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Abstract: In this research, we proposed a novel 14-layered deep convolutional neural network (14-DCNN)
to detect plant leaf diseases using leaf images. A new dataset was created using various open datasets.
Data augmentation techniques were used to balance the individual class sizes of the dataset. Three image
augmentation techniques were used: basic image manipulation (BIM), deep convolutional generative
adversarial network (DCGAN) and neural style transfer (NST). The dataset consists of 147,500 images of
58 different healthy and diseased plant leaf classes and one no-leaf class. The proposed DCNN model was
trained in the multi-graphics processing units (MGPUs) environment for 1000 epochs. The random search
with the coarse-to-fine searching technique was used to select the most suitable hyperparameter values to
improve the training performance of the proposed DCNN model. On the 8850 test images, the proposed
DCNN model achieved 99.9655% overall classification accuracy, 99.7999% weighted average precision,
99.7966% weighted average recall, and 99.7968% weighted average F1 score. Additionally, the overall
performance of the proposed DCNN model was better than the existing transfer learning approaches.

Keywords: deep convolutional neural networks; generative adversarial network; basic image manipulation;
random search; hyperparameter optimization; neural style transfer

1. Introduction

The diagnosis and treatment of disease are essential to improving the growth and yield
of agricultural plants. For instance, an average estimated yield loss by corn crop diseases
in the United States and Ontario from 2012 to 2015 was USD 76.51 per acre [1]. Manual
monitoring of plant diseases will not give accurate outcomes regularly [2]. Additionally,
finding domain experts for monitoring plant diseases is highly difficult and expensive for
farmers. For that reason, an intelligent plant disease diagnosis system was essential to
monitor the agricultural fields regularly [3]. At present, several plant disease detection
methods are proposed for automatic plant disease detection using artificial intelligence
techniques with fewer human efforts [4]. Deep convolutional neural network (DCNN) is a
most successful image classification technique [5]. The DCNN comprises various layers,
such as convolutional, pooling and fully connected layers for learning features from the
training data [6].

Transfer learning uses the pre-trained neural network from one task to a similar new
task. Transfer learning techniques can minimize the time for model design and training.
The standard transfer learning techniques in image classification are AlexNet, DenseNet,
VGG16, Inception-v3, MobileNet and ResNet [7]. The DCNN requires more data for an
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efficient training process [8]. Data augmentation techniques are producing new images for
the existing dataset using several data transformation techniques [9,10]. Basic image ma-
nipulation (BIM), deep convolutional generative adversarial network (DCGAN) and neural
style transfer (NST) are popular data augmentation techniques [11]. The most common
BIM techniques are affine transformation, scaling, cropping, flipping, padding, rotation,
translation, brightness, contrast, saturation and hue. The DCGAN is an unsupervised
neural network to create a new set of realistic images from the training data [12]. The
GAN comprises two DCNNs, such as generator DCNN and discriminator DCNN. The
generator DCNN creates new images similar to the training data; also, the discriminator
network classifies the original and newly created images by the generator DCNN. DCGAN
is one of the most successful image augmentation techniques in medical image processing
applications [13]. The NST is an image transformation technique to produce new images
using content and style reference images [12].

Additionally, the DCNNs need suitable hyperparameter values to improve the classifi-
cation performance. Hyperparameters are the most significant training parameters that can
influence the performance of deep learning techniques. Activation function, dropout value,
epochs, filter size, learning rate, loss function and mini-batch size are the most common
hyperparameters in DCNNs. The selection of the suitable value of hyperparameters is a
challenging task in solving a deep learning problem. Hyperparameter tuning techniques
are used to discover the most suitable hyperparameter values for the DCNNs [14]. Grid
search and random search are the most popular hyperparameter tuning approaches in
deep learning. High-performance computing power is needed to train the deep learning
algorithm with better efficiency and less training time [15].

