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ABSTRACT

DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant
species; however, none of the available loci work across all species. Because single-locus DNA barcodes lack adequate
variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole-chloroplast
genome sequences which are now more readily available as a consequence of improving sequencing technologies.
While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not
yet resource-effective and does not yet offer the speed of analysis provided by single-locus barcodes to unspecialized
laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the
chloroplast genome as a super-barcode. We advocate a new approach for DNA barcoding that, for selected groups
of taxa, combines the best use of single-locus barcodes and super-barcodes for efficient plant identification. Specific
barcodes might enhance our ability to distinguish closely related plants at the species and population levels.
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I. INTRODUCTION

There are an estimated 300000 plant species in the world
(IUCN, 2012) but relatively few of these can be identified
based on traditional plant identification methods (Hebert
et al., 2003; Bickford et al., 2007; Chase & Fay, 2009).
Accurate classification and identification of this large

* Address for correspondence (Tel: +853-8397-4691, +86-010-62811448; E-mail: ytwang@umac.mo, slchen@implad.ac.cn).

number of species remains a significant challenge even for
specialist taxonomists. The emergence of DNA barcoding
has had a positive impact on biodiversity classification and
identification (Gregory, 2005). DNA barcoding is a technique
for characterizing species of organisms using a short DNA
sequence from a standard and agreed-upon position in the
genome (http://barcoding.si.edu/DNABarCoding.htm).
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Since it was first put forward and widely applied in animals
(Hebert et al., 2003), DNA barcoding has attracted much
attention from taxonomists. DNA barcoding can also be
used for a wide range of purposes: to support ownership
or intellectual property rights (Stewart, 2005); to reveal
cryptic species (Hebert et al., 2004); in forensics to link
biological samples to crime scenes (Yoon, 1993; Coyle
et al., 2005; Mildenhall, 2006); to support food safety and
authenticity of labelling by confirming identity or purity
(Galimberti et al., 2012; Huxley-Jones et al., 2012); and in
ecological and environmental genomic studies (Valentini
et al., 2009).

Global DNA barcoding was initially regarded as a ‘big
science’ programme (Gregory, 2005) and even as the renais-
sance of taxonomy (Miller, 2007). However, the cytochrome
c oxidase 1 (CO1) sequence, which has been developed
as a universal barcode in animals, does not discriminate
most plants because of a much slower mutation rate (Kress
et al., 2005). Although many studies have searched for a
universal plant barcode, none of the available loci work
across all species (Chase & Fay, 2009; Chen et al., 2010). The
Consortium for the Barcode of Life-Plant Working Group
(CBOL) recently recommended the two-locus combination
of matK + rbcL as the best plant barcode with a discriminatory
efficiency of only 72% (CBOL Plant Working Group, 2009).
Taxonomists have suggested that a multi-locus method may
be necessary to discriminate plant species (Hebert et al.,
2004; Chase et al., 2007; Kress & Erickson, 2007; Erickson
et al., 2008; Kane & Cronk, 2008; Lahaye et al., 2008; Kane
et al., 2012). However, CBOL demonstrated that the use of
multiple loci did not clearly improve the species-level discrim-
inatory ability of these techniques (CBOL Plant Working
Group, 2009).

Researchers have recently proposed the use of the
whole-plastid genome sequence in plant identification
(Erickson et al., 2008; Sucher & Carles, 2008; Parks, Cronn
& Liston, 2009; Nock et al., 2011; Yang et al., 2013).
However this concept has not yet been universally accepted.
One of the main concerns is the high sequencing cost and
difficulties involved in obtaining complete plastid genome
sequences in comparison to the use of single-locus barcodes.
Hollingsworth, Graham & Little (2011) argued that the full
plastid haplotype is not a good marker because it does not
always track species boundaries. To date, it is still unclear
whether plastid genomes can be regarded as a suitable
barcode.

Here we review the history of plant barcode selection and
look at future prospects for DNA barcoding in plants (Fig. 1).
The feasibility of using the chloroplast genome (cp-genome)
as a ‘super-barcode’ is evaluated, and the concept of a
‘specific barcode’ derived from the comparison between
plastid genome sequences from a target group of taxa
is presented as an effective option that might be widely
applicable to plant identification studies. Specific barcodes
may provide new perspectives in the search for rapid and
accurate methods for species discrimination, especially for
closely related plants.

