if sulphated
polysaccharides can be useful anti-HIV drugs after oral or paren-
teral administration, or as a gel formulation (e.g., on condoms) in
the prevention of sexually transmitted HIV remains a matter of
debate [44]. The development of new drug delivery systems such
as liposomes may improve the therapeutic efficacy of sulphated
polysaccharides.
A sulphated polysaccharide with fucose as the main component
was isolated from the water extract of a brown alga Sargassum
horneri. It showed potent antiviral activity against Herpes sim-
plex virus type 1, human cytomegalovirus and HIV-1 [45].
Time-of-addition experiments suggested that it inhibited not
only the initial stages of viral infection, but also intracellular rep-
lication stages. The same observations were made for rhamnan
sulphate, a natural sulphated polysaccharide isolated from the
seaweed Monostroma latissimum, composed of large amounts
of 1,2- and 1,3-linked α-L-rhamnose residues with small
amounts of their branching residues, which was active against
the same range of viruses. Rhamnan sulphate and AZT acted syn-
ergistically in their anti-HIV effect [46]. The gametic, carpospor-
ic and tetrasporic reproductive stages of the Mediterranean red
alga Asparagopsis armata yielded sulphated galactans with a
galactose:3,6-anhydrogalactose:sulphates molar ratio of
1 :0.01: 1.23, 1 :0.04 :0.47, and 1 :0.01 :1.13, respectively. The
carposporic polysaccharide with the lowest sulphate ratio was
ineffective against HIV-1 replication up to 100 μg/mL, in contrast
to the other galactans which inhibited HIV-1 replication at 10
and 8 μg/mL, as measured by HIV-induced syncytium formation
and reverse transcriptase activity in cell-free culture superna-
tant [47]. Calcium spirulan, a sulphated polysaccharide from
Arthrospira platensis (formerly Spirulina platensis), consists
mainly of two types of disaccharide repeating units, O-hexuro-
nosylrhamnose and O-rhamnosyl-3-O-methylrhamnose. A
broad spectrum of antiviral activity of calcium spirulan and spir-
ulan-like substances was reported, including herpes viruses,
paramyxo viruses, influenza viruses, and HIV-1. With regard to
herpes viruses, antiviral effects were most pronounced after pre-
incubation prior to virus addition, indicating virus entry as the
primary target. However, in the case of human cytomegalovirus,

it was clearly demonstrated that intracellular steps also contrib-
uted to the antiviral effect. In the case of HIV-1, inhibition occur-
red at a stage later than viral entry [48].

Coumarins
A screening program by the U.S. National Cancer Institute (NCI)
has led to the isolation of 4-propyldipyranocoumarins or calano-
lides from Calophyllum lanigerum, a tropical rainforest tree [49].
(+)-Calanolide A (25) was the most active against HIV-1 and was
classified as an NNRTI, but its HIV sensitivity/resistance profile is
different from other NNRTIs (●� Fig. 3). Other Calophyllum cou-

Fig. 2 Carbohydrates.

Fig. 3 Coumarins.
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marins could be classified into three groups, based on the C-4
substituent of the lactone ring: calanolides with an n-propyl
group, inophyllums having a phenyl group and cordatolides
with a methyl group in this position [50]. The methyl groups at
C-10 and C-11, and a free hydroxy group at C-12 are important
for the anti-HIV-1 activity [51], [52]. In calanolides, the configu-
ration of C-12 should be S, but can be R or S in inophyllums [53].
Cordatolides A (26) and B (27) were about 50 times less active
against HIV-1 reverse transcriptase than (+)-calanolide A, indi-
cating that the nature of C-4 substitution is important [54].
(+)-Calanolide A has been extensively studied because of its
unique sensitivity/resistance profile [55]; [56], its synergistic ef-
fect in combination with other anti-HIV drugs [57] and its phar-
macokinetic profile [58], [59], [60], [61], [62]. The interaction of
NNRTIs at the hydrophobic non-nucleoside binding site of HIV-1
reverse transcriptase is highly specific. A single amino acid
change in the NNRTI active site drastically changes the anti-
HIV-1 activity of these NNRTIs. (+)-Calanolide A and nevirapine
exhibited different activities against Y181C- and Y188H-mutat-
ed reverse transcriptase. Both compounds bind to reverse tran-
scriptase in the NNRTI common binding site, but in a mechanis-
tically different fashion. (+)-Calanolide A enhanced anti-HIV-1
activity against viruses with Y181C mutation, but the Y188 H
substitution in reverse transcriptase resulted in about 30-fold
resistance. In contrast, Y181C substitution in reverse transcrip-
tase resulted in about 90-fold resistance to nevirapine, while
Y188 H substitution did not decrease the sensitivity to nevira-
pine at all [55].
(–)-Calanolide B (costatolide) (28) and (–)-dihydrocalanolide B
(dihydrocostatolide) (29) were similar to (+)-calanolide A with
regard to their sensitivity/resistance profile for viruses with
Y188 H or Y181C amino acid changes in their reverse transcrip-
tase [56]. Calanolides act synergistically in combination with
lamivudine and nelfinavir in vitro [57]. They represent a distinct
subgroup of the NNRTI family and may be useful in combination
therapy with other anti-HIV drugs.
The in vivo anti-HIV-1 efficacy of (+)-calanolide A was demon-
strated in a hollow fibre mouse model after oral or parenteral
administration once or twice daily in the subcutaneous site or
the peritoneal cavity [58]. (+)-Calanolide A has been quantified
using a validated HPLC method in rat, dog and human plasma.
It was demonstrated that epimerisation of the 12-OH group of
(+)-calanolide A to its inactive epimer (+)-calanolide B did not
occur after oral administration in humans [59]. The pharmaco-
kinetic profile of (+)-calanolide A and (+)-dihydrocalanolide A
was comparable, but the oral bioavailability of (+)-dihydroca-
lanolide A was markedly better than that of (+)-calanolide A
[60].
The safety and pharmacokinetics of (+)-calanolide A was evalu-
ated in both healthy and HIV-infected volunteers [61]. In HIV-
negative volunteers, the toxicity of (+)-calanolide A after oral ad-
ministration was minimal with dizziness, taste perversion,
headache and nausea as the most reported adverse effects [62].
In HIV-infected volunteers, the Cmax and AUC increased dose-
proportionally, indicating linear pharmacokinetics. No drug ac-
cumulation was observed, although (+)-calanolide A has a rela-
tively long elimination half-life (15 – 20 h). The viral load reduc-
tion was dose-dependent (mean reduction from baseline of –0.81
log10). However, the pharmacokinetic parameters showed high
intrasubject variability and the results of a phase IB study were
rather disappointing. A significant drug-related toxicity (fever,
rash) was observed at the highest dose of 600 mg. A decrease in

