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ABSTRACT Deep learning is a branch of artificial intelligence. In recent years, with the advantages of

automatic learning and feature extraction, it has been widely concerned by academic and industrial circles.

It has been widely used in image and video processing, voice processing, and natural language processing.

At the same time, it has also become a research hotspot in the field of agricultural plant protection, such as

plant disease recognition and pest range assessment, etc. The application of deep learning in plant disease

recognition can avoid the disadvantages caused by artificial selection of disease spot features, make plant

disease feature extractionmore objective, and improve the research efficiency and technology transformation

speed. This review provides the research progress of deep learning technology in the field of crop leaf disease

identification in recent years. In this paper, we present the current trends and challenges for the detection

of plant leaf disease using deep learning and advanced imaging techniques. We hope that this work will be

a valuable resource for researchers who study the detection of plant diseases and insect pests. At the same

time, we also discussed some of the current challenges and problems that need to be resolved.

INDEX TERMS Deep learning, plant leaf disease detection, visualization, small sample, hyperspectral

imaging.

I. INTRODUCTION

The occurrence of plant diseases has a negative impact on

agricultural production. If plant diseases are not discovered in

time, food insecurity will increase [1]. Early detection is the

basis for effective prevention and control of plant diseases,

and they play a vital role in the management and decision-

making of agricultural production. In recent years, plant dis-

ease identification has been a crucial issue.

Disease-infected plants usually show obvious marks or

lesions on leaves, stems, flowers, or fruits. Generally, each

disease or pest condition presents a unique visible pattern

that can be used to uniquely diagnose abnormalities. Usually,

the leaves of plants are the primary source for identifying

plant diseases, and most of the symptoms of diseases may

begin to appear on the leaves [2].

In most cases, agricultural and forestry experts are used

to identify on-site or farmers identify fruit tree diseases and

pests based on experience. This method is not only sub-

jective, but also time-consuming, laborious, and inefficient.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongming Li .

Farmers with less experiencemaymisjudgment and use drugs

blindly during the identification process. Quality and output

will also bring environmental pollution, which will cause

unnecessary economic losses. To counter these challenges,

research into the use of image processing techniques for plant

disease recognition has become a hot research topic.

FIGURE 1. Traditional image recognition processing.

The general process of using traditional image recognition

processing technology to identify plant diseases is shown

in Fig. 1. Dubey and Jalal [3] used the K-means clustering

method to segment the lesions regions, and combined the

global color histogram (GCH) color coherence vector (CCV)

local binary pattern (LBP), and completed local binary pat-

tern (CLBP) was used to extract the color and texture features

of apple spots, and three kinds of apple diseases were detected
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and identified based on improved support vector machine

(SVM), and the classification accuracy reached 93%.

Chai et al. [4] studied four tomato leaf diseases, including

early blight and late blight leaf mildew and leaf spot, and

extracted 18 characteristic parameters such as color, texture,

and shape information of tomato leaf spot images, using step-

wise discriminant and Bayesian discriminant principal com-

ponent analysis (PCA), respectively. Principal component

analysis and fisher discriminant methods were used to extract

the characteristic parameters and construct the discriminant

model. The accuracy of the two methods reached 94.71% and

98.32%, respectively.

Li and He [5] selected 5 kinds of apple leaf diseases

(speckled deciduous disease, yellow leaf disease, round spot

disease, mosaic disease, and rust disease) as the research

objects. By extracting 8 features of the apple leaf spot image,

such as color, texture, and shape. The BP neural network

model was used to classify and recognize the diseases, and

the average recognition accuracy reached 92.6%.

Guan et al. [6] extracted 63 parameters including morphol-

ogy, color, and texture features of rice leaf disease spots, and

applied step-based discriminant analysis and Bayesian dis-

criminant method to classify and recognize three rice diseases

(blast, stripe blight, and bacterial leaf blight) with the highest

recognition accuracy of 97.2%.

In short, it can be concluded that studies on plant disease

recognition based on traditional image processing technology

have achieved certain results, with high accuracy of disease

recognition, but there are still deficiencies and limitations as

follow:

1) The research links and processes are cumbersome,

highly subjective, time-consuming and labor-consuming;

2) It is heavily dependent on spot segmentation; 3) It is

heavily dependent on artificial feature extraction; 4) It is

difficult to test the disease recognition performance of the

model or algorithm in more complex environments.

Therefore, it is of great significance to realize intelligent,

rapid, and accurate plant leaf disease recognition.

In recent years, deep learning technology in the study of

plant disease recognition made more progress. Deep learn-

ing (DL) technology in the face of the user is transparent,

the researchers of plant protection and statistics professional

level is not high, can be automatically extracted image fea-

tures and classification of plant disease spot, eliminating the

traditional image recognition technology of feature extraction

and classifier design a lot of work, can express original

image characteristics, has the characteristics of the end-to-

end. These characteristics make deep learning technology in

plant disease recognition-obtained-widespread attention, and

it has become a hot research topic. This is due to three factors:

the availability of larger datasets, the adaptability of multi-

core graphics processing units (GPUs), and the development

of training deep neural networks and supporting software

libraries, such as the computing unified device architecture

(CUDA) from NVIDIA.

Recently, the convolutional neural networks (CNN), a spe-

cial of deep learning techniques, are quickly becoming the

preferred methods [7]. CNN is the most popular classifier

for image recognition, and it has shown outstanding ability

in image processing and classification [8]. Deep learning

approaches were first introduced in plant image recognition

based on leaf vein patterns [9]. They used 3-6 layers CNN

classified three leguminous plant species: white bean, red

bean, and soybean.Mohanty et al. [10] trained a deep learning

model to recognize 14 crop species and 26 crop diseases. The

trained model achieved an accuracy of 99.35% on the test set.

Ma et al. [11] used a deep CNN to conduct symptom-wise

recognition of four cucumber diseases (i.e., downy mildew,

anthracnose, powdery mildew, and target leaf spots). The

recognition accuracy reached 93.4%. Kawasaki et al. [12]

introduced a system based on CNN to recognize cucumber

leaf disease, which realized an accuracy of 94.9%.

Although very good results have been reported in the

literature, however, the diversity of the used datasets is lim-

ited. Large datasets (comprised of thousands of images) are

required for the training of CNNs. Unfortunately, for plant

leaf disease recognition, such large and diverse datasets have

not yet been collected for use by researchers. At present,

transfer learning is the most effective way to train the robust-

ness of CNN classifiers for plant leaf disease recognition.