II. SINGLE-LOCUS DNA BARCODES

Traditional barcodes have been widely studied but still have
significant limitations. Some of these widely used single-locus
barcodes are described below.

(1) MatK

MatK has a high evolutionary rate, suitable length and
obvious interspecific divergence as well as a low transi-
tion/transversion rate (Min & Hickey, 2007; Selvaraj, Sarma
& Sathishkumar, 2008). Unfortunately, matK is difficult to
amplify universally using currently available primer sets.
The CBOL Plant Working Group (2009) revealed nearly
90% success rate in amplifying angiosperm DNA using
a single primer pair. However, the success was limited in
gymnosperms (83%) and much worse in cryptogams (10%)
even with multiple primer sets. Different primer pairs were
required in different taxonomic groups (Chase et al., 2007;
Hollingsworth, 2008). Lahaye et al. (2008) used specific
primers (Cuénoud et al., 2002) to amplify the matK gene of
1667 angiosperm plant samples and achieved a success rate
of 100%. A further challenge is the different discrimination
rates in different taxonomic groups. Matk can discriminate
more than 90% of species in the Orchidaceae (Kress &
Erickson, 2007) but less than 49% in the nutmeg family
(Newmaster et al., 2008). Fazekas et al. (2008) attempted the
identification of 92 species from 32 genera using the matK
barcode but only achieved a success rate of 56%. These
findings demonstrate that the matK barcode alone is not a
suitable universal barcode.

(2) RbcL

RbcL is widely used in phylogenetic investigations with over
50000 sequences available in Genbank. The advantages of
this gene are that it is easy to amplify, sequence and align in
most land plants and is a good DNA barcoding region for
plants at the family and genus levels. However, rbcL sequences
evolve slowly and this locus has by far the lowest divergence
of plastid genes in flowering plants (Kress et al., 2005).
Consequently, it is not suitable at the species level due to its
modest discriminatory power (Fazekas et al., 2008; Lahaye
et al., 2008; CBOL Plant Working Group, 2009; Chen et al.,
2010). The length of the gene can also be problematic as
double-stranded sequencing of the entire gene sequence may
require four primers. Despite these limitations, rbcL was
still suggested as one of the best potential candidate plant
barcodes based on the straightforward recovery of the gene
sequence, the large amount of easily accessible data and good,
but not outstanding, discriminatory power (Blaxter, 2004;
CBOL Plant Working Group, 2009; Hollingsworth et al.,
2011) even though it was previously rejected as a target for
species identification (Gielly & Taberlet, 1994; Renner, 1999;
Salazar et al., 2003). Although rbcL by itself does not meet the
desired attributes of a barcoding locus, it is accepted that rbcL
in combination with various plastid or nuclear loci can make
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Fig. 1. Schematic timeline of plant barcoding history and possible developments. CO1, cytochrome c oxidase 1; cp, chloroplast;
ITS, internal transcribed spacer.

accurate identifications (Newmaster, Fazekas & Ragupathy,
2006; Chase et al., 2007; Kress & Erickson, 2007; CBOL
Plant Working Group, 2009; Hollingsworth et al., 2009).

(3) TrnH-psbA

TrnH-psbA is currently the most widely used plastid
barcode. The presence of highly conserved coding sequences
on both sides make the design of universal primers
feasible (Shaw et al., 2005), with a single primer pair
likely to amplify nearly all angiosperms (Shaw et al.,
2007). The non-coding intergenic region exhibits most
sequence divergence and has high rates of insertion/deletion
(Kress & Erickson, 2007). These attributes make trnH-
psbA highly suitable as a plant barcode for species
discrimination (Kress & Erickson, 2007; Shaw et al., 2007),
and extensive barcoding studies demonstrated that in some
land plant groups such as Hydrocotyle, Dendrobium and
Pteridophytes (van de Wiel et al., 2009; Yao et al., 2009;
Ma et al., 2010) the trnH-psbA region could identify nearly
all species.