CD4 cell count was observed in Asian patients, but not in Cau-
casian and black US patients.
In addition to the calanolides, khellolactone coumarins have also
served as lead compounds for new anti-HIV agents. The original
lead, suksdorfin (30), was obtained from Lomatium sukdorfsii. Its
IC50 against HIV-1 was 2.6 μM. The 3′R,4′R-di-O-(–)-camphano-
yl-(+)-cis-khellolactone (31) had potent anti-HIV activity (IC50

0.4 nM, SI 136,719), and was selected for preclinical studies
[53], [63]. Also thia analogues were found to merit attention as
anti-HIV agents [64].
Also other types of coumarins showed more or less pronounced
anti-HIV activity [26], [32, 63]. Mesuol (32), a naturally occur-
ring 4-phenylcoumarin, was found to inhibit HIV-1 replication
by targeting the NF-κB pathway. It inhibited the phosphoryla-
tion and the transcriptional activity of the NF-κB p65 subunit in
TNFα-stimulated cells [65].

Flavonoids
Flavonoids are capable of inhibiting a wide variety of enzymes,
including several critical enzymes involved in the HIV life cycle,
such as reverse transcriptase [66], viral protease [67], and inte-
grase [68]. Another important enzyme for HIV replication is ca-
sein kinase II, a cAMP-, cGMP-, and Ca2+/phospholipid-inde-
pendent serine/threonine protein kinase that phosphorylates
several HIV-1 structural proteins in HIV-1 infected cells. Flavo-
noids such as quercetin, chrysin, and (–)-epigallocatechin 3-O-
gallate (33) were able to inhibit casein kinase II [69], [70], [71]
(●� Fig. 4). However, the biological significance of casein kinase
II in HIV-1 replication and its inhibition by flavonoids are not
completely understood yet.
The chalcone 2-methoxy-3-methyl-4,6-dihydroxy-5-(3′-hy-
droxy)-cinnamoylbenzaldehyde (34) isolated from the roots of
Desmos spp. showed potent anti-HIV activity (IC50 = 0.022 μg/
mL, SI = 489) [72]. The compound can now be synthesised in
five or six simple steps without any protecting groups [73]. Six
chalcones were isolated from the methanolic extract of
Boesenbergia pandurata rhizomes and tested for anti-HIV-1 pro-
tease activity. Hydroxypanduratin A (35) showed the highest ac-
tivity with an IC50 value of 5.6 μM. An SAR of these chalcones was
summarised as follows: a) a hydroxy moiety at position 4 confer-
red higher activity than a methoxy group; b) prenylation of dihy-
drochalcone was essential for activity; c) hydroxylation at posi-
tion 4′′ reduced activity; and d) introduction of a double bond at
C1′ and C6′ of chalcones gave higher activity [74].
Flavanones bearing an OH group in position C-3′, such as taxifo-
lin (36), inhibited viral protease, reverse transcriptase, CD4/
gp120 interaction by binding to the V3 loop of gp120, and
showed binding to non-specific proteins. However, flavanones
without this OH group, such as aromadendrin (37), were more
specific in their antiviral activity and inhibited the CD4/gp120
interaction, but not viral protease or reverse transcriptase [75].
Another example of non-specific activity is (–)-epigallocatechin
3-O-gallate (33), which exhibited a destructive effect on viral
particles and post-adsorption entry and inhibited viral protease
and reverse transcriptase [76]. Recently, it was stated that (–)-
epigallocatechin 3-O-gallate at concentrations equivalent to
those obtained by the consumption of green tea was able to re-
duce the attachment of gp120 to CD4 by a factor of 10-fold [77].
Thalassiolins A – C are natural flavones isolated from the Carib-
bean sea grass Thalassia testudinum with HIV integrase inhibi-
tion [78]. Thalassiolin A (38) was the most active and inhibited
terminal cleavage and Mg2+-dependent strand transfer reaction
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at low micromolar concentrations. Long-term passage of cells
with thalassiolin A did not lead to resistant viruses.
Some prenylated flavanones and flavones known for their phy-
toestrogenic activity, also showed moderate anti-HIV activity,
but accompanied by a high cytotoxicity and very low selectivity
[79], [80]. Xanthohumol (39), purified from hops (Humulus
lupulus), is a constituent of beer, a major dietary source of preny-
lated flavonoids and a natural product with multiple biofunc-
tions. It was shown to inhibit HIV-1 induced cytopathic effects
(CPE), and production of viral p24 antigen and reverse transcrip-
tase in C8166 lymphocytes at non-cytotoxic concentrations [81].
The IC50 values were, respectively, 0.82, 1.28 and 0.50 μg/mL and
an SI of about 10.8. The target of xanthohumol on HIV-1 may be
on the steps post reverse transcription.
Biflavonoids consisting of two apigenin units, such as robustafla-
vone and hinokiflavone inhibited HIV-1 reverse transcriptase
with IC50 values of 65 and 62 μM, while apigenin itself was about
seven times less active [82]. Five new flavonoid glycosides with
moderate to weak anti-HIV activity were isolated from Ochna