Transfer learning enables the adaptation of pre-trained CNNs

by retraining them with smaller datasets whose distribution is

different from the larger datasets previously used to train the

network from scratch [13]. Indeed, it is effective that using

CNN models pre-trained on the ImageNet dataset and then

retraining them for leaf disease recognition. Therefore, the

combination of deep learning and transfer learning provides

a new way to solve the problem of limited datasets of plant

diseases.

There are some research papers previously presented to

summarize the research about agriculture (including plant

disease recognition) by DL [8], [14], but they lacked some of

the recent developments in terms of visualization techniques

implemented along with the DL and modified the famous DL

models, which were used for plant disease identification.

The article [15] presented many imaging techniques for

plant disease detection, and the focus was on imaging tech-

niques. Themajor techniques presented for plant diseases and

classification are SVM, K-means, and KNN.

The article [16] presented many developed/modified DL

architectures implemented to detect and classify plant dis-

eases. And provided a comprehensive explanation of DL

models used to visualize various plant diseases. But there is

no mention of the early detection of the diseases and how to

detect and classify plant diseases based on small samples.

In the paper [17], the authors had presented a com-

prehensive review of recent research work done in plant

disease recognition using IPTs, from the perspective of fea-

ture extracted based on hand-crafted or using deep learning

techniques. And it is concluded that the deep learning
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techniques have superseded shallow classifiers trained using

hand-crafted features. But they lacked some of the recent

developments in terms of visualization techniques, and there

is no mention of the early detection of the diseases and how

to detect and classify plant diseases based on small samples.

This paper aim at the shortcomings of the existing review

papers on disease detection, we provide a review of recent

studies carried out in the area of plant leaf disease recognition

using image processing, hyper-spectral imaging, and deep

learning techniques. We hope that this work will be helpful

for researchers in the area of plant leaf disease recognition

using DL methods.

The rest of this paper is organized as follows. In Section 2,

review some basic knowledge including deep learning con-

cept, foundation, framework, development history, model

evaluation criteria, the plant leaves disease datasets, and the

data enhancement methods, etc. In Section 3, we review

research work done so far towards the application of deep

learning in crop leaves disease recognition from some

aspects. In Section 4, plant disease detection based on small

sample data set is discussed. In Section 5, some applica-

tions of hyper-spectral imaging in plant disease detection are

discussed. Section 6, summarizes and discusses gaps in the

existing literature that need to be addressed.

II. BASIC KNOWLEDGE OF DEEP LEARNING
A. THE FRAMEWORK, DEVELOPMENT, AND EVALUATION

OF MODELS FOR DEEP LEARNING

1) THE HISTORY OF DEEP LEARNING

Deep Learning (DL) is a subclass ofMachine Learning (ML),

It was introduced in 1943 [18] and then went into three stages

of development. The first generation of neural network-MCP

(1943∼1969): originated in 1943, is a linear model, can only

deal with linear classification problems.

The second generation of neural network-back propagation

(BP) (1986∼1998): Hinton invented the BP algorithm suit-

able for multi-layer perceptron (MLP) in 1986 and adopted

sigmoid function for nonlinear mapping, which effectively

solved the problem of nonlinear classification and learning.

This method caused the second upsurge of neural networks.

However, in 1991, the BP algorithmwas pointed out that there

was a gradient vanishing problem.

The third generation neural network-DL(2006-present):

In 2006, Hinton gradient disappeared in the deep web training

are put forward in this problem solution, but because there is

no special effective experimental verification and no atten-

tion. It was not until 2011 that the ReLU activation func-

tion (the activation function that can effectively restrain the

gradient disappeared problem) was put forward, then enter

the outbreak period in 2012, in the famous ImageNet image

recognition contest, the Hinton team used a deep learning

model-AlexNet to win, and far more than the second method

(SVM). Since then CNN has attracted the attention of many

researchers.

After the introduction of AlexNet [19], the DL architecture

began to evolve over time as shown in VI. Many advanced

DL models/architectures were used for image detection, seg-

mentation, and classification, and these architectures were

successively applied to plant disease detection.

2) METRICS

In order to evaluate these algorithms/architectures, top-

1%/top-5% error [6], [20]–[22], precision and recall

[10], [23], [24], F1 score [24], [25], training/validation

accuracy and loss [25], [26], classification accuracy (CA)

[27], [28], and mean average precision (mAP) are usually

selected as the indicators of judgment.

B. DISEASE DATASETS

Common diseases datasets are: 1) P1antVillage, an open

dataset, has now collected 54309 plant leaves disease images,

covers 14 kinds of fruit and vegetable crops, such as

apple, blueberry cherries, grapes, orange peach bell pep-

per potato raspberry soybean pumpkin strawberry, and

tomatoes, corn contains 26 diseases (17 kinds of fungal

disease, 4 kinds of bacteria disease, 2 kinds of myco-

sis, 2 kinds of viral diseases and 1 kind of diseases

caused by mite), also includes 12 healthy crop leaf images.

2) ‘Plant Pathology Challenge’ for CVPR 2020-FGVC7

(https://www.kaggle.com/c/plantpathology - 2020 fgvc7),

it consists of 3,651 high-quality annotated RGB images

of 1,200 apple scab and 1,399 cedar apple rust symptoms

and 187 complex disease patterns (the leaves with more than

one disease in the same leaf) and 865 healthy apple leaves.

3) While others constitute datasets of real images collected

by the authors for their research needed(corn, tea, soybeans,

cucumbers, apples, grapes). 4) Growing the plants themself

and inoculating themwith the virus, themethod of data acqui-

sition is commonly seen in applications that use hyperspectral

images for disease detection.

C. DATA AUGMENTATION

In leaf disease detection, collection and label a large num-

ber of disease images require lots of manpower material

resources and financial resources. For some certain plant

diseases, their onset period is shorter, it is difficult to collect

them. In the field of deep learning, the small sample size

and dataset imbalance are the key factors leading to the poor

recognition effect. Therefore, the deep learningmodel for leaf

disease detection, expand the amount of data is necessary.

Data augmentation to meet the requirements for the practical

application, and not at liberty to expand (the color is one of

the main manifestations of different diseases, for example,

when doing image enhancement can’t change the color of the

original image). There are two common ways to augment the

datasets.

1) TRADITIONAL AUGMENTATION

The typical methods are the physical expansion method (ten-

sile rotation adjustment resolution image translation distur-

bance, etc.), web crawler, variational auto-encoder (VAE),

and autoregressive model, etc. The shortcomings of the
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FIGURE 2. The history of DL architectures.

FIGURE 3. Diagram of GANS structure sketch.

produced samples by the traditional expansion method are

poor quality, inadequate diversity, and unevenness.