Alignment of the trnH-psbA spacer can be highly
ambiguous because of its complicated molecular evolution,
considerable length variation (Chang et al., 2006), and high

rates of insertion/deletion in larger families of angiosperms
(Chase et al., 2007). Furthermore, due to the presence of
duplicated loci and a pseudogene, the trnH-psbA sequence
is much longer [>1000 base pairs (bp)] in some conifers
and monocots (Chase et al., 2007; Hollingsworth et al., 2009)
while it is exceedingly short, less than 300 bp, in other groups
(Kress et al., 2005) and shorter than 100 bp in bryophytes
(Stech & Quandt, 2010). One of the key problems associated
with the use of trnH-psbA as a standard barcode is the
frequent inversions in some plant lineages, which may
lead to large overestimates of genetic divergence and to
incorrect phylogenetic assignment (Whitlock, Hale & Groff,
2010). Additionally, because of the premature termination of
sequencing reads caused by mononucleotide repeats, longer
trnH-psbA regions can be difficult to retrieve without taxon-
specific internal sequencing primers designed to obtain high-
quality bi-directional sequences (Devey, Chase & Clarkson,
2009; Ebihara, Nitta & Ito, 2010). Shorter trnH-psbA spacers
may not have adequate sequence variation for species
discrimination, such as in the genera Solidago (Kress et al.,
2005). As a consequence, Kress et al. (2005) and Chase et al.
(2007), respectively, proposed that trnH-psbA can be used in
two-locus or three-locus barcode systems to provide adequate
resolution.
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(4) ITS

The ITS spacer is a powerful phylogenetic marker at the
species level showing high levels of interspecific divergence
(Álvarez & Wendel, 2003). The greater discriminatory power
of ITS over plastid regions at low taxonomic levels has
been widely studied leading to it also being suggested
as a plant barcode (Stoeckle, 2003; Kress et al., 2005;
Sass et al., 2007), especially in parasitic plants which offer
less resolution from plastid barcodes (Hollingsworth et al.,
2011). However, CBOL has only regarded ITS as a
supplementary locus (CBOL Plant Working Group, 2009).
Some limitations prevent it from being a core barcode:
incomplete concerted evolution, fungal contamination and
difficulties of amplification and sequencing (Hollingsworth
et al., 2011). Fungi contain ITS sequences that can be
amplified (sometimes preferentially) and confused with plant
sequences.

Presenting a different view, the China Plant BOL Group
recently argued that when direct sequencing was possible,
the ITS region should be incorporated into the core barcodes
because of higher discriminatory power than plastid barcodes
(China Plant BOL Group, 2011). To resolve the difficulties
involved in sequencing the entire ITS, they suggested ITS2
as a backup because of its conserved sequence characters
which reduce amplification and sequencing problems. It was
accepted that ITS2 could be used as a novel universal barcode
for the identification of a broader range of plant taxa (Chen
et al., 2010; Gao et al., 2010a,b; Luo et al., 2010; Pang et al.,
2010, 2011) even from herbarium specimens with degraded
DNA (Chiou et al., 2007). Although the ITS2 barcode displays
some advantages compared to other candidate loci, including
ITS, researchers have not given much attention to this region.
A major concern is the existence of multiple copies in the
genome with high levels of within-species and even within-
individual sequence differentiation (Yamaguchi, Kawamura
& Horiguchi, 2006), which may lead to inaccurate or
misleading results (Álvarez & Wendel, 2003). Song et al.
(2012) recently showed that the ITS2 intra-genomic distances
were markedly smaller than those of the intra-specific or
inter-specific variants in a wide range of plant families.
Although the use of ITS2 circumvents low polymerase chain
reaction (PCR) efficiency, more investigations are needed
to assess the extent to which the access to fewer characters
reduces discrimination power in comparison to the entire
ITS region (Hollingsworth et al., 2011). For example, the
ITS2 sequences are generally less than 300 bp in Fritillaria
and do not have adequate interspecific divergence for species
resolution.