integerrima [83] together with two known biflavonoids, ochna-
flavone 7′′-O-methyl ether (40) and 2′′,3′′-dihydroochnaflavone
7′′-O-methyl ether (41) showing significant anti-HIV-1 activities
in the syncytium assay with IC50 values of 2.0 and 0.9 μg/mL, re-
spectively. Their IC50 values for inhibition of HIV-1 reverse tran-
scriptase are comparable to the syncytium assay values, suggest-
ing reverse transcriptase as a potential mechanism of action.
The correlation between anti-HIV activity of flavonoids and their
structural properties were studied [84], [85], [86]. Electronega-
tivity, LUMO (the energy of the lowest unoccupied molecular or-
bital), and the charges on atoms C-3 and C-7, were the molecular
parameters allowing one to classify the flavonoids into active
and less active anti-HIV agents [84], [86].
Sodium rutin sulphate showed a broad anti-HIV activity against
R5 and X4 viruses with an SI ranging from 197 to 575 [87]. Like
the sulphated polysaccharides, it has a poor oral bioavailability
[88] and a short plasma half-life [89], indicating that it may be
a good candidate for topical microbicide development.

Lignans
The antiviral activity of lignans was reviewed in 1998 by Charl-
ton [90] and was found to be rather moderate for most products
[91], [92], [93], [94]. Mechanisms of action included tubulin
binding, inhibition of reverse transcriptase, integrase, and topo-
isomerase. Whereas podophyllotoxin and its derivatives were
the most prominent representatives of the tubulin-binding lig-
nans, various classes of lignans, such as dibenzylbutyrolactones,
dibenzylbutanes, dibenzylcyclooctadienes, and aryltetralins in-
hibited reverse transcriptase.
Podophyllotoxin (42) is a lignan isolated from the roots of the
North American Podophyllum peltatum Linnaeus, the Tibetan P.
emodi Wall, or the Taiwanese species Podophyllum pleinthum
(●� Fig. 5). Extensive structural modification and anti-tumour
studies of podophyllotoxin have resulted in clinically useful
anti-cancer drugs, such as etoposide and teniposide. In addition,
it is also used as an antiviral agent in treatment of anogenital
warts [3]. Recently, several podophyllotoxin derivatives were
synthesised that showed potent inhibitory effects on HIV-1
[95], [96].
Bioassay-guided fractionation of an ethanolic extract of the
fruits of Schisandra rubriflora led to the isolation of new diben-
zocyclooctadiene lignans, called rubrisandrins A and B, together
with 11 known lignans [97]. (±)-Gomisin M1 (43) was the most
active anti-HIV-1 compound with an IC50 value of less than
0.65 μM and an SI greater than 68. The other lignans possessed
a low anti-HIV-1 activity and a low SI. During an HTS campaign
to find novel HIV integrase inhibitors from natural products, the
MeOH extract from the buds of Eucalyptus globoidea was found
to be active [98]. Bioassay-guided fractionation led to the purifi-
cation of a new lignan, globoidnan A (44) that inhibited the com-
bined 3′ processing and strand transfer activity of HIV integrase
with an IC50 value of 0.64 μM. In contrast to L-chicoric acid, the
diketo acid motif containing globoidnan A showed no activity
in the whole cell anti-HIV assay. Interestingly, despite the pres-
ence of the three bis-catechol moieties, no cytotoxicity was ob-
served at the highest test concentration of 50 μM.
Some dibenzylbutyrolactone-type lignans were isolated from
Phenax angustifolius and the phenaxolactone 2-hydroxy-2-
(3′,4′-dihydroxyphenyl)-methyl-3-(3′′,4′′-dimethoxyphenyl)-
methyl-γ-butyrolactone (45) had an IC50 value of 3 μM and an
SI of 37.3, requiring further SAR studies [99]. Moderate anti-
HIV activity was observed for their glycosyl derivatives at the

Fig. 4 Flavonoids.
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C-4′ position. Preliminary mechanism of action studies sug-
gested inhibition of an early step in the virus replicative cycle.