This article proposed a novel DCNN model for diagnosing 42 leaf diseases in 16 differ-
ent plant species. This research used data augmentation and hyperparameter optimization
techniques to improve the performance of the disease detection model. To produce aug-
mented leaf images, BIM, DCGAN and NST techniques were used. There are 58 diseased
and healthy plant leaf classes that were used to train the DCNN model. Random searching
with the coarse-to-fine technique was used to optimize the value of the most common
hyperparameters. Finally, the performance of the proposed DCNN was compared with the
standard transfer learning approaches, such as AlexNet, Inception-v3-Net, ResNet-50 and
VGG16Net. The rest of the article is organized as follows: Section 2 provides a detailed
survey on plant leaf disease detection using artificial intelligence techniques. Section 3
describes the implementation process of the proposed DCNN model for plant leaf disease
detection. Section 4 demonstrates the experimental results and related discussions of the
research. Finally, Section 5 provides the conclusions and future directions of the research.

2. Related Works

The early detection of plant diseases is a significant step in the disease prevention and
treatment process [6]. Accurate disease detection techniques can be used by the farmers for
applying the prevention and treatment procedures [10,16]. The most recent plant disease
detection techniques are reviewed in this section. In Ref. [4], the authors proposed a
support vector machine (SVM) model for detecting sugar crop diseases. They used the
hyperspectral images as an input of the SVM model for disease detection. The average
classification accuracy of the hyperspectral image-based SVM technique was 78% in testing
data. In Ref. [17], the authors proposed two huanglongbing disease identification models
for citrus plants. The SVM and artificial neural network (ANN) were used to design the
huanglongbing detection techniques. The classification accuracies of the SVM and ANN
models in the test data were 92.8% and 92.2% respectively. Identification of tomato yellow
leaf curl disease was achieved using the SVM technique with the quadratic kernel function
proposed by the author in [18]. The overall classification accuracy of this algorithm was
92% in tomato yellow leaf curl disease detection.

Additionally, the authors in [19] discussed and compared numerous image processing
and feature extraction techniques to identify the various plant diseases using their leaf



Appl. Sci. 2022, 12, 6982 3 of 17

images. The authors in [20] developed a DCNN model to detect legume plant species using
vein morphological patterns. In Ref. [21], the authors proposed a region-based and single-
shot multi-box detector CNN model for designing the plant disease and pest identification
model. The VGGNet and ResNet were used to improve the classification performance of
the model. Table 1 compares the various state-of-the-art DCNN models for plant disease
detection proposed by different articles.

Table 1. Comparison of different DCNN architecture.

Article Year Specie Number of Classes Number of Images Architecture Accuracy (%)

[22] 2017 Maize 2 1796 Custom 96.7
[23] 2017 Wheat 3 3500 Custom 81.04
[24] 2015 Cucumber 3 800 Custom 94.9
[25] 2016 Apple 5 1450 AlexNet 97.3
[26] 2018 Tomato 7 13,262 VGG16Net 97.29
[27] 2018 Maize 9 3060 GoogLeNet 98.9
[28] 2017 Tomato 9 14,828 GoogLeNet 99.18
[29] 2017 Rice 10 500 AlexNet 95.48
[2] 2016 Multiple 15 4483 CaffeNet 96.3

[30] 2016 Multiple 38 54,306 GoogLeNet 99.35
[7] 2018 Multiple 38 54,323 InceptionV3Net 99.76
[3] 2019 Multiple 39 61,486 Custom 96.46
[8] 2018 Multiple 58 87,848 VGG16Net 99.53

[31] 2019 Multiple 79 46,409 GoogLeNet 86.5
[15] 2020 Tomato 10 18,160 Custom 98.7
[14] 2021 Tomato 10 3000 Custom 98.49
[5] 2021 Tomato 10 18,345 AlexNet 98.0
[1] 2022 Multiple 38 240,000 Custom 98.41

The data augmentation technique improves the diversity of training data without
collecting new data. The authors in [11] compared the advantages of various data augmen-
tation techniques in the DCNNs training process. The augmentation techniques are GAN,
flipping, cropping, shifting, principal component analysis (PCA), color, noise and rotation.
The result shows that the training performance of the cropping, flipping, GAN and rotation
are higher than the other augmentation techniques. Additionally, the result proves that
the combination of different augmentation techniques can give better performance than
individuals. In Ref. [12], the authors introduced the BIM, GAN and NST augmentation
techniques for plant leaf disease classification and compared the performance of each tech-
nique. The experimental result shows that the performance of the combined augmentation
technique was better than the individual techniques. The authors in [32], discussed the
advantages of the existing data augmentation techniques in deep learning applications.
In Ref. [33], the authors proposed a DCNN for pest detection using GAN based image
augmented dataset. The testing result shows that the classification performance of the
GAN-based image augmented dataset was better than the non-augmented dataset. The
authors in [13] discussed the advantages of the GAN augmentation technique in DCNN
development. Moreover, the authors in [34] discussed the importance of hyperparameter
tuning to achieve a better performance of DCNNs. The detailed survey indicates the im-
portance of dataset size, augmentation techniques and selection of hyperparameter values
in the plant leaf disease detection model. The following section presents the information
about the proposed dataset and DCNN model for detecting various plant diseases from
leaf images.

3. Materials and Methods

This section provides a complete description of the architecture and training process
of the proposed DCNN model with the experimental setup and dataset preparation. The
proposed plant leaf disease detection model pipeline starts with dataset preparation and
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ends with model prediction. Python 3.7 programming language and TensorFlow 2.9.1,
numpy Version 1.19. 2, matplotlib Version 3.5.2 and OpenCV Version 4.5.5 libraries are used
for dataset preparation and DCNN model implementation. Data preparation, preprocess-
ing, model designing and prediction tasks are performed using an HP Z240 workstation
with an Intel Core i7 CPU and sixteen gigabytes of random access memory. The training
and testing process of the proposed DCNN and existing state-of-the-art techniques were
performed using an NVidia DGX-1 deep learning server station. The deep learning server
includes two Intel Xeon E5-2694 Version 4 CPUs and eight Tesla P100 GPUs for accelerating
the training process of deep neural networks. In subsequent subsections, each phase of the
proposed plant leaf disease detection pipeline are discussed in detail. First, the details of
the dataset preparation and preprocess are discussed in the next subsection.

3.1. Dataset Preparation and Preprocessing

Diseased and healthy leaf images of various plants were collected from different
standard open data repositories [9,35–38]. Sixteen different plant species were used to
create the plant leaf disease dataset. Each plant contains healthy and the most common
disease classes in the dataset. There are 58 different classes of plant leaves, and 1 no-leaves
class is present in the dataset. The collected original dataset contains 61,459 plant leaves
and no-leaves images. The list of plant names with the healthy and disease classes of the
proposed dataset is shown in Table 2.

Table 2. List of classes in the proposed dataset.

S. No Plant Name Class Names

1
Aloe Vera

Healthy
2 Leaf Rot
3 Leaf Rust

4

Apple

Healthy
5 Leaf Scab
6 Black Rot
7 Leaf Rust

8
Banana

Healthy
9 Bacterial Wilt
10 Black Sigatoka

11 Cherry Healthy
12 Powdery Mildew

13

Citrus

Healthy
14 Black Spot
15 Canker
16 Greening
17 Melanose

18

Corn

Healthy
19 Common Rust
20 Leaf Spot
21 Northern Leaf Blight

22

Coffee

Healthy
23 Cercospora Leaf Spot
24 Leaf Rust
25 Red Spider Mite

26

Grape

Healthy
27 Black Measles
28 Black Rot
29 Leaf Blight
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Table 2. Cont.

S. No Plant Name Class Names

30

Paddy

Healthy
31 Brown Spot
32 Hispa
33 Leaf Blast

34
Peach

Healthy
35 Bacterial Spot

36 Pepper Healthy
37 Bacterial Spot

38
Potato

Healthy
39 Early Blight
40 Late Blight

41 Strawberry Healthy
42 Leaf Scorch

43

Tea

Healthy
44 Leaf Blight
45 Red Leaf Spot
46 Red Scab

47

Tomato

Healthy
48 Bacterial Spot
49 Early Blight
50 Late Blight
51 Leaf Mold
52 Leaf Spot
53 Spider Mite
54 Target Spot
55 Mosaic Virus
56 Yellow Leaf Curl Virus

57
Wheat

Healthy
58 Leaf Rust

59 no-leaves no-leaves

To create an even number of images in each class, data augmentation techniques
were introduced. Additionally, the data augmentation techniques can increase the dataset
size and reduce the overfitting during the training process of the model by adding some
augmented images to the training dataset. The BIM, DCGAN and NST augmentation
techniques were used to produce the augmented images in the dataset. The BIM augmen-
tation techniques consist of image cropping, flipping, PCA color augmentation, rotation
and scaling. The PCA color augmentation technique alters the intensity of the color chan-
nels using the principal component of the pixels [11]. Additionally, the image cropping,
flipping, rotation and scaling techniques create augmented images by changing the color
and position of the input images. There are 36,541 augmented images created by the BIM
augmentation technique in the dataset.

DCGANs create augmented images that resemble the training data. The DCGAN
consists of two DCNN networks, such as generator DCNN and discriminator DCNN.
The generator DCNN network takes a vector of random noise and up-samples it to the
training data. On the other hand, the discriminator DCNN learns to classify the real and
generated images [33]. The DCGAN network was trained in the graphics processing units
with training epochs of 10,000 and a mini-batch size of 64. There are 32,000 augmented
images created by the DCGAN augmentation technique in the dataset. NST is another
image generation technique using deep learning techniques. A modified VGG19 network
was used to develop the NST augmentation model in this research. The NST model was
trained with 5000 epochs on the deep learning server system. The NST models require two
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different input images to generate an augmented output image, such as the content image
and the style reference image. At first, the content image contains the essential features to
be added to the output image. Second, the style reference image contains style patterns to
apply to the output image. To generate the output image, the NST augmentation model
applies the style features of the style image to the content image. The NST augmentation
technique creates 17,500 augmented images in the dataset. Finally, The BIM, DCGAN and
NST techniques were created for the augmented images to balance the data counts in each
class of the dataset. The proposed dataset is named the PlantDisease59 dataset. These
augmentation techniques increased the number of images in the dataset from 61,459 to
147,500 images. Additionally, the size of individual classes increased to 2500 images in each.
Leaf images on the PlantDisease59 dataset were captured in the face-up direction. Figure 1
shows the sample augmented images generated by the BIM, DCGAN and NST techniques.
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The first two images in Figure 1 were created using BIM techniques. The third and
fourth leaf images in Figure 1 were created using the DCGAN augmentation technique.
The last two sample images in Figure 1 were generated using the NST technique. The
random selection technique was used to select the images for training, validation and
testing from the PlantDisease59 dataset. Table 3 illustrates the number of images in the
training, validation and testing dataset.

Table 3. Training, validation and test dataset size.

Dataset Name Number of Images Number of Images in Each Class

Training Set 132,750 2250
Validation Set 5900 100

Testing Set 8850 150

The design and development of the Proposed DCNN model for plant leaf disease
detection using the hyperparameter tuning techniques and the PlantDisease59 dataset are
discussed in the following subsection.

3.2. Model Design

In this section, a DCNN model for diagnosing plant leaf diseases using the Plant-
Disease59 dataset is proposed. Several DCNN models with different numbers and sizes
of convolutional (Conv) and pooling layers were developed, and their performance is
compared. The number of Conv layers varies from three to eight in different DCNN mod-
els. At maximum, the 14-layered deep convolutional neural network (14-DCNN) gives
better training performance than other developed models. Five convolutional and five
max-pooling layers were used to develop the proposed 14-DCNN model. The input images
of the 14-DCNN are given into the first two-dimensional Conv layer. The dimension of the
Conv layer output can be calculated using Equation (1):

Dimension(Conv(n, k)) =
([

nw − fw

s
+ 1

]
,
[

nh − fh
s

+ 1
]

, fC

)
(1)
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The input width (nw) and height (nh) of the first convolutional layer are 128 and
128 respectively. Additionally, the fw, fh and fc represent the width, height and channels
of the kernel filter of the convolutional layer. The stride (S) value of this Conv layer is one.
The first max-pooling layer was introduced to reduce the dimension of the first Conv layer
output from 126, 126, 4 to 63, 63, 4 values. The dimension of the max-pooling layer output
was calculated using Equation (2):

Dimension(Pooling(n, k)) =
([

nw − fw

s
+ 1

]
,
[

nh − fh
s

+ 1
]

, nC

)
(2)

The nw, nh and nc represent the width, height and channels of input n, respectively.
Additionally, the fw, fh and nc represent the width, height and channels of the filter ( f ) in
the max-pooling layer. The output of the first max-pooling layer is given as an input of the
second Conv layer.

Likewise, the second Conv layer uses the filter sizes of 16, 3, 3 values to extract the features
from the data. The output size of the second Conv layer is 61, 61, 16 values. The second
max-pooling layer reduces the output data size of the second Conv layer from 61, 61, 16 to 30,
30, 16 with the filter size of 2, 2 values. The third Conv layer was introduced after the second
max-pooling layer. It extracts more features from the input data using the 32, 3, 3 size kernel and
produces the 28, 28, 32 sized output data. The third max-pooling layer was used to reduce the
size of the output data from the third Conv layer with 2, 2 sized kernels. It reduces the size of
the data to 14, 14, 32 values from 28, 28, 32 values. Additionally, the fourth Conv layer uses the
64, 3, 3 sized kernels to extract the additional features from the third pooled data and generates
the output data with the size of 12, 12, 64 values from the input size of 14, 14, 32 values. In
addition, the fourth max pooling layer has a filter size of 2, 2 matrices and stride value of 1 step.
The fourth max-pooling layer reduces the size from 12, 12, 64 values to 6, 6, 64 values. The fifth
Conv layer was introduced with a filter size of 128, 3, 3 matrices. The size of the input matrix
is 6, 6, 64 and the output size of the fifth Conv layer is 4, 4, 128 matrices. After the fifth Conv
layer, the fifth pooing layer was used with max-pooling function and stride value of 1 step. The
input size of the fifth max-pooling layer is 4, 4, 128 values, and the output size is 2, 2, 128 values.
It uses the single-step stride values to apply the kernel to the input data from the fifth Conv
layer. The ReLu activation function was used on all the above Conv layers. The ReLu activation
function was performed by using Equation (3).

ReLu(x) = Max(0, x) (3)

Moreover, the flatten layer was introduced after the fifth convolutional and pooling
layer. It reduces the three-dimensional data to one-dimensional data for a traditional neural
network approach. The flatten layer converts the output of the fifth max-pooling layer from
2, 2, 128 values to 512 values. The first dense layer was introduced after the flatten layer in
the 14-DCNN. The first dense layer increases input value from 512 to 2048 values. Equation
(4) represents the individual neuron output (zj) of the first dense layer. The i represents the
number of inputs of the first dense layer, and it ranges from 1 to 512. Additionally, the j
denotes the number of outputs of the layer its range from 1 to 2048 values.

zj = ReLu
(

0, ∑512
i bj + xiwi

)
(4)

The xi and wi represent the value and weight of the ith input of the jth output. Addi-
tionally, the bj denotes the bias value of the jth node. The dropout layer was used between
the first dense and second dense layer in the 14-DCNN to avoid the overfitting issue. The
second dense layer was initiated after the first dense layer and dropout layer. Similarly,
the number of inputs of the second dense layer is 2048 and the output values of the neural
network is 59 values. Additionally, this layer uses the softmax activation function to classify
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the plant leaves. The softmax function (σ) value of ith neuron of the dense layer can be
calculated using Equation (5).

so f tmax(σ(zi)) =
ezi

∑59
j=1 ezj

(5)

The output class of the input image can be discovered using Equation (6).

Output Class (zout) = max(z1, z2, . . . z59) (6)

This output value from z1 to z59 represents the number of diseases and healthy plant
leaf and non-leaves classes in the PlantDisease59 dataset. The total number of training
parameters is 5,424,583 in the 14-DCNN model. The layered structure of the 14-DCNN
model is shown in Figure 2.
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After designing the 14-DCNN model, the most suitable hyperparameter values were
identified using hyperparameter tuning techniques. The random search and coarse-to-fine
techniques were used to discover the suitable values of the optimizer function, mini-batch
size and dropout probability of the 14-DCNN. The most common optimizers considered
for the hyperparameter searching are adaptive moment estimation (Adam), stochastic
gradient descent (SGD) and root mean square propagation (RMSprob). The range of the
mini-batch size is between 8 and 256, incremented by 8 per value. Additionally, the dropout
range varies between 0.0 and 0.5, incremented by 0.1 per value. The random searching
technique chooses the random combination of hyperparameter values from the search
space. The selected combination of hyperparameter values is applied to the 14-DCNN and
trained with 100 epochs in parallel. From the training result, the coarse-to-fine process
helps to identify the most possible hyperparameter values from the search space. Finally,
the hyperparameter tuning technique discovers the SGD optimizer with a mini-batch size
of 32 and the dropout probability of 0.2 gives a better performance than other values. To
identify the learning rate (Lr) and momentum of the SGD optimizer, a similar random
search approach was used with a possible combination of the values. Table 4 shows the
most common hyperparameters of the 14-DCNN model for the plant leaf disease detection
model with their values.

Table 4. Optimized hyperparameters of the 14-DCNN.

Hyperparameter Value

Batch Sizes 32
Dropout Value 0.2

Loss Categorical Cross entropy
Optimizer SGD with Lr = 0.0001 and momentum = 0.9

Activation function for Conv layer ReLu

The random search with the coarse-to-fine technique offers significantly improved
searching performance than the grid search and simple random search optimization tech-
niques. The optimized hyperparameter values and the PlantDisease59 were used to train
the proposed 14-DCNN model for diagnosing the diseases from the plant leaf images.

3.3. Model Training

The proposed 14-DCNN was trained using the optimized hyperparameters and aug-
mented dataset in the deep learning server environment. The model was trained with
different epoch values between 100 and 3000. The 1000 epochs gave the maximum valida-
tion accuracy and minimum loss. The training time of the proposed model with 1000 epochs
was 7452 s in Nvidia DGX-1 deep learning server. Figure 3 demonstrates the training and
validation performance of the proposed 14-DCNN model for the identification of plant leaf
diseases.

The 14-DCNN model achieved a training accuracy of 99.993% and a validation accu-
racy of 99.985%. Training and validation accuracies of the proposed 14-DCNN are higher
than the other proposed DCNN models. The proposed 14-DCNN took 7452 s for the
training process in the MGPUs environment. The training time of the proposed 14-DCNN
was smaller than the transfer learning techniques since the number of convolutional and
pooling operations of the proposed 14-DCNN are lesser than the transfer learning tech-
niques. Finally, the architecture and weights of the proposed 14-DCNN model were stored
as a hierarchical data (H5) file for the further prediction process.
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3.4. Model Prediction

The saved 14-DCNN model architecture and weights were used to detect the diseases
of the various plants from the input images. The real-time plant disease images were given
as an input of the 14-DCNN model. The 14-DCNN model successfully predicted the plant
name and disease from the input images. The matplotlib package was used to visualize the
predictions of the model. Figure 4 shows the random sample prediction from the proposed
14-DCNN model.
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Finally, the 14-DCNN model was converted as a TensorFlow lite (tflite) file using a
TensorFlow lite converter with a latency optimization approach. The tflite file can be used
to deploy the model in mobile and embedded devices for real-time prediction.

4. Results

This section examines the performance of the proposed 14-DCNN model, using
various performance evaluation approaches and testing datasets. Additionally, the per-
formance of the proposed 14-DCNN model is compared with other state-of-the-art tech-
niques. The state-of-the-art techniques are AlexNet [25], Inception-v3-Net, ResNet-50 and
VGG16Net [7,8]. These models were trained on a deep learning server system using the
PlantDisease59 dataset and tested using the testing dataset. The proposed and existing mod-
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els were trained only on face-up leaf images. So, the models will give the best performance
on the face-up direction positioned images.

Occlusion sensitivity can visualize the most important part of the input image for
classification identified by the trained model. It can measure the sensitivity of the neural
network to occlusion in different regions of the data, using small perturbations of the data.
This region is known as the occluding region [7]. The white and light blue color pixels of
the image illustrate the most essential parts of being classified into the expected class. The
dark blue color region of the image has minimum features for the classification. Occluding
stride and occluding size of the selected sensitivity map are 10 and 30, respectively. Figure 5
illustrates the occlusion sensitivity of the proposed 14-DCNN model on sample test data.
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The confusion matrix is a summary of predictions made by the classification techniques.
The confusion matrix of the classification technique represents the true positive (TP), true
negative (TN), false positive (FP) and false negative (FN) values of every single class [3].
The area under the receiver operating characteristic (AUC-ROC) curve is one of the popular
metrics that is used to evaluate the performance of learning algorithms. The ROC curve
plots the difference between the true positive rate (TPR) and false positive rate (FPR) [15].
The TPR and FPR are calculated using Equations (7) and (8).

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

The AUC-ROC curve of the cherry healthy and strawberry leaf scorch classes shows the
classification advantage of the proposed 14-DCNN. Figure 6 illustrates the AUC-ROC curve of
the cherry healthy and strawberry leaf scorch classes, using the proposed 14-DCNN model.

The performance of the proposed 14-DCNN model and state-of-the-art techniques is
compared, using the most common performance metrics, such as classification accuracy,
precision, recall and F1-score [3]. At first, the classification accuracy is defined as the
correctly classified images divided by the total number of testing images. Precision is
the second most important performance evaluation metric in classification techniques.
Precision is defined as the number of correctly identified results divided by the number of
correctly identified and correctly rejected results that are predicted by the model. Precision
is used to find the correct proportion of the classification.
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The third most important performance evaluation technique is recall. The recall is
the number of correctly identified results divided by the number of correctly identified
and incorrectly rejected results. The recalls are used to determine the proportion of actual
positives that were correctly identified. The F1 score is one of the widely used metrics for
the performance evaluation of machine learning algorithms. The F1 score is defined as the
harmonic mean between precision and recall. The F1 score value represents the prediction
advantage of the classification techniques. The following Equations (9)–(12) were used to
calculate the accuracy, weighted average precision, weighted average recall and weighted
average F1 score of the classification techniques.

Classification accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 Score = 2 × (precision × recall)
(precision + recall)

(12)

The range of the classification accuracy, precision, recall and F1 score is between 0
(0%) and 1 (100%). The classification performance of the proposed 14-DCNN model on
individual classes in the dataset is illustrated in Table 5.

Figure 7 compares the performance of the proposed 14-DCNN and existing state-
of-the-art classification techniques using accuracy, weighted average precision, weighted
average recall and weighted average F1 score.

The comparison results show the accuracy, precision, recall, and F1 scores of the pro-
posed 14-DCNN are higher than the AlexNet, Inception-v3-Net, ResNet-50 and VGG16Net.
Additionally, the complexity of the proposed 14-DCNN and other transfer learning tech-
niques is illustrated in Table 6.

The complexity analysis result shows that the number of trainable parameters and
model size of the proposed 14-DCNN model are lesser than the existing transfer learning
techniques. The smaller number of trainable parameters and small model size will reduce
the complexity of the model prediction process. The comparison results illustrate that
the performance of the proposed 14-DCNN is higher than the AlexNet, Inception-v3-Net,
ResNet-50 and VGG16Net on plant leaf disease classification.
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Table 5. Class-wise performance of proposed 14-DCNN model.

Plant Name Class Names PRECISION RECALL F1-SCORE

Aloe Vera
Healthy 1 1 1
Leaf Rot 1 0.98667 0.99329
Leaf Rust 0.98684 1 0.99338

Apple

Healthy 1 1 1
Leaf Scab 1 1 1
Black Rot 1 0.98667 0.99329
Leaf Rust 1 1 1

Banana
Healthy 1 1 1

Bacterial Wilt 0.99338 1 0.99668
Black Sigatoka 1 0.99333 0.99666

Cherry Healthy 1 1 1
Powdery
Mildew 1 1 1

Citrus

Healthy 1 1 1
Black Spot 0.98684 1 0.99338

Canker 1 1 1
Greening 1 1 1
Melanose 1 0.98667 0.99329

Corn

Healthy 1 1 1
Common Rust 1 1 1

Leaf Spot 1 1 1
Northern Leaf

Blight 1 1 1

Coffee

Healthy 1 1 1
Cercospora Leaf

Spot 1 1 1

Leaf Rust 1 1 1
Red Spider Mite 1 1 1

Grape

Healthy 1 1 1
Black Measles 1 0.98 0.9899

Black Rot 0.96774 1 0.98361
Leaf Blight 1 1 1

Paddy

Healthy 1 1 1
Brown Spot 0.98039 1 0.9901

Hispa 1 1 1
Leaf Blast 1 1 1

Peach
Healthy 1 1 1

Bacterial Spot 0.98658 0.98 0.98328

Pepper Healthy 1 1 1
Bacterial Spot 1 0.98667 0.99329

Potato
Healthy 1 1 1

Early Blight 1 1 1
Late Blight 1 1 1

Strawberry Healthy 1 1 1
Leaf Scorch 1 1 1

Tea

Healthy 1 1 1
Leaf Blight 1 0.98667 0.99329

Red Leaf Spot 0.98684 1 0.99338
Red Scab 1 1 1
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Table 5. Cont.

Plant Name Class Names PRECISION RECALL F1-SCORE

Tomato

Healthy 1 1 1
Bacterial Spot 1 1 1
Early Blight 1 1 1
Late Blight 1 0.99333 0.99666
Leaf Mold 0.99338 1 0.99668
Leaf Spot 1 1 1

Spider Mite 1 1 1
Target Spot 1 1 1

Mosaic Virus 1 1 1
Yellow Leaf Curl

Virus 1 1 1

Wheat
Healthy 1 1 1

Leaf Rust 1 1 1

No Leaves No Leaves 1 1 1

Table 6. Complexity comparison of proposed 14-DCNN and existing model.

AlexNet Inception-v3-Net ResNet-50 VGG16Net 14-DCNN

No. of Parameters 44,752,739 24,937,283 26,722,211 39,443,043 17,928,571
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5. Conclusions

A novel DCNN model was proposed to detect plant leaf diseases from leaf images in
this research. The proposed 14-DCNN model was designed and trained to detect 42 leaf
diseases in 16 plants through leaf images. The data augmentation and hyperparameter
optimization techniques were also used to enhance the performance of the 14-DCNN in
this research. Three augmentation techniques were used to enhance the dataset size to
147,500 images. The augmentation techniques are NST, DCGAN, and BIM. The individual
class size, including original and augmented images, of the dataset, was 2500 images. The
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14-DCNN comprises five Conv and five max-pooling layers. The random search with
the coarse-to-fine technique was used to optimize the value of the hyperparameter for
training the proposed 14-DCNN model. Training of the most successful 14-DCNN model
was completed with the training and validation dataset of 139,000 images and optimized
hyperparameter values. The proposed 14-DCNN model achieved a classification accuracy
of 99.9655%, a precision value of 99.7999%, a recall value of 99.7966%, and an F1 score
of 99.7968% on the training dataset. The optimized hyperparameter values and the data
augmentation techniques had a considerable influence on the results of the proposed DCNN
model. Compared with standard transfer learning techniques, the proposed 14-DCNN
model has higher classification performance. An extension of this research will be adding
new classes of plant diseases and an increasing number of training images in the dataset
and modifying the architecture of the DCNN model using more convolutional and other
layers. In the future, we plan to estimate the possibility of plant disease and analyze the
severity using the deep learning technique. Moreover, we will extend disease detection
from plant leaves to other parts of the plants, such as flowers, fruits, and stems.
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