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Abstract: The effect of a plant growth-promoting bacterium (PGPB) Bacillus sp. V2026, a producer of
indolyl-3-acetic acid (IAA) and gibberellic acid (GA), on the ontogenesis and productivity of four
genotypes of early-maturing spring wheat was studied under controlled conditions. The inoculation
of wheat plants with Bacillus sp. V2026 increased the levels of endogenous IAA and GA in wheat
of all genotypes and the level of trans-Zeatin in Sonora 64 and Leningradskaya rannyaya cvs but
decreased it in AFI177 and AFI91 ultra-early lines. Interactions between the factors “genotype” and
“inoculation” were significant for IAA, GA, and trans-Zeatin concentrations in wheat shoots and roots.
The inoculation increased the levels of chlorophylls and carotenoids and reduced lipid peroxidation
in leaves of all genotypes. The inoculation resulted in a significant increase in grain yield (by 33–62%),
a reduction in the time for passing the stages of ontogenesis (by 2–3 days), and an increase in the
content of macro- and microelements and protein in the grain. Early-maturing wheat genotypes
showed a different response to inoculation with the bacterium Bacillus sp. V2026. Cv. Leningradskaya
rannyaya was most responsive to inoculation with Bacillus sp. V2026.

Keywords: PGPB; epiphytic Bacillus sp.; wheat Triticum aestivum L.; early maturing; productivity;
duration of developmental phases; phytohormones; auxin; gibberellin

1. Introduction

Under conditions of rapid population growth and climate change, it is essential to
ensure food security by increasing the productivity of strategically important grain crops.
Wheat is cultivated in many regions of the world, providing more than 50% of dietary
energy needs [1]. For wheat plants, early maturity is one of the major mechanisms of
avoiding damage by phytopathogens, the destructive effects of summer droughts and dry
hotwinds, late spring and early autumn frosts, and the harm associated with excessive
moisture during grain maturing [2–4]. The developmental rate of soft wheat is mainly
ensured by VRN and PPD genetic systems, which control the hereditary variability of
plant response to vernalization and photoperiod [5–7]. VRN and PPD genes and their
combinations affecting growing season duration and heading time could also affect the
productivity of common wheat [3,8,9]. A negative correlation between earliness and the
number of wheat grains, productive tilling, thousand-grain weight, and the harvest index
capacity has been noted [2,10–12]. Therefore, increasing the yield of early-maturing wheat
cultivars and lines is an urgent problem for agriculture.

A possible way of increasing the productivity of grain crops in sustainable agricul-
ture is the use of biological preparations based on PGPB [13–16]. PGPBs stimulate plant
growth and development through various mechanisms: (1) directly affecting plant growth,
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e.g., by phytohormone production [17–19], ACC deaminase activity, nitrogen-fixing activ-
ity [19–22], and solubilization of potassium, phosphorus, zinc, etc.; and (2) affecting plant
growth indirectly through the production of hydrolytic enzymes, HCN, siderophores, and
antibiotics [18,23], induced systemic resistance, and biofilm formation [22,24,25]. Up to
80% of bacteria inhabiting the plant root zone (rhizobacteria) synthesize auxins, which
stimulate root cell proliferation and increase host plant uptake of minerals and nutrients
from the soil [26]. PGPBs can also produce cytokinins, gibberellins, or both for plant growth
promotion [17,23,27,28].

Bacteria from the genus Bacillus are among the particularly promising PGPBs. Besides
the rhizosphere, they can also live on the surface of the aboveground organs of plants
and within plant tissues [15,29]. Bacillus spp. promote plant growth by producing phyto-
hormones, siderophores, lipopeptides, polysaccharides, and enzymes [17,20,23,25]. They
also affect plant homeostasis by regulating the proportion of antioxidant enzymes, both
under natural plant growth conditions and under various stresses [21,30,31]. Most studies
have reported positive effects of Bacillus spp. on wheat growth and productivity [14,32–34].
However, the effects of PGPB, and Bacillus spp. in particular, on the rate of wheat devel-
opment are currently poorly understood and require detailed study. The results available
in the literature are contradictory, with both the acceleration of developmental phases in
different plants under the influence of PGPB [35–38] and delayed development [39,40]
being reported. These controversial results may be due to different plant hormonal changes
caused by PGPB since phytohormones play a pivotal role in various developmental pro-
cesses in plants [41]. The response of early-maturing spring wheat to bacterial inoculation
is not clear because there are insufficient results in the literature on the inoculation with
PGPB of early spring wheat. A slight stimulation of the root growth of early-maturing
wheat cv. Kazakhstanskaya 10, when inoculated with bacteria Bacillus subtilis 11 BM, was
noted on the 30th day of growing [42].

The application of exogenous GA3 significantly promoted the elongation of the root,
stem, and leaf cells [43], enhanced expression of cell elongation genes [44], promoted GA
biosynthesis [45], and shortened germination time [46] and the time to flowering [47,48] in
various plants, including wheat. We proposed that GA-producing Bacillus sp. V2026 can
reduce the duration of developmental phases of early-maturing wheat by increasing plant
endogenous GA. Various wheat genotypes have been studied to select the optimal yield
genotype/bacterial combination. The optimization of such a combination is important to
achieve higher wheat productivity.

The paper presents a study of the effect of Bacillus sp. V2026 bacteria on the hormonal
status and the development of different genotypes of early-maturing wheat.

2. Results
2.1. Bacterial Identification

The bacterium was isolated from the rhizosphere of wheat plants of cv. Leningradskaya
6. The bacterium was a Gram-positive single spore-forming bacillus identified by 16S
rRNA and ITS fragment as Bacillus sp. V2026 (the sequences were submitted to the NCBI
databases with accession numbers OM764631 and OM855550, respectively). This bacterium
is catalase-positive and oxidase-negative; indole and H2S are not produced. The Voges–
Proskauer reaction is negative. The bacterium can utilize glucose, sucrose, xylose, arabinose,
maltose, sorbitol, and mannitol. Bacillus sp. V2026 showed antifungal activity against
the phytopathogenic micromycetes Fusarium oxisporum and Fusarium culmorum (zone
with diameters of 30–40 mm). Bacillus sp. V2026 did not mobilize phosphates. The
bacterium showed a phytohormonal activity, producing 43.09 ± 0.35 µg/mL IAA and
20.8 ± 0.41 ng/mL GAS3, and did not produce tZ (Table S1).

2.2. Identification of Alleles VRN-1 and PPD-D1 Loci

The main loci of the VRN and PPD genetic systems that determine different degrees
of sensitivity to vernalization and photoperiod and, consequently, different rates of devel-
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opment were identified in the plant material using molecular markers specific to the VRN
and PPD genes (Figure S1).

Molecular genetic analysis showed that ultra-early lines AFI177 and AFI91 gave four
PCR fragments: 715-bp and 624-bp for Vrn-A1a alleles, 1124-bp for the Vrn-B1a allele, and
1671-bp for the Vrn-D1 allele. The cultivars S64 and LR contain PCR products 1671-bp
and 1124-bp, respectively, which may correspond to the Vrn-D1 and Vrn-B1 alleles. We
also found that the tested cultivars S64 and LR contain the Vrn-A1a allele since all of them
gave 715-bp and 624-bp PCR products with primers VRN1AF//VRN1-1R. Cv. S64 yielded a
414-bp PCR fragment, indicating the presence of the photoperiod-insensitive Ppd-D1a allele.
Cv. LR differed from the other genotypes by the presence of a 288-bp fragment, indicative
of the photoperiod-sensitive PPD-D1b allele (Figure S1).

2.3. Yield and Yield Components

The effects of inoculation of the Bacillus sp. V2026 on the productivity components of
wheat plants are presented in Table 1.