Phenolics
There has been discussion about the real anti-HIV-1 mechanism
of dicaffeoylquinic acids (DCQAs) and dicaffeoyltartaric acids
(DCTAs). It was suggested that HIV-1 integrase, an enzyme cata-
lysing the insertion of viral DNA into the genome of the host cell,
was their target [100], [101], [102]. In enzymatic assays, DCQAs
such as 3,5-dicaffeoylquinic acid (46), and DCTAs such as L-
chicoric acid (47), showed a ten- to hundred-fold higher prefer-
ence for inhibition of HIV integrase than of HIV reverse tran-

scriptase (●� Fig. 6) [100]. In the series of the bis-catechols, L-
chicoric acid was the most active inhibitor of HIV integrase,
while phenolic acids such as caffeic acid and chlorogenic acid
were not active. The inhibition of HIV integrase by DCQAs was
irreversible and not dependent on divalent cations [101]. An
HIV-1 mutant containing a single glycine-to-serine substitution
at position 140 of integrase was resistant to L -chicoric acid, indi-
cating that this compound is likely to interact at residues near
the catalytic triad in the integrase active site [102]. However,
this mechanism of action has been questioned [103]. HIV strains
resistant to L -chicoric acid contained several mutations in the
V2, V3, and V4 loop regions of the envelope glycoprotein
gp120, but not in the integrase enzyme. Furthermore, L-chico-
ric acid did not inhibit the replication of viral strains resistant
to polyanionic compounds, such as dextran sulphate [103].
Therefore, the primary anti-HIV target of L -chicoric acid and
its analogues would be the envelope glycoprotein gp120. How-
ever, the most potent classes of integrase inhibitors with anti-
HIV activity are still the dicaffeoylquinic acids (DCQAs), dicaf-
feoyltartaric acids (DCTAs), and diketo acids (DKAs). Moreover,
molecular modelling studies have identified a putative HIV in-
tegrase inhibitor-binding pocket for L -chicoric acid and other
integrase inhibitors [104], [105].
According to Lipinski's rule of 5 and Veber's bioavailability crite-
ria, L -chicoric acid is a rather poor drug candidate for the follow-
ing reasons: a) limited cell permeability due to the diacid moi-
ety, b) hydrolytic enzymatic instability of the two ester linkages,
and c) potential toxicity of the two catechol moieties [106],
[107]. On the other hand, the very potent L -chicoric acid is an ex-
cellent lead compound for optimisation and indeed, a great
number of DCQA and DCTA analogues were synthesised and
evaluated as HIV-1 integrase inhibitors [108], [109], [110], [111],
[112], [113]. Structure-activity relationship studies on these syn-
thetic compounds demonstrated that L- and D-chicoric acid (48)
exhibited similar anti-HIV-1 integrase activity. Removal of one
or both carboxylic groups did not result in a significantly lower
integrase inhibitory activity [110]. The bis-catechol moieties

Fig. 6 Phenolics.

Fig. 5 Lignans.
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were essential to obtain a high inhibitory activity of integrase
[111], but acetylation had only a minor negative effect on the in-
hibition of HIV integrase [110].
Curcuma longa Linn. (Zingiberaceae) is a medicinal plant widely
cultivated in tropical regions of Asia. Curcumin (49) is a yellow
pigment isolated from the rhizomes of this plant and possesses
a wide variety of biological activies, including anti-inflammatory
and antioxidant activities. It is also able to inhibit different enzy-
matic activities, such as HIV-1 integrase, nuclear factor-kappaB
activation and p300-specific HAT/factor acetyltransferase activi-
ty [114], [115], [116]. In the latter case, curcumin could inhibit
the acetylation of HIV-Tat protein in vitro by p300 as well as pro-
liferation of the virus, as revealed by the repression in syncytia
formation upon curcumin treatment in Sup T1 cells [116].
An acetone extract of Helichrysum italicum spp. microphyllum
yielded phloroglucinol α-pyrone arzanol (50), a potent NF-kap-
paB inhibitor [117]. It also inhibited HIV-1 replication in T cells
and the release of pro-inflammatory cytokines in LPS-stimulated
primary monocytes. This compound is worthwhile investigating
for developing a complementary anti-HIV strategy, targeting both
viral and cellular factors [4]. From Clerodendron trichotomum, sev-
eral phenylpropanoid glycosides were isolated and evaluated
for their anti-HIV-1 integrase activity [118]. Acteoside (51)
and an acteoside isomer (52) showed the highest activity with
IC50 values of 7.8 and 13.7 μM, respectively. A new dimeric lac-
tone, ardimerin digallate (53) was isolated from the whole
plants of Ardisia japonica and inhibited HIV-1 and HIV-2 RNase
in vitro with IC50 values in the low micromolar concentrations
[119].