(5) Other widely used plastid barcodes

At present, DNA barcoding technology relies heavily on
chloroplast loci because of their relatively low evolutionary
rates compared with nuclear loci (Dong et al., 2012). Beyond
the candidate barcodes described above, there are many
other widely used plastid barcoding markers, such as
rpoB, rpoC1, atpF-atpH , psbK-psbI , ycf5 and trnL (P6). Their

properties have been discussed in detail by Hollingsworth
et al. (2011) and Vijayan & Tsou (2010). These chloroplast
regions are valuable for phylogenetic analyses and barcoding
studies at higher taxonomic levels but are not suitable for
plant DNA barcoding at lower taxonomic levels because of
insufficient variation.

Molecular evolution of cp-genome sequences also shows
both lineage-specific and nonrandom spatial patterns of
substitution (Gruenheit et al., 2008; Zhong et al., 2011;
Dong et al., 2012; Ahmed et al., 2013). For example,
Dong et al. (2012) demonstrated that the region of ycf1
located in the IRb region is conservative while the two
regions located in the SSC region are extremely variable.
Such substitution patterns in chloroplast genomes indicate
complex processes of mutation that are asymmetric, and
lack independence between sequence positions. Thus, the
patterns of substitution are not well described by currently
used substitution models, particularly with respect to
deeper phylogenetic divergences (Lockhart & Steel, 2005).
Chloroplast sequence evolution can be inconsistent across
lineages, and phylogenetic incongruence between different
chloroplast gene loci is possible (Lockhart & Steel, 2005;
Magee et al., 2010; Wu et al., 2011; Dong et al., 2012).
Therefore it can be problematic to find an ideal universal
barcode applicable at various taxonomic levels.

III. CANDIDATE MULTI-LOCUS DNA BARCODES

Despite extensive efforts to identify a universal plant
barcode comparable to CO1 in animals, the task has
proved difficult due to the lack of adequate variation
within single loci (Kress et al., 2005; Newmaster et al.,
2006; Chase et al., 2007; Kress & Erickson, 2007; Sass
et al., 2007; Fazekas et al., 2008; Lahaye et al., 2008). Many
researchers have suggested that a multi-locus method will
be required to obtain adequate species discrimination
(Hebert et al., 2004; Kress & Erickson, 2007; Erickson
et al., 2008; Kane & Cronk, 2008; Lahaye et al., 2008;
CBOL Plant Working Group, 2009; Chase & Fay, 2009).
Various combinations of plastid loci have been proposed
including rbcL + trnH-psbA (Kress & Erickson, 2007),
rpoC1 + rpoB + matK or rpoC1 + matK + trnH-psbA (Chase
et al., 2007) and matK + atpF-atpH + psbK-psbI or matK + atpF-
atpH + trnH-psbA (Pennisi, 2007). These combined barcodes
exhibit higher species discrimination than single-locus
approaches. Different research groups have tested different
combinations using different taxa while attempting to select
a universal barcode, however universal agreement is yet to
be reached. Fazekas et al. (2008) compared these barcode
combinations using the same large-scale taxonomic samples,
but none could identify more than 70% of tested species.

The CBOL Plant Working Group recently recommended
matK + rbcL as the universal barcode combination due to
the straightforward recovery of the rbcL region and the
discriminatory power of the matK sequence (CBOL Plant
Working Group, 2009). Although the choice of rbcL + matK
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offered slightly higher identification efficiency than other
combinations, the rbcL + matK barcode still failed to meet
the original goal of a universal DNA barcode. Firstly, the
combination of rbcL + matK cannot avoid the low PCR
efficiency of matK and secondly, the success of rbcL + matK
in discriminating plants is typically lower than that of
CO1 in animals. Combined barcodes increase analytical
difficulties compared to single-locus markers, especially when
one of the target loci does not amplify. What’s more,
CBOL demonstrated that the use of seven candidate loci
did not significantly improve species-level discriminatory
ability compared to rbcL + matK . Some authors considered
that the failure of multiple-locus barcodes to increase
species discrimination was not simply due to the lack of
variation; rather it reflected the discrepancies between the
plastid gene tree and species boundaries (Fazekas et al.,
2009; Hollingsworth et al., 2011). Thus, the combinations
of candidate loci cannot eliminate the inherent deficiencies
of current DNA barcoding of plants.