2) GENERATE ADVERSARIAL NETWORKS (GANS)

GANs is a kind of generating model proposed by Goodfel-

low et al. [29] in 2014. Subsequently, many variations of

GAN have emerged successively, such as DCGAN, CGAN,

PGGAN, LAPGAN, InfoGAN, WGAN, F-GAN, SeqGAN,

LeakGAN, etc. The major goal is to generate synthetic sam-

ples with the same characteristics as the given training distri-

bution. The GANsmodels mainly consist of two parts, that is,

generator and discriminator. The structure diagram is shown

in Fig. 3.

Generative network approaches have been extensively used

to generate samples in recent years. Nazki et al. [30] is

the first work that uses GANs to synthetically augment the

dataset to improve the plant disease recognition performance.

By optimizing the activation reconstruction loss (ARL) func-

tion and put forward an improved AR-GAN, compared with

most prominent existing models, the proposed model is intro-

duced into composite images, and nine kinds of tomato on the

test data set (2789), the results showed that the classification

accuracy is significantly increased (+ 5.2%), compared with

the classic way.

Tian et al. [31] proposed an approach (CycleGAN) that

can generate more apple disease images. Generated images

augmented by conditional deep convolutional generative

adversarial networks (C-DCGAN) [32] use the segmented

tea disease spot image as the input of VGG16. The result

showed that the average accuracy is about 28% higher by

using C-DCGAN than rotation and translation.

The article [33] generated images by using deep con-

volutional generative adversarial networks (DC-GAN), and

achieved a top-1 average identification accuracy of 94.33%

on GoogLeNet. The T-distribution random neighborhood

embedding (T-SNE) verified that the image distribution gen-

erated by this method was closer to the sample distribution of

the real image.

In the paper [34], four different kinds of grape leaf disease

images were expanded by a novel Leaf GAN model. The

experimental results showed that the Leaf GAN model could

make the grape leaf disease images highlight the disease and

generate enough grape leaf disease images. It was proved that

Leaf GANwas superior to those of the DCGAN andWGAN.

D. VISUALIZATION TECHNIQUE

In recent years, the successful application of deep learning

technology in plant disease classification provides a new

idea for the research of plant disease classification. However,

DL classifiers lack interpretability and transparency. The

DL classifiers are often considered black boxes without any

explanation or details about the classification mechanism.

High accuracy is not only necessary for plant disease clas-

sification but also needs to be informed how the detection

is achieved and which symptoms are present in the plant.

Therefore, in recent years, many researchers have devoted

themselves to the study of visualization techniques such as

the introduction of visual heat maps and salient maps to better

understand the identification of plant diseases. Among them,

the works of [35] and [36] are crucial to understanding how

CNN recognizes disease from images.

For example, Brahimi et al. [35] introduced saliency

maps to visualize the symptoms of plant diseases.

Mohanty et al. [10] used AlexNet and GoogLeNet architec-

tures, through the precision (P), recall (R), F1 score, and the

overall accuracy to evaluate the performance of the models on

the PlantVillage. Used the three scenarios (color gray and seg-

mentation) to assess the performance of the 2 CNN famous

architectures, and come to the conclusion that GoogLeNet

outperformed AlexNet, the first layer of the visual results

clearly showed the disease spots also. In Cruz et al. [37],

the improved LeNet model was used to detect olive plant

diseases, that is, segmentation and edge maps were used to

identify plant diseases. Brahimi et al. [38] proposed a new

visualizationmethod, that is, a newDLmodel teacher/student
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networkwas introduced to identify the spots of plant diseases,

compared with the existing plant disease treatment methods,

the new method obtained a clearer visualization effect.

According to the author Dechant et al. [39], using dif-

ferent CNN combinations, the visual heat map of maize

disease images was used as the inputs, and the probabil-

ity associated with the occurrence of a particular type of

disease was given. The ROC curve was used to evaluate

the performance of the model. In addition, the characteris-

tic map of maize diseases was also drawn. Lu et al. [40]

realized that wheat disease detection by using VGG-FCN

and VGG-CNN model and visualized the module features.

The results showed that the DMIL-WDDS based on VGG-

FCN-VD16 achieved a progressive learning process for fine

characteristics of the disease. The feature visualization was a

good demonstration of what the DMIL-WDDS was learning.

Moreover, the results indicated that Softmax aggregation was

a superior choice for DMIL-WDDS to improve the recog-

nition accuracy. Ha et al. [41] used the VGG-CNN model

to test the blight of radish and used the k-means clustering

method to show the disease markers. And the method was

able to detect the individual infected areas. That is, the regions

of healthy radish and moderate Fusarium wilt of radish were

successfully detected by the method. The results showed that

the method can also be applied to other crops and plants,

including tomato, tobacco, banana, and etc.

Barbedo [42] explored the use of individual lesions and

spots for the task, rather than considering the entire leaf,

and by using the DL models to identify the plant diseases.

The accuracy obtained using the approach was, on average,

12% higher than those achieved using the original images.

Ghosal et al. [43], developed a deep CNN framework to

identify and classify 8 kinds of soybean stress. And also

present an explanation mechanism, used the top-K high-

resolution feature maps that isolate the visual symptoms to

make predictions. The unsupervised identification of visual

symptoms provided a quantitative measure of stress severity,

allowing for identification (a type of foliar stress), classifica-

tion (low, medium, or high stress), without detailed symptom

annotation by experts.

Lu et al. [44] used CNN to identify rice diseases, early

disease detection, and the characteristic maps of disease spots

were also obtained. Picon et al. [45] proposed an adapted

algorithm based on a deep residual neural network to deal

with the detection of multiple crop diseases in real condi-

tions for early disease detection. And developed a mobile

application in which heat maps were used to identify plant

diseases. Obtained results reveal an overall improvement of

the balanced accuracy up to 0.87 under exhaustive testing,

and the accuracy greater than 0.96 on a pilot test performed

in Germany.

Johannes et al. [46] used an algorithm based on heat map

technology to extract the diseased objects. In addition, each

heat map is described by two descriptors, one for evaluating

the color information of the disease, and the other for identi-

fying the texture of the heat map. The preliminary hot-spot

detection and its ulterior description by color and textural

descriptors allow real-time performance as only the suspi-

cious regions are trained and described by the higher level

classifiers and descriptors.

Khan et al. [47] proposed a new visualization technology

using correlation coefficient andDLmodel (e.g., AlexNet and

VGG16 architecture). Kerkech et al. [48] variety vegetation

indices in color space combined with the LeNet model were

used to detect the grape diseases. The article [49] for the

reason of interpreting the deep learning model, compared

with some of the most popular explanatory methods: sig-

nificant figure, Smooth-Grad, boot back-propagation, depth

Taylor decomposition, integration gradient layered associ-

ated transmission, and gradient time input. And trained the

DenseNet121 network to identify eight different soybean

stresses(biological and non-biological). And concluded that

the interpretability methods identified the infected regions of

the leaf as important features for some (but not all) of the

correctly classified images.