Proteins
Proteins from higher plants active against HIV include ribosome-
inactivating proteins (RIPs) and lectins [120]. RIPs are RNA N-
glycosidases; they inactivate ribosomes through a site-specific
deadenylation of the large ribosomal RNA [121]. A high number
of RIPs have been identified in plants belonging to various fami-
lies, particularly Caryophyllaceae, Sambucaceae, Cucurbitaceae,
Euphorbiaceae, Phytolaccaceae and Poaceae [122]. For some
RIPs, sensitisation and IgE induction have been demonstrated,
so their allergenic and cross-reactive potential should be consid-
ered when applying them in therapy [123].
MAP30 is a plant protein with a molecular weight of 30 kDa iso-
lated from Momordica charantia with anti-tumour and anti-HIV
properties [124], [125]. MAP30 was active against tumour-trans-
formed or HIV-infected cells, while it showed no adverse effects
on normal cells. In addition to its RNA N-glycosidase activity,
MAP30 acted as a DNA glycosylase/apurinic lyase [126]. This
may explain its apparent inhibition of HIV-1 integrase by render-
ing the HIV LTR an unsuitable substrate for HIV integrase as well
as DNA gyrase. The DNA glycosylase/apurinic lyase activity of
MAP30 [126] and other RIPs [127] suggested that the anti-HIV
activity of RIPs was independent of their ribosome inactivation
activity. Indeed, endopeptidase digestion of MAP30 and GAP31
resulted in the generation of peptide fragments with full antivi-
ral and antitumour activity [128]. These fragments remained
fully active in HIV integrase inhibition and HIV-LTR topological
inactivation, but not ribosome inactivation. Therefore, it could
be concluded that the antiviral and antitumour activities of
MAP30 and GAP31 are independent of their ribosome inactiva-
tion activity.
Trichosanthin from the root tuber of Trichosanthes kirilowii was
the first RIP found to inhibit HIV in vitro [129]. Clinical trials with

trichosanthin showed that it induced anaphylactic reactions in
AIDS patients after i. v. administration [130]. In order to reduce
its antigenicity, the seven C-terminal amino acid residues were
deleted, which resulted in a 2.7-fold decrease in antigenicity,
but a 10-fold reduction in in vitro ribosome inactivation [131]. A
recent study demonstrated that trichosanthin was more effec-
tive in inducing apoptosis in HIV-1 infected cells, which can ex-
plain partially the antiviral action [132].
Several plant RIPs, such as agrostin, gelonin, luffin, α-momorch-
arin, β-momorcharin, saporin, and trichosanthin were evaluated
as inhibitors of HIV-1 replication [133]. They exhibited a very
weak suppressive effect on HIV-1 reverse transcriptase and
HIV-1 protease, but apart from agrostin, all RIPs strongly inhibi-
ted HIV-1 integrase. However, it remains to be elucidated
whether interference with integrase is the key mechanism for
the anti-HIV activity of RIPs.
The glycoproteins gp120 and gp41 are present on the envelope of
HIV and mediate the entry of the virus into host cells. Both
gp120 and gp41 are heavily glycosylated, surrounding the recep-
tor-binding regions. It is estimated that gp120 consists of N-
linked glycans for almost 50 % of its molecular weight [134]. The
glycans of HIV-1 gp120 consist to