IV. SUPER-BARCODING: A NEW WAY FOR
PLANT DISCRIMINATION

Because of the inherent limitations of single-locus DNA
barcodes, a new method is needed to identify closely related
plant species (Heinze, 2007). It has recently been pointed out
that the complete cp-genome contained as much variation as
the CO1 locus in animals and may be used as a plant barcode
(Kane & Cronk, 2008). The complete cp-genome has a
conserved sequence ranging from 110 to 160 kbp, greatly
exceeding the length of commonly used DNA barcodes
and providing more variation to discriminate closely related
plants. The cp-genome has been used as a versatile tool
for phylogenetics. It can greatly increase resolution at lower
taxonomic levels in plant phylogenetic, phylogeographic
and population genetic analyses, facilitating the recovery of
lineages as monophyletic, and was therefore proposed as
a species-level DNA barcode (Parks et al., 2009). Using the
cp-genome as a marker circumvents possible issues with gene
deletion and low PCR efficiency (Huang et al., 2005). The
analysis of this super-barcode also resolves the problems
of sequence retrieval usually encountered in traditional
barcoding studies. Compared with the nuclear genome, the
cp-genome is small in size and has a higher interspecific and
lower intraspecific divergence, which makes it more suitable
as a genome-based barcode. Species identification can also
be performed according to whether a gene exists in either of
two species, which is regarded as the simplest test of species
identification based on barcoding approaches (Hebert et al.,
2004). This is because super-barcoding is more efficient in
detecting gene loss and defining gene order than traditional
barcoding (Luo et al., 2008, 2009).

Although sequences from single or multiple chloroplast
and nuclear genes have been useful for differentiating
species, the cp-genome has been used efficiently to distinguish
between closely related species (Parks et al., 2009; Nock et al.,

2011), populations (Doorduin et al., 2011) and individuals
(Kane et al., 2012; McPherson et al., 2013). This approach
is still relatively controversial, Hollingsworth et al. (2011)
suggested that often the plastid genome could not completely
track species boundaries. However their conclusion was
largely based on an individual case study (discussed by
Fazekas et al., 2009) rather than on large-scale comparative
analyses. In comparison, Joly, McLenachan & Lockhart
(2009) have provided a promising method based on the
use of minimum genetic distances to distinguish between
hybridization and incomplete lineage sorting. Software
implementing this method (Joly, 2012), termed ‘JML’ was
recently used to analyse chloroplast gene sequences and
identify a hybrid and geographically isolated lineage of
Pachcycladon persisting in the Southern alps of New Zealand
(Becker et al., 2013). In this example, the power and resolution
of JML was greatly improved by analysing concatenated
chloroplast loci. JML seems particularly appropriate for
evaluating the issue of species boundaries using part (e.g.
5–10 k) or entire cp-genomes as a plant super-barcode.
Nevertheless plastid-genome-based species classification and
identification have been progressively more accepted by
taxonomists (Shendure & Ji, 2008; Kumar et al., 2009; Wu
et al., 2010; Bayly et al., 2013; Yang et al., 2013). The main
challenges of super-barcoding are the establishment of a
rich cp-genome database and the reduction of sequencing
cost, as well as obtaining a higher quality and quantity of
DNA (Kane et al., 2012). The first cp-genome was sequenced
in 1986 (Shinozaki et al., 1986); by 2012 there were 254
complete plant cp-genomes within public databases, which
only accounts for less than 0.01% of total plant species and
is still a small number for widespread species identification.
With the development of next-generation sequencing (NGS),
the number of cp-genomes sequenced has increased rapidly
(Fig. 2). The number of new cp-genomes published in 2012
greatly exceeded the total number sequenced in each of the
previous 20 years.