The results suggest that yield increase after bacterial inoculation was mainly due
to an increase in productive tilling capacity: the maximum value was observed in early-
maturing cultivars S64 and LR, by 24.6% and 27.3%, respectively (Table 1). Plants of cv.
LR characterized by the highest tilling capacity were the most responsive to inoculation
judging by this characteristic. The proportion of productive tilling increased in inoculated
plants of lines AFI177 and AFI91 by 21.1% and 15.0%, respectively. The effect of inoculation
with Bacillus sp. V2026 on plant height was observed only in the AFI91 line; the height
increased by 5.8%, but no significant effect on the height of S64, LR, and AFI177 plants
was noted.

Spike length significantly increased in inoculated S64 and LR plants: by 9.0% and
6.3%, respectively. Moreover, plants of these cultivars had a longer spike in the control
variant. Plants of AFI91 and AFI177, which had a shorter spike, had no significant effect of
Bacillus sp. V2026 on the length of the spike.

The number of spikelets in the spike statistically increased significantly in inoculated
plants of all genotypes, from 5.6% in AFI91 to 7.5% in LR. Inoculation with Bacillus sp. V2026
was strongly influenced by increasing the number of grains of the spike in early-maturing
cultivars S64 and LR (by 21.0% and 16.7%, respectively) than in ultra-early-maturing lines
AFI91 and AFI177 (by 8.8% and 8.9%, respectively). The responsiveness of AFI91 and
AFI177 plants to inoculation with Bacillus sp. V2026 by grain weight of the spike (22.3% and
27.0%, respectively) was greater than S64 and LR plants (17.2% and 13.5%, respectively).

A stimulating effect of Bacillus sp. V2026 on the number of tillers and spike produc-
tivity contributed to a higher number of grains per plant (from 16.6% in API177 and up
to 57.8% in LR) and grain weight per plant (from 32.5% in S64 and up to 62.2%, in LR)
in all early-maturing genotypes. Inoculation with Bacillus sp. V2026 resulted in a greater
decrease in the ratio of chaff in the spike of AFI91 and AFI177 plants (by 26.2% and 30.5%,
respectively) than in the spike of S64 (19.5%) and LR (15.2%) plants (Figure 1a).

An increase in wheat grain yield after inoculation with Bacillus sp. V2026 was accom-
panied by an increase in total biomass (Table 1). Ultra-early-maturing lines AFI91 and
AFI177 were the most responsive to bacterial treatment in terms of total dry weight of
plants and straw yield, the latter increasing by 27.1% and 26.5%, respectively. HI (harvest
index) in the control varied from 38.3% in LR to 47.7% in AFI177. Inoculation with Bacillus
sp. V2026 led to a statistically significant increase in HI in all studied cultivars and wheat
lines, from 4.2% in AFI177 plants to 18.4% in LR plants (Figure 1b). Two-way ANOVA
analysis revealed that all wheat yield components examined in our study were statistically
significantly influenced (p ≤ 0.05) by both genotypic differences and inoculation with
Bacillus sp. V2026, whereas the interaction of these factors influenced only grain number
per spike, number and weight of grains per plant, and HI (Table S2).
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Table 1. Effect of inoculation with Bacillus sp. V2026 on yield attributes of early-maturing spring wheat.

Treatment

Main Stem Plant

1000-Grain
Weight, (g)Spike Length,

(cm)
Number of

Spikelets/Spike,
(Number)

Number of
Grains/Spike,

(Number)

Grain
Weight/Spike

(g)
Plant Height

(cm)

Number of
Productive

Tiller,
(Number)s

Number of
Grains/Plant,

(Number)
Grain Yield,

(g)
Straw Yield,

(g)
Dry Weight,

(g)

Sonora 64

Control 7.56 ± 0.22 d 15.08 ± 0.48 c 26.7 ± 1.5 f 0.93 ± 0.06 d 57.2 ± 0.7 cd 5.20 ± 0.35 cd 113.6 ± 8.7 c 3.14 ± 0.28 bc 4.27 ± 0.40 c 7.41 ± 0.67 c 27.6 ± 1.3 c

Bacillus sp.
V2026 8.24 ± 0.17 c 16.16 ± 0.38 b 32.3 ± 1.4 c 1.09 ± 0.08 ab 58.8 ± 1.2 bc 6.48 ± 0.47 b 138.8 ± 13.1 b 4.16 ± 0.47 a 4.93 ± 0.46 b 9.09 ± 0.91 b 30.1 ± 1.9 b

AFI91
Control 6.42 ± 0.18 g 13.48 ± 0.40 f 27.8 ± 0.9 ef 0.94 ± 0.04 d 56.2 ± 1.1 d 5.08 ± 0.27 d 106.9 ± 6.9 cd 3.26 ± 0.22 bc 3.62 ± 0.23 d 6.88 ± 0.44 c 30.8 ± 1.7 b

Bacillus sp.
V2026 6.64 ± 0.23 fg 14.24 ± 0.32 de 30.3 ± 1.1 d 1.15 ± 0.04 a 59.5 ± 1.2 b 5.84 ± 0.33 c 133.4 ± 9.7 b 4.41 ± 0.37 a 4.60 ± 0.38 bc 9.01 ± 0.74 b 33.0 ± 1.2 a

AFI177
Control 6.82 ± 0.17 ef 13.76 ± 0.28 ef 26.4 ± 1.1 f 0.84 ± 0.04 e 46.2 ± 0.5 e 4.36 ± 0.29 e 92.2 ± 5.5 d 2.48 ± 0.14 d 2.72 ± 0.17 f 5.21 ± 0.29 d 27.1 ± 1.1 c

Bacillus sp.
V2026 7.06 ± 0.14 e 14.64 ± 0.22 cd 28.8 ± 1.3 de 1.06 ± 0.06 bc 47.3 ± 0.5 e 5.28 ± 0.49 cd 107.6 ± 9.0 c 3.38 ± 0.25 b 3.44 ± 0.25 e 6.82 ± 0.49 c 31.7 ± 0.9 ab

Leningradskaya rannyaya
Control 8.92 ± 0.23 b 17.76 ± 0.42 b 34.2 ± 1.3 bc 0.89 ± 0.03 de 86.5 ± 1.9 a 5.72 ± 0.48 cd 138.7 ± 10.7 b 2.83 ± 0.25 cd 4,69 ± 0.37 bc 7.52 ± 0.61 c 20.4 ± 0.9 d

Bacillus sp.
V2026 9.48 ± 0.20 a 19.08 ± 0.35 a 39.9 ± 1.6 a 1.01 ± 0.04 c 85.6 ± 2.2 a 7.28 ± 0.57 a 219.1 ± 13.9 a 4.59 ± 0.25 a 5.60 ± 0.39 a 10.19 ± 0.62 a 21.1 ± 0.4 d

Control, noninoculated wheat plants; Bacillus sp. V2026, wheat plants inoculated with Bacillus sb. V2026. The bars are means of two experiments with 50 biological replications per
variant. Bars show ±SEM, and different letters (a–g) show a significant difference at the p ≤ 0.05 level, as determined by Duncan’s test.
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Figure 1. Effect of inoculation with Bacillus sp. V2026 on chaff to grain ratio (a) and harvest in-
dex (HI) (b). The bars are means of two experiments with 50 biological replications per variant.
Bars show ± SEM, and different letters (a–f) show a significant difference at the p ≤ 0.05 level, as
determined by Duncan’s multiple test.

2.4. Protein and Macronutrient/Micronutrient Content in Wheat Grain

Genotype-related variation in the macro- and microelement content of grain of early-
maturing wheat genotypes investigated in our study was relatively low (Table 2).

Table 2. Effect of inoculation with Bacillus sp. V2026 on macro- and micronutrient content of
wheat grain.