˜

33% of the high-mannose type,
4 % of the hybrid type and 63 % of the complex type, the latter be-
ing predominantly glucosylated and/or sialylated. Carbohy-
drate-binding agents (CBAs) specifically targeting HIV-1 glycan
shields efficiently inhibit HIV infection and prevent virus entry
into target cells. In contrast to other existing anti-HIV agents, re-
sistance development of HIV against CBAs may allow efficient
immunological suppression of virus replication and virus clear-
ance from the systemic circulation because of the exposure of
previously hidden immunogenic epitopes on gp120. They may
therefore represent the first available drugs for which chemo-
therapy may act in concert with an immunological response
[135], [136]. Synergistic activity between CBAs and 1-deoxy-
mannojirimycin was recently described [137]. The (α1,2)-man-
nosidase I inhibitor 1-deoxymannojirimycin was found to poten-
tiate the inhibitory activity of CBAs against wild-type HIV-1. In
cell cultures infected with mutant HIV-1, strains containing N-
glycan deletions in the gp120 envelope rendered the mutant vi-
rus susceptible to the inhibitory activity of 1-deoxymannojiri-
mycin. Moreover, it was able to partially reverse the phenotypic
resistance of CBAs to the mutant virus strains.
CBAs are almost exclusively of protein nature and can be divided
into at least seven distinct groups of molecules depending on
their origin: prokaryotes, sea corals, algae, fungi, higher plants,
invertebrates, and vertebrates [138], [139]. In this review, the
(α1 –3)- and (α1– 6)-mannose- and N-acetylglucosamine
(GlcNAc)-specific plant lectins and the cyanobacterial cyanovir-
in-N will be discussed in detail.
Plant lectins are the largest group of plant proteins with biolog-
ical activities, including antimicrobial activity, immunostimula-
tion/repression and anti-HIV activity [120]. Lectins are proteins
bearing a non-catalytic domain that binds irreversibly to specific
carbohydrates, normally through a monosaccharide-specific
mechanism. Most plant lectins with HIV activity are derived
from the monocot families Allilaceae, Amaryllidaceae and Or-
chidaceae or the dicot families Cecropiaceae, Fabaceae, Mora-
ceae and Urticaceae. The vast majority of anti-HIV active plant
lectins are directed against mannose oligomers. Two extensively
studied mannose-specific plant lectins are Galanthus nivalis ag-
glutinin (GNA) and Hippeastrum hybrid agglutinin (HHA). Re-
cently, a higher inhibitory activity of HHA compared to GNA
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was demonstrated for HIV adsorption to the epithelial cell line
HEC-1A, HIV transcytosis through HEC-1A cell line monolayer,
HIV adsorption to monocyte-derived dendritic cells (MDDC),
and HIV transfer from MDDC to T cells [140].
Systemic use of plant lectins to inhibit HIV infection may be
questionable due to their antigenic (immunogenic) properties
and short plasma half-life. However, local (intravaginal) applica-
tion as a gel or cream formulation may avoid these disadvantag-
es and may open novel perspectives to develop plant lectins as
microbicides. Therefore, Balzarini et al. investigated GNA and
HHA for their potential as microbicides [141], [142]. Both pro-
teins inhibited a wide variety of HIV-1 and -2 strains and clinical
isolates in different cell types. Short exposure of the lectins to
cell-free virus particles or persistently HIV-infected HUT-78 cells
markedly decreased HIV infectivity and increased the microbici-
dal activity of the plant lectins. Selection of HIV-1 strains with
different levels of resistance to the two mannose-specific lectins
showed that there was no cross-resistance to any other HIV en-
try inhibitor, including T-20 and cyanovirin [142]. They also ex-
hibited desirable properties for formulation studies, such as sta-
bility at high temperatures and low pH for prolonged time peri-
ods, odourless and tasteless, and they can be easily formulated in
gel preparations [141].
The only GlcNAc-specific plant lectin (Urtica dioica agglutinin or
UDA) with a pronounced anti-HIV activity was isolated from
Urtica dioica. It is an 8.5-kDa monomeric protein having two car-
bohydrate-binding sites with different affinities and ranks
among the smallest plant lectins. It inhibited HIV-1- and -2-in-
duced cytopathogenicity and syncytium formation of HIV-infec-
ted HUT-78 cells and CD4+ MOLT-4 cells [143]. In contrast to the
mannose-binding proteins, which had a 50- to 100-fold de-
creased antiviral activity against the UDA-exposed mutant viru-
ses, UDA only showed a slightly lower antiviral activity, even
against those mutant virus strains lacking about 40 % of the gly-
cosylation sites in their gp120 envelope [135]. UDA was free of
toxicity when given intravenously to mice at doses up to 25 mg/
kg body weight. It has also been reported that UDA at high con-
centrations did not agglutinate human red blood cells in cell cul-
ture and was poorly mitogenic.
Another interesting lectin was isolated from the rhizomes of
Polygonatum cyrtonema Hua and was 10- to 100-fold more po-
tent than other tested CBAs including GNA, while it was about
10-fold less toxic than GNA in MT-4 and CEM cells [144]. In con-
trast to other lectins from the Liliaceae family, it exhibited a
higher affinity for both mannose and sialic acid.
Lectins from Phaseolus vulgaris, Momordica charantia, and
Ricinus communis were able to inhibit HIV-1 reverse transcrip-
tase [145], while lectins from Myrianthus holstii [146] showed
an inhibitory activity against the HIV envelope protein gp120.
Two plant proteins, MRK29 [147] and ginkbilobin [148], have
been isolated from the fruits of Momordica charantia and the
seeds of Ginkgo biloba, respectively. Both compounds inhibited
HIV-1 reverse transcriptase, but MRK29 was about hundred
times more active.
Cyanovirin-N, originally isolated from an aqueous extract of the
cyanobacterium Nostoc ellipsosporum, is the first prokaryotic
mannose-specific lectin with a potent anti-HIV activity [149],
[150]. This protein consists of a single chain containing 101 resi-
dues and its amino acid sequence shows obvious duplication.
The protein is highly resistant to degradation and shows no loss
of structural integrity or antiviral activity after treatment with
detergents, denaturants, organic solvents, freezing and heating