Sample preparation has been regarded as the key factor
in multiplex sequencing (sequencing of multiple tagged
samples together in one lane) of plastid genomes (Parks et al.,
2009). Low-quality DNA templates such as contaminated
DNA samples generate noise which require labour-intensive
evaluations during sequence assembly. NGS requires a
much larger amount of more-purified DNA than PCR-based
sequencing techniques but standard methods of cp-genome
extraction have been established (Diekmann et al., 2008; Shi
et al., 2012). Although it was not initially straightforward
(Hollingsworth et al., 2011), researchers recently provided
standardized protocols for extracting pure chloroplast DNA
using fresh leaves, assisting plastid sequencing and sequence
assembly. Targeted enrichment protocols are being trialed
(Stull et al., 2013), but recent procedures can use total DNA
as a template for cp-genome sequencing not only solving the
problem of extracting chloroplast DNA from dried and even
degraded materials but also simplifying the whole process
(Nock et al., 2011). A recent comparative study demonstrated
that deriving bio-informatically the entire cp-genome from
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Fig. 2. The total number of complete chloroplast genome sequences submitted to Genbank from 1986 to 2012.

whole-DNA shotgun sequence data without the need for
a reference genome, is as accurate but considerably less
resource intensive that obtaining it from purified chloroplast
DNA (McPherson et al., 2013). Thus neither extraction meth-
ods nor sequencing capacity can any longer be considered as
limiting factors for obtaining cp-genome data, as NGS can
generate many individual super-barcodes (Doorduin et al.,
2011). NGS along with multiplex identifiers (MID) technol-
ogy and other multiplexing tools can allow for the sequencing
of 100 or more complete cp-genomes in a single run. McPher-
son et al. (2013) showed that it is possible to obtain the full
cp-genome from less than 1 GB of whole-DNA shotgun data.
Although assembling short sequence reads into cp-genomes
in the absence of a reference genome may require some data
inspection and interpretation, a closely related reference is
not absolutely needed for sequence assembly (Straub et al.,
2011), and dedicated pipelines are being developed (McPher-
son et al., 2013). As sequencing read length continues to
increase, assembling plastid genomes without a reference
genome will become increasingly popular for a broad range
of applications, particularly as in-house library-making
(Rohland & Reich, 2012) and multiplexing will reduce
costs to well below $100 per cp-genome, especially with the
potential to sequence 100 or more samples in a single lane.

Although sequencing cost has substantially decreased
(Kane et al., 2012), current costs for whole cp-genome
sequencing still exceed that of obtaining single-locus barcodes
by Sanger sequencing, particularly when primer and PCR
optimization are not required for the latter approach. Even
excluding these factors if plastid-based identifications are
reliant on a fully annotated cp-sequence, the necessary
analyses can be complex and difficult to standardize.

Continuing advances in NGS technologies have provided
new options for obtaining chloroplast sequences. The
Roche/454 sequencing platform currently provides the
longest sequence reads and is a good but relatively expensive
choice for de novo sequencing if there are no closely related
plastid sequences in public databases. The Illumina platform

has provided a cheaper alternative. Further advances in
these platforms are likely in the near future reducing the
costs of chloroplast sequencing by increasing sequencing
data volumes and providing increased opportunities for
combining samples for sequencing in the same run. For
example, it is expected that samples of total rice DNA might
be multiplexed (e.g. 96-fold combining samples from 96
samples) and sequenced in a single run to obtain enough
coverage (of the order of 1000-fold for the chloroplast
of each genotype) to allow de novo cp-genome assembly
and analysis. Preliminary studies across multiple species are
showing that de novo cp-genome assembly from shotgun data
is efficient and informative even without a reference genome
or any knowledge of genome size (van der Merwe et al.,
2013). These advances will reduce the cost to be almost
equal to that of a single-locus barcode per cp-genome.
As sequencing technology and bioinformatics continue to
improve rapidly, complete plastome sequencing will become
more popular and may eventually replace Sanger-based
DNA barcoding. The chloroplast provides a barcode that
can also be successfully tailored to the study of relationships
in specific plant groups (Bayly et al., 2013; Yang et al., 2013).