Treatment N, % DW P, % DW K, % DW Mg, % DW Fe, mg/kg−
DW Mn, % DW Zn, % DW

Sonora 64
Control 3.11 ± 0.05 f 0.61 ± 0.014 b 0.61 ± 0.014 d 0.242 ± 0.003 b 43.7 ± 1.52 e 47.1 ± 0.60 d 49.8 ± 1.59 d

Bacillus sp.
V2026 3.46 ± 0.06 e 0.63 ± 0.009 b 0.75 ± 0.009 b 0.224 ± 0.003 d 44.6 ± 2.49 e 50.5 ± 1.45 bc 49.9 ± 1.73 d

AFI91
Control 3.09 ± 0.05 f 0.56 ± 0.014 c 0.56 ± 0.009 e 0.223 ± 0.003 d 55.0 ± 2.27 d 52.3 ± 1.40 ab 54.7 ± 1.17 c

Bacillus sp.
V2026 3.56 ± 0.06 d 0.62 ± 0.009 b 0.68 ± 0.014 c 0.232 ± 0.003 c 62.8 ± 1.02 b 53.8 ± 1.57 a 58.4 ± 0.83 b

AFI177
Control 3.44 ± 0.04 e 0.62 ± 0.009 b 0.76 ± 0.014 b 0.243 ± 0.004 b 58.3 ± 1.01 c 49.0 ± 1.78 cd 53.4 ± 0.77 c

Bacillus sp.
V2026 4.13 ± 0.04 a 0.68 ± 0.014 a 0.88 ± 0.016 a 0.254 ± 0.005 a 69.3 ± 1.76 a 53.4 ± 1.05 a 55.4 ± 1.65 c

Leningradskaya rannyaya
Control 3.70 ± 0.04 c 0.69 ± 0.005 a 0.58 ± 0.014 e 0.252 ± 0.002 a 43.2 ± 1.02 e 50.8 ± 0.93 bc 62.8 ± 1.02 a

Bacillus sp.
V2026. 3.93 ± 0.05 b 0.68 ± 0.009 a 0.62 ± 0.014 d 0.231 ± 0.003 c 41.8 ± 1.30 e 52.5 ± 1.22 ab 62.0 ± 0.65 a

Control, noninoculated wheat plants; Bacillus sp. V2026, wheat plants inoculated with Bacillus sp. V2026; DW, dry
weight. Values in columns followed by different letters (a–f) are significantly different at p ≤ 0.05 (Duncan’s test).

Analysis of the experimental data showed that inoculation with Bacillus sp. V2026
had a strong influence on the accumulation of mineral macronutrients (N, P, K) and mi-
cronutrients (Fe, Mg, Zn, and Mn) in wheat grain (Table 2). Significant differences between
the genotypes were found for the majority of analyzed mineral elements involved in the
analysis. The results suggest that bacterial treatment increases N content from 6.2% in
cv. LR to 20.1% in line AFI177 and in K content from 6.9% in cv. LR to 22.9% in cv. S64.
Statistically significant differences in the concentration of P in the grain were found in
plants of ultra-early lines AFI91 (10.7%) and AFI177 (9.7%), while in plants of cv. S64 and
cv. LR, this increase remained insignificant. AFI91 and AFI177 lines were also the most
responsive to inoculation with Bacillus sp. V2026 in respect of the content of Fe, Mg, Zn,
and Mn in grain. In cv. S64, inoculation resulted in significant changes in Mn concentration
(7.2%) but did not have a strong influence on Fe, Mg, and Zn concentrations. Cv. LR was the
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least sensitive to Bacillus sp. V2026 in terms of changes in concentration of microelements
in the grain.

Inoculation with Bacillus sp. V2026 had an effect on grain quality: the protein content
in the grain increased significantly in all early-maturing genotypes. These changes were
more discovered in lines AFI177 (19.9%) and AFI91 (15.3%) (Figure 2). At the same time,
LR and AFI177 genotypes were characterized by a higher grain protein content than S64
and AFI91 genotypes, both in the control variant and in the variant with treatment.
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2.5. Duration of Developmental Phases

Our results showed that the difference in the heading time between ultra-early lines
AFI177 and AFI91 and early-maturing cultivars S64 and LR made up 5–9 days (Table 3).
Plants of cv. S64 and cv. LR had a longer “stem elongation–heading” period and a shorter
“heading–maturing” period compared with plants of the AFI91 and AFI177 lines.

We also assessed the effects of inoculation with Bacillus sp. 2026 on the pattern
of development of early-maturing genotypes (Table 3). Inoculation with the bacterium
significantly shortened the time to reach each growth stage in early-maturing genotypes.
Maturation of inoculated plants occurred on average 2–3 days earlier than in control plants,
the difference being significant. The number of days from seedling to each growth stage
was less in the API91 line than in other genotypes. It is also noteworthy that cv. LR was
the most responsive to inoculation with Bacillus sp. 2026, showing the largest reduced
duration of the period from seedling to maturing. Heading of inoculated plants of cv. S64,
API177, API91, and cv. LR occurred earlier, by 1.5, 2.4, 1.4, and 3.1 days, respectively, than
in plants without bacterial treatment, with the cycle reduction being greater from seedlings
to stem elongation. Cv. S64, API91, and cv. LR were not responsive to Bacillus sp. V2026
inoculation at the stage of “stem elongation–heading.” The duration of the period from
heading to maturing in all four genotypes practically did not differ in the control and
experimental variants.

Two-way ANOVA analysis showed that the factor “genotype” had a significant im-
pact on the duration of all studied periods of wheat ontogenesis. At the same time,
only genotypic differences contributed significantly to variability in the periods “stem
elongation–heading” and “heading–maturing.” The factor “Bacillus sp. V2026” significantly
influenced the duration of the initial stages of ontogenesis from seedlings to tillering and
from tillering to stem elongation, as well as the timing of heading and maturing (Table S2).
The interaction of the factors had a significant effect on the duration of the seedlings–stem
elongation and seedlings–heading periods.
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Table 3. Effect of inoculation with Bacillus sp. 2026 on the duration of developmental phases of
early-maturing spring wheat.

Treatment
Seedling–
Tillering,

Days

Tillering–
Stem

Elongation,
Days

Seedling–
Stem

Elongation,
Days

Stem
Elongation–

Heading,
Days

Seedling–
Heading,

Days

Heading–
Maturating,

Days

Seedling–
Maturating,

Days

Sonora 64
Control 11.3 ± 0.24 b 5.8 ± 0.23 bc 17.0 ± 0.23 b 22.9 ± 0.28 b 40.0 ± 0.23 b 33.3 ± 0.43 c 73.2 ± 0.50 a

Bacillus sp.
V2026 10.6 ± 0.22 e 5.1 ± 0.35 d 15.6 ± 0.31 c 22.8 ± 0.48 b 38.5 ± 0.37 c 33.2 ± 0.46 c 71.7 ± 0.49 b

AFI91
Control 11.7 ± 0.28 a 2.9 ± 0.27 f 14.6 ± 0.27 d 16.6 ± 0.32 e 31.2 ± 0.35 f 37.1 ± 0.51 a 68.3 ± 0.49 e

Bacillus sp.
V2026 11.1 ± 0.20 bc 2.3 ± 0.30 g 13.4 ± 0.29 e 16.4 ± 0.25 e 29.8 ± 0.24 g 36.5 ± 0.33 a 66.3 ± 0.29 f

AFI177
Control 10.8 ± 0.23 de 6.2 ± 0.29 a 16.9 ± 0.27 b 18.6 ± 0.29 c 35.5 ± 0.20 d 35.2 ± 0.41 b 70.7 ± 0.48 c

Bacillus sp.
V2026 10.2 ± 0.16 f 5.4 ± 0.35 cd 15.6 ± 0.27 c 17.5 ± 0.45 d 33.1 ± 0.37 e 35.7 ± 0.56 b 68.8 ± 0.75 e

Leningradskaya rannyaya
Control 11.9 ± 0.13 a 5.9 ± 0.31 b 17.8 ± 0.31 a 24.4 ± 0.46 a 42.2 ± 0.44 a 30.3 ± 0.64 d 72.4 ± 0.78 ab

Bacillus sp.
V2026 10.9 ± 0.15 cd 4.0 ± 0.28 e 14.9 ± 0.26 d 24.2 ± 0.42 a 39.1 ± 0.40 c 30.6 ± 0.46 d 69.7 ± 0.57 d

Control, noninoculated wheat plants; Bacillus sp. V2026, wheat plants inoculated with Bacillus sp. V2026. The bars
are means of two experiments with 50 biological replications per variant. Bars show ± SEM, and different letters
(a–f) show a significant difference at the p ≤ 0.05 level, as determined by Duncan’s multiple test.

2.6. Seedling Growth

Inoculation with Bacillus sp. V2026 increased root and shoot lengths in 14-day-old
wheat seedlings of early-maturing genotypes (Figure S2). The relative increase in root
length in LR, S64, AFI91, and AFI177 seedlings due to bacterial inoculation made up 20.7%,
11.4%, 20.4%, and 19.1%, respectively, compared with the control (Table 4). The root biomass
in these variants increased from 11.0% (S64) to 23.0% (AFI177). AFI177 and LR were more
responsive to inoculation. The responsiveness of shoots to the action of the bacterium was
less pronounced. The shoot length of cv. LR and cv. S64 treated with Bacillus sp. V2026 was
10.3% and 5.9%, respectively, greater than in control plants. Inoculated plants of AFI177 and
AFI91 lines had no statistically significant differences in shoot length compared with the
controls (Table 4). A significant increase in shoot biomass after inoculation was observed in
AFI177, LR, and S64 seedlings: by 18.8%, 13.4%, and 8.7%, respectively. Thus, inoculation
with Bacillus sp. V2026 stimulated the accumulation of root biomass more considerably
than the accumulation of shoot biomass. The root/shoot weight ratio increased from 2.9%
(S64) to 7.5% (LR).

The wheat genotypes involved in our study responded to inoculation with Bacillus sp.
V2026 in a different manner. Cv. LR and line AFI177 were more sensitive to inoculation
with this strain. Inoculation stimulated roots and shoots of LR seedlings, shoots of AFI177
seedlings, and roots of AFI91 seedlings. Cv. S64 was the least responsive to bacterial
inoculation compared with other cultivars and lines.

2.7. Photosynthetic Pigments and Lipid Peroxidation

The physiological state of plants after inoculation with Bacillus sp. V2026 was deter-
mined by measuring the chlorophyll content and the level of malonic dialdehyde (MDA).
Data on the effect of Bacillus sp. V2026 on various biochemical parameters are shown in
Figures 3 and 4. The concentration of chlorophyll and carotenoids in leaves significantly
increased after bacterial treatment (Figure 3). The increase in total chlorophyll (Chl) and
chlorophyll a (Chl a) in samples of AFI91, AFI177, and LR made up, respectively: 12.5%;
11.8%, 15.2% and 10.5%, 12.7%, 16.4% (Figure 3). A statistically significant increase in
chlorophyll b (Chl b) levels (21.1%) was observed only in inoculated seedlings of the ultra-
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early-maturing line AFI91. No significant changes in the content of total Chl, Chl a, and Chl
b in the leaves of inoculated S64 plants were noted. An increase in carotenoid content (Car)
was observed in LR, AFI177, and AFI91 plants, by 19.4%, 17.6%, and 8.1%, respectively,
as compared with the controls. In S64 plants, the level of Car tended to decrease after
inoculation. The highest average content of total chlorophyll was registered in cv. S64 and
line AFI91 in both the control and the experimental variants.

Table 4. Effect of Bacillus sp. V2026 on wheat roots and shoots of early-maturing wheat in
hydroponic conditions.

Treatment
Length, mm Fresh Weight, mg Root/Shoot

(mm/mm)
Root/Shoot

(mg/mg)Root Shoot Root Shoot

Sonora 64
Control 169.7 ± 5.30 c 279.4 ± 8.39 c 25.6 ± 1.15 b 36.7 ± 1.22 b 0.61 d 0.69 d

Bacillus sp.
V2026 189.1 ± 7.61 b 295.9 ± 7.71 b 28.4 ± 1.40 a 39.9 ± 1.75 a 0.64 c 0.71 c

AFI91
Control 134.7 ± 4.46 d 281.6 ± 9.40 c 19.6 ± 1.86 e 31.4 ± 1.45 cd 0.48 f 0.62 f

Bacillus sp.
V2026 160.3 ± 6.15 c 283.8 ± 11.21 c 22.1 ± 1.65 cd 33.3 ± 1.82 c 0.56 e 0.66 e

AFI177
Control 166.3 ± 7.63 c 181.9 ± 3.23 d 20.4 ± 1.07 de 24.9 ± 0.96 e 0.91 b 0.82 b

Bacillus sp.
V2026 200.3 ± 5.23 a 192.2 ± 6.54 d 25.1 ± 1.01 b 29.6 ± 1.58 d 1.04 a 0.85 a

Leningradskaya rannyaya
Control 160.0 ± 5,94 c 283.7 ± 7.5 c 19.4 ± 1.01 e 29.1 ± 1.63 d 0.56 e 0.67 e

Bacillus sp.
V2026 193.1 ± 7.08 ab 313.1 ± 5.54 a 23.7 ± 1.40 bc 33.0 ± 1.60 c 0.62 d 0.72 c

Control, noninoculated wheat plants; Bacillus sp. V2026, wheat plants inoculated with Bacillus sp. V2026. Values
in columns followed by different letters (a–f) are significantly different at p ≤ 0.05 (Duncan’s test).

One of the metabolites of lipid peroxidation is malondialdehyde (MDA); a statistically
significant decrease in MDA level in the shoots of inoculated plants was registered. The
decrease was the most obvious in S64 and AFI91 plants: by 22.9% and 20.3%, respectively
(Figure 4). Inoculation with Bacillus sp. V2026 tended to decrease MDA levels in the roots
of all genotypes involved in the study, ranging from 3.3% in AFI91 to 6.8% in AFI177.

2.8. Endogenous Levels of Plant Hormones in Seedlings

This study revealed that with inoculation Bacillus sp. V2026, the content of endogenous
hormones in wheat plants significantly varied depending on the genotype (Figure 5). An
increase in indolyl-3-acetic acid (IAA) and gibberellic acid (GA) content was observed for
all genotypes studied. The most evident change in IAA levels was noted in the roots of
cv. LR (by 66%) (Figure 5a) and shoots of lines AFI177 and AFI91 (2–2.5-fold, respectively)
(Figure 5b). A high level of basal auxins in shoots was detected in cv. S64 (Figure 5b). Plants
of line AFI91 differed significantly from other genotypes in having a reduced basal level of
IAA in the roots (Figure 5a).

The most significant increase in GA was observed in the roots of plants of early-
maturing cultivars LR and S64 (Figure 5c). The basal level of GA in the roots differed
significantly between cv. S64 and cv. LR, as well as between cv. S64 and line AFI91. The
basal level of GA in shoots of lines AFI177 and AFI91 was higher than in shoots of cv. S64
and cv. LR (Figure 5d).

The content of cytokinins (tZ, trans-Zeatin) also showed significant differences in
all four early-maturing wheat genotypes after inoculation compared with the control
(Figure 5e,f). Inoculation with Bacillus sp. V2026 significantly increased tZ content in roots
and leaves of cv. S64 and cv. LR, whereas in roots and shoots of ultra-early-maturing lines
AFI177 and AFI91, a 2.5–5-fold decrease in tZ concentration, respectively, was observed.
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Changes in tZ content were most noticeable in cv. LR; its level increased two-fold in shoots
and five-fold in roots (Figure 5e,f).
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Figure 3. Effect of Bacillus sp. V2026 on chlorophyll a (a), chlorophyll b (b), total chlorophyll (c), and
carotenoid (d) content of early-maturing wheat plants grown under hydroponic conditions. Bars with
different letters are significantly different at p ≤ 0.05, as determined by Duncan’s multiple range test.
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Figure 4. Effect of Bacillus sp. V2026 on malondialdehyde (MDA) content of early-maturing wheat
plants grown under hydroponic conditions. Bars with different letters are significantly different at
p ≤ 0.05, as determined by Duncan’s multiple range test.
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Figure 5. Effect of Bacillus sp. V2026 on concentrations of plant hormones: (a,b) indole-3-acetic
acid (IAA); (c,d) gibberellic acid (GA); and (e,f) trans-Zeatin (tZ) in roots (a,c,e) and shoots (b,d,f) of
early-maturing wheat plants grown under hydroponic conditions. Bars with different letters are
significantly different at p ≤ 0.05, as determined by Duncan’s multiple range test.

Two-way ANOVA revealed that a statistically significant contribution to the variation
in the concentration of all endogenous hormones was made by genotype-related differences
(factor 1), by inoculation with Bacillus sp. V2026 (factor 2), and by the combination of these
two factors (Table S2).

3. Discussion

Bacterium Bacillus sp. V2026 was found to produce plant hormones, such as IAA (at a
concentration of 40.3 µg·mL−1) and GA3 (at a concentration of 20.8 ng·mL−1). There are
data in the literature on the production of phytohormones IAA (at concentrations 0.1 to
92 µg·mL−1) [49,50] and different GA (at concentrations 0.13–17.9 ng mL−1) [24] by bacteria
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from genera Bacillus. Thus, concentrations of GA3 57 and 51 ng mL−1 were revealed for
B. licheniformis and B.pumilus accordingly [51].

The four early-maturing genotypes of spring wheat studied in this work differed not
only in morphological characteristics, yield structure indicators, and duration of individ-
ual development phases but also in the combination of allelic forms of the VRN-1 and
PPD-D1 genes (Figure S1). It is known that different alleles of VRN-1 and PPD-D1 and
their combinations have different effects on the timing of heading, duration of individ-
ual development phases, and yield structure in wheat [3,8,9]. Early-maturing genotypes
are characterized by a certain allelic composition of these genes [3,52]. The observed
stimulating effect of Bacillus sp. V2026 on grain yield and yield-related traits of early-
maturing wheat genotypes is consistent with the results of several other studies on the
effect of PGPB on wheat productivity under normal and stress conditions [22,53–56]. PGPB
inoculation has been shown to positively affect grain yield [14,32,54,57–60], number of
tillers, plant height and biomass [14,22,32,34], spike length [53,61], number of spikelets and
grains in the spike [54,62,63], weight of thousand grains [57,58,61,63] and the content of
nutrients [32,34,57,59,60].

We found that inoculation with Bacillus sp. V2026 and genotypic differences had a
statistically significant impact (p ≤ 0.05) on all the indices of wheat productivity recorded in
our experiments. The interaction of factors had a significant effect on the number of grains
per spike, the number and weight of grains per plant, and HI (Table S3). It is of interest that
the increase in grain yield of wheat genotypes after inoculation was mainly associated with
a higher number of productive shoots and the number and weight of grains per plant. At
the same time, the effect on plant height, spike length, and weight of thousand grains was
much less significant.

Under the conditions of inoculation with Bacillus sp. V2026, the main impact to
change in the grain yield of early-maturing genotypes was made by the increase in
productive tilling capacity (Table 1), which is an important trait determining the yield
of wheat. The positive effect of PGPB on shoot formation has been reported in other
studies [32,53,54,57,58,61,63]. Cytokinins are central to the regulation of wheat shoot
growth, and the IAA/CK ratio is used to determine plant response in this respect [64,65].
Stimulation of productive tilling capacity observed after inoculation with PGPB is asso-
ciated with their ability to produce IAA and CK, as well as with their influence on the
hormonal balance of plants [66]. The evidence suggests that the promotion of productive
tilling capacity induced by the Bacillus sp. V2026 could be mediated by bacterial IAA and
GAs. Effective stimulation of tiller formation by Bacillus sp. V2026 seems to be associated
with its IAA-producing activity, which resulted in an increase in endogenous IAA and
tZ in wheat roots and shoots (Figure 5). Tiller numbers increased after inoculation in all
the genotypes involved in our study, but the response varied depending on the degree of
hormonal changes. The highest stimulation of productive tilling capacity was registered in
plants of cv. LR and was associated with more pronounced changes in hormonal levels in
roots and shoots of plants of this cultivar, especially changes in the level of CK.

Similar to IAA, CK are among the main regulators of primary root growth due to their
participation in cell division and differentiation in the root meristem. Accumulation of
CK in inoculated wheat plants has been shown to be associated with an increase in shoot
weight [17]. Even though Bacillus sp. V2026 was found to not produce trans-Zeatin, the
concentration of cytokinins in shoot and root tissues of plants of early-maturing genotypes
after inoculation with the bacterium changed considerably more than IAA concentration.
Interestingly, the accumulation of root tZ found in our experiments in cv. S64 and cv. LR
did not inhibit root growth (Table 4), although high concentrations of CK are known to do
so [67]. However, both the increase in the levels of tZ in the roots of S64 and LR plants and
their decrease in roots of AFI177 and AFI91 plants were accompanied by stimulation rather
than inhibition of root growth. These ambiguous results can be explained by the literature
data indicating that, on the one hand, auxins decrease the levels of CK by inhibiting their
synthesis [68], and, on the other hand, the auxin-induced increase in the volume of the root
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where CK are synthesized promotes the accumulation of cytokinins [62]. Zeatin levels in
leaves increased after the inoculation of A. thaliana plants with the PGPB strain Burkholderia
phytofirmans, which has also not been shown to be able to synthesize CK [69]. The increased
level of endogenous CK in wheat roots after inoculation with Paenibacillus illinoisensis IB
1087 has been explained by its IAA activity [18].

An increase in the productivity of an individual spike associated with an increase in
the number and weight of grains is thought to be a promising direction for increasing the
productivity of early-maturing genotypes [2]. Grain number is more variable than grain
weight [70,71], and the yield is much more often associated with the number of grains than
with the average grain weight [72,73]. We found that inoculation with Bacillus sp. V2026
had a greater effect on increasing the number of grains in the spike in S64 and LR, while in
lines API91 and API177, it had a greater effect on increasing the grain weight of the spike
(Table 2). Grain number in wheat is largely determined in the stem elongation phase, with
the process of spike growth before heading being crucial for the number of grains [74,75].
It should be noted that in our study, the duration of the period from stem elongation to
heading, which has a decisive influence on spike productivity after inoculation of the plants
with Bacillus sp. V2026, did not change significantly.

The stimulating effect of Bacillus sp. V2026 on stem and spike productivity resulted in
a significant increase in the number of grains per plant and plant grain weight in all early-
maturing genotypes. A significant increase in grain yield after inoculation with Bacillus
sp. V2026 in early-maturing cultivars S64 and LR was determined by more intensive stem
formation. In contrast, in API91 and API177 lines, the increase in grain weight of the spike
(Table 1) was due to a more effective redistribution of nutrients between the structural
components of the spike, as evidenced by a significantly improved ratio of grain/chaff in the
spike of plants of these two lines (Figure 1B). It is currently thought that fruiting efficiency
and the ratio between the productive and the vegetative components of the spike (which is
associated with fruiting efficiency) are among the characteristics important for achieving
an increased yield in wheat [12,76,77]. PGPB Bacillus sp. V2026 increased grain weight
by intensifying the redistribution of substances between the structural components of the
spike. Differences between wheat genotypes in respect of this characteristic were observed.

Inoculation with Bacillus sp. V2026 resulted in a statistically significant increase of HI in
all wheat cultivars and lines involved in our study. This increase seems to be associated with
a change in donor-acceptor relationships between the spike and the vegetative mass and the
redirection of the supply of nutrients mainly towards the spike. We showed that bacteria
Bacillus sp. V2026 stimulated nutrient supply to the grain and affected the level of N, P, K,
Fe, Mg, Zn, and Mn in wheat grain (Table 2), which is consistent with our earlier results
obtained on Bacillus subtilis N2 [78,79]. Our results accord with those of [14], who reported
an increase in the content of macro- and micronutrients in wheat grain after inoculation
with Bacillus megaterium. There is evidence of positive effects of PGPB on nutrient uptake
(mainly N), yield and grain quality [32,34], protein, P, K and Fe concentration in wheat
grain [57,59,60].One of the core processes in primary plant metabolism that is directly
related to productivity is photosynthesis. The content of Chl and Car, while indirect, is
the most important biochemical indicator of plant photosynthetic activity. Our results
also showed an increase in Chl and Car content in all wheat genotypes involved in the
study (Figure 3) and a decrease in MDA accumulation and, thus, lipid peroxidation,
indicating a lowered stress load (Figure 4). Increased concentration of chlorophyll in leaves
activates photosynthesis, ensuring a more rapid accumulation of plant biomass. It has
been shown that bacterial inoculation can positively affect the content of photosynthetic
pigments in plants [61]. This is reflected in the activity of photosynthetic apparatus, which
affects the rate of accumulation of assimilates, plant growth, and productivity. Increased
chlorophyll content may be associated with positive effects of PGPB on water and mineral
uptake [61,80].
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It was found that the bacterium Bacillus sp. V2026 had a statistically significant effect on
the duration of the vegetation period of ultra-early-maturing lines and early-maturing cul-
tivars of common wheat, resulting in the acceleration of heading and maturating (Table 3).

Inoculation with Bacillus sp. V2026 accelerated the growth of wheat plants by short-
ening the vegetation period at the early stages of development from seedlings to stem
elongation. It did not affect the rate of development at later ontogenetic stages. Bacterium
Bacillus sp. V2026 shortened the growing season of early-maturing wheat plants, con-
ceivably due to the production of the GA hormone. It is known that the application of
exogenous GA accelerated flowering in winter wheat cultivars [81], significantly influenced
spike development, and shortened the duration of the preheading phase in spring culti-
vars [82,83]. GAs are a major class of phytohormones regulating plant development, from
seed germination and vegetative growth (including initiation and stimulation of flowering)
to fruit and seed setting [84,85].

In our study, inoculation with Bacillus sp. V2026 impacted the change in endogenous
GA, significantly increasing its concentration in roots and shoots of all wheat genotypes
involved in the study, with the most significant increase observed in roots (Figure 5).
In addition, increased GA concentration was found in plants treated with GA-producing
bacteria, confirming their effects on plant hormonal status [23,28]. To note, under conditions
of bacterial inoculation, the ultra-early-maturing lines AFI177 and AFI91 demonstrated
a higher level of endogenous GA in shoots, while early-maturing cultivars S64 and LR
showed a higher level of GA in roots. These differences may be associated both with a
more intense growth of ultra-early-maturing genotypes at the early ontogenetic stages
(Table 3) and with greater responsiveness of early-maturing cultivars, especially LR, to
inoculation (Figure 5).

Similar results were obtained by [38], who showed that inoculation with Bacillus
subtilis B26 resulted in a shortening of the growing season of Brachypodium distachyon. Some
PGPBs are known to synthesize gibberellins [23,86], which promotes plant growth. The
positive effect of a PGPB Bacillus methylotrophicus on plants through the secretion of several
gibberellins has been confirmed by the increased percentage of seed germination in lettuce,
melon, soybean, and vegetable mustard [87]. GA-producing Bacillus sp. strains have been
reported to stimulate the growth of red pepper [88] and rice [28].

As shown in our experiments, inoculation of wheat plants with Bacillus sp. V2026,
contributed to a change in the level of endogenous IAA in plant shoot and root tissues
(Figure 5). Since plants are capable of auxin uptake from the nutrient medium [18,89],
increased concentration of auxins in plants treated with auxin-producing Bacillus sp. V2026
may be attributed to the uptake of microbial hormones by plants and appeared to depend
on the characteristics of each genotype. IAA is a phytohormone so important for plant
development and growth, performing multiple functions, including the response of roots
and shoots to light and gravity [90,91], initiation of lateral and adventitious roots [92–94],
stimulation of cell division and elongation of stems and roots [95,96], vascular tissue
differentiation [96], apical dominance, and flower morphogenesis [97,98]. Auxin levels
in lines AFI177 and AFI91 increased to a greater extent in the shoots; those in cv. LR
increased to a greater extent in the roots, while the changes in auxin levels in cv. S64
were less pronounced (Figure 5). A weak positive correlation between the increase in IAA
concentration and the acceleration of development was observed, indicating a possible
effect of bacterial IAA on the ontogenesis duration.

Stimulation of rhizogenesis is one of the best-known effects of auxins [92,99]. The
increase in length and weight of the roots observed after inoculation with Bacillus sp.
V2026 in our experiments (Table 4) was associated with changes in auxin levels in the
roots of plants of all the genotypes involved in the study (Figure 5). A greater increase
in root length and weight in LR and AFI177 plants was apparently due to a higher and
more stable increase in endogenous IAA in plants of these genotypes after inoculation
with Bacillus sp. V2026. Similar data have been obtained in experiments with inoculation
of wheat plants with auxin-producing Paenibacillus illinoisensis IB 1087 and Pseudomonas
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extremaustralis IB-K13-1A: increased root weight and increased auxin levels in the roots
have been registered [18]. Inoculation with IAA-producing Bacillus strains on plant roots
enhances root length as well as the number of lateral roots [50,53,93]. IAA-producing
bacterium Bacillus spp. controls endogenous IAA levels in plant roots by regulating auxin-
responsive genes, which changes the root architecture [100]. Auxin-producing bacteria are
known to enhance both root and shoot growth [101]. Similarly, in our study, inoculation
with Bacillus sp. V2026 resulted in an increase in shoot length and weight, with plants of
LR and AFI177 genotypes being more susceptible to bacterial inoculation (Table 4). In our
experiments, inoculation with Bacillus sp. V2026 resulted in a greater increase in the biomass
of roots compared with that of shoots, which contributed to an increase in the root/shoot
weight ratio. According to the available literature data, after inoculation of plants with
cytokinin (CK)-producing bacteria, an opposite pattern is observed: a greater increase in
the biomass of shoots compared with that of roots results in a decreased root/shoot weight
ratio [102].

It is important to note that the effect of auxins on shoot growth is seldom discussed,
probably due to the fact that IAA transport from roots to shoots is less studied than cy-
tokinin transport. IAA- and CK-producing PGPBs are known to reconstruct the architecture
of the root system by altering the hormonal balance of plants [17,25,103,104].

Thus, Bacillus sp. V2026 promotes growth, accelerates development, and increases
the yield of early-maturing genotypes of spring soft wheat. The effect of this strain on
the duration of wheat ontogenesis is particularly interesting, as it provides an additional
opportunity of simulating the timing of heading and maturation of cultivars depending on
the region of cultivation. Our results suggest that PGPB Bacillus sp. V2026 stimulate the
ontogenesis of early-maturing genotypes by increasing the concentration of endogenous
GA in the early stages of wheat ontogenesis. According to data available in the literature,
an increase in bioactive GA results in an upregulation of the expression of transcription
factors required to initiate the transition of the wheat apical meristem to generative devel-
opment [105,106]. In general, the findings allowed us to assume that GA activity of Bacillus
sp. V2026 explains their ability to influence the GA-dependent signaling pathway, which
regulates various aspects of plant development, including the duration of early stages of
ontogenesis [82,107,108].

4. Materials and Methods
4.1. Plant Material

Seeds of early-maturing soft spring wheat (Triticum aestivum L.) cv. Sonora 64 (S64)
(k-45398) and cv. Leningradskaya rannyaya (LR) (k-142751) were provided for research
by the Department of Wheat Genetic Resources of the N.I. Vavilov All-Russian Institute
of Plant Genetic Resources (VIR) (St. Petersburg, Russia). Ultra-early-maturing lines
of soft spring wheat AFI91 and AFI177 were obtained from the Agrophysical Research
Institute [109]. Heading time in these lines is comparable with that of typical representatives
of ultra-early-maturing wheat from the VIR collection [2].

4.2. Identification of Alleles VRN-1 and PPD-D1 Loci

Using allele-specific primers, the presence of alleles of the VRN-1 and PPD-D1 loci
in cultivars S64 and LR and lines AFI177 and AFI91 was determined. For molecular ge-
netic analysis, genomic DNA was isolated from 5-day-old seedlings by the CTAB method
after [110]. Published allele-specific primers were used to detect dominant and recessive
alleles of Ppd-D1, Vrn-A1, Vrn-B1, and Vrn-D1 genes (Table S3). Reaction mixture prepa-
ration protocols and PCR conditions followed the recommendations of the authors of the
molecular markers [5,111,112].

4.3. Screening and Isolation of PGPB

PGPB were isolated from roots of spring wheat cv. Leningradskaya 6. Flasks con-
taining 100 mL of sterile phosphate buffer and 10 g of wheat roots were placed in an
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ultrasonic bath (Bandelin; 50 Hz) for 10 min. The phosphate buffer solution containing
microorganisms washed from the roots was serially diluted. Then, 0.1 mL of various
dilutions was inoculated on Petri dishes containing LB (Luria Bertani, Sigma-Aldrich,
St. Louis, MO, USA) agar medium.

4.4. Identification and Characteristics of Bacteria

Genomic DNA of Bacillus sp. V2026 was isolated using the Monarch® Genomic DNA
Purification Kit (NEB, Ipswich, MA, USA) according to the manufacturer’s protocol.

PCR amplification of DNA fragments was performed according to a standard pro-
tocol using universal primers [113,114] (Table S3). PCR parameters were: (1) matrix pre-
denaturation—95 ◦C, 3 min; (2) 30 cycles: denaturation—94 ◦C, 30 s; primer annealing—
54 ◦C, 30 s; elongation—72 ◦C, 30 s; and (3) final elongation—72 ◦C, 5 min. The obtained
PCR fragments were isolated from agarose gel [115] and sequenced using an ABI PRISM
3500xl automatic sequencer (Applied Biosystems, Waltham, MA, USA) according to the
manufacturer’s protocol. The strain was identified by comparing the obtained nucleotide
sequences of the 16S rRNA gene and ITS fragment with the RDP (https://rdp.cme.msu.edu,
accessed on 1 June 2022) and GenBank databases (https://blast.ncbi.nlm.nih.gov, accessed
on 1 June 2022). The sequences were submitted to the NCBI databases with accession
numbers OM764631 and OM855550, respectively.

The Gram reaction was determined using the Gram-staining method with the help of
a bioMe’rieux Gram-staining kit. Catalase activity was examined via the production of oxy-
gen bubbles using H2O2 (3%, v/v), and oxidase activity was detected using a commercial
oxidase strip (Sigma-Aldrich, St. Louis, USA). H2S production was determined according
to [116]; indole production was assessed by the Ehrlich method [117]. Phosphate solubiliz-
ing activity was assayed on Pikovskaya medium [118]. Bacterial biochemical characteristics
such as the utilization of D-glucose D-sucrose, maltose, arabinose, D-galactose, xylose,
inositol, dulcitol, sorbitol, glycerol, and mannitol were determined according to [119]. For
the agar well diffusion assay, PDA (potato dextrose) agar plates containing 104 Fusarium
conidia per mL agar were prepared. Then the wells with a diameter of 5 mm were cut in
agar. Liquid culture of Bacillus sp. V2026 was added to the wells [120]. The plates were
incubated at 28 ◦C for 72 h and verified every 12 h. The diameter of the zone of inhibition
of the growth of the mycelium of the fungus was measured in mm.

The bacterial phytohormones IAA, tZ, and GA in the extract were determined using a
VARIAN 212 LC high-performance liquid chromatograph with a mass selective detector
(Varian 500 MS system). Detection of IAA was carried out using ESI- (electrospray) ion
at 174 m/z. The detection of tZ and GA3 was carried out using ESI+ for ions at 220 m/z
and 345 m/z, respectively. To determine phytohormones, 50 mL of liquid culture (and
50 mL sterile liquid medium, used as a control) was taken and centrifuged at a speed
of 3000–5000 rpm for 5 min. The supernatant was drained into a dividing funnel. The
precipitate was shaken twice with 30 mL of distilled water and centrifuged after combining
the supernatant in a dividing funnel. The combined supernatant in the dividing funnel
was acidified with a 10% solution of acetic acid to a pH of 2, after which phytohormones
were extracted three times with 10 mL of ethyl acetate. The upper ethyl acetate layer
was drained through anhydrous sodium sulfate and evaporated until dry on a rotary
evaporator at a temperature of no more than 40 ◦C. The extraction was performed three
times. Chromatography was carried out in the gradient mode (phase A, methanol + 0.1%
formic acid; phase B, deionized water +0.1% formic acid). The chromatographic system
used a Cosmosil C18 4.6 ID 150 mm column. The chromatograph was calibrated using
the Sigma-Aldrich internal standards for pure hormone substances. The identification of
hormones was carried out in the mass–mass mode.

https://rdp.cme.msu.edu
https://blast.ncbi.nlm.nih.gov
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4.5. Experimental Design
4.5.1. Pot Experiments

The plants were grown in vegetative light units with the following parameters: illumi-
nation with lamps DNaZ-400 (Reflax, Moscow, Russia), illumination intensity 23–25 klx,
16-h photoperiod, temperature 23–24 ◦C (day) and 19–20 ◦C (night), and humidity 70–80%.

The plants were grown in 4 L pots, five plants per pot. The pots were placed randomly
in five replications per variant. The experimental design included two variants: wheat
plants without treatment (control) and wheat plants treated with Bacillus sp. V2026 (treat-
ment). The experiment was repeated twice. Wheat seeds, after surface sterilization in 70%
ethanol for 2 min, were washed with water and placed in Petri dishes for germination in
a thermostat at 26 ◦C for 48 h. Germinated seeds were planted in pots, 10 plants per pot;
7 days after sowing, 5 identical plants per pot were left. Soddy-podzolic light loamy soil
was used in the root layer containing mobile phosphorus 198 mg/kg, mobile potassium
112 mg/kg, nitrate nitrogen 18.2 mg/kg, and ammonium nitrogen 34.6 mg/kg.

The PGPB were grown at 28 ◦C for 48 h at 140 rpm in a broth of Luria–Bertani (LB)
medium in a rotatory shaker. The bacterial cells were centrifuged at 3900× g for 5 min;
pelleted bacteria were rinsed in 10 mM MgSO4 and diluted in Knop solution. The final
PGPB concentration was monitored by counting the bacterial colonies grown on LB–agar
medium and was 3 × 108 CFU/mL. Wheat plants were inoculated with the bacterial strain
Bacillus sp. V2026 twice: at the time of planting and at the tillering stage. Bacterial cell
suspension at a rate of 1 mL (3 × 108 CFU/mL) per seedling was applied to the soil surface
around the roots of each plant. In total, 5 mL of bacterial suspension in a concentration of
3 × 108 CFU/mL was added to each pot.

Ontogenetic phases of spring soft wheat were observed using the conventional Eu-
carpia scale. Conducting vegetative experiments under controlled conditions allows more
accurate determination of the time of onset of developmental phases [121,122]. The dates of
the phases of development were observed individually for each plant. Tillering was noted
on the day when the second shoot emerged from the main shoot. Stem elongation was
recorded when the first node rose to a height of about 1 cm. Heading was recorded on the
day when the ear fully emerged from the flag leaf. Days before the beginning of maturing
were recorded as the number of days from the date of sowing to the date of yellowing of the
upper internode of the main stem. The plants were harvested in the phase of full ripeness.
In this study on wheat yield structure, data were analyzed on productive tilling capacity,
plant height, spike length, number of spikelets in a spike, spike weight, and number and
weight of grains per spike and per plant. After drying the samples at 70 ◦C for 48 h, the dry
weight of the plant was determined. We calculated the weight of thousand grains, straw
yield per plant (the difference between biological yield and grain yield), harvest index (HI,
the ratio of grain yield to aboveground biomass yield expressed as a percentage), and the
ratio of unproductive to productive spike weight (ratio chaff to grain).

4.5.2. Hydroponic Experiment

Hydroponic experiments were performed in Knop solution (containing CaNO3 1 g,
KH2PO4 0.25 g, MgSO4 0.25 g, KCl 0.125 g, and FeCl3 0.0125 g per 1 L) to study the effect
of Bacillus sp. V2026 on the growth of wheat plants and their biochemical and hormonal
status. The experimental design included two variants: control—wheat plants without
treatment grown on Knop medium; treatment—wheat plants grown in Knop solution and
treated with Bacillus sp. V2026 at a concentration of 3 × 105 cells per·mL. The experiments
were performed in three independent replications, and from 35 to 45 plants per variant
were used in each replication.

For the experiment, undamaged and calibrated seeds were selected, surface-sterilized
in 70% ethanol for 2 min, and washed with sterile water. The seeds were then soaked
in 2% sodium hypochlorite solution for 20 min and washed five times with sterile water.
After that, the seeds were placed in Petri dishes and germinated in a thermostat at 26 ◦C.
After 48 h, the germinated seeds were placed between two layers of hydrophilic tissue at
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a distance of 2 cm from each other; then, the tissue was rolled up and placed in 300 mL
vessels with Knop nutrient solution. For the hydroponic experiments, bacteria were diluted
to a concentration of 3 × 105 cells per 1 mL of Knop’s solution. On the 14th day after the
beginning of the experiment and on the 10th day after adding the bacterium, the length and
the biomass of plant shoots and roots were measured, and samples were taken to determine
the content of photosynthetic pigments and hormone levels.

4.6. Analysis of Plant Phytohormones

To determine the phytohormones, 10 g of leaves were homogenized with 80% methanol
at 4 ◦C and evaporated at a rotary evaporator under vacuum. The remaining aqueous phase
was divided into two parts. One half was acidified with 10% solution of muriatic acid to
pH 2.5–3 and extracted three times in a separating funnel with 30 mL diethyl ether for deter-
mination of IAA, tZ, and GA. The second part was diluted with 10% potassium hydroxide
to pH 8.0 and extracted three times in a separating funnel with n-butanol (30 mL each),
after which the extract was purified with Dowex 50W*8 ion-exchange resin. The final
extracts were evaporated to a dry residue and dissolved in 2 mL of mobile phase A. Con-
centrations of IAA, tZ, and GA in the extract were determined by high-performance liquid
chromatography with mass selective detection (VARIAN 212 LC liquid chromatograph
with mass selective detector [Varian 500 MS system]). IAA was detected using an ESI-
(electrospray) at 174 m/z ion. tZ and GA were detected using ESI+ (electrospray) at 220 m/z
and 345 m/z ions, respectively. Chromatography was performed in gradient mode (phase
A, methanol + 0.1% formic acid; phase B, deionized water +0.1% formic acid). Cosmosil C18
4.6 ID × 150 mm column was used in the chromatographic system. The chromatograph
was calibrated using Sigma-Aldrich internal standards for pure hormones. The hormones
were identified in MS/MS mode.

4.7. Chlorophyll and Carotenoids Analysis

Photosynthetic pigments chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids
(Car) were analyzed in acetone extract using the spectrophotometric method [123]. A
total of 0.2 g of leaves were ground in a porcelain mortar with a small amount of acetone
and sand in the presence of calcium carbonate. The ground mass was transferred to a
centrifuge tube and centrifuged at 4000 rpm−1. The supernatant was transferred into
a 50 mL volumetric flask and made up to the mark with acetone. Optical density was
measured on a spectrophotometer PE-3000UF at 662, 644, and 440.5 nm wavelengths.

4.8. Lipid Peroxidation

The level of lipid peroxidation (LPO) was assessed based on the content of mal-
onic dialdehyde (MDA), which is a product of LPO [124]. Plant material (0.3 g of raw
leaves) was homogenized in 1 mL of reaction medium consisting of thiobarbituric acid and
trichloroacetic acid. The total volume of the homogenate was 4 mL. One sample of reaction
medium (4 mL) contained 0.4 g of trichloroacetic acid (10%) and 1.0 mg of thiobarbituric
acid (0.25%). The homogenate was placed in a water bath at 95–100 ◦C for 30 min, after
which the samples were cooled and centrifuged for 10 min at 10,000 g. Absorbance was
measured at 532 nm and 600 nm. The TBA reactive product concentration was calculated
using an extinction coefficient of 155 mM−1 cm−1.

4.9. Analysis of Protein and Macronutrient/Micronutrient Content in Wheat Grain

Wheat grain was dried in an oven to constant weight at a temperature of 105 ◦C,
crushed in a mill, and sifted through a sieve with a mesh diameter of 1 mm. The prepared
sample was used to determine the concentration of trace elements Fe, Mg, Zn, and Mn. For
analysis, a sample weighing 1 g was transferred into precalcined crucibles, and dry ashing
was carried out in a muffle furnace at a temperature of 520 ◦C for 5 h until complete ashing.
After the crucibles cooled down, an 18% HCl solution was added to them, dissolving the
ash; the contents of the crucibles were transferred with deionized water into a 100 mL
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volumetric flask. The resulting solution was filtered through an ash-free blue ribbon filter.
The measurements were carried out on a Varian AA240FS atomic absorption spectropho-
tometer with flame atomization. The device was calibrated using standard solutions of
elements with a given concentration. Trace elements were measured at the most sensitive
wavelengths of Fe (248.7 nm), Mg (324.6 nm), Zn (213.7 nm), and Mn (279.5 nm) using
hollow cathode lamps.

4.10. Statistical Analysis

For the statistical analysis, we used two-factor analysis of variance (ANOVA) and
Duncan’s multiple range test to determine the significance of differences between the mean
values. The number of repeats for each characteristic is shown in the tables and figures. The
mean ± SE values presented in the tables and the figures were calculated using MS Excel.

5. Conclusions

PGPB Bacillus sp. V2026 producing indole-3-acetic acid and gibberellin influenced
the development dynamics and productivity of early-maturing cultivars S64 and LR and
ultra-early-maturing lines AFI91 and AFI177 of wheat, as well as their physiological and
biochemical responses and endogenous hormone levels at the early stages of ontogenesis.
Inoculation with the bacterium significantly shortened the time to reach each growth stage
in early-maturing genotypes, with cycle reduction being greater from seedlings to stem
elongation. Inoculation of plants with Bacillus sp. V2026 significantly affected the content
of endogenous hormones IAA, GA, and tZ in roots and shoots of early-maturing wheat
genotypes. The stimulating effect of Bacillus sp. V2026 on the cultivars S64 and LR was
mostly expressed as an increase in the number of grains, while the effect on the plants
of lines AFI91 and AFI177 was mainly expressed as an increase in grain weight. The
contents of macro- and microelements and protein in the grain of AFI91 and AFI177 were
maximal compared with other genotypes. The bacterium Bacillus sp. V2026 could be used
to increase the yield and the grain quality of early-maturing genotypes of spring soft wheat.
However, further studies are necessary to select the most effective association for growing
high-yielding early-maturing wheat plants, since there are the differences in the response
of early-maturing wheat genotypes to inoculation with PGPB Bacillus sp. V2026.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11141817/s1. Table S1: morphological, physiological, and
biochemical characteristics of the studied strain, Table S2: analysis of variance (ANOVA) for genotype
and Bacillus sp. V2026 effect on various traits of four spring wheat genotypes, Table S3, primers
used in the study, Figure S1: identification of dominant (288 b.p.) and recessive (414 b.p.) alleles
of Ppd-D1 gene (a), dominant (715+624 b.p.) and recessive (484 b.p.) alleles of Vrn-A1 gene (b),
dominant (1124 b.p.) allele of Vrn-B1 gene (c), and dominant (1671 b.p.) allele of Vrn-D1 gene (d)
in wheat varieties by PCR with allele-specific markers. Wheat varieties: 1- AFI-177, 2- AFI-91, 3-
Leningradskaya rannayay, 4- Sonora-64, M-DNA ladder; Figure S2, effect of inoculation with Bacillus
sp. V2026 on wheat seedlings of early-maturing genotypes.
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