up to 100 °C [149]. Until now, cyanovirin-N is the only CBA for
which efficacy and safety was demonstrated in a chimeric sim-
ian immunodeficiency virus (SIV)/HIV-1 virus infection in mon-
key studies when applied intravaginally or rectally as a topical
microbicide [151], [152]. By exposing HIV-1 infected CEM cell
cultures to increasing concentrations of cyanovirin-N, a total of
eight different amino acid mutations exclusively located at N-
glycosylation sites in the envelope surface gp120 were observed.
The extent of the decrease of antiviral activity against the muta-
ted virus strains was markedly less pronounced than observed
for the (α1,3)- and (α1,6)-mannose-specific plant lectins,
Hippeastrum hybrid agglutinin and Galanthus nivalis agglutinin,
pointing to the existence of a higher genetic barrier for cyanovir-
in-N [138]. Whereas the antiviral and in vitro antiproliferative
activity of cyanovirin-N can be efficiently reversed by mannane,
its pronounced mitogenic activity on peripheral blood mononu-
clear cells remained unaffected. Therefore, careful monitoring of
potential side effects should be required if applied as a microbi-
cidal drug. Nowadays, studies are ongoing to express and release
cyanovirin-N in commensal lactobacilli or Streptococcus gordonii
to create a microbicidal environment in the vaginal ecology
[153], [154], [155]. Other algal lectins with a significant anti-
HIV activity are scytovirin, Microcystis viridis lectin, and griffith-
sin [156], [157], [158].

Quinones/Xanthones
From several plants, new and known xanthones were isolated
and evaluated for their anti-HIV acitivity [79], [159], [160],
[161]. In general, most xanthones showed a weak or moderate
activity against HIV, mostly due to their toxicity.

Tannins
The vegetable tannins can be divided into two classes: hydrolys-
able and non-hydrolysable or condensed tannins [162]. The first
group consists of polyesters of gallic and hexahydroxydiphenic
acids (gallotannins and ellagitannins, respectively). The con-
densed tannins are oligomers and polymers composed of fla-
van-3-ol moieties, commonly referred to as proanthocyanidins
[163].
A proanthocyanidin polymer fraction (MW 1500 –2000 Da) from
Cupressus sempervirens showed antiviral activity against the
retroviruses HIV and HTLV IIIB (IC50 values from 1.5 to 15 μg/mL
and 5 to 25 μg/mL, respectively) [164]. Epigallocatechin-
(4β→8,2β→O-7)-epicatechin (54) inhibited HIV-1 protease at
70 μg/mL, but proanthocyanidin A2 (55) was not active up to a
concentration of 100 μg/mL (●� Fig. 7) [165]. However, a struc-
ture-anti-HIV-1 activity relationship study of a series of proan-
thocyanidin oligomers showed that proanthocyanidin A2 was
the most interesting compound with an SI of 24 [166]. Proantho-
cyanidin A1 (56), which only differs from proanthocyanidin A2 in
its terminal (+)-catechin unit, only had an SI of 10, which is still
larger than procyanidins with a single linkage (the B-series).
Catechins and theaflavins are two groups of natural polyphenols
found in green and black tea, respectively. In a comparative
study, the theaflavin derivatives showed the highest anti-HIV-1
activity [167]. Tea polyphenols with a galloyl moiety were more
active than those without a galloyl moiety and the number of
galloyl groups was correlated with the anti-HIV-1 activity. Thea-
flavin 3,3′-digallate (57) inhibited HIV-1 replication, HIV-1-in-
duced virus-cell fusion and cell-cell fusion, and gp41 six-helix
bundle formation at low micromolar concentrations. Computer-
aided molecular docking studies indicated that theaflavin 3,3′-

Review 1331

Cos P et al. Plant-Derived Leading Compounds … Planta Med 2008; 74: 1323 – 1337

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



digallate may fit in the hydrophobic pocket with its phenyl
groups interacting with the hydrophobic residues in the pocket.
Out of six hydrolysable tannins, two ellagitannins, corilagin (58)
and repandusinic acid (59), inhibited HIV-1 protease (IC50 values
20.7 μM and 12.5 μM, respectively), which indicates the impor-
tance of the hexahydroxydiphenoyl unit [67]. From a gallotan-
nin-containing fraction of Phyllanthus amarus, the isolated ella-
gitannins geraniin and corilagin were shown to be the most ac-
tive antiretroviral compounds [168]. These tannins blocked the
interaction of HIV-1 gp120 with its primary cellular receptor
CD4 and inhibited the enzymes integrase, reverse transcriptase
and protease at low μg/mL concentrations.

Terpenes
Some sesquiterpenes isolated from Litsea verticillata, collected in
Vietnam, inhibited HIV-1 replication with IC50 values ranging from
38.1 to 91.0 μM, but the most active compound was a butenolide, 3-
epi-litsenolide D2 (60) with an IC50 of 9.9 μM (●� Fig. 8) [169].
Several diterpenes from plants showed anti-HIV activity [170],
[171], [172]. The diterpene 8,10,18-trihydroxy-2,6-dolabella-
diene (61), a constituent of the Brazilian brown alga Dictyota

pfaffii, was found to inhibit HIV-1 reverse transcriptase, with an
IC50 value of 16.5 μM. It inhibited HIV-1 replication (IC50 8.4 μM),
and blocked HIV-1 infection in macrophages with IC50 values be-
low 2 μM. It was suggested that this compound also blocked
HIV-1 replication at a post-transcriptional step [173], [174].
HIV-1 reverse transcriptase-inhibiting diterpenes were also ob-
tained from the alga Dictyota menstrualis [175].
Various triterpenes have been shown to exhibit anti-HIV activi-
ty. Two prostanes, garciosaterpenes A and C, inhibited HIV-1 re-
verse transcriptase, and were active in the syncytium assay with
an IC50 of 5.8 and 37.0 μg/mL, respectively, but with a low SI (3.4
and 1.9, respectively) [176]. The limonoids limonin and nomilin
were found to inhibit HIV-1 replication in several cell systems
used, e.g., in PBMC isolated from healthy donors and infected
with HIV-1 after incubation with limonin and nomilin; relatively
large IC50 values of 60.0 and 52.2 μM were obtained [177]. An un-
usual triterpene lactone, lancilactone C (62) from the stems and
roots of Kadsura lancilimba inhibited HIV-1 replication (IC50

1.4 μg/mL) with a SI of more than 71.4 [178]. A trinorcycloartane
triterpenoid, lancifodilactone H, and the A ring secocycloartane
triterpenoids, lancifoic acid A and nigranoic acid, from
Schisandra lancifolia, showed weak anti-HIV-1 activity, with
IC50 values of 16.6, 16.2 and 10.3 μg/mL, and CC50 values of
> 200, 104.9 and 88 μg/mL, respectively [179].
Anti-HIV triterpenes can be classified into five different catego-
ries according to their target and mechanism of action: entry in-
hibitors (by blocking virus adsorption of membrane fusion), re-
verse transcriptase inhibitors, protease inhibitors, virus matura-
tion inhibitors, and products with an unknown mechanism of
action [180]. Research on triterpenes has mainly focused on de-
rivatives of oleanolic acid, betulinic acid and ursolic acid. The pa-
rent compound oleanolic acid inhibited HIV-1 replication in hu-

Fig. 7 Tannins.

Fig. 8 Terpenes.
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man peripheral mononuclear cells (IC50 values: 22.7 – 24.6 μM)
and monocyte/macrophages (IC50 value: 57.4 μM) [181]. Olea-
nolic acid inhibited HIV-1 protease activity in vitro. Because of
the structural resemblance of oleanolic and betulinic acid, and
because derivatisation of the OH group in position 3 with an es-
ter functionality strongly increased the anti-HIV activity of betu-
linic acid [182], semi-synthetic oleanolic acid derivatives with
different ester groups at C-3 were prepared [183]. Oleanolic
acid 3-O-3′,3′-dimethyl succinate (63) was the most potent in-
hibitor of HIV, with an IC50 value of 0.5 ng/mL, and a very high
SI of 22 400. In contrast, 3-O-(3′,3′-dimethyl succinyl)-ursolic
acid displayed only a weak anti-HIV activity (IC50 2.1 μM, SI
23.6) [184]. 3-O-[3′,3′-dimethyl succinyl]-betulinic acid was
found to be a maturation inhibitor. It is responsible for disrup-
tion of the late-stage viral maturation processes of the Gag pro-
tein, resulting in a defective core structure around the viral RNA,
and a non-infectious virus. This compound was the first member
of a new class of anti-HIV drug candidates [185], [186]. Esterifi-
cation of both the C-3 hydroxy and the C-28 carboxylic acid
functionalities of betulinic acid resulted in even more potent
compounds; e.g., the di-O-dimethyl succinyl derivative showed
an IC50 value of 0.87 nM and an SI of 42,400 [182], [187], [188].
In a structure-activity relationship study on betulinic acid deriv-
atives, RPR103611 (64), a statin derivative, was found to be inac-
tive against HIV-1 protease, reverse transcriptase, and integrase,
but it acted as a fusion inhibitor [189], [190]. More recently, it
was suggested that its antiviral activity was dependent on the
stability of the gp120/gp41 complex [191]. Gp120 was proposed
as the primary target for the anti-HIV activity of a stereoisomer
of RPR103611, IC9564 (65) [192]. Both compounds appeared to
be equally potent in their anti-HIV-1 and anti-fusion activities.
However, the drug development process of RPR103611 was stop-
ped due to its poor pharmacodynamic properties [193].
The combination of a 3,3-dimethyl succinyl side chain at C-3 and
an aminoalkanoic side chain at C-28 resulted in very active bi-
functional anti-HIV compounds with EC50 values in the nanomo-
lar range. They showed antifusion activity as well as maturation
inhibition [194], [195].

Conclusion
�

This review clearly shows that the field of plant-derived com-
pounds for chemotherapy of HIV is still booming. Many constit-
uents have been isolated, identified and evaluated in vitro for
anti-HIV activity, but in vivo studies are still scarce. It is only
through carefully designed and conducted clinical trials with
the purified active substance that the efficacy and safety of the
compound can be unequivocally established. Therefore, it will
be interesting to see if any of these putative anti-HIV compounds
will ever reach the patient.
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