V. SPECIFIC BARCODE: A TRADE-OFF
BETWEEN SINGLE-LOCUS BARCODES AND
SUPER-BARCODES

Single-locus barcodes lack adequate variations while fully
annotated super-barcodes currently can be costly and may
be overly complicated for laboratories that lack the necessary
experience. To resolve this current challenge, we put forward
the concept of using ‘specific barcodes’ which involve a
trade-off between single-locus barcodes and super-barcodes
(Fig. 1). A specific barcode is a fragment of DNA sequence
that has a sufficiently high mutation rate to enable species
identification within a given taxonomic group. Because
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Table 1. DNA markers tested for their suitability for barcoding
in given plant groups

Genera

Barcode
markers

used

Success rate
of unique

identification (%) References

Lemnaceae atpF-atpH 92.85 Wang et al. (2010)
Asteraceae ITS2 97.4 Gao et al. (2010b)
Fabaceae matK 96 Gao et al. (2011)
Rutaceae ITS2 100 Luo et al. (2010)
Orchid matK 90 Lahaye et al. (2008)
Hydrocotyle trnH-psbA 100 van de Wiel et al. (2009)
Dendrobium psbA-trnH 100 Yao et al. (2009)
Medicinal plants ITS2 99.8 Chen et al. (2010)
Cycas ITS 91.7 Sass et al. (2007)
Macrozamia ITS 100 Sass et al. (2007)
Aspalathus trnT-trnL 100 Edwards et al. (2008)
Swartzia ITS2 97.4 Gao et al. (2010a)
Taxus trnL-F/ITS 100 Liu et al. (2011)
Pteridophytes psbA-trnH 90.2 Ma et al. (2010)
Solanum trnS-trnG/ndhF 100 Zhang et al. (2013)

specific barcodes are chosen directly from the plastid genome
sequences of target families or genera, universal primers can
be easily designed for the group of interest. This avoids
the problem of low PCR efficiency in amplification and
extensive optimizations that can be time and resource
intensive. Furthermore, species from a given group are likely
to share genes and gene orders which will simplify sequence
acquisition across multiple target taxa. In addition, specific
barcodes could be controlled to a suitable length, which
avoids the risk of ambiguous alignment caused by variable
sequence length (Chase et al., 2007).

This approach is simpler than obtaining super-barcodes
for each sample, and many options are available to choose
from for informative markers, such as genes, intergenic
spacers, partial gene sequences, partial intergenic spacers and
even sequences including partial gene sequences and partial
intergenic spacers. Although there are over 300000 plant
species (IUCN, 2012) if one particular barcode is selected
per study group (a specific clade or genus for example), the
total number of barcodes needed across all plants is likely
to be accessible. In fact, specific DNA barcodes are likely to
be shared at higher taxonomic levels making this approach
even more appealing (Table 1).

Currently, when selecting plant barcodes for species-
specific identification four main choices are available:
evaluate candidate plastid markers proposed by CBOL
(Kumar et al., 2009; Wang et al., 2010); choose commonly
used markers in a given group (Zhang et al., 2013);
search mutational hotspots and loci by investigating the
distribution of oligonucleotide repeat sequences and the
relationships between repeats, indels and substitutions in a
single representative plastid genome (Ahmed et al., 2013);
or use plastid-comparative analyses to select a suitable
locus displaying adequate species-level divergence (Kuang
et al., 2011; Dong et al., 2012). Specific barcodes focus
on the latter method of finding barcodes for complete

species-level resolution. A specific barcode may include
one of the single-locus barcodes (e.g. matK or PsbA-trnH )
or could be based on new markers that have never been
used before.

The initial goal of DNA barcodes was to find a universal
locus for the identification of all plants. However, there is
no such universal barcode locus for land plants, especially
in the chloroplast where lineage-specific evolution and
non-random spatial patterns of substitution can occur
(Ahmed et al., 2013). That is why the specific-barcode
approach relies on the use of dedicated cp-regions for
each target group of species. In addition to genes and
intergenic spacers, any DNA fragment with adequate
variations (and not duplicated within the chloroplast to
avoid analytical issues stemming from paralogy) can be
used as a marker. While markers used in single-locus DNA
barcodes such as the rbcL region can provide resolution
at a higher taxonomic rank (e.g. family or genus), specific
barcodes can assist species-level identifications, which is
what we now typically require. Although some methods
can address the issue of species boundaries in some
particular plant groups (Joly, 2012; Becker et al., 2013),
the cp-genome sequence may not always suggest the same
boundaries between species as those currently recognized
by taxonomists. The availability of improved approaches
to cp-genome analysis as proposed here will provide tools
that should allow these issues to be explored more fully.
This may not resolve these questions but should allow these
taxonomic challenges to be more widely known and hopefully
better understood.

The wide application of specific barcodes has two
prerequisites: a rich database of cp-genome sequences
(however these do not need to represent the fully annotated
genome of the target taxa) and another database including
primers for each plant group derived from the exploration of
these cp-genomes. Known species could be distinguished
by using the corresponding specific barcodes from the
primer database. As for unknown species, two steps will
be needed. First, unknown species are classified using single-
locus barcodes (e.g. rbcL) at the family or genus levels.
Second, the corresponding specific barcodes are chosen
from cp-genome datasets to achieve discrimination at the
species level (Fig. 1). This ‘1+1’ model is different from
the tiered approach (Newmaster et al., 2006), especially in
its second step. Although both the approaches include
two steps potentially relying on two barcode loci, specific
barcoding screens new markers in the second stage by
comparing plastid genomes while the tiered approach relies
on commonly used markers. The flexibility in choice of a
specific barcode would have enormous advantages given the
variation observed in substitution rates. In this respect, we
may obtain a range of barcodes of similar value to CO1
in animals.

Obtaining sufficient plastid genome sequence is a critical
step in identifying a suitable specific barcode from an
alignment. Dong et al. (2012) scanned 12 entire cp-genomes
to search for mutationally active regions to be used for
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barcoding at the genus level. Ahmed et al. (2012) compared
six plastid genomes from five genera to investigate the extent
of genome-wide association between inverted repeats, indels,
and substitutions in aroid cp-genomes. Yang et al. (2013)
performed population-level phylogenomic analyses using
eight cp-genome sequences from five Cymbidium species.
We suggest 8–10 closely related plastid genome sequences
from different species for alignment to search for specific
barcodes. A specific barcode can then be selected at a
genome-scale level for a certain group or specific lineage.
If a close reference sequence is necessary, obtaining one
plastid genome should be enough to support de novo sequence
assembly.

Although the increased availability of published cp-
genomes will facilitate the design of specific barcodes,
current advances of NGS provide further opportunities for
this approach. In cases where low diversity is expected (for
example a recently radiated clade), one single NGS run of
multiplexed DNA can be enough to identify phylogenetically
informative sites. A study on over 80 rainforest tree species is
currently exploring this approach (H. McPherson, personal
communication).

VI. CONCLUSIONS

(1) DNA barcoding aims to find a single sequence to
identify all species. Yet, no single-locus barcode can achieve
the goal. In addition to inadequate variation and low PCR
efficiency (often due to sequence variation in the primer
binding regions), gene deletion is an important limiting
factor for single loci preventing their use as a universal
DNA barcode. For example, algae do not contain the matK
sequence.

(2) Multi-locus markers have been assumed to be
more successful in species identification, but studies to
date demonstrated that these are also inadequate for
universal plant identification. Despite significant recent
effort, the development of single-locus barcodes has stalled,
placing plant DNA barcoding at a crossroads. Fortunately,
developments in DNA sequencing allowing cost-efficient
plastid sequencing are driving plant identification into a
post-barcode era.

(3) Whole-plastid-based barcodes have shown great
potential in species discrimination, especially for closely
related taxa. Continuing advances in sequencing technology
may make these super-barcodes the method of choice for
plant identification. Although routine technology is not yet
established in many taxonomic laboratories, a choice is
already possible between cost efficiency and practicality.
Well-equipped laboratories can rely on in-house technical
advances to reduce costs per base pair of sequence.
Traditional laboratories can outsource NGS techniques
at a higher cost but with the advantage of only having
to provide plant material and follow-on bio-informatic
analyses.

(4) The ultimate goal of DNA barcoding is to distinguish
species rather than find a universal marker. Specific barcodes
for each plant group suitable for application in traditional
laboratories may be defined based upon the analysis of
whole-chloroplast data. Specific barcoding is expected to
become more widely used, providing fast and accurate
molecular identifications at the species and population
levels.
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