Taken tea leaf diseases images(tea of 261 images of 5 kinds

of common disease) in the complex background as the

research object, Sun et al. [50] proposed a method combining

simple linear iterative clustering (SLIC) and support vector

machine (SVM), and gain a significant figure accurate tea

leaf disease images, with 98.5% accuracy, precision is 96.8%,

the recall rate was 98.6%, the F1 score was 97.7%. The results

showed that themethod can effectively extract tea leaves from

complex background significant figure.

Hu et al. [51] put forward a kind of new convolution neural

network model ARNet (Attention residual network) combin-

ing the attention mechanism with the residual idea, and the

leaves of five tomato diseases in the early and late periods

were studied. The results of the study concluded that, com-

pared with the existed models such as VGG16, the ARNet

had a better classification performance. The different layers

of (Attention convolutional block, ACB), are visualized in

the form of heat maps, and the attention information of the

different layers obtained by the module are shown in Fig. 4.

Fig. 4 (a) and (b) represent the output heat maps of late

early blight disease and late leaf frost disease in the ACB

module at different levels of the ARNET model respectively.

Among them, the heat output of each type of image showed

in line 1, and line 2 showed that heat superimposed on the

original image, from left to right in turn for layer 2, 3, 4,

and 5 layers of the last ACB output module. As you can see

in Fig. 4, the ACB module can more accurately extract the

key feature of each type of disease, shallow ACB module to

extract the characteristics of relatively scattered, not as a cat-

egory, but the deep ACB module to extract the characteristics

of more concentrated which the color is more close to red,

that is the corresponding place a greater contribution to the

final classification decision.

VOLUME 9, 2021 56687



L. Li et al.: Plant Disease Detection and Classification by Deep Learning—A Review

FIGURE 4. The output heat maps of the ACB module in reference [47].

III. LEAF DISEASE DETECTION BY DEEP

LEARNING ARCHITECTURES

This section presents the recent researches done by using

famous DL architectures for the identification and classi-

fication of leaf diseases. Moreover, there are some related

works in which modified/improved versions of DL architec-

tures were introduced to achieve better results and software

development of disease identification systems.

A. LEAF DISEASE DETECTION BY WELL-KNOWN DEEP

LEARNING ARCHITECTURES

1) CLASSIC DEEP LEARNING ARCHITECTURES FOR

LEAF-DISEASE DETECTION

Since each disease region has its own characteristics,

Barbedo [42] and Lee et al. [52], discussed the use of indi-

vidual lesions and spots rather than considering the whole

leaf. The advantages of this method were that occurrence

of multiple diseases on the same leaf could be detected and

the data can be augmented by cutting up the leaf image

into multiple sub-images. The article [55] taken 79 diseases

of 14 species of plants in the experimental environment and

complex field environment as the research object and used

the GoogLeNet model to identify diseases. The overall accu-

racy of using a single lesion and spot was 94%, which was

higher than using the whole image (82%). Lee et al. [52] put

forward a new view of leaf disease detection that focused on

identifying diseases disease area method (i.e. by the common

name of disease rather than crops - diseases on the target

category), and through the experiments showed that whatever

crops, themodel trainingwith the common disease weremore

universal, especially for the new data obtained in different

fields or that crops have not been seen.

Qiu et al. [53] used the Mask-RCNNwhose feature extrac-

tion network was ResNet50 or ResNet101 to detect the wheat

disease areas, and the average accuracy on the test dataset

was 92.01%.

Ahmad et al. [54] used four different pretraining convolu-

tion neural networks VGG19, VGG16, ResNet, and Inception

V3, and the models were trained by fine-tuning parameters.

The experimental results showed that the Inception V3 had

the best performance on the two datasets(the laboratory

dataset and the field dataset). And the average performance

superior to 10% to 15% on the laboratory dataset compared

with on the field dataset. Bi et al. [55] showed that the

recognition accuracy rates of apple leaf spot and rust models

collected by agricultural experts were 77.65%, 75.59%, and

73.50%, by using ResNet152, Inception V3, and MobileNet,

respectively.

Jiang et al. [56] used the Mean Shift algorithm to segment

four kinds of rice disease spot (red blight stripe disease to

rice blast and sheath blight) at first, and then extract shape

feature by artificial calculation (put forward three new shape

characteristic lesions number N, S lesion area, number of

lesions ratio R) and CNN extracts color feature, at last,

the SVM classifier was used to identify the diseases, and the

results showed that the CNN used segmentation algorithm

accuracy was 92.75%, the accuracy was 82.26% without the

segmentation algorithm, and the accuracy of the CNN in

combination with the SVM model was 96.8%.

Liang et al. [57] established a dataset contains 2906 of the

positive samples and 2902 of the negative samples to identify

rice blasts. And the experimental results showed that the

senior characteristics extracted fromCNN than the traditional

manual extraction of local binary pattern histogram (LBPH)

and wavelet transform (Haar-WT) had better identification

and effectiveness.

Huang et al. [58] put forward a kind of plant leaf image

disease recognition method based on the neural structure

search algorithm, the method can learn the structure of the

neural network to the appropriate depth on the P1antVillage,

automatically. According to the results of the studiedmethods

on the dataset of imbalanced and balanced searched out a

suitable network structure, and the recognition accuracy of

the model was 98.96% and 99.01% respectively. However,

if the balance of the gray images was not improved, the

accuracy fell to 95.40%.

Long et al. [59] usedAlexNet for 2 kinds of training, that is,

training from scratch and transfer learning from the ImageNet

to detect the camellia leaf diseases (4 kinds of diseases and

healthy). The results showed that transfer learning can sig-

nificantly improve the convergence speed and classification

performance of the models, and the classification accuracy as

high as 96.53%.

Xu et al. [60] in order to realize image recognition of

corn leaf disease (healthy, leaf blight, rust) in complex field

background with small samples, proposed a convolutional

neural network model(VGG16) based on transfer learning.

The weight parameters of the VGG16 model were trained

on ImageNet and transferred to the model, and the average

recognition accuracy was 95.33%.

The ResNet50 network pre-trained on ImageNet was used

to study 4 types of apple leaf diseases in the Plant Pathology
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TABLE 1. Summary of recent research works about the application of DL framework directly.

2020 Challenge dataset, and the overall test accuracy of the

model was 97%. But except for the complex disease pat-

tern category (the combination of several disease symptoms),

the recognition accuracy was only 51% [61].

Li et al. [62] used VGG16 and Inception V3 models to

identify different degrees of Ginkgo biloba diseases, the accu-

racy of the VGG16 was 98.44% in the laboratory dataset and

92.19% in the field dataset. The accuracy of the Inception

V3 model was 92.3% and 93.2%, respectively.

Table 1 offers a brief overview of recent research works

about the application of the DL framework directly.

2) NEW/MODIFIED DL ARCHITECTURES FOR

LEAF-DISEASE DETECTION

Dechant et al. [39] integrated multiple CNN classifiers to

study high-resolution corn disease images. The experimental

results showed that when a single CNN classifier was used,

the accuracy rate was 90.8%, when two first-level classifiers

were used, the accuracy rate rise to 95.9%, and when three

first-level classifiers were used, the accuracy rate was 97.8%.

Liu et al. [63] proposed a new CNN structure to identify

the apple leaf disease. The network was formed by cascading

an AlexNet-precursor network and an Inception network.

The Inception network replaced the fully connected layers

in the traditional AlexNet model, significantly reducing the

number of trainable parameters, thereby reducing storage

requirements. Use Nesterov’s accelerated gradient (NAG)

optimization algorithm instead of the stochastic gradient

descent (SDG) algorithm to update the weights to improve

the convergence speed. The performance of this network was

compared with SVM, BP, AlexNet, GoogLeNet, ResNet20,

and VGG16. The accuracy of these models were 68.73%,

54.63%, 91.19%, 95.69%, 92.76% and 96.32%, while the

accuracy of the proposed AlexNet-precursor + Cascade-

Inception network was 97.62%.

Picon et al. [45] in order to extract the detailed features

of the wheat disease symptoms, the first 7 × 7 convolutional

layer of the ResNet50 network was replaced with two 3 × 3

convolutions and the sigmoid activation function was used

instead of the softmax layer for improvement. And used the

improved ResNet50 network to detect the early three wheat

diseases (septoria, tan spot, and rust), and achieved 96%

accuracy on the balanced dataset.

For the existing deep networkmodel existed problems such

as a large number of parameters, long training time, high

storage cost and computational cost, etc. Wang et al. [64]

based on the ResNet18, by adding a multi-scale feature

extraction module to change the residual layer connec-

tion method, decomposes the large convolution kernel and

performs group convolution operations, and proposes an

improved multi-scale residual (Multi-scale ResNet) model,

which significantly reduced the model parameters, storage

space and computing overhead. The accuracy rate of 95.95%

was achieved on the PlantVillage dataset, and 93.05% was

achieved in the self-collected dataset of 7 real environmental

diseases.

Aiming at the problem that the current plant leaf dis-

ease recognition model is easily interfered with by shadows,

occlusions, and light intensity, and the feature extraction is

blind and uncertain, Ren et al. [65] and others had constructed

a deconvolution-guided VGG network (Deconvolution-

Guided VGGNet, DGVGGNet) model, which can identify

plant leaf disease and segment disease spot. This model

had a recognition accuracy of 99.19% for the 10 types

of tomato leaf disease images in the PlantVillage dataset.

The pixel accuracy and average intersection ratio of disease

spots segmentation were 94.66% and 75.36%, respectively.
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And it had good robustness in occlusion, low light, and other

environments.

Guo et al. [66] designed a multi-receptive field recognition

model based on AlexNet (Multi-Scale AlexNet) by remov-

ing the local response normalization layer of the AlexNet

network, modifying its fully connected layers, and setting

a multi-scale convolution kernel to extract features. The

PlantVillage dataset and self-collected 7 kinds of tomato

diseased leaves dataset are the research objects. The model

reduced the memory requirements of the original AlexNet by

95.4%, and the average recognition accuracy of tomato leaf

diseases and each disease in the early, middle, and late stages

was up to 92.7%.

Fan et al. [67] added a batch standardization layer to

the convolutional layer of the Faster R-CNN model, intro-

duced a central cost function to construct a mixed cost

function, and used a stochastic gradient descent algorithm

to optimize the training model. They used 9 kinds of corn

leaf diseases with complex backgrounds in the field as the

research object. Under the same experimental environment,

the improved method had an average accuracy increase

of 8.86%, and a single image detection time was reduced by

0.139s; compared with the SSD algorithm, the average accu-

racy was 4.25% higher, and a single image detection time was

reduced by 0.018 s.

Wang et al. [68] in order to solve the problems of a long

time of training, poor segmentation effect, and susceptibility

to illumination and background during the image segmen-

tation of cucumber leaf lesions in traditional convolutional

neural networks, they proposed a method based on the full

convolution neural network (in which the activation function

of rectified linear units (RELU) was replaced by the exponen-

tial linear unit (ELU), and the batch normalization function

was used to stabilize the model training process, and the

softmax of the original CNNwas replacedwith support vector

machine (SVM)). The average pixel segmentation accuracy

was 80.46% and the average cross-combination ratio was

70.43% on the 6 kinds of cucumber leaf disease dataset.

Hu et al. [51] tried to solve the problem of insufficient iden-

tification methods for fine-grained tomato diseases. Taken

5 kinds of tomato diseased leaves in the early and late stages

as the research objects, and proposed a new convolutional

neural network model ARNet based on the combination of

attention and residual ideas. Compared with existing mod-

els such as VGG16, ARNet had better classification perfor-

mance, with an average recognition accuracy rate of 88.2%.

Picon et al. [69] proposed three different CNN archi-

tectures (RESNET-MC-1, RESNET-MC-2, and RESNET-

MC-3) to integrate contextual non-image meta-data (such

as crop information) into image-based convolutional neural

Network. RESNET-MC-1 achieved 98% accuracy in a field

environment containing 17 diseases and 5 crops (wheat, bar-

ley, corn, rice, and rapeseed).

Chen et al. [70] proposed an improved VGG model

(INC-VGGN) based on the VGG model framework by intro-

ducing two Inception modules, adding a pooling layer, and

modifying the activation function. And the average recogni-

tion accuracy of corn plant leaf diseases reached 92%.

Zhang et al. [71] combined the expansion convolution

and global pooling for the problem of the AlexNet model

with too many parameters and a single feature scale and

proposed a global pooling extended convolutional neural net-

work (GPDCNN) based on the AlexNet model. After the

expansion, an accuracy of 95.18%was obtained on the dataset

of 6 common cucumber leaf diseases taken in the field.

Due to the problem of low recognition accuracy of grape

leaves with different degrees of disease, He et al. [72] pro-

posed a Multi-Scale ResNet based on ResNet18 by changing

the conv1 layer to a combination of multiple convolution

kernels and adding the SENet module to ResNet18 to identify

grape leaf disease. The model had an average recognition

accuracy of 90.83% for seven grape diseases including dif-

ferent severity.

Agarwal et al. [73] developed a CNN model with 3 convo-

lutional layers, 3 maximum pooling layers, and 2 fully con-

nected layers, and each layer had a different number of filters

to detect 9 types of tomato leaf diseases. The experimental

results showed that the average accuracy of the proposed

model on the test set reached 91.2%, and its performance was

much better than VGG16, MobileNet, and Inception.

Table 2 briefly introduces the research progress of the

improvement of DL in plant disease detection in recent

years.

B. TARGET DETECTION OF PLANT DISEASES FOR

LEAF DISEASE DETECTION

Fuentes et al. [74] used Faster R-CNN, R-FCN, and SSD

architectures to locate lesion areas of 9 kinds of tomato leaf

diseases and insect pests, and classified them according to

the bounding box. And explored the influence of different

CNN architectures on the detector. The results showed that

ResNet50 as the feature extractor achieved a mean average

accuracy (mAP) of 85.98%, and the detection time was about

160 ms per image. Subsequent work [75] refined the Faster

R-CNN by introducing a single-class CNN, and the results

showed that the mAP increased by 13%.

Jiang et al. [76] proposed a novel method that is the

SSD with inception module and rainbow concatenation

(INAR-SSD). And the VGG16 feature extractor used in

the INAR-SSD network was a modification by replacing

two convolution layers (Conv4_1 and Conv4_2) with incep-

tion modules, fully connected layers of VGG16 were also

replaced with 1 × 1 convolutions. On a dataset of 5 kinds

of apple leaf diseases, the proposed INAR-SSD network

achieved the highest mAP of 78.8% compared with the Faster

R-CNN (73.78%) and SSD (75.82%). Meanwhile, the detec-

tion speed of the model was 23.13 FPS.

Li et al. [77] took 5 kinds of bitter gourd leaf diseases

taken in the field as the research object, modified the Faster

R-CNN by increasing the size of the regional suggestion

frame and integrating the feature pyramid network (FPN)

based on ResNet50. The research results showed that after
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TABLE 2. Summary of recent research works about application about the improvement of DL in plant disease detection.

integrating the feature pyramid network, the average accuracy

of the obtained model was 86.39%, higher than the original

model (7.54%), and the accuracy of gray spot detection was

improved by 16.56%. The detection time of each image is

0.322s, which can guarantee real-time detection.

Aiming at the problem of difficulty in real-time detection

of apple leaf disease images under actual conditions due to the

complex background and small lesions, Li et al. [78]modified

the Faster R-CNN by using the feature pyramid network

(FPN) and adopting precise region of interest pooling (PROI

Pooling). The research results showed that the improved

model can effectively detect five apple leaf diseases under

natural conditions, with a mean average accuracy of 82.28%.

Compared with Faster R-CNN, YOLOv3, and Mask R-CNN,

the mean average accuracy increased by 5.81%, 13.92%, and

4.86%, and the detection time of a single image was reduced

by 43ms, respectively.

Li et al. [79] proposed a video detection architecture of

plant diseases and insect pests based on deep learning and a

custom backbone, which can better reflect the quality of video

detection in experiments. Experiments showed that compared

with VGG16, ResNet50, ResNet101 backbone systems, and

YOLOv3, the custom backbone system was more suitable for

detecting untrained rice videos. The customDCNN backbone

had eminent detection sensitivity in withered leaves of rice

sheath blight and rice stem borer symptoms. And the detec-

tion speed was 30 frames per second (FPS).

Aiming at the problem of low segmentation accuracy of

traditional convolutional neural networks in crop disease leaf

images, Wang et al. [80] constructed a regional disease detec-

tion network (RD-net) based on the traditional VGG16model

and replaced the fully connected layer with a global pool-

ing layer. Based on the Encoder-Decoder model structure,

a regional segmentation network (RS-net) was established,

and the multi-scale convolution kernel was used to improve

the local receptive field of the original convolution kernel

and segment the lesion area accurately. Segmentation exper-

iments were carried out on the field-photographed datasets

of corn leaf spot, corn round spot, wheat stripe rust, wheat

anthracnose, cucumber target spot disease, and cucumber

brown spot. The segmentation accuracy was 87.04% and the

recall rate was 78.31%. The comprehensive evaluation index

value was 88.22% and the single image segmentation speed

was 0.23 s.

Table 3 offers a brief overview of recent research works in

target detection of plant diseases.

C. THE SYSTEM OF LEAF-DISEASE DETECTION

In an era when smart agricultural technology is so advanced,

mobile phones have become a new type of ‘‘farming tool’’

for farmers, which can help farmers in identifying diseases

and insect pests. Currently, researchers develop small pro-

grams or mobile apps to help farmers identify crop pests and

diseases. The farmer takes pictures and uploads the diseased

parts of the crop, and the system will return the recognition

result within a few seconds. And provide users with the

diagnosis results, similarity, disease characteristics, causes,

and prevention and control plans for users, so that farmers

can treat diseases and insects in a scientific way and increase

crop yields.

Ozguven and Adem [81] modified the Faster R-CNN by

increasing the size of the input layer from 32 × 32 pixels

to 600 × 600 pixels and developed an automatic detection

and recognition system for leaf spot disease in 3 levels of

sugar beet disease severity (mild, moderate, and severe). The

developed Faster R-CNN achieved an accuracy of 95.48%

compared to 92.89% achieved by Faster R-CNN.

Aiming at the problem that the classification accuracy of

the classification model for the severity of crop diseases and

insect pests is not high enough, Yu et al. [82] proposed an
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TABLE 3. Summary of recent research works about the application in target detection of plant diseases.

TABLE 4. A brief overview of recent research works in the development of plant leaf disease identification system.

improved ResNet50 model (CDCNNv2) combined with deep

transfer learning and developed a classification system for the

severity of crop diseases and insect pests. In addition to real-

time and fully automatic detection of crop pests and diseases,

the system also implements a series of supporting functions

such as prevention and control recommendations and drug

recommendations.

Li et al. [83] combined the attention mechanism with the

residual structure to build the PARNet model and completed

the development of the WEB application. The average accu-

racy of the platform for 5 tomato leaf diseases can reached

96.84%. It was 2.25%∼11.58% higher than other models

(VGG16, ResNet50, and SENet).

Jiang et al. [84] redesigned and optimized the convo-

lutional neural network structure based on the traditional

LeNet-5 network, and proposed a convolutional neural net-

work system for ginger disease recognition based on the

four kinds of ginger disease collected in the natural environ-

ment. The recognition rate of four kinds of ginger diseases

reached 96%.

Zhou [85] identified 5 kinds of apple leaf diseases based

on transfer learning and the Faster R-CNN and developed

an apple leaf disease detection system based on the Android

platform. The detection system had an average recognition

accuracy of 76.55% for apple leaf diseases.

Liu et al. [86] deployed the MobileNet network on the

mobile phone, and the average recognition accuracy of the

6 kinds of grape diseased leaves collected in the field was

87.5%, and the average calculation time for a single image

was 134ms.

Based on the ResNet50 architecture, Esgario et al. [87]

developed a system that can identify and estimate the severity

of stress caused by biological agents on coffee leaves. The

system had an accuracy of 95.24% for the classification of

biological stress on coffee leaves, and an accuracy of 86.51%

for estimation of the severity.

Xiong et al. [88] proposed an automatic image segmenta-

tion algorithm based on the GrabCut algorithm and selected

the MobileNet as DL classification model, and designed a

crop disease recognition system for mobile smart devices.

The system had a recognition accuracy of more than 80% for

a total of 27 diseases of 6 crops in the laboratory environment

and the field.

Table 4 offers a brief overview of recent research works in

the development of plant leaf disease identification systems.

IV. LEAF-DISEASE DETECTION BASED

ON SMALL SAMPLES

In practical applications, the incidence of some plant diseases

is low and the cost of acquiring disease images is high,

56692 VOLUME 9, 2021



L. Li et al.: Plant Disease Detection and Classification by Deep Learning—A Review

resulting in only a few or dozens of disease images collected.

The transfer learning method can transfer the knowledge

learned from the general large dataset to the professional

fields with relatively little data. But for the datasets with only

a few or dozens of images, the transfer learning method also

has the problem of low recognition accuracy [23]. This is

because it is difficult for the deep network to learn different

features, which leads to problems that are difficult to converge

or over-fitting. Therefore, plant disease datasets with single

or small samples can hardly support the training of DL archi-

tecture. On the other hand, for the recognition of new classes

that do not appear in the training set, the deep learning model

needs to be retrained.

Recent advances in DL have proven the effectiveness of

several architectures to learn new classes using small datasets,

a famous sub-field known as Few-Shot Learning (FSL) [89].

FSL can not only solve the recognition problem of new

classes that did not appear in the training but also solve the

problem of the neural network, which difficult to converge

due to the small number of experimental samples, thereby

improving the accuracy of small datasets recognition.

The FSL methods used for image classification include

model initialization, metric learning and data generate meth-

ods. The initialization method focuses on the adjustable

parameters in the network so that a new class of classifier can

be learned from a limited set of examples [90]–[92]. The aim

of metric learning methods is learning to compare. It means

that once a network learns to compare classes, it will be able

to learn new classes from few labeled samples [93]. Finally,

generate data methods, the methods learn a generator from

the data in the base classes, and use that generator to generate

data for new classes.

FSL solutions for plant leaves classification have been

introduced recently, for example, Hu et al. [94] present a

low shot learning method for tea leaf disease identification,

used the improved conditional deep convolutional genera-

tive adversarial networks (C-DCGAN) for data augmenta-

tion. And the average identification accuracy of the proposed

method was 90%. Wang and Wang [95] proposed a few-

shot learning method based on the Siamese network with

contrastive loss and kNN classifiers to solve plant leaf classi-

fication problem with a small sample. Das and Lee [96] pro-

posed a two-stage multilayer neural network for the few-shot

recognition of new categories and a detailed mathematical

theory derivation process.

Aiming at the problem of too few samples in the training

set, Li et al. [97] proposed a one-shot learning method for

the first time and used Bayesian functions to build a network.

Subsequently, many DL architectures for one-shot learning

tasks were proposed and achieved remarkable results. The

author verified in his work [98] that using FSL can trans-

fer knowledge from a clear source domain (colon tissue)

to a more general domain (composed of colon, lung, and

breast tissues) by using few training images. Experimental

results showed that the FSL can obtain an average accuracy

of 90% with only 60 training images, which was better than

fine-grained transfer learning (73%). Zhong et al. [99] pro-

posed a generative model based on conditional adversarial

auto-encoder (CAAE), which was used to perform general-

ized one-shot and few-shot learning in the case of few or even

zero training samples to solve the problem of citrus diseases

identification.

Ren et al. [100] proposed a plant disease identification

method based on one-shot learning for the small sample prob-

lem of plant leaf diseases. Taking 8 kinds of plant disease with

a small number of samples in the public dataset P1antVillage

as the identification object, the focal loss function (FL) was

used to train the plant disease classifier based on the relation

network. The results showed that the recognition accuracy

of the method in 5-way and 1-shot tasks reached 89.90%,

which was 4.69% higher than the original relation network

model. At the same time, compared with matching network

and transfer learning, the improved method had increased the

recognition accuracy on the experimental dataset by 25.02%

and 41.90%, respectively.

Argüeso et al. [101] taken 38 kinds of plant disease images

in the public dataset P1antVillage as the identification object,

Siamese networks, and triplet loss was used and compared to

classical fine-tuning transfer learning. The median accuracy

was 55.5 % learning for 1 image per class. Median accuracy

were 80.0 % and 90.0 % for 15 and 80 images per class. The

FSL method outperformed the classical fine-tuning transfer

learning which had an accuracy of 18.0 % and 72.0 % for

1 and 80 images per class, respectively. The author Wu [32]

took 3 kinds of tea leaf diseases as the research object, seg-

mented the lesions and expanded the dataset of the segmented

lesions at first, and then used the combination of depth trans-

fer and Cayley-Klein metric to realize the identification of

tea diseases, and a result of 100% recognition accuracy was

achieved.

Table 5 offers a brief overview of recent research works in

plant leaf disease detection based on small samples.

V. HYPER-SPECTRAL IMAGING(HSI) WITH DL MODELS

Plants may be affected by multiple pathogens at the same

time during the growth process, and some different pathogens

may produce similar symptoms and signs [102], [103] and the

symptoms are not obvious at the early stage of plant diseases,

which makes it easy to use naked eyes or simple computer

vision has become very difficult to detect plant diseases.

The electromagnetic spectrum range of hyperspectral sen-

sors is mainly concentrated in the visible and near-infrared

(400∼ 1000nm), and sometimes includes shortwave infrared

(SWIR, 1000 ∼ 2500nm). This sensor can obtain spectral

information from hundreds of narrow spectral bands [104].

These narrow bands are highly sensitive to subtle plant

leaf changes caused by diseases and can distinguish differ-

ent types of diseases so that early asymptomatic detection

can be carried out. Therefore, HSI is the focus of recent

research, for the early detection of plant diseases. For exam-

ple, the review [105] provided an overview of advanced

hyperspectral technologies for plant disease detection.
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TABLE 5. A brief overview of recent research works in plant leaf disease detection based on small samples.

FIGURE 5. Comparison of segmentation results of a typical healthy plant. (a)direct CNN model. (b)AC-GAN model. (c)the
proposed OR-AC-GAN model.

Xie et al. [106] investigated the feasibility of using a hyper-

spectral imaging technique to identify two kinds of diseases

on tomato leaves. Both imaging information and spectral

information were investigated in the study. The ELM model

was established to identify the diseased samples and the

successive projection algorithm (SPA) was applied to select

useful wavelengths. The classification accuracy was 97.1%

of the SPA-ELM model on the testing set. The early hyper-

spectral images of cucumber downy mildew in greenhouses

collected infield, it is influenced by environmental illumi-

nation and difficult to extract effective features from them.

Qin et al. [107] proposed a novel method of extracting fea-

ture bands based on disease difference information. Which

improved combining adaptive weighting algorithm (CARS)

and successive projection algorithm (SPA), and an early

detection model of cucumber downy mildew was established.

For the hyperspectral image of healthy cucumber leaves and

the daily hyperspectral images within 12 days of infection,

the detection rate of 100% can be obtained from the 2∼12 day

of infection, and the detection rate of the test set for 1 day

of infection reached 95.8%. Abdulridha et al. [108] used

hyper-spectral imaging technology combined with the MLP

classification method, had an accuracy of 99% for the four

stages of tomato bacterial spot disease and bacterial target

spot disease (healthy asymptomatic stage, early stage, and

late-stage). Yuan et al. [109] proposed a method for detect-

ing tea tree anthracnose based on hyperspectral imaging.

Through spectral sensitivity analysis, the disease sensitive

bands were determined, and two new disease indexes were

established using these bands: tea tree anthracnose ratio index

(TARI) and tea tree anthracnose normalized index (TANI).

A method combined unsupervised classification and adaptive

two-dimensional threshold detection is proposed, based on a

set of optimized spectral features. The results showed that

the overall accuracy of identifying diseases was 98% at the

leaf level, and the overall accuracy of identifying diseases

was 94% at the pixel level. In [110], a detailed review of

DL with the HSI technique was provided. In order to avoid

the over-fitting and improve accuracy, a detailed comparison

was provided between several DL models like 1D/2D-CNN

(2D-CNNbetter result) LSTM/GRU (both faced over-fitting),

2D-CNN-LSTM/GRU (still over-fitting). Therefore, a novel

hybrid method (2D-CNN-BidLSTM/GRU) which from a

convolutional and bidirectional gated recurrent network was

proposed for the hyperspectral images. The model resolved

the problem of over-fitting and achieved 75% F1-score and

73% accuracy for wheat disease detection [111]. In [112],

the author developed a supervised 3D-CNN model to learn

the spectral and spatial information of hyperspectral images

for the classification of healthy and charcoal rot infected

samples. A visualizationmethod based on a saliencymapwas

used to identify the classification accuracy of hyper-spectral

wavelengths. The importance of wavelength can be inferred

by analyzing the size of the gradient distribution of the
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TABLE 6. A brief overview of recent research works in plant leaf disease detection using hyperspectral images.

saliency map of the image on the hyper-spectral wavelength.

Based on the hyper-spectral imaging of the inoculated and

simulated inoculated stem images, the classification accuracy

of the model 3D-CNN was 95.73%, and the F1 score of

the infection category was 87%. For the detection of potato

virus, DL was used to describe the hyperspectral images

and achieved acceptable values of precision (78%) and recall

(88%) [113]. In [114], developed a DL model of multiple

Inception-ResNet, which uses both spatial and spectral data

on hyperspectral UAV images to detect the yellow rust in

wheat. The model achieved an accuracy of 85%, which was

quite a lot higher than the RF-classifier (77%). Gui et al. [115]

divided the early soybean mosaic virus disease (SMV) into

0, 1, and 2 degrees according to its severity. In the case of

a small number of experimental soybean samples, they pro-

posed a novel SMV early detection method which combined

convolutional neural network and a support vector machine

(CNN-SVM), and achieved an accuracy rate of 96.67% on

the training set and 94.17% on the testing set. The litera-

ture [116] taken corn seedlings after cold stress as the research

object, extract the spectral curve of the comprehensive eval-

uation index of cold damage based on hyper-spectral images,

and used DL to construct a corn seedling damage detection

model. According to [117], a novel hyper-spectral analysis

proximal sensing method based on generative adversarial

nets (GANs), named as outlier removal auxiliary classifier

generative adversarial nets (OR-AC-GAN) was proposed in

order to detect tomato plant disease before its clear symp-

toms appeared. The classification accuracy achieved 96.25%

before visible symptoms show up at plant leaf level (as shown

in Fig. 5).

Table 6 offers a brief overview of recent research works in

plant leaf disease detection using hyperspectral images.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have introduced the basic knowledge of

deep learning and presented a comprehensive review of recent

research work done in plant leaf disease recognition using

deep learning. Provided sufficient data is available for train-

ing, deep learning techniques are capable of recognizing plant

leaf diseases with high accuracy. The importance of collect-

ing large datasets with high variability, data augmentation,

transfer learning, and visualization of CNN activation maps

in improving classification accuracy, and the importance of

small sample plant leaf disease detection and the importance

of hyper-spectral imaging for early detection of plant disease

have been discussed. At the same time, there are also some

inadequacies.

Most of the DL frameworks proposed in the literature have

good detection effects on their datasets, but the effects are not

good on other datasets, that is the model has poor robustness.

Therefore, better robustness DL models are needed to adapt

the diverse disease datasets.

In most of the researches, the PlantVillage dataset was used

to evaluate the performance of the DL models. Although this

dataset has a lot of images of several plant species with their

diseases, it was taken in the lab. Therefore, it is expected to

establish a large dataset of plant diseases in real conditions.

Although some studies are using hyperspectral images of

diseased leaves, and some DL frameworks are used for early

detection of plant leaves diseases, problems that affect the

widespread use of HSI in the early detection of plant dis-

eases remain to be resolved. That is, for early plant disease

detection, it is difficult to obtain the labeled datasets, and

even experienced experts cannot mark where the invisible

disease symptoms are, and define purely invisible disease

pixels, which is very important for HSI to detect plant disease